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Abstract. Automated reasoning in OWL is capable of inferences that
are nontrivial for people to understand. We argue that the understanding
of inferences would benefit from stepwise explanations. To build a system
that supports such explicative inference, we propose a framework based
on inference rules and proof tactics for OWL ontologies. In particular, the
goal is to present inferences in a suitable and adaptable way to human
users, and to predict whether certain inferences are harder to understand
than others. This article outlines the conception of this framework and
its benefits whose implementation is currently work in progress.

1 Introduction

Inferences in OWL vary in their degree of difficulty for people to understand. This
was recently shown in experiments, where subjects who were either considered
competent in OWL or who considered themselves competent in OWL were found
to dismiss inferences in spite of them being logically valid (see [1, 2]). One task
where it is relevant to understand why certain entailments hold (when in fact,
they are undesired or counterintuitive) is ontology debugging, as posited by [3].

Previous work has argued for reasoning services that present inference steps
in a transparent manner, e.g. [4], to facilitate understanding. One problem that
has been addressed is the identification of justifications, that is, to make explicit
minimal sets of axioms within an ontology that are sufficient for a given entail-
ment to hold. Presenting such a precise version of justification to the user clearly
has a benefit, as demonstrated by [5]. Further work has argued for making in-
termediate reasoning steps explicit, such as [6] and [4]. McGuinness et al. [4]
even consider the presentation of explanations at “different levels of granularity
and focus”, where different segments of a proof for an entailment are rewritten
to provide “an abstraction”. Further techniques that are used in the context of
explanations for entailments are graphical representations of proofs, and natural
language output, usually generated using patterns.

An effective explanation in the spirit of the above work presupposes a con-
ception of what kinds of explanations are understandable to particular groups
of users (or in general), and where the potential difficulties are. That is, the
difficulties of (purported) OWL experts to understand some entailments but
not others should inform the design of such a system, to enable support (and
transparency) where needed. Consequently, such a system should be measured
by the degree to which it makes a difficult task easier. However, the difficulties



that are inherent to the understanding of certain patterns of inference have not
been investigated in sufficient depth. Horridge et al. [2] present a model for the
“cognitive complexity” of entailments. It received some support in a preliminary
experimental evaluation, but more work is clearly required to establish a the-
oretical underpinning and a more robust evaluation for such kinds of models.
In a similar vein, in previous work we have investigated suitable levels of detail
and conciseness of proofs in a mathematical assistant system employed in the
context of (general mathematical) proof tutoring [7] . It remains to be shown in
how far this approach can be usefully applied to OWL reasoning.

The objective of this article is to outline the design of a system currently
under development to facilitate inferences in OWL that are “explicative”, in
the spirit of the above stipulations. It is based on the assumption that the best
way to generate explanations of entailments in OWL are rule-based inference
systems. The hypothesis that the stepwise presentation of derivations is under
circumstances more useful than the presentation of “justifications” alone (i.e. the
axioms from which the entailment is derived) is yet to be tested, one of the objec-
tives to be addressed with the completed system. Furthermore, we are interested
not only in formal properties of inference rule sets (such as soundness, of course),
but in their plausibility for the user, i.e. whether the user would find it natural
or difficult to make a particular inference, or to understand a given inference. A
second hypothesis to be addressed is whether the difficulty of an entailment in
OWL can be predicted more precisely on the basis of derivations in a suitable
rule system than by looking at properties of the axioms and the derived formula
alone (the model in [2] makes such a restriction), or by using an off-the-shelf
reasoner, for instance a tableau-based reasoner. A third objective is to enable
inference rules that can be decomposed further into more fine-grained steps, to
result in a hierarchical proof structure. Such rules that encode commonly used
proof patterns are referred to as tactics in the theorem proving community. The
idea to base proof presentations on hierarchical proofs has previously been im-
plemented in some systems, see [8, 9]. The main benefit is that the same proof
can be presented at different levels of detail or conciseness, depending on the
user’s choice [9], or some model of appropriate step size [7]. One objective of this
work is to investigate tactics for OWL reasoning, and to establish the benefits
of such an approach for explanation.

2 A Framework for Explicative Inference

The goal for the presented framework is to provide a suitable representation for
derivations, as the basis for proof presentation, and for using these derivations
as a model for estimating the complexity/effort of making the entailment rep-
resented by the derivation. As the formula language, the presented framework
focuses on the constructs supported by OWL 2 [10] by directly making use of
the OWL API [11].1

1 http://owlapi.sourceforge.net
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R17
dom(r0, X) ∀r0.⊥ v X

> v X

(a)

R17(left)
Γ,> v X, dom(r0, X), ∀r0.⊥ v X ` ∆

Γ, dom(r0, X), ∀r0.⊥ v X ` ∆

(b)

Fig. 1. (a) Example inference from the empirical study of Nguyen et al. [1], and (b)
corresponding sequent style inference rule in forward direction (i.e. manipulating the
antecedent)

2.1 Foundations

As a representation formalism for explicative inference, we use sequent style
proofs and sequent inference rules. This has the advantage that different sets of
inference rules can be used. On the one hand, this includes a set of sequent rules
for the ALC fragment from [12], proposed specifically for the explanation of sub-
sumptions in ALC. On the other hand, we interpret the entailments investigated
in an experiment by Nguyen et al. [1] as inference rules. As an example, con-
sider one of the 51 inference problems considered by Nguyen et al., the following
entailment (as worded in the experiment):

Everything that has a worship leader is a fomorian.
Everything that has no worship leader at all is a fomorian.
Everything is a fomorian.

The representation of the above entailment as an inference rule is shown in
Fig. 1, where (a) is the interpretation of the entailment according to [1], and (b)
the interpretation as a sequent style inference rule (here, we only consider the
“left hand side” variant of the rule, i.e. forward direction of inference applica-
tion). In Fig. 1 (b), Γ and ∆ represent formulae in the antecedent and succedent
that are not manipulated by the inference. As it is common, we construct se-
quent proofs from the endsequent (the sequent containing all premises and the
conclusion(s) to be shown) “upwards” (in terms of notation), this explains the
different configuration of rules (a) and (b). To avoid the contraction rule2, the
principal formulae of R17(left) are also part of the side formulae.

The construct dom(r,X ) is an abbreviation3 provided by SHOIQ (cf. e.g.
[13]), and is defined as ∃r.> v X. This construct, instantiated with some imagi-
nary concepts and roles, i.e. dom(hasWorshipLeader, Fomorian), was verbalized
by Nguyen et al. as “Everything that has a worship leader is a fomorian.” in
the natural language presentation of the entailment. Note that this is logically
equivalent to dom(hasWorshipLeader, Fomorian) but not literally congruent.

The entailment quoted above was correctly judged as valid by 39 out of 50
participants in the experiment by Nguyen et al., i.e. 11 participants wrongly

2 In fact, structural rules (which include the contraction rule) are often not considered
useful for proof explanation, for example see [12].

3 We write dom(r,X ) instead of domain(r,X ) (the latter being the usual syntax, e.g.
in [13]) to save space in figures.



judged the entailment not to hold. Using the Nguyen et al. rule set to justify
entailments obviously results in different proofs from the ones using more concise
rule sets such as those presented in [12]. The relative difficulties of the entail-
ments/rules investigated by Nguyen et al. are reflected in their facility indices
(the proportion of correct responses from experiment participants, interpreted
as an estimate of the entailments’ difficulties of being understood by the par-
ticipants). These can potentially be used to determine whether the employed
inferences in a derivation are to be considered to be difficult or easy. How these
difficulties combine (whether they are purely additive, or whether their specific
combination matters, as suggested by [2, 7]) is not clear, however, and will be
one of the research questions to be addressed in future work with the presented
framework.

As an example for the representation of such a proof in our system, consider
an entailment taken from [13]. Given the following (justification) axioms, it holds
that Person v ⊥ (i.e. the class Person is unsatisfiable):4

RRated ≡ (∃hasScript.ThrillerScript t ∀hasVL.High)

dom(hasVL,Movie)

Person v ¬(Movie)

RRated v CatMovie

CatMovie v Movie

Fig. 2 shows the corresponding proof when a rule set based on the entailments
in [1] is used. Rules that are numbered (e.g. R1) directly correspond to the
entailments listed in [1]. Rules that are named are provided additionally in our
framework, and in the case of the example entailment, they are needed to suitably
represent the derivation. A list of the inference rules that are used in the example
is provided in the appendix.

Fig. 2 (a) shows the proof tree (for ease of presentation, we use the Gentzen-
style tree, rather than reproducing the full sequents at each step, the latter
being the actual representation used in our system). The proof presentation
is generated via simple pretty printing, and results in a linear proof in Fig. 2
(b). The sequent representation would be a suitable starting point for natural
language generation (beyond the simple pretty printing we currently use) to
facilitate the verbalization of proofs, but this is outside the scope of this paper
(and often it is not necessary, for example in the case of ontology debugging,
where derivations consisting of concise formulae might be more useful for an
ontology engineer to quickly understand the source of a problem than natural-
language text). The graphical representation of proof trees also has its benefits
(see, for example, [4]). So far, we have not connected our framework to a tool
that visually lays out the proof trees, which might be useful in its own right.

4 We write “hasVL” as a shorthand for the role “hasViolenceLevel”.



RRated ≡ (∃hasScript.ThrillerScript t ∀hasVL.High)
R1

(∃hasScript.ThrillerScript t ∀hasVL.High) v RRated
R4

CatMovie v Movie RRated v CatMovie ∀hasVL.High v RRated
R12 ∀-weakening

RRated v Movie ∀hasVL.⊥ v RRated
R12

dom(hasVL,Movie) ∀hasVL.⊥ v Movie
R17

Person v ¬(Movie) > v Movie
DisjointFromTopSynonym

Person v ⊥
(a)

Obtain RRated v Movie by R12 from
CatMovie v Movie and RRated v CatMovie

Obtain (∃hasScript.ThrillerScript t ∀hasVL.High) v RRated by R1 from
RRated ≡ (∃hasScript.ThrillerScript t ∀hasVL.High)

Obtain ∀hasVL.High v RRated by R4 from
(∃hasScript.ThrillerScript t ∀hasVL.High) v RRated

Obtain ∀hasVL.⊥ v RRated by ∀-weakening from
∀hasVL.High v RRated.

Obtain ∀hasVL.⊥ v Movie by R12 from
RRated v Movie and ∀hasVL.⊥ v RRated

Obtain > v Movie by R17 from
dom(hasVL,Movie) and ∀hasVL.⊥ v Movie

Obtain Person v ⊥ by DisjointFromTopSynonym from
Person v ¬(Movie) and > v Movie

(b)

Fig. 2. Rule-based derivation of the entailment in [13, p.221]

2.2 Tactics for OWL

Tactics represent commonly used proof patterns. In this work, we define a tactic
as a high-level inference rule (represented as a sequent style rule), for which an
alternative derivation exists with the same premises and the same conclusion,
but made up of several inference steps at a lower level. The more detailed version
of the derivation is called the expansion of the tactic, and can be considered an
alternative explanation of the inference.

To represent such hierarchical proofs with several levels, we employ the
generic conception of the proof data structure PDS developed for the mathe-
matical assistant system Omega [14] (however, in our work we do not make use
of proof forests at this stage, which are also part of the PDS concept). More
precisely, proofs are represented as directed acyclic graphs, where sequent for-



mulae are linked to their premises via justification5 nodes. There can be several
justifications for the same sequent, which are ordered hierarchically. As an illus-
trative example, we consider the entailment in Fig. 2 again. Rule R17 (as shown
in Fig. 1) is implemented as a tactic, and expansion results in two inference steps
using the inference rules >-Cases and Def.Domain (R17 is part of the catalog of
entailments in [1], whereas >-Cases and Def.Domain are extra rules that are not
part of Nguyen et al.’s catalog), as shown in Fig. 3. The inference rules that con-
stitute >-Cases and Def.Domain are presented in Fig. 4. In Fig. 3, rectangular
boxes represent sequents, and rounded boxes the inference rules that “justify”
the derivations, which connect a sequent to its premise sequent(s) (in the figure,
from left to right). For ease of readability, those formulae that are added to a
sequent by the latest rule application are printed in bold. When the last step of
the expansion of a tactic finally links to the premise sequent of that tactic, it
may happen that some of the formulae that were derived intermittently are not
considered (formally, this corresponds to weakening). In our example, this is the
case for ∃hasVL.>vMovie. However, not much is lost – if a proof is complete
using a particular tactic, of course it remains complete when the expansion is
added in this way. The dashed arrow represents a hierarchical ordering between
the justifying inference rules for the sequent on the left in the figure.

>v Movie,
dom(hasVL, Movie),
∀hasVL.⊥vMovie,
. . . ` Personv⊥

Def.
Domain

R17

∃hasVL.>vMovie,
dom(hasVL, Movie),
∀hasVL.⊥vMovie,
. . . ` Personv⊥

>-Cases
dom(hasVL, Movie),
∀hasVL.⊥ v Movie,
. . . ` Person v ⊥

h

just.

just.

prem.

prem.

just. prem.

Fig. 3. Expansion of tactic R17 in the running example from Fig.2

When tactics are used, there is a choice between different levels for presenting
the derivation/proof to the user. In the example, instead of presenting the step
using R17, the two more fine-grained steps using >-Cases and Def.Domain can
be shown alternatively. Any complete proof alternative that can be generated
from this hierarchical representation is called a “view” in the terminology of [14].
Previous work has explored the usefulness of enabling users to switch between
such views in a mathematical assistant system [9]. Another prospect is to use
measures for the difficulty (or “cognitive complexity” [13]) to make an informed
selection of the right level(s) of justifications for a particular user, in the spirit

5 Note that here, “justification” takes a slightly different meaning than in [5]; a sequent
is considered justified when it follows from one or several premise sequent(s) by
means of an inference application.



>-Cases
Γ,>vX, ∃r.>vX, ∀r.⊥vX ` ∆
Γ,∃r.> v X, ∀r.⊥ v X ` ∆

(a)

Def.Domain (left)
Γ,∃r.> v X, dom(r,X) ` ∆

Γ, dom(r,X) ` ∆

(b)

Fig. 4. Inference rules employed in the example in Fig. 3

of [7]. For example, if the model for difficulty/complexity determines that R17 is
understandable to the user (possibly depending on some form of user model, or
the user’s choice, or a general assumption about the typical user of the system),
R17 is shown, whereas if it is considered too difficult, it can be split up into the
two rule applications at the lower level.

2.3 Explanation Generation

The envisaged process for the generation of explanations with the presented
system is a three stage process. First, for a given entailment and an ontology, a
standard tableau-based reasoner (currently Hermit6) is called to find a minimal
set of justifications according to [15]. Then, in the second stage, a simple proof
search procedure is used that applies the tactics and sequent inference rules to
find a proof as described above. This tandem construction of using two different
inference mechanisms (both tableau-based and sequent rule-based) is used since
a justification is a better starting point for constructing the sequent derivation
than the entire ontology. Further work will investigate in how far the construction
of the sequent-style proofs with tactics can be informed by the tableau proof
obtained in the first step. For instance, Borgida et al. [12] have shown in the
context of the ALC fragment that the trace of the (efficient) tableau construction
can be used to build sequent-style proofs for the purpose of explanation without
any further search, but this result needs to be extended to the other patterns of
inference available in the system presented here. We consider the work in [12] a
good basis to further explore this issue.

The third stage consists in producing readable output from the generated
proof(s). This involves the selection within the hierarchical levels of a proof (i.e.
the selection of the “view”), and the generation of a human-readable presenta-
tion. At current, only a relatively simple pretty-printer is used (resulting in the
output illustrated in Fig. 2), but a graphical interface (to draw the proofs as
graphs, and to visualize hierarchical layers) or a natural language output facility
would be useful additions.

6 www.hermit-reasoner.com/

www.hermit-reasoner.com/


3 Discussion

This work combines several ideas and hypotheses that have been previously
investigated by related work more or less in isolation;
– that for the purpose of explanations, entailments in OWL are suitably rep-

resented by explicit derivations, rather than pointing to the relevant axioms
alone,

– that different kinds of inference schemata are more difficult to perform
and/or to understand than others,

– that hierarchical proofs offer the flexibility to adapt the level of abstraction
of derivations to the needs of the user.
This echoes efforts in the general community of mathematical assistant sys-

tems and automated reasoning that have sought to facilitate human-oriented
proofs, as opposed to “machine-oriented” proof mechanisms [16]. Such work has
pointed to challenges that are specific to such systems, in particular with respect
to efficiency. So far, the efficiency of our tandem construction for proof generation
(fast search for justifications using a standard tableau-based reasoner, and rela-
tively slow rule-based proof search with large rule sets on the simplified search
problem) has not been evaluated, an important topic that remains for future
work. In fact, it is to be expected that relatively rich rule sets (such as the
51-rule set generated from the inferences in [1]) will result in a large branching
factor, and that naive, non-heuristic search will reach the limits of acceptable
performance fairly quickly.

While the work presented here argues for the benefits of explicit deriva-
tions to explain entailments, in contrast to the “justification-oriented” approach
(e.g. [15]), the question of which one of those competing approaches is the
most suitable is not likely to result in an all-or-nothing answer. For example,
justification-based explanations certainly have an advantage in situations where,
for instance, the logical structure of the problem is of a well-known or repetitive
form (e.g., a chain of subsumptions, or even simple OWL 2 EL justifications with
chains of existential restrictions and atomic subsumptions). In such a case, any
additional information (such as showing a derivation) would most likely be more
harmful than helpful. The argument should rather be addressed by a comparison
of the two approaches taking into account the background of the user and the
complexity of the derivations to be presented.

A further and important topic for empirical investigation to be addressed in
future work is to determine the advantage of using hierarchical proofs/tactics
(and empirically investigated rule sets such as those from [1]) for the explanation
of entailments over previous approaches using sequent-style derivations, such
as [12].

Another question is in how far such systems should mirror “human” rea-
soning, in particular since there is controversy on the question “how do people
reason” between different schools of thought in cognitive psychology. For exam-
ple, some have argued (e.g. [17]) that human reasoning is essentially incomplete,
since humans were found to refuse certain inferences that are logically valid (this
interpretation could be transferred to those inferences that proved to be most



difficult in [1]). For some classes of inferences (e.g. syllogisms), competing kinds
of theories exist (for instance, rule-based theories of inference, e.g. [17], vs. men-
tal models [18]). In our current work we submit to inference rules, since they
provide a middle ground between their suitability for automated reasoning and
their psychological plausibility as determined by cognitive psychologists.

A predominant perspective in previous work on the difficulty of inferences in
ontologies (e.g. [1, 2]) is that of difficulty being an essentially static property of
inference problems, i.e. individual differences in knowledge, mastery, or learning
have not been taken into account so far. Similarly, most experiments on reasoning
in cognitive psychology have been performed with untrained subjects, to estab-
lish the “natural” ability of people to reason logically. Experiments involving
both learning and reasoning are more complex to set up and analyze. However,
most courses in logic are built on the assumption that instruction and training
will increase the learners’ ability over time, therefore the hypothesis that the
difficulty of inferences will decrease with practice seems to be a plausible one.
In learning, a process called “rule automatization” [19] is known. Taking this
into account, future work should not only study whether certain inferences are
generally more difficult for a particular group of people (at a specific level of ex-
pertise) than others (which has been done in cognitive psychology, usually with
the level of expertise being fixed at “naive”), but also study how the specific dif-
ficulty changes over time as a result of experience and learning. The presented
framework will be useful to model hypotheses and generate test problems for
empirical experiments that help to discriminate between different such hypothe-
ses (for example, whether the relative differences in difficulty between easy and
difficult problems for novices are still to be found in experts, or whether these
problem-specific differences disappear with practice).

Finally, since this article describes a system that is currently work in progress,
future work will examine different aspects of usefulness of such a framework, both
from the viewpoint of practitioners (e.g. in the case of ontology debugging), and
for a deeper investigation of metrics associated with the difficulty of sequences
of inferences in a knowledge representation setting.
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Appendix

In the following, we list the inference rules used in the example derivation in
Fig. 2.

Γ,X v Y,X ≡ Y ` ∆
Γ,X ≡ Y ` ∆

R1a

Γ, Y v Z, (X t Y ) v Z ` ∆
Γ, (X t Y ) v Z ` ∆

R4

Γ,X v Z,X v Y, Y v Z ` ∆
Γ,X v Y, Y v Z ` ∆

R12(left)

Γ,> v X, dom(r,X),∀r.⊥ v X ` ∆
Γ, dom(r,X),∀r.⊥ v X ` ∆

R17(left)

Γ,∀r.⊥ v X,∀r.X v Y,` ∆
Γ,∀r.X v Y ` ∆

∀-weakening

Γ,X v ⊥, X v ¬Y,> v Y ` ∆
Γ,X v ¬Y,> v Y ` ∆

DisjointFromTopSynonym

a We assume that n-ary class-equivalence axioms are normalized into binary class-
equivalence axioms, such that the rule for the binary case suffices.
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