
Nominal Schema Absorption

Andreas Steigmiller∗ and Birte Glimm
Ulm University, Germany

<first name>.<last name>@uni-ulm.de

Thorsten Liebig
derivo GmbH, Germany

liebig@derivo.de

Abstract
Nominal schemas have recently been introduced as
a new approach for the integration of DL-safe rules
into the Description Logic framework. The effi-
cient processing of knowledge bases with nominal
schemas remains, however, challenging. We ad-
dress this by extending the well-known optimisa-
tion of absorption as well as the standard tableau
calculus to directly handle the (absorbed) nominal
schema axioms. We implement the resulting exten-
sion of standard tableau calculi in a novel reason-
ing system and we integrate further optimisations.
In our empirical evaluation, we show the effect of
these optimisations and we find that the proposed
approach performs well even when compared to
other DL reasoners with dedicated rule support.

1 Introduction
We address the problem of an efficient handling of so-called
nominal schema axioms in tableau calculi for Description
Logics (DLs). Nominal schemas have been introduced re-
cently [Krötzsch et al., 2011] as a feature for expressing arbi-
trary DL-safe rules (as specified in the W3C standards SWRL
[Horrocks et al., 2004] or RIF [Kifer and Boley, 2010]) na-
tively in DLs and, consequently, in OWL ontologies [OWL
Working Group, 2009]. Hence, DLs with nominal schemas
provide a unified basis for OWL and rules. Although some
attempts (see, e.g., [Krisnadhi and Hitzler, 2012]) have been
made to improve the performance of tableau calculi when ex-
tended with nominal schemas, handling of nominal schemas
remains challenging. We tackle this problem by extending the
well-know tableau optimisation of absorption [Horrocks and
Tobies, 2000]. The resulting calculus extends a standard tab-
leau calculus by additional rules to deal with the absorbed
nominal schema axioms and shows a considerable perfor-
mance improvement over existing techniques.

Nominal schemas extend the nominal constructor that is
present in many DLs and which allows for specifying a con-
cept as a singleton set with a named individual as member,
∗The first author acknowledges the support of the doctoral schol-

arship under the Postgraduate Scholarships Act of the Land of
Baden-Wuerttemberg (LGFG).

e.g., the interpretation of the concept {a} consists of the
element that represents the named individual a. Nominal
schemas introduce a new concept constructor {x}, where x is
a variable that can only be bound to a named individual from
the ABox of the knowledge base. This restriction ensures de-
cidability and is common for nominal schemas as well as for
SWRL rules.

We use the same running example as Krisnadhi and Hitzler
(2012), which describes a conflicting review assignment for
an individual who has to review a paper x that has an author y
with whom that individual has a joint publication in the same
venue z:
∃hasReviewAssignment.({x} u ∃hasAuthor.{y} u ∃atVenue.{z})

u ∃hasSubmittedPaper.(∃hasAuthor.{y} u ∃atVenue.{z})
v ∃hasConflictingAssignedPaper.{x}.

For brevity, we shorten hasReviewAssignment to r,
hasAuthor to a, atVenue to v, hasSubmittedPaper to s, and
hasConflictingAssignedPaper to c in the remainder. Obvi-
ously, this axiom can neither be directly expressed in a DL
knowledge base nor as ordinary DL-safe rule (e.g., if we were
to express the complex concepts as role atoms, we would
have to introduce a variable for the submitted paper, which
then would only bind to known ABox individuals). How-
ever, nominal schema axioms can be eliminated by upfront
grounding, i.e., by replacing nominal schema axioms with
all possible grounded axioms obtained by replacing nominal
schemas with nominals, where the nominal schemas with the
same variable are always replaced by the same nominal. Up-
front grounding is, however, very inefficient. For example, a
nominal schema axiom with 3 variables can be grounded for a
knowledge base with 100 ABox individuals in 1003 different
ways, which is prohibitive even for small examples.

A promising approach for efficient reasoning in OWL DL
ontologies extended with nominal schemas, i.e., SROIQV
knowledge bases with V denoting nominal schemas, is to
adapt established tableau algorithms (e.g., [Horrocks et al.,
2006]), which are dominantly used for sound and complete
reasoning systems for expressive DLs. One such approach
extends a tableau algorithm such that grounding is delayed
until it is required [Krisnadhi and Hitzler, 2012]. However,
this requires significant changes to the tableau algorithm and,
thus, to existing optimisations, which are crucial for a rea-
sonable performance on real-world ontologies. Furthermore,
it is not clear in which way concepts have to be grounded



to achieve a well-performing implementation and some con-
cepts even cannot be grounded efficiently.

In this paper, we present a novel approach that works by
collecting possible bindings for the nominal schema variables
during the application of tableau rules; then, these bindings
are used to complete the processing of the nominal schema
axioms. For this, we extend the widely used technique of ab-
sorption (Section 3) to handle nominal schemas (Section 4.1),
and we adapt or add new rules to the tableau calculus (Sec-
tion 4.2). We further sketch optimisations and empirically
evaluate the proposed approach (Section 5), before we con-
clude (Section 6). Further details and proofs are available in
a technical report [Anonymous, 2013].

2 Preliminaries
For brevity, we do not introduce DLs (see, e.g., [Baader et al.,
2007]) and we only present our approach for ALCOIQV .
Covering SROIQV is, however, easily possible: role chains
(incl. transitivity) can be encoded [Horrocks et al., 2006] and
the remaining SROIQ features are easy to support.

Model construction calculi, such as tableau, decide the
consistency of a knowledge base K by trying to construct an
abstraction of a model for K, a so-called “completion graph”.
A completion graph G is a tuple (V,E,L, ˙6=), where each
node x ∈ V (edge 〈x, y〉 ∈ E) represents one or more (pairs
of) individuals. Each node x (edge 〈x, y〉) is labelled with a
set of concepts (roles), L(x) (L(〈x, y〉)), which the individu-
als represented by x (〈x, y〉) are instances of. The relation ˙6=
records inequalities between nodes.

The algorithm works by initialising the graph with one
node for each ABox individual/nominal in the input knowl-
edge base (w.l.o.g. we assume that the ABox is non-empty).
Complex concepts are then decomposed using a set of expan-
sion rules, where each rule application can add new concepts
to node labels and/or new nodes and edges to the comple-
tion graph, thereby explicating the structure of a model. The
rules are applied until either the graph is fully expanded (no
more rules are applicable), in which case the graph can be
used to construct a model that is a witness to the consistency
of K, or an obvious contradiction (called a clash) is discov-
ered (e.g., both C and ¬C in a node label), proving that the
completion graph does not correspond to a model. The input
knowledge base K is consistent if the rules (some of which
are non-deterministic) can be applied such that they build a
fully expanded, clash free completion graph.

In order to guarantee that each node of the completion
graph indeed satisfies all TBox axioms, one can use a tableau
rule that checks, for each general concept inclusion (GCI)
C v D, whetherC is satisfied for a node v and only then adds
D to L(v). If C is complex, it can, however, be non-trivial
to decide whether C is satisfied for v. To guarantee correct-
ness, one treats axioms where C is complex as> v ¬C tD.
Given that > is satisfied at each node, the disjunction is then
added to the label of each node. In practise, one uses elabo-
rate transformations in a preprocessing step called absorption
to avoid axioms of the form > v ¬C tD.

The absorption algorithm extracts those conditions of a dis-
junction for which it can be ensured that if one of these con-

ditions is not satisfied for a node in a completion graph, then
at least one alternative of the disjunction is trivially satisfi-
able. These conditions are then used for expressing the dis-
junction in such a way that non-determinism can be avoided
as much as possible in the tableau algorithm. For example,
one would like to avoid treating ∃r.(A1 t A2) v ∃s.A as
> v ∀r.(¬A1 u ¬A2) t ∃s.A. Any node that does not have
an r-neighbour trivially satisfies ∀r.(¬A1u¬A2) and, hence,
the overall disjunction. Thus, we could only add the disjunc-
tion to nodes that have at least one r-successor. We can, how-
ever, go even further by first identifying nodes that satisfy
A1 or A2 and then make sure that their r−-neighbour sat-
isfies ∃s.A. Hence, the disjunctive axiom can be rewritten
into A1 v T , A2 v T and T v ∀r−.(∃s.A), where T is a
fresh atomic concept. Here, A1 and A2 have been absorbed
(i.e., moved to the left-hand side of the axiom) and the con-
cept T is used to enforce the semantics of the original axiom.
We call ∀r.(¬A1 u ¬A2) completely absorbable since it no
longer contributes a disjunct. The goal of the absorption pre-
processing step is, therefore, the extraction of such easy to
verify conditions that allow for expressing a GCI by possibly
several axioms that ideally do not require a disjunction.

For a more complex absorption it is often necessary to join
several conditions, say A1 to An. An efficient way to do this
is binary absorption [Hudek and Weddell, 2006], where two
concepts A1 and A2 imply a fresh atomic concept T1 by the
axiom (A1 u A2) v T1. We can then combine T1 with the
next condition A3 and so on, until (Tn−2 u An) v Tn−1,
where Tn−1 can then be used for further absorption.

3 Absorption Algorithm
Since our handling of nominal schemas is based on absorp-
tion methods, we next present an improved variant of a re-
cursive binary absorption algorithm, which we then extend
to nominal schemas in the next section. The improvements
allow for absorbing parts of the axioms partially without cre-
ating additional disjunctions. For example, the TBox axiom
∃r.(A u ∀r.C) v D is, without absorption, handled as > v
∀r.(¬At∃r.¬C)tD. None of the disjuncts can be absorbed
completely, but it is nevertheless possible to delay the pro-
cessing of the disjunction until there is an r-neighbour with
the concept A in its label. In order to capture this, the absorp-
tion rewrites the axiom such that the disjunction is propagated
from a node with A in its label to all r−-neighbours (if there
are any), which results in A v ∀r−.(∀r.(¬At∃r.¬C)tD).

In the following, C(i), D(i) are (possibly complex) con-
cepts, A(i), T(i) are atomic concepts with T(i) used for fresh
concepts and S is a set of concepts. We assume that all con-
cepts are in the well-known negation normal form (NNF) or
we use nnf(C) to transform a concept C to an equivalent one
in NNF. Our algorithm uses the following functions to absorb
axioms of a TBox T into a new (global) TBox T ′:
• isCA(C) (isPA(C)) is a recursive function that returns

true if the concept C is completely (partially) ab-
sorbable and false otherwise. For the base case, C is
completely (partially) absorbable ifC has the form¬{a}
or ¬A (¬{a}, ¬A, or ∀r.C ′). For the recursion, C is
completely absorbable if



Algorithm 1 collectDisjuncts(C, absorbable), returns the ab-
sorbable/not absorbable disjuncts of the concept C

1: S ← {C}
2: while (C1 t C2) ∈ S do
3: S ← (S \ (C1 t C2)) ∪ {C1, C2}
4: end while
5: if absorbable = true then return { C ∈ S | isPA(C) }
6: else return { C ∈ S | ¬isCA(C) }
7: end if

Algorithm 2 absorbJoined(S), returns the atomic concept
that is implied by the join of the absorptions of S

1: S′ ← ∅
2: for all C ∈ S do
3: A′ ← absorbConcept(C)
4: S′ ← S′ ∪ {A′}
5: end for
6: while A1 ∈ S′ and A2 ∈ S′ and A1 6= A2 do
7: T ← fresh atomic concept
8: T ′ ← T ′ ∪ {(A1 uA2) v T}
9: S′ ← (S′ ∪ {T}) \ {A1, A2}

10: end while
11: if S′ = ∅ then return >
12: else return the element A′ ∈ S′ . S′ is a singleton
13: end if

– C = ∀r.C ′ and C ′ is completely absorbable,
– either C = C1 t C2 or C = C1 u C2 and both C1

and C2 are completely absorbable;
and C is partially absorbable if

– C = C1tC2 andC1 orC2 are partially absorbable,
– C = C1 u C2 and both C1 and C2 are partially

absorbable.
In all other cases, we say thatC is neither completely nor
partially absorbable, however, the absorption can further
be extended to other constructors, e.g., to constructors of
more expressive DLs [Anonymous, 2013].

• collectDisjuncts(C, absorbable), shown in Algorithm 1,
returns the set of (completely or partially) absorbable
disjuncts for C if absorbable = true and the set of not
completely absorbable disjuncts otherwise. If C is not
a disjunction, then {C} itself is returned, in case it con-
forms to the specified absorbable condition.

For simplicity, we assume here that axioms of the form
C ≡ D are rewritten into C v D and D v C. An extension
that directly and, hence, more efficiently handles axioms of
the form A ≡ C is also possible [Anonymous, 2013].

To absorb the TBox T , we call for each axiom C v D
the function absorbJoined for the set of absorbable disjuncts,
i.e., collectDisjuncts(nnf(¬C t D), true), which returns a
fresh atomic concept that is used to imply a disjunction of
the non-absorbable disjuncts, i.e., collectDisjuncts(nnf(¬Ct
D), false). The methods absorbJoined (Algorithm 2) and
absorbConcept (Algorithm 3) are recursively calling each
other, whereby absorbJoined is joining several atomic con-
cepts with binary absorption axioms and absorbConcept cre-

Algorithm 3 absorbConcept(C), returns the atomic concept
for the absorption of the concept C

1: if C = C1 u C2 then
2: A1 ← absorbJoined(collectDisjuncts(C1, true))
3: A2 ← absorbJoined(collectDisjuncts(C2, true))
4: T ← fresh atomic concept
5: T ′ ← T ′ ∪ {A1 v T,A2 v T}
6: return T
7: else if C = ∀r.C ′ then
8: Anb ← absorbJoined(collectDisjuncts(C ′, true))
9: T ← fresh atomic concept

10: T ′ ← T ′ ∪ {Anb v ∀r−.T}
11: return T
12: else if C = ¬{a} then
13: T ← fresh atomic concept
14: T ′ ← T ′ ∪ {{a} v T}
15: return T

. . .
16: else return A . C is of the form ¬A
17: end if

ates the absorption for a specific concept. For instance, a con-
cept of the form ∀r.C can be absorbed (lines 7–11 of Algo-
rithm 3) by creating a propagation from the atomic concept
Anb, which is obtained by the absorption of the concept C,
back over the r-edge, to trigger a fresh atomic concept T .
Note, if C cannot be absorbed, then absorbJoined returns >
and the axiom > v ∀r−.T is created, which corresponds to
∃r.> v T and, thus, is similar to the well known role absorp-
tion [Tsarkov and Horrocks, 2004].

The absorbJoined function creates binary absorption ax-
ioms (Algorithm 2, lines 6-10) for the atomic concepts re-
turned by absorbConcept. Thus, absorbJoined is joining sev-
eral conditions into one fresh atomic concept, which can be
used for further absorption or to initiate the addition of the
remaining and non-absorbable part of the axiom. One can
further reduce the number of produced axioms by reusing ab-
sorption axioms for concepts that occur more then once.

One can show that concept satisfiability is indeed preserved
for the absorbed TBox:

Theorem 1 Let T denote a TBox, T ′ the TBox obtained by
absorbing T , and C a concept, then C is satisfiable with re-
spect to T iff it is satisfiable with respect to T ′.

4 Nominal Schema Absorption
In contrast to DL-safe SWRL rules, the left-hand side of
axioms with nominal schemas can be satisfied on arbitrary
nodes in the completion graph (even though variables can
only bind to nodes that represent individuals/nominals). As
a consequence, axioms with nominal schemas can influence
arbitrary nodes in the completion graph and, thus, blocking,
which ensures termination, easily becomes unsound when
typical approaches for rule processing, such as Rete [Forgy,
1982], are used naively. Our approach to overcome this issue
is to emulate such rule processing mechanisms by adapted
tableau rules, which propagate bindings of variables for con-
cepts through the completion graph. As a nice side-effect,



this propagation means that complex roles can be supported
without further adjustments. Analogously to ordinary GCIs,
our approach works well if the axioms with nominal schemas
have a large absorbable part and, furthermore, most nominal
schema variables appear at least once in the absorbable part.

4.1 Absorption of Axioms with Nominal Schemas
The absorption of axioms with nominal schema variables
works very similar to the absorption of ordinary axioms. We
could directly extend the absorption algorithm to handle the
new concept construct, however, to avoid some special cases
for conjunctionsC1uC2 in an absorbable disjunct, where dif-
ferent nominal schema variables are used in C1 and C2, we
require that conjunctions in absorbable positions are elimi-
nated. This can be done by duplicating the disjunction that is
absorbed and by replacing C1 u C2 once with C1 and once
with C2. For example, the axiom {x} t A v ∃r.{x} is han-
dled as the disjunction (¬{x}u¬A)t∃r.{x} in the absorption
and to eliminate ¬{x} u ¬A we replace the original axiom
with {x} v ∃r.{x} and A v ∃r.{x}.

For our absorption algorithm of Section 3, the following
two modifications are necessary in order to handle nominal
schemas in the remaining axioms:
• isCA(C) (isPA(C)) is extended to return that a negated

occurrence of a nominal schema ¬{x} is completely
(partially) absorbable.
• absorbConcept(C) of Algorithm 3 must now also han-

dle a negated occurrence of a nominal schema ¬{x} by
absorbing it to O v ↓x.Tx for which the fresh atomic
concept Tx is returned and O is a special concept that is
added to the label of all ABox individuals.

The ↓ binder operator, as known from Hybrid Logics [Black-
burn and Tzakova, 1998], is introduced to actually bind vari-
ables to individuals (or nodes in a completion graph). It is
handled by a new tableau rule, which adds, for a node a with
↓x.Tx ∈ L(a), Tx to the label and records that x is bound to
a. In the remainder, we assume that knowledge bases contain,
for each individual a, an axiom of the form {a} v O, where
O is a fresh atomic concept. Since the binders are, therefore,
only added to ABox individuals (due to axioms of the form
O v ↓x.Tx), the decidability is retained, whereas the unre-
stricted extension of a Description Logic with binders easily
leads to undecidability of the standard reasoning problems.

Other concepts can be absorbed as before, however, the re-
maining, non-absorbed part of the axiom, say the disjuncts
D1, . . . , Dn, have to be added with a disjunction that is
grounded with those bindings of variables that have been
propagated to the last concept from the absorption, say A.
In the tableau algorithm this can be done dynamically, e.g.,
with a new “grounding concept” and a corresponding rule.
Therefore, if D1, . . . , Dn still contain concepts with nomi-
nal schemas, then A v gr(D1 t . . . t Dn) has to be added
to the TBox, where gr(·) is the new grounding concept. For
simplicity, let us assume that gr(C) is always used to add the
remaining, non-absorbed part of the axiom, even if C or the
axiom does not contain any nominal schemas.

Example 1 Our running example ∃r.({x} u ∃a.{y} u
∃v.{z}) u ∃s.(∃a.{y} u ∃v.{z}) v ∃c.{x} can be almost

Table 1: Tableau rule extensions to propagate mappings
∀-rule: if ∀r.C ∈ L(v), v not indirectly blocked, there

is an r-neighbour w of v with C /∈ L(w) or
B(∀r.C, v) 6⊆ B(C,w)

then L(w) −→ L(w) ∪ {C} and B(C,w) −→
B(C,w) ∪ B(∀r.C, v)

v1-rule: if A v C ∈ K, A ∈ L(v), v not indirectly
blocked, and C /∈ L(v) or B(A, v) 6⊆ B(C, v)

then L(v) −→ L(v) ∪ {C} and B(C, v) −→
B(C, v) ∪ B(A, v)

v2-rule: if (A1uA2) v C ∈ K, {A1, A2} ⊆ L(v), v not
indirectly blocked, and
1. B(A1, v)∪B(A2, v) = ∅ and C /∈ L(v), or
2. (B(A1, v) 1

ε B(A2, v)) 6= ∅ andC /∈ L(v)
or (B(A1, v) 1

ε B(A2, v)) 6⊆ B(C, v)
then L(v) −→ L(v) ∪ {C} and B(C, v) −→
B(C, v) ∪ (B(A1, v) 1

ε B(A2, v))
↓-rule: if ↓x.C ∈ L(v), v not indirectly blocked, and

C /∈ L(v) or {x 7→ v} /∈ B(C, v)
then L(v) −→ L(v) ∪ {C} and B(C, v) −→
{{x 7→ v}}

gr-rule: if gr(C) ∈ L(v), v not indirectly blocked,
there exists a variable mapping µ ∈
compKVars(C)(B(gr(C), v)) with C[µ] /∈ L(v)

then L(v) −→ L(v) ∪ {C[µ]}
completely absorbed into the following axioms:
O v ↓x.Tx
O v ↓y.Ty
O v ↓z.Tz
Ty v ∀a−.T1

Tz v ∀v−.T2
T3 v ∀s−.T4
T5 v ∀r−.T6
T7 v gr(∃c.{x}),

(T1 u T2) v T3
(T3 u Tx) v T5
(T4 u T6) v T7.

where Tx, Ty , Tz , T1, . . . , T7 are fresh atomic concepts.
Only ∃c.{x} cannot be absorbed and has to be grounded
on demand. To keep the example small, we have reused
axioms for the absorption of the same concepts, whereas the
algorithm of Section 3 would generate for each occurrence
of ¬{y} and ¬{z} a separate binder concept.

4.2 Tableau Algorithm Extensions
We can now extend a standard tableau decision procedure to
support (absorbed) nominal schema axioms. Note, we as-
sume that GCIs are handled by two rules: the v1-rule han-
dles GCIs of the form A v C (i.e., a non-absorbable axiom
C v D is handled as> v nnf(¬CtD)) and thev2-rule han-
dles binary absorption axioms of the form (A1 u A2) v C.
These rules and the ∀-rule (for transitivity support also the
∀+-rule) have to be adapted. The ↓ binders and gr(·) con-
cepts are handled by new rules. In order to propagate variable
bindings, we keep a set of mappings that records bindings for
variables, for each concept in a node label.
Definition 1 (Variable Mapping) A variable mapping µ is a
(partial) function from variable names to individual names.
The set of elements on which µ is defined is the domain, writ-
ten dom(µ), of µ. We use ε for the empty variable mapping,
i.e., dom(ε) = ∅. We associate a concept C in the label of a
node v with a set of variable mappings, denoted by B(C, v).
When clear from the context, we simply write mapping in-
stead of variable mapping in the remainder.



a3 a4

a1 a2

a0

a
v a

v

r, c s

L(a3) ⊃
{
↓y.Ty, T

{{y 7→a3}}
y , (∀a−.T1)

{{y 7→a3}}
}

L(a4) ⊃
{
↓z.Tz, T

{{z 7→a4}}
z ,

(∀v−.T2)
{{z 7→a4}}

}L(a1) ⊃

{
↓x.Tx, T

{{x 7→a1}}
x , T

{{y 7→a3}}
1 , T

{{z 7→a4}}
2 , T

{{y 7→a3,z 7→a4}}
3 ,

T
{{x 7→a1,y 7→a3,z 7→a4}}
5 , (∀r−.T6)

{{x 7→a1,y 7→a3,z 7→a4}}

}
L(a2) ⊃ T

{{y 7→a3}}
1 , T

{{z 7→a4}}
2 ,

T
{{y 7→a3,z 7→a4}}
3 ,

(∀s−.T4)
{{y 7→a3,z 7→a4}}


L(a0) ⊃

{
T
{{y 7→a3,z 7→a4}}
4 , T

{{x 7→a1,y 7→a3,z 7→a4}}
6 , T

{{x 7→a1,y 7→a3,z 7→a4}}
7 ,

gr(∃c.{x}){{x7→a1,y 7→a3,z 7→a4}}, ∃c.{a1}

}

Figure 1: Variable mapping propagation example

Table 1 shows the adapted and new tableau rules and we
describe the not so straightforward extensions in more detail
below. The mappings have to be propagated by the tableau
rules for the concepts and axioms that are used in the ab-
sorption. For example, if we apply the adapted v1-rule to an
axiom of the form A v C, we keep the mappings also for
the concept C. Note that it is only necessary to extend those
rules, which are related to concepts and axioms that are used
in the absorption, because if the mappings are propagated to a
gr(·) concept, the remaining, non-absorbed part of the axiom
is grounded and thus corresponds to an ordinary concept.

Some major adjustments are necessary for the v2-rule that
handles binary absorption axioms of the form (A1uA2) v C.
First of all, we want to keep the default behaviour if there
are no variable mappings associated to the concept facts for
which the rule is applied, i.e., if B(A1, v) ∪ B(A2, v) = ∅,
then we add C to the label of v. In contrast, if B(A1, v) 6= ∅
or B(A2, v) 6= ∅, we propagate the join of the mapping
sets to the implied concept. In the case B(A1, v) = ∅ and
B(A2, v) 6= ∅, we extend B(A1, v) by the empty mapping ε
so that the join of B(A1, v) and B(A2, v) results in B(A2, v),
which is then propagated to C. We proceed analogously for
B(A2, v) = ∅ and B(A1, v) 6= ∅. In principle, the join com-
bines variable mappings that map common variables to the
same individual name and to point out that the empty sets of
mappings are specially handled, we have extended the join
operator 1 with the superscript ε.
Definition 2 (Variable Mapping Join) Two variable map-
pings µ1 and µ2 are compatible if µ1(x) = µ2(x) for all x ∈
dom(µ1) ∩ dom(µ2). For compatible mappings µ1 and µ2,
µ1 ∪ µ2 is defined as (µ1 ∪ µ2)(x) = µ1(x) if x ∈ dom(µ1),
and (µ1 ∪ µ2)(x) = µ2(x) otherwise. Given two (possibly
empty) sets of variable mappings M1, M2, let M ε

1 = {ε}
(M ε

2 = {ε}) ifM1 = ∅ (M2 = ∅) andM ε
1 =M1 (M ε

2 =M2)
otherwise. The join M1 1ε M2 is defined as {µ1 ∪ µ2 | µ1 ∈
M ε

1 , µ2 ∈M ε
2 and µ1 is compatible with µ2} \ {ε}.

For a concept gr(C) the gr-rule grounds C based on the
variable mappings associated to gr(C). Since these mappings
might not cover all nominal schema variables that occur in C,
it is necessary to extend the mappings with every combination
of named individuals for the remaining variables. This so-
called completion ensures that only fully grounded concepts
are added, which can then be handled as ordinary concepts in
the completion graph. Therefore, it is also not necessary to
further propagate mappings to such newly added concepts.
Definition 3 (Grounding, Completion) For a concept C,
Vars(C) is the set of nominal schema variables that syntacti-
cally occur in C. A concept C is grounded if Vars(C) = ∅.
Let µ be a variable mapping. We write C[µ] to denote the

concept obtained by replacing each nominal schema {x} that
occurs in C and x ∈ dom(µ) with the nominal {µ(x)}.

Given a set of variables Y and a variable mapping set M
with M ε as the extension by the empty mapping ε if M = ∅,
the completion compKY (M) of M w.r.t. Y and a knowledge
base K containing the individuals Inds(K) is
compKY (M) = {µ ∪ {x1 7→ v1, . . . , xn 7→ vn} | µ ∈M ε,

x1, . . . , xn ∈ (Y \ dom(µ)), v1, . . . , vn ∈ Inds(K)}.

The unrestricted application of generating rules such as the
∃-rule can lead to the introduction of infinitely many new
tableau nodes. To guarantee termination, one uses a cycle
detection technique called (pairwise) blocking [Horrocks and
Sattler, 1999] that restricts the application of such rules. To
apply blocking, we distinguish blockable nodes from nomi-
nal nodes, which have a nominal from the knowledge base
in their label. A node v with predecessor v′ is blocked by a
node w with predecessor w′, if v, v′, w, w′ are all blockable
and the labels of (i) v and w (ii) v′ and w′ and (iii) 〈v′, v〉 and
〈w′, w〉 coincide. We extend the standard blocking conditions
to also require that the bindings for the concepts in the labels
of these nodes coincide.

The completion graph in Figure 1 is obtained in the course
of testing the consistency of a knowledge base containing the
axioms of Example 1 and the assertions: r(a0, a1), s(a0, a2),
a(a1, a3), v(a1, a4), a(a2, a3), v(a2, a4). Note, Figure 1
shows only those concepts and variable mappings (in su-
perscripts) that are relevant for the grounding of new con-
cepts. However, since O and thereby also the binder con-
cepts are added to all ABox individuals, additional variable
mappings are automatically created for every ABox individ-
ual. The joins of the mapping sets are created in the nodes
a1 and a2 for the concepts T3 and T5 and finally in node
a0 for the concept T7. Only the variable mapping {x 7→
a1, y 7→ a3, z 7→ a4} is propagated to the grounding con-
cept gr(∃c.{x}) ∈ L(a0) and, thus, by replacing the nominal
schema {x} with the nominal {a1}, we have ∃c.{a1} as the
only grounded concept. Hence, the individual a0 is found to
have a conflicting review assignment with the paper a1.

Roughly speaking, it is possible to prove the correctness of
our nominal schema absorption technique by a reduction be-
tween a completion graph for a TBox with nominal schemas
and a standard completion graph for the upfront grounded
TBox. Blocking still guarantees termination since only a lim-
ited number of variable mappings are introduced.

Theorem 2 Let T denote an absorbed TBox (possibly with
nominal schema axioms), then a tableau decision procedure
(as described above) extended by the rules in Table 1 is a
decision procedure for the satisfiability of T .



Table 2: DL-safe Rules for UOBM-Benchmarks
Name DL-safe Rule Matches
R1 isFirendOf(?x, ?y), like(?x, ?z), like(?y, ?z)→ hasLink1(?x, ?y) 4,037
R2 isFirendOf(?x, ?y), takesCourse(?x, ?z), takesCourse(?y, ?z)→ hasLink2(?x, ?y) 82
R3 takesCourse(?x, ?z), takesCourse(?y, ?z), hasSameHomeTownWith(?x, ?y)→ hasLink3(?x, ?y) 940
R4 hasDoctoralDegreeFrom(?x, ?z), hasMasterDegreeFrom(?x, ?w), hasDoctoralDegreeFrom(?y, ?z), 369

hasMasterDegreeFrom(?y, ?w),worksFor(?x, ?v),worksFor(?y, ?v),→ hasLink4(?x, ?y)
R5 isAdvisedBy(?x, ?z), isAdvisedBy(?y, ?z), like(?x, ?w), like(?y, ?w), like(?z, ?w)→ hasLink5(?x, ?y) 286

Table 3: Comparison of the increases in reasoning time of the consistency tests for UOBM1\D extended by rules in seconds
Rule upfront grounding direct propagation representative propagation HermiT Pellet

without BC with BC without BC with BC 1.3.7 2.3.0
R1 (10.99) mem 9.12 7.10 5.06 3.38 31.46 6.33
R2 (10.92) 4.05 3.33 2.33 2.13 2.11 4.79 7.4
R3 (13.33) 3.55 1.98 0.62 2.20 0.76 1.67 142.25
R4 (16.44) 0.30 1.08 0.09 1.06 0.07 1.42 122.85
R5 (time) – 1.87 0.50 1.80 0.43 28.41 mem

5 Implementation and Evaluation
The techniques are implemented in the novel reasoning sys-
tem Konclude that supports SROIQV by (i) upfront ground-
ing and (ii) tableau extensions with different optimisations.

A detailed evaluation can be found in the technical re-
port [Anonymous, 2013]. For brevity, we exemplarily show
here some results for the University Ontology Benchmark
(UOBM) [Ma et al., 2006] extended by DL-safe rules, which
can straightforwardly be expressed as nominal schema ax-
ioms. This allows for comparing our system to the DL rea-
soners HermiT 1.3.71 and Pellet 2.3.0 [Sirin et al., 2007].
To the best of our knowledge, these are the only reasoning
systems that support DL-safe rules for such expressive on-
tologies. The used ontology (UOBM1\D, data properties re-
moved) has SHOIN expressivity and consists of 190, 093
axioms, 69 classes, 36 properties, and 25, 453 individuals.
All experiments were performed on an Intel Core i7 940 quad
core processor running at 2.93 GHz. The reasoners are re-
stricted to use one core and all results are averaged over three
runs. Exceeding the time limit of 24 hours is shown as time
and the memory limit of 10 GB as mem in the results.

Table 2 shows the rules and the number of matches for
each rule in the consistency check. However, since reason-
ing with UOBM-1 is non-deterministic, these numbers might
vary between different executions and reasoners. Our sys-
tem requires 1.03 s for preprocessing and 1.09 s for the con-
sistency test for the ontology without rules. Table 3 then
shows the increase in reasoning time for the ontology with
nominal schema axioms. In parenthesis we show the addi-
tional preprocessing time for the upfront grounding, which is
mostly spend on absorption, lexical normalisation, etc. Up-
front grounding fails for R5 since although two variables can
be eliminated (see safety condition in [Krötzsch et al., 2011])
it requires 647, 855, 209 new axioms. We have also imple-
mented an optimisation where we create a representative for a
set of variable mappings. Only these representatives are then
propagated and considered in the dependency directed back-

1http://www.hermit-reasoner.com

tracking, which saves memory. The direct propagation and
the propagation of representatives are depicted (i) with and
(ii) without the backward chaining (BC) optimisation, which
is used to restrict the creation and propagation of variable
mappings, i.e., variable mappings are only created if there
is an opportunity to propagate them to a grounding concept.
This is realised by additionally absorbing nominal schema
axioms, where all nominal schemas are replaced by O, and
by using the created atomic concept from the absorption to
identify “interesting” individuals with possibly the ground-
ing concept in the label. We then use a back propagation,
whereby only binder concepts are activated that are in the
scope of these “interesting” individuals. However, for exam-
ple for rule R2, still nearly all variable mappings have to be
created and propagated, and thus, the backward chaining only
slightly improves the reasoning time.

Table 3 further shows the reasoning time increase for Her-
miT and Pellet when a rule from Table 2 is added. Without
rules our system requires 1.09 s, HermiT 23.24 s, and Pellet
2.22 s for a consistency test (ignoring loading and preprocess-
ing time). With backwards chaining and the propagation of
representatives, the reasoning times for our system are signif-
icantly faster than HermiT’s or Pellet’s. HermiT uses, how-
ever, significantly less memory than the other systems. This
might be because HermiT does not support complex roles,
such as hasSameHomeTownWith in R3, in the body of rules
and its results might be incomplete.

6 Conclusions
We have addressed the problem of practical reasoning with
nominal schemas through an extended absorption algorithm
and with slight modifications of standard tableau calculi. Our
approach “collects” the bindings for nominal schema axioms
that have to be grounded and considered for a specific node
in the completion graph. The presented techniques have been
implemented and our empirical evaluation, which focusses
on DL-safe rules, shows that our approach works well even
compared to reasoners with dedicated rule support.



References
[Anonymous, 2013] Anonymous. Nominal schema absorp-

tion. Technical report, 2013. http://ijcai2013.
tripod.com/webonmediacontents/NSA.pdf.

[Baader et al., 2007] Franz Baader, Diego Calvanese, Deb-
orah McGuinness, Daniele Nardi, and Peter Patel-
Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge
University Press, second edition, 2007.

[Blackburn and Tzakova, 1998] Patrick Blackburn and
Miroslava Tzakova. Hybridizing concept languages.
Annals of Mathematics and Artificial Intelligence,
24(1–4):23–49, 1998.

[Forgy, 1982] Charles L. Forgy. Rete: A fast algorithm for
the many pattern/many object pattern match problem. Ar-
tificial Intelligence, 19(1):17–37, 1982.

[Horrocks and Sattler, 1999] Ian Horrocks and Ulrike Sat-
tler. A description logic with transitive and inverse roles
and role hierarchies. J. of of Logic and Computation,
9(3):385–410, 1999.

[Horrocks and Tobies, 2000] Ian Horrocks and Stephan To-
bies. Reasoning with axioms: Theory and practice. In
Proc. 7th Int. Conf. on Principles of Knowledge Repre-
sentation and Reasoning (KR’00), pages 285–296. Mor-
gan Kaufmann, 2000.

[Horrocks et al., 2004] Ian Horrocks, Peter F. Patel-
Schneider, Harold Boley, Said Tabet, Benjamin N. Grosof,
and Mike Dean. SWRL: A Semantic Web Rule Language.
W3C Member Submission, 21 May 2004. Available at
http://www.w3.org/Submission/SWRL/.

[Horrocks et al., 2006] Ian Horrocks, Oliver Kutz, and Ul-
rike Sattler. The even more irresistible SROIQ. In Proc.
10th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR’06), pages 57–67. AAAI Press, 2006.

[Hudek and Weddell, 2006] Alexander K. Hudek and
Grant E. Weddell. Binary absorption in tableaux-based
reasoning for description logics. In Proc. 19th Int.
Workshop on Description Logics (DL’06), volume 189.
CEUR, 2006.

[Kifer and Boley, 2010] Michael Kifer and Harold Boley,
editors. RIF Overview. W3C Working Group Note, 22
June 2010. Available at http://www.w3.org/TR/
rif-overview/.

[Krisnadhi and Hitzler, 2012] Adila Krisnadhi and Pascal
Hitzler. A tableau algorithm for description logics with
nominal schema. In Markus Krötzsch and Umberto Strac-
cia, editors, Proc. 6th Int. Conf. on Web Reasoning and
Rule Systems (RR’12), volume 7497 of LNCS, pages 234–
237. Springer, 2012.

[Krötzsch et al., 2011] Markus Krötzsch, Frederick Maier,
Adila Krisnadhi, and Pascal Hitzler. A better uncle for
OWL: nominal schemas for integrating rules and on-
tologies. In Proc. 20th Int. Conf. on World Wide Web
(WWW’11), pages 645–654. ACM, 2011.

[Ma et al., 2006] Li Ma, Yang Yang, Zhaoming Qiu, Guo-
tong Xie, Yue Pan, and Shengping Liu. Towards a com-
plete OWL ontology benchmark. In Proc. 3rd European
Semantic Web Conf. (ESWC’06), volume 4011 of LNCS,
pages 125–139. Springer, 2006.

[OWL Working Group, 2009] W3C OWL Working Group.
OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation, 27 October 2009. Available at
http://www.w3.org/TR/owl2-overview/.

[Sirin et al., 2007] Evren Sirin, Bijan Parsia, Bernardo
Cuenca Grau, Aditya Kalyanpur, and Yarden Katz. Pel-
let: A practical OWL-DL reasoner. J. of Web Semantics,
5(2):51–53, 2007.

[Tsarkov and Horrocks, 2004] Dmitry Tsarkov and Ian Hor-
rocks. Efficient reasoning with range and domain con-
straints. In Proc. 17th Int. Workshop on Description Logics
(DL’04), volume 104. CEUR, 2004.


