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Abstract. We present a new procedure for ontology materialization (comput-
ing all entailed instances of every atomic concept) in which reasoning over a
large ABox is reduced to reasoning over a smaller “abstract” ABox. The abstract
ABox is obtained as the result of a fixed-point computation involving two stages:
1) abstraction: partition the individuals into equivalence classes based on told
information and use one representative individual per equivalence class, and 2)
refinement: iteratively split (refine) the equivalence classes, when new assertions
are derived that distinguish individuals within the same class. We prove that the
method is complete for HornALCHOI ontologies, that is, all entailed instances
will be derived once the fixed-point is reached. We implement the procedure in
a new database-backed reasoning system and evaluate it empirically on existing
ontologies with large ABoxes. We demonstrate that the obtained abstract ABoxes
are significantly smaller than the original ones and can be computed with few re-
finement steps.

1 Introduction

Ontology based data access (OBDA) is an increasingly popular paradigm in the area
of knowledge representation and information systems. In ODBA, a TBox with back-
ground knowledge is used to enrich and integrate large, incomplete, and possibly semi-
structured data, which users can then access via queries. To efficiently handle large data
sets (called ABoxes), OBDA approaches assume that the data is stored in a database
or triple store. Nevertheless, the assumption of complete data that is typically made in
databases does not hold and reasoning is required to compute the (entailed) types of
individuals or answers to queries in general.

Different reasoning approaches have been developed in the OBDA context: (i) Query
rewriting or backward-chaining approaches answer a query, by “compiling” the back-
ground knowledge of the TBox into the query [2,12]. The analysis of which languages
are FO rewritable (i.e., which queries can be answered by query rewriting) inspired
the development of DL-Lite [2] and resulted in the OWL QL profile [11] of the Web
Ontology Language OWL 2. (ii) Materialization or forward-chaining techniques take
the opposite approach by pre-computing all entailed information upfront, independent
of the queries [1,14,8]. After extending the ABox with all pre-computed facts, the un-
modified queries can be evaluated over the enriched data only (i.e., without considering
the schema). The idea of query answering via materialization is directly present in the
OWL RL profile [11], which specifies a suitable set of materialization rules. (iii) Fi-
nally, also combined approaches have been proposed, which allow for smaller rewritten



queries by materializing some (but not all) entailments [10,9] or for computing the ma-
terialization dynamically as required for a given query.

In this paper, we focus on the materialization of entailed facts for large ABoxes
that are stored in a (graph)database or triple store and where the schema is expressed
in terms of a Horn ALCHOI ontology. For full OWL RL support, functionality and
property chains have to be encoded, but Horn ALCHOI also goes beyond OWL RL
(and OWL QL). For example, existential quantification (owl:someValuesFrom) is fully
supported, which is a feature that is difficult for standard materialization and rewriting
approaches. While the principle of materialization is conceptually simple, it requires
considerable computational resources in particular for large ABoxes or expressive TBox
languages. Furthermore, reasoners for the language we tackle, are typically main mem-
ory and refutation-based, i.e., to show that an individual a is an instance of the class C,
the reasoner tries to derive a contradiction for the ontology (temporarily) extended with
¬C(a) (asserting that a is not an instance of C). Consequently, handling large ABoxes
directly is infeasible.

Our approach for handling large ABoxes is based on the assumption that individ-
uals with similar asserted types are likely to have the same inferred types. We group
such individuals into equivalence classes and compute the types just for one represen-
tative individual. For building the initial equivalence classes, we also consider the role
(property) assertions in the ABox, but we do not simply merge individuals. Instead, we
iteratively compute a so-called abstraction that contains one representative individual
for each equivalence class plus representative individuals for its direct role successors
and predecessors in the ABox. We show how derivations for the latter individuals can
be used in the refinement process to split equivalence classes for individuals that no
longer have the same assertions. The number of individuals in the abstraction is always
bounded exponentially in the number of different concepts and roles and linearly in the
size of the original ABox; hence the abstraction is relatively small when the number of
individuals is much larger than the number of concepts and roles used in the ontology.

We implement the technique in a database-backed system that interacts with a
highly optimized in-memory reasoner that materializes the abstract ABox. The database
engine needs to support only simple operations and does not require any knowledge of
the TBox. We show that the procedure is sound and it is complete for computing the
entailed types of individuals in Horn ALCHOI ontologies.

The paper is structured as follows: We next introduce directly related approaches.
In Section 3, we present some preliminaries and continue with the presentation of the
theoretical foundation of our approach in Section 4. In Section 5, we prove complete-
ness of our procedure. In Section 6, we evaluate the procedure on a range of real-world
ontologies with large ABoxes, and conclude in Section 7. Full proofs and further details
are available in a technical report [5].

2 Related Work

In this section, we focus on work that is closely related to our aim of abstracting the
ABox. The SHER approach [4,3] merges similar individuals to obtain a compressed,
so-called summary ABox, which is then used for (refutation-based) consistency check-
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Table 1. The syntax and semantics of ALCHOI

Syntax Semantics
Roles:

atomic role R RI ⊆ ∆I ×∆I (given by I)
inverse role R− {〈d, e〉 | 〈d, e〉 ∈ RI}

Concepts:
atomic concept A A ⊆ ∆I (given by I)
nominal o oI ⊆ ∆I , ||oI || = 1 (given by I)
top > ∆I

bottom ⊥ ∅
negation ¬C ∆I \ CI
conjunction C uD CI ∩DI
disjunction C tD CI ∪DI
existential restriction ∃R.C {d | ∃e ∈ CI : 〈d, e〉 ∈ RI}
universal restriction ∀R.C {d | ∀e ∈ ∆I : 〈d, e〉 ∈ RI → e ∈ CI}

Axioms:
concept inclusion C v D CI ⊆ DI
role inclusion R v S RI ⊆ SI
concept assertion C(a) aI ∈ CI
role assertion R(a, b) 〈aI , bI〉 ∈ RI

ing. The technique (as well as ours) is based on the observation that individuals with the
same asserted types are likely to have the same entailed types. Since merging in SHER
is only based on asserted concepts, the resulting summary ABox might be inconsistent
even if the original ABox is consistent w.r.t. the TBox. To remedy this, justifications [6]
are used to decide which merges caused the inconsistency and to refine the summary
accordingly. Justification-based refinements are also needed for query answering since
SHER is not a materialization approach and performs reasoning at query time. We avoid
justification computation by partitioning individuals of the same type into equivalence
classes. Such partitioning guarantees the soundness of derived atomic concept asser-
tions. We also have to perform refinement steps, but the refinement is to incrementally
derive more consequences. What is computed before remains sound.

Wandelt and Möller propose a technique for (refutation-based) instance retrieval
over SHI ontologies based on modularization [15,16]. As an optimization and similar
to our approach, they group individuals into equivalence classes based on the asserted
types of an individual, its successors, predecessors and the asserted types of the suc-
cessors and predecessors.3 The assertions that define the equivalence class of an indi-
vidual are used for finding sound entailments. For checking entailments that cannot be
read-off from these assertions, it might be necessary to fall-back to (refutation-based)
reasoning over the (possibly large) ABox module for the individual. Instead of falling
back to modules of the original ABox, we propose an iterative refinement process for
the equivalence classes. The refinement is based on semantic criteria, i.e., only when
individuals are semantically distinguishable, we refine the equivalence class, whereas
the modules defined by Wandelt and Möller are syntactically defined.

3 We ignore the types of successors and predecessors to achieve larger equivalence classes.
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3 Preliminaries

We first define the syntax and semantics of the Description Logic (DL) ALCHOI,
which is the main ontology language we consider in this paper.

The syntax of ALCHOI is defined using a vocabulary (signature) consisting of
countably infinite disjoint sets NC of concept names, NO of nominals, NR of role
names, and NI of individual names. Note that concepts are called classes and roles
are called properties in OWL. Complex concepts and axioms are defined recursively in
Table 1. An ontology O is a finite set of axioms and we often write O = A∪ T , where
A is an ABox consisting of the concept and role assertions inO and T a TBox consisting
of the concept and role inclusions in O. We use con(O), rol(O), ind(O) for the sets of
concept names, role names, and individual names occurring in O, respectively.

An interpretation I = (∆I , ·I) consists of a non-empty set ∆I , the domain of I,
and an interpretation function ·I , that assigns to each A ∈ NC a subset AI ⊆ ∆I , to
each o ∈ NO a singleton subset oI ⊆ ∆I , ||oI || = 1, to each R ∈ NR a binary relation
RI ⊆ ∆I×∆I , and to each a ∈ NI an element aI ∈ ∆I . This assignment is extended
to complex concepts as shown in Table 1. I satisfies an axiom α (written I |= α) if
the corresponding condition in Table 1 holds. I is a model of an ontology O (written
I |= O) if I satisfies all axioms in O. We say that O is consistent if O has a model.
We say thatO entails an axiom α (writtenO |= α), if every model ofO satisfies α. We
say that O is concept materialized if A(a) ∈ O whenever O |= A(a), A ∈ con(O) and
a ∈ ind(O);O is role materialized ifR(a, b) ∈ O wheneverO |= R(a, b),R ∈ rol(O),
a, b ∈ ind(O); O is materialized if it is both concept and role materialized.

Remark 1. Some definitions do not present nominals as primitive symbols, but use a
special nominal constructor {a} with individual a (in this case, {a}I = {aI}). We can
easily convert such ontologies to our representation by renaming every nominal {a}
with the corresponding nominal symbol oa and adding a concept assertion oa(a). This
transformation is a conservative extension, i.e., it preserves all original entailments.

4 Computing ABox Materialization by Abstraction

The typical OBDA scenario is such that the ABox contains a large number of individ-
uals and its size is significantly larger than the size of the TBox. Hence, the number
of different concept names is typically much smaller than the number of different in-
dividuals, which also means that many individuals are instances of the same concepts.
If we can identify individuals that yield the same consequences, we can compute the
materialization by computing entailed consequences only for representative individuals.

4.1 Isomorphic Individuals and Individual Types

In order to (syntactically) characterize individuals that yield the same consequences, we
study structure-preserving transformations of ABoxes.

Definition 1. LetA andB be two ABoxes and h : ind(A)→ ind(B) a mapping from the
individuals in A to individuals in B. We extend h to axioms in a straightforward way:
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h(C(a)) = C(h(a)), h(R(a, b)) = R(h(a), h(b)), and h(α) = α for other axioms α.
We say that h is a homomorphism (from A to B) if h(A) ⊆ B. An individual a in A
is homomorphic to an individual b in B if there exists a homomorphism h from A to B
such that h(a) = b; in addition, if b is homomorphic to a, then a and b are isomorphic.

Example 1. Consider the ABox A = {R(a, a), R(a, b), R(b, b)}. Then the mappings
h1 = {a 7→ b, b 7→ b} and h2 = {a 7→ a, b 7→ a} are homomorphisms from A to A.
Since h1(a) = b and h2(b) = a, the individuals a and b are isomorphic. Note that there
is no isomorphism h from A to A (a bijective homomorphism such that its inverse is
also a homomorphism) such that h(a) = b or h(b) = a.

It is easy to show that entailed axioms are preserved under homomorphisms between
ABoxes. In particular, isomorphic individuals are instances of the same concepts.

Lemma 1. Let h : ind(A) → ind(B) be a homomorphism between ABoxes A and B.
Then for every TBox T and every axiom α, A ∪ T |= α implies B ∪ T |= h(α).

Proof. Suppose that A∪ T |= α. Then h(A∪ T ) |= h(α). Since h(A∪ T ) = h(A) ∪
h(T ) = h(A) ∪ T ⊆ B ∪ T , by monotonicity we obtain B ∪ T |= h(α). ut

Corollary 1. If individuals a and b in an ABox A are isomorphic, then for every TBox
T and every concept C, we have A ∪ T |= C(a) if and only if A ∪ T |= C(b).

If an ABox does not have role assertions, the isomorphic individuals in an ABox
are exactly those that have the same concepts in the assertions. Hence, we can identify
isomorphic individuals by just looking at their types— the set of concepts of which the
individual is an (asserted) instance. Clearly, the number of different types, and hence
the maximal number of individuals that are not isomorphic to each other is at most
exponential in the number of different concepts used in the ABox. With role assertions,
however, we cannot decide whether individuals are isomorphic by just looking at their
assertions. In fact, the number of non-isomorphic individuals can be arbitrary large even
if just one role is used in role assertions and there are no concept assertions.

Example 2. Consider an ABoxA = {R(ai−1, ai) | 1 < i ≤ n}. It can be easily shown
that the only homomorphism h : ind(A) → ind(A) from A to A is the identity h =
{ai 7→ ai | 1 ≤ i ≤ n}, i.e., no different individuals in A are isomorphic to each other.
In fact, it is easy to find a TBox T with which all individuals in A entail different sets
of assertions. Indeed, take T = {> v A1, Ai−1 v ∀R.Ai, 1 < i ≤ n}. Then we have
A ∪ T |= Aj(ai) if and only if 1 ≤ j ≤ i ≤ n.

From Example 2 one can see that with many role assertions, an ABox is less likely
to have many isomorphic individuals. Note from Corollary 1 that if two individuals
are isomorphic, then they entail the same assertions w.r.t. every TBox. Clearly, this
property is too strong for our purpose, as we need to deal with just one given TBox. It
can be that many (non-isomorphic) individuals are still materialized in the same way,
because the number of different concept names used in the TBox is bounded. To take
this into account, we propose a slightly different approach. Instead of partitioning the
individuals in the ABox in equivalence classes according to the isomorphism relation
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(which might be already too fine-grained for our TBox), we start with an approximation
to this relation, which makes more individuals equivalent. As soon as entailed assertions
are obtained using a reasoner that distinguish elements within the same equivalence
class, we refine our approximation and repeat the process until the fixpoint.

Definition 2. Let A be an ABox. The type of an individual a (w.r.t. A) is a triple
tp(a) = (tp↓(a), tp→(a), tp←(a)) where tp↓(a) = {C | C(a) ∈ A}, tp→(a) = {R |
∃b : R(a, b) ∈ A}, and tp←(a) = {S | ∃c : S(c, a) ∈ A}.

Intuitively, the type of an individual is obtained by considering all assertions in which
this individual occurs in the ABox, and ignoring all other individuals in these asser-
tions. Note that isomorphic individuals have the same types, so the relation between
individuals of the same types is an approximation to the isomorphism relation.

4.2 Abstraction of an ABox

If we compress the ABox by simply merging all individuals with the same type into
one, we might obtain unexpected entailments, even if all individuals are isomorphic.

Example 3. Consider the following ABox A = {R(a, b), R(b, a)}. Clearly, a and b are
isomorphic inA. Let B = {R(a, a)} be obtained fromA by replacing individual b with
a, and let T = {> v B t C, ∃R.B v C}. It is easy to check that B ∪ T |= C(a), but
A ∪ T 6|= C(a) (and hence A ∪ T 6|= C(b)).

We could follow the approach in the SHER system and compute justifications for en-
tailed assertions to determine which individuals should not be merged, but our goal is
to avoid such computationally expensive operations. Instead of merging all individuals
with the same type into one, we realize every individual type in our abstract ABox. With
abstract ABoxes defined as follows, we can guarantee that assertions that are entailed
for the representative individuals also hold for the original individuals.

Definition 3 (ABox Abstraction). The abstraction of an ABox A is an ABox B =⋃
a∈ind(A) Btp(a), where for each type tp = (tp↓, tp→, tp←), we define Btp = {C(xtp) |

C ∈ tp↓} ∪ {R(xtp, y
R
tp ) | R ∈ tp→} ∪ {S(zStp, xtp) | S ∈ tp←}, where xtp, yRtp , and zStp

are fresh distinguished abstract individuals.

Intuitively, the abstraction of an ABox is a disjoint union of small ABoxes witnessing
each individual type realized in the ABox.

Example 4. Consider the ABox A = {A(a), A(d), R(a, b), R(a, e), R(b, c), R(b, e),
R(c, a), R(d, c), R(e, d)}. We have tp(b) = tp(c) = tp(e) = tp1 = (∅, {R}, {R}) and
tp(a) = tp(d) = tp2 = ({A}, {R}, {R}). The abstraction of A is B = Btp1 ∪ Btp2 with
Btp1 = {R(xtp1 , y

R
tp1
), R(zRtp1 , xtp1)}, Btp2 = {A(xtp2), R(xtp2 , y

R
tp2
), R(zRtp2 , xtp2)}.

The following lemma shows the soundness of concept assertions derived from the
abstraction.

Lemma 2. Let A be an ABox, B its abstraction, and T a TBox. Then for every type
tp = (tp↓, tp→, tp←), every a ∈ ind(A) with tp(a) = tp w.r.t. A, and every concept C:
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(1) B ∪ T |= C(xtp) implies A ∪ T |= C(a),
(2) B ∪ T |= C(yRtp ) and R(a, b) ∈ A implies A ∪ T |= C(b), and
(3) B ∪ T |= C(zStp) and S(c, a) ∈ A implies A ∪ T |= C(c).

Proof. Consider all mappings h : ind(B)→ ind(A) such that:

h(xtp) ∈ {a ∈ ind(A) | tp(a) = tp},
h(yRtp ) ∈ {b | R(h(xtp), b) ∈ A}, and

h(zStp) ∈ {c | S(c, h(xtp)) ∈ A}.
Clearly, h(B) ⊆ A for every such mapping h. Furthermore, for every a ∈ ind(A), every
R(a, b) ∈ A and every S(c, a) ∈ A, there exists h with h(xtp) = a, h(yRtp ) = b, and
h(zStp) = c for tp = tp(a). Hence, claims (1)–(3) follow by Lemma 1. ut

4.3 Abstraction Refinement

Note that the individuals from an ABoxA may correspond to several abstract individu-
als in the ABox abstraction B: Each individual a corresponds to the abstract individual
xtp for tp = tp(a). In addition, if R(b, a) ∈ A or S(a, b) ∈ A for some individual b,
then a also corresponds to yRtp and zStp respectively for tp = tp(b). The additional indi-
viduals yRtp and zStp were introduced intentionally to refine the initial abstraction when
new assertions of abstract individuals are derived, which in turn, can be used to derive
new assertions of individuals in A. Specifically, assume that we have materialized all
entailed atomic assertions for the abstract ABox B w.r.t. the TBox using a reasoner.
By Lemma 2, the corresponding assertions must also be entailed in the original ABox
A. In particular, by case (1), the new assertions computed for the individual xtp, also
hold for every individual a in A with tp(a) = tp. If we add all such assertions to the
original ABox A, these individuals would still have the same types, so even by build-
ing a new abstraction for the extended ABox, we would not derive new assertions for
the abstraction. On the other hand, if we add the new assertion according to cases (2)
and (3) of Lemma 2, we may obtain different assertions for individuals that previously
had the same types. Indeed, if R(a, b) ∈ A, and we have derived a new assertion A(b)
using case (2) of the lemma, then it is not necessary that a similar assertion A(b′) will
be derived for every b′ with tp(b′) = tp(b), because it is not necessarily the case that
there exists R(a′, b′) ∈ A with tp(a′) = tp(a), for which this case also applies. Hence,
adding the newly derived assertions using Lemma 2 may refine the types of the original
individuals and, in turn, result in a new abstraction, for which new assertions can be
derived once again.

The above suggests the following materialization procedure based on abstraction
refinement. Given an ontology O = A ∪ T we proceed as follows:

1. Build an initial abstraction B of A according to Definition 3.
2. Materialize B ∪ T using a reasoner.
3. Extend A with the newly derived assertions according to Lemma 2.
4. Update the types of the individuals in A and re-compute its abstraction B.
5. Repeat from Step 2 until no new assertions can be added to A.
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ABox: A =

a
A(I)

b

B(II), A(III)

c

B(II)

d

A(I)

e
B(II)

TBox: T =

A v ∀R.B
B v ∀R−.A

Materialized Abstractions
abstract ABoxes I II III

yRtp1
xtp1

zRtp1

{c, e, a, d}
{b, c, e}
{a, b, d}

yRtp2+B

xtp2A

zRtp2

{b, e, c}
{a, d}
{c, e}

{b, e, c}
{a, d}
{c, e}

{b, e, c}
{a, d}
{c, e}

yRtp3
xtp3B

zRtp3+A

{c, e, a, d}
{b, e, c}
{a, b, d}

{a, d}
{c, e}
{b, d, a}

yRtp4+B

xtp4A,B

zRtp4+A

{c, e}
{b}
{a}

Fig. 1. The abstractions I-III produced in Example 5. Each abstraction consists of the ABoxes
corresponding to the four individual types. The inferred assertions are indicated with the “+” sign
and are added to the corresponding original individuals shown in each column. The materialized
assertions in the original ABox are labeled with the first iteration in which they appear.

Example 5 (Example 4 continued). Let AI be the ABox A from Example 4 and T =
{A v ∀R.B, B v ∀R−.A} a TBox. Let BI be the abstraction B of AI = A computed
in Example 4 (see Figure 1). By materializing BI w.r.t. T we get B(yRtp2), from which
we obtain AII = AI ∪ {B(b), B(e), B(c)} using Lemma 2. Recomputing the types
of individuals in AII yields tp(b) = tp(c) = tp(e) = tp3= ({B}, {R}, {R}), while
the types of a and d remain unchanged. The abstraction of AII is thus BII = Btp2 ∪
Btp3 , where Btp3 = {B(xtp3), R(xtp3 , y

R
tp3
), R(zRtp3 , xtp3)}. By materializing BII, we get

A(zRtp3), from which we obtain AIII = AII ∪ {A(b)}. We again recompute the types of
individuals in AIII, which gives tp(b) = tp4 = ({A,B}, {R}, {R}), while the types of
the other individuals do not change. The abstraction of AIII is thus BIII = Btp2 ∪ Btp3 ∪
Btp4 , where Btp4 = {A(xtp4), B(xtp4), R(xtp4 , y

R
tp4
), R(zRtp4 , xtp4)}. Materializing BIII

yieldsB(yRtp4) andA(zRtp4), which correspond toB(c),B(e), andA(a). However, those
assertions already exist in AIII, so the procedure terminates.

The abstraction refinement procedure terminates since after every iteration except
the last one, new atomic assertions must be added to A, and there is a bounded number
of such assertions. Specifically, the number of iterations is at most ||ind(O)||×||con(O)||.
The number of realized individual types in every ABox A, and hence the size of every
abstract ABox B, is at most exponential in the number of different concepts and roles
in O. In practice, however, it is likely to be much smaller since not every possible type
is realized in real ontologies. Note also that in practice, it is not necessary to add the
newly derived assertions explicitly to the original ABox—one can recompute the new
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types using some simple operations on the sets of individuals (intersection and unions),
and keep the derived assertions only once for every new equivalence class. Note also
that without nominals, we can exploit that B is a disjoint union of very simple ABoxes
corresponding to the types of individuals, so they can be materialized independently
of each other. This is particularly useful for updating the abstraction since only those
ABoxes that correspond to newly created types should be materialized at every iteration.

5 Completeness

Lemma 2 guarantees that at every point of the iteration, our abstraction refinement
procedure adds only entailed assertions to the ABox A. In other words, our procedure
is sound. The main question of this section is, whether our procedure is complete, i.e.,
whether we always compute all entailed atomic assertions in this way. Unfortunately,
this is in general not the case, as demonstrated by the following example.

Example 6. Consider the ABox A = {A(a), R(a, b), B(b)} and the TBox T = {B v
C t D,∃R.C v C,A u C v ∀R.D}. Note that A ∪ T |= D(b). Let us compute
the materialization using abstraction. We have tp(a) = ({A}, {R}, ∅) and tp(b) =
({B}, ∅, {R}). Therefore B = Btp(a) ∪ Btp(b), where Btp(a) = {A(xtp(a)), R(xtp(a),
yRtp(a))} and Btp(b) = {B(xtp(b)), R(z

R
tp(b), xtp(b))}. It is easy to see that B ∪ T does

not entail any new atomic concept assertions. Hence, our procedure terminates after the
first iteration without producing the entailment A ∪ T |= D(b).

The primary reason why our method does not work in this example is that our
abstraction breaks the ABox into disconnected parts, which cannot communicate the
non-deterministic choices, e.g., for the disjunction C t D. The only communication
between ABoxes happens through the entailment of new assertions. If the ontology
language does not allow such non-deterministic constructors, it is possible to obtain a
complete procedure.

5.1 Horn ALCHOI

While the results on the previous sections hold for ALCHOI in general (end even ex-
tensions thereof), we restrict ontologies in this section to a Horn fragment ofALCHOI:

Definition 4 (Horn ALCHOI). An ALCHOI ontology O is Horn if, for every con-
cept assertion D(a) and every axiom C v D, the concepts C and D satisfy, respec-
tively, the following grammar definitions:

C(i) ::= > | ⊥ | A | o | C1 u C2 | C1 t C2 | ∃R.C, (1)
D(i) ::= > | ⊥ | A | o | D1 uD2 | ∃R.D | ∀R.D | ¬C. (2)

Intuitively, negations and universal restrictions should not occur negatively, and disjunc-
tions should not occur positively. We can also allow TBox axioms that are equivalent
to Horn axioms. For example, A u ¬∀R.⊥ v ¬∀S.(B u C) is not Horn according to
Definition 4, but is equivalent to the Horn axiom A u ∃R.> v ∃S.¬(B u C).
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It is a well-known property of Horn languages that every consistent Horn ontology
has a so-called canonical model that entails exactly the consequences entailed by the
ontology. For the purpose of the paper, we require a weaker version of this property that
speaks only about entailment of atomic concept assertions.

Theorem 1 (Weak Canonical Model Property for Horn ALCHOI). Every consis-
tent HornALCHOI ontologyO has a model I such that I |= A(a) impliesO |= A(a)
for every atomic concept assertion A(a) with a ∈ ind(O) and A ∈ con(O).

Theorem 1 can be proved using the property that Horn ALCHOI models are closed
under cross-products. Then a canonical model is obtained from the cross-product of
models refuting (finitely many) atomic non-types.

Before formulating our completeness result, we need to solve one small technical
problem illustrated in the following example.

Example 7. Consider A = {A(a), B(b), R(a, b)} and T = {A u ∃R.B v C}, which
consist of Horn axioms. Clearly, A ∪ T |= C(a). A realizes two different individual
types: tp(a) = tp1 = ({A}, {R}, ∅) and tp(b) = tp2 = ({B}, ∅, {R}), so our ab-
straction B = Btp1 ∪ Btp2 consist of two ABoxes Btp1 = {A(xtp1), R(xtp1 , y

R
tp1
)}, and

Btp2 = {B(xtp2), R(z
R
tp2
, xtp2)}. In neither of these ABoxes we obtain a new assertion

after materialization, so our procedure terminates without deriving C(a).
In order to see how to fix this problem, note that Btp2 ∪T |= (∃R.B)(zRtp2), so there

is an entailed assertion, just not an atomic one. To capture this inference, we introduce
a new concept that “defines” ∃R.B. Specifically, let T ′ = {∃R.B v X, A uX v C}
where X is a fresh concept name. Clearly, T ′ is a conservative extension of T (one can
extend every model of T to a model of T ′ by interpretingX as ∃R.B), so the assertions
forA,B, and C entailed by T ′ are the same as for T . However, with T ′ we can derive a
new assertion Btp2 ∪T

′ |= X(zRtp2). If we now add the corresponding assertion X(a) to
A and recompute the abstraction for the updated type tp(a) = tp3 = ({A,X}, {R}, ∅)
(tp(b) does not change), we have Btp3 = {A(xtp3), X(xtp3), R(xtp3 , y

R
tp3
)}, and obtain

Btp3 ∪ T
′ |= C(xtp3), which gives us the intended result.

Example 7 suggests that to achieve completeness, we need to represent existential re-
strictions on the left hand side of the axioms using new atomic concepts. Note that
∃R.B v X is equivalent to B v ∀R−.X . Thus we can just require that there are
no existential restrictions on the left hand side of concept inclusions, and all universal
restrictions on the right have only atomic concepts as fillers.

Definition 5 (Normal Form for HornALCHOI). HornALCHOI axiomsD(a) and
C v D are in normal form if they satisfy the following grammar definitions:

C(i) ::=> | ⊥ | A | o | C1 u C2 | C1 t C2 (3)
D(i) ::=> | ⊥ | A | o | D1 uD2 | ∃R.D | ∀R.A | ¬C (4)

Intuitively, in addition to the constraints for HornALCHOI ontologies given by (1)
and (2) of Definition 4, negative occurrences of existential restrictions are not allowed,
and (positive) occurrences of universal restrictions can only have concept names as
fillers. It is easy to convert axioms to such a normal form using the well-known struc-
tural transformation. Specifically, we can repeatedly replace every existential restriction
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∃R.D in (2) with a fresh concept name X and add a new axiom D v ∀R−.X . Like-
wise, we can replace every universal restriction ∀R.C in (1) with ∀R.Y for a fresh
concept name Y and add an axiom Y v C. As with Horn axioms, we do not actually
need the axioms in the TBox to be syntactically in the normal form. It is sufficient that
they are equivalent to axioms in the normal form – the reasoner will still produce the
same result. For example, an axiom ∃R.(A1 u A2) v B1 u B2 can be left untouched
because it is equivalent to an axiom A1 u A2 v ∀R−.B1 u ∀R−.B2 in normal form.
Note that the axiomAu∃R.B v C in T from Example 7 is not equivalent to the pair of
axioms ∃R.B v X , AuX v C in T ′ because the latter axioms contain a new symbol
X . In fact, A u ∃R.B v C is not equivalent to any axiom(s) in normal form.

5.2 Completeness Proof

We are now ready to show the following completeness result:

Theorem 2. Let O = A ∪ T be a normalized Horn ALCHOI ontology and B the
abstraction of A. O is concept materialized if, for every type tp = (tp↓, tp→, tp←),
every individual a ∈ ind(A) with tp(a) = tp, and every atomic concept A, we have:

(1) B ∪ T |= A(xtp) implies A(a) ∈ A,
(2) B ∪ T |= A(yRtp ) and R(a, b) ∈ A implies A(b) ∈ A, and
(3) B ∪ T |= A(zStp) and S(c, a) ∈ A implies A(c) ∈ A.

Proof. To prove Theorem 2, we extend the abstraction B of A with new role assertions
R(xtp(a), xtp(b)) for every R(a, b) ∈ A. Let us denote this extended abstract ABox by
B′. Since, for everyC(a) ∈ A, we also haveC ∈ tp↓(a) and, thus,C(xtp(a)) ∈ B ⊆ B′,
the mapping h : ind(A)→ ind(B′) defined by h(a) = xtp(a) is a homomorphism from
A to B′. Therefore, by Lemma 1, if A∪ T |= A(a), then B′ ∪ T |= A(xtp(a)). The key
part of the proof is to demonstrate that in this case we also have B ∪ T |= A(xtp(a)).
That is, the extended abstract ABox B′ does not entail new atomic concept assertions
compared to B. It follows then that A(a) ∈ A by condition (1) of the theorem. This
implies that O is concept materialized.

To prove that B′ entails the same atomic concept assertions as B, we use the re-
maining conditions (2) and (3) of Theorem 2 and the canonical model property formu-
lated in Theorem 1. Note that since new role assertions of the form R(xtp(a), xtp(b))
are added to B′ only if R(a, b) ∈ A, we have R ∈ tp→(a) and R ∈ tp←(b) by Def-
inition 2. Therefore, we already had role assertions R(xtp(a), y

R
tp(a)) ∈ B and likewise

R(zRtp(b), xtp(b)) ∈ B for the same role R. Furthermore, by condition (2) of Theorem 2,
if B ∪ T |= A(yRtp(a)), then since R(a, b) ∈ A, we also have A(b) ∈ A, and thus
A(xtp(b)) ∈ B. Likewise, by condition (3), if B ∪ T |= A(zRtp(b)), then A(xtp(a)) ∈ B.
The following lemma shows that with these properties for B, after adding the new role
assertion R(xtp(a), xtp(b)) to B, no new atomic concept assertions can be entailed.

Lemma 3 (Four-Individual Lemma). Let O be a normalized Horn ALCHOI on-
tology such that {R(x1, y1), R(z2, x2)} ⊆ O for some x1, y1, z2, x2, and R. Further,
assume that for every concept name A we have:

11



(1) O |= A(y1) implies O |= A(x2), and
(2) O |= A(z2) implies O |= A(x1).

Finally, letO′ = O∪{R(x1, x2)}. Then for every concept nameA and every individual
a, we have O′ |= A(a) implies O |= A(a).

Proof (Sketch). Suppose that O′ |= A(a). We will show that O |= A(a). If O is in-
consistent then this holds trivially. Otherwise, there exists a model I of O satisfying
Theorem 1. From I we construct an interpretation I ′ that coincides with I apart from
the interpretation of role names. With the given individuals x1 and x2, for every role
name S we define

SI
′
= SI ∪


{(xI1 , xI2 )} if O |= R v S and O 6|= R v S−

{(xI2 , xI1 )} if O |= R v S− and O 6|= R v S
{(xI1 , xI2 ), (xI2 , xI1 )} if O |= R v S and O |= R v S−

∅ otherwise

We will prove that I ′ |= O′, which implies I ′ |= A(a) since O′ |= A(a), and
thus I |= A(a) by definition of I ′, from which O |= A(a) follows since I satisfies
Theorem 1.

First, we prove by induction that for each C and D defined respectively by (3) and
(4), we have CI = CI

′
and DI ⊆ DI

′
. The only non-trivial case is D = ∀S.A with

O |= R v S and S ∈ rol(O) (the case where S is an inverse role can be proved
analogously). Take any d ∈ DI . To show that d ∈ DI′ , we need to prove that d′ ∈ AI′

for every d′ with 〈d, d′〉 ∈ SI′ . If 〈d, d′〉 ∈ SI , this is obvious. Otherwise, 〈d, d′〉 =
〈xI1 , xI2 〉. By assumption, I |= R(x1, y1) and O |= R v S, hence, I |= S(x1, y1),
which, together with d = xI1 ∈ DI , implies yI1 ∈ AI . Thus I |= A(y1). Since
I satisfies Theorem 1, we have O |= A(y1). By Condition (1), O |= A(x2). Thus
d′ = xI2 ∈ AI = AI

′
, and hence, d = xI1 ∈ DI

′
, what was required to show.

It remains to show that I ′ |= O′ with O′ = O ∪ {R(x1, x2)}. Since I |= O, for
every C v D ∈ O we have CI

′
= CI ⊆ DI ⊆ DI

′
, for every D(a) ∈ O we have

aI
′
= aI ∈ DI ⊆ DI

′
, and for every R(a, b) ∈ O we have 〈aI′ , bI′〉 = 〈aI , bI〉 ∈

RI ⊆ RI′ . Finally, the definition of I ′ ensures that for every role inclusion S v P ∈ O
we have SI

′ ⊆ P I′ , and that I ′ |= R(x1, x2). Thus I ′ |= O′. ut

By repeatedly applying Lemma 3 for each x1 = xtp(a), y1 = yRtp(a), x2 = xtp(b),
z2 = zRtp(b) and R such that R(a, b) ∈ A, we obtain that B′ entails only those atomic
assertions that are entailed by B, which completes the proof of Theorem 2. ut

6 Implementation and Evaluation

To evaluate the feasibility of our approach, we implemented the procedure sketched in
Section 4.3 in Java. The system relies on Neo4j 1.9.44 to store the ABoxes and uses an
external OWL reasoner for materializing the abstractions.

4 http://www.neo4j.org
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Table 2. Test suite statistics with the number of atomic concepts in the ontology (#A and #AN

for the normalized ontology), roles (#R), individuals (#I), role (#R(a, b)) and concept (#A(a))
assertions, and the number of concept assertions inferred by the system

Ontology #A #AN #R #I #R(a, b) #A(a) #A(a) inferred

Gazetteer 710 711 15 516 150 604 164 11 112 538 799
Coburn 719 1 161 109 123 515 237 620 297 002 535 124
LUBM 1 43 49 25 17 174 49 336 18 128 48 326
LUBM 10 43 49 25 207 426 630 753 219 680 593 485
LUBM 50 43 49 25 1 082 818 3 298 813 1 147 136 3 097 722
LUBM 100 43 49 25 2 153 645 6 645 928 2 281 035 6 164 538
LUBM 500 43 49 25 10 189 173 31 073 066 10 793 509 29 169 321
UOBM 1 69 90 35 24 925 153 571 44 680 142 747
UOBM 10 69 90 35 242 549 1 500 628 434 115 1 381 722
UOBM 50 69 90 35 1 227 445 7 594 996 2 197 035 6 991 583
UOBM 100 69 90 35 2 462 012 15 241 909 4 409 891 14 027 772
UOBM 500 69 90 35 12 379 113 76 612 736 22 168 148 72 215 007

The goal of our evaluation is to estimate whether our assumption that in relatively
simple ontologies with large ABoxes the number of realized types and, consequently,
the size of the abstract ABoxes is small. Furthermore, we analyze whether it is indeed
the case that real-world ontologies have relatively simple axioms that do not require
many refinement steps, where a refinement step is the process of refining the individual
types.

We selected ontologies with large ABoxes that are also used to evaluate other ap-
proaches.5 Table 2 provides relevant metrics for the test ontologies. Gazetteer is from
the NCBO BioPortal, Coburn is a large bio ontology from the Phenoscape project, and
LUBM (UOBM) refers to the Lehigh University Benchmark6 (the University Ontology
Benchmark).7 LUBM n (UOBM n) denotes the data set for n universities. Gazetteer
is genuinely within Horn ALEO and the remaining ontologies have been converted to
Horn ALCHOI. Note that the increase of normalized concepts (AN ) in comparison
to the original concepts (A) in Table 2 is a rough indicator of TBox complexity, which
adds extra workload to reasoners.

Tables 3 and 4 show the results of computing and iteratively refining the abstract
ABoxes until the fixpoint. The second column in Table 3 shows the number of refine-
ment steps. The third and fourth (fifth and sixth) columns show the number of individu-
als (assertions) in the first and last abstraction, respectively, while the last four columns
show the according relative reduction in percent compared to the original ABoxes. Ta-
ble 4 shows the type statistics, i.e. the number of types and the average number of
individuals, concept names, and property names per type.

In general, the abstract ABoxes are significantly smaller than the original ones and
the ontologies can be materialized with few refinement steps. For ontologies with sim-

5 Download and references at http://www.derivo.de/dl14-ontologies/
6 http://swat.cse.lehigh.edu/projects/lubm
7 http://www.cs.ox.ac.uk/isg/tools/UOBMGenerator
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Table 3. Number of refinement steps, size of the abstract ABoxes, and size of the abstract ABoxes
in comparison with the original ABoxes for the first and the last abstraction

# of Abstract ABox size Abstract ABox size (%)Ontology
steps # indiv. # assertions % indiv. % assertions

Gazetteer 1 5 640 5 640 5 142 8 512 1.09 1.09 0.79 1.31
Coburn 2 3 992 4 059 5 569 8 633 3.23 3.29 1.04 2.16
LUBM 1 1 139 139 143 254 0.81 0.81 0.21 0.38
LUBM 10 1 154 154 158 281 0.07 0.07 0.02 0.03
LUBM 50 1 148 148 152 271 0.01 0.01 0.003 0.006
LUBM 100 1 148 148 152 271 0.007 0.007 0.002 0.003
LUBM 500 1 148 148 152 271 0.001 0.001 0.001 0.001
UOBM 1 2 25 378 39 322 31 659 101 324 101.82 157.76 15.97 51.11
UOBM 10 2 98 266 169 579 125 056 448 400 40.51 69.92 6.46 23.18
UOBM 50 2 226 176 395 956 290 652 1 057 854 18.43 32.26 2.97 10.80
UOBM 100 2 311 574 547 361 402 188 1 472 058 12.66 22.23 2.05 7.49
UOBM 500 2 596 135 1 033 685 772 920 2 806 786 4.82 8.35 0.78 2.84

ple TBoxes, which contain mostly atomic concept inclusions, domains and ranges for
roles, and conjunctions, only one refinement step is required. This is the case since any
concept assertion derived for a successor or predecessor of an abstract individual is also
derived for the individual itself. LUBM and UOBM additionally contain universal quan-
tifications, e.g. Department v ∀headOf−.Chair (rewritten from ∃headOf.Department
v Chair), but these axioms do not create long propagations of concept Assertions Over
roles. For LUBM, many individuals have similar types and can be grouped into equiva-
lence classes. This results in an extremely good compression with abstractions of nearly
constant size for arbitrarily many LUBM universities. For instance, the final abstrac-
tions are just 0.38 % (for LUBM 1) and 0.001 % (for LUBM 500) of the size of the
original ABox. This and the fact that no refinement is needed (i.e. concepts are not
propagated over chains of successors or predecessors) also explains that other related
approaches like SHER and Wandelt’s and Möller’s approach show a very good perfor-
mance for LUBM. UOBM also contains nominals and the individuals are more con-
nected than in LUBM. Thus, UOBM requires one more refinement step compared to
LUBM.

Our qualitative performance evaluation confirms the correlation between the size of
abstract ABoxes and the total time for the materialization. We compared the respective
materialization times of the original ABox with the sum of materialization times for all
abstract ABoxes using the reasoners HermiT and Konclude.8 For ontologies with small
abstract ABoxes such as LUBM, Gazetteer and Coburn, the sum of the reasoning times
for all abstract ABoxes is less than a tenth of the reasoning time for the original ABox.
While the runtimes for the abstractions of UOBM 1 are still 2 to 4 times that of the orig-
inal ABox, the runtimes for UOBM 50 are already down by 50%. The original UOBM
100 ontology could neither be processed by HermiT nor by Konclude within a 32GB
RAM limit run on Intel Xeon E5-2440 6 cores, but its abstraction can easily be materi-
alized, e.g., within 84 seconds and 8GB RAM by Konclude. Currently, we re-compute

8 See http://www.hermit-reasoner.com and http://www.konclude.com
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Table 4. Statistics about individual types for the first and the last abstraction: number of individual
types, average number of individuals, concept names, and property names per individual type

# Individual Individual type statisticsOntology
types # indiv. / type #AN / type #R / type

Gazetteer 1 845 1 845 280 280 0.73 2.56 2.05 2.05
Coburn 1 056 1 072 117 115 2.49 5.27 2.79 2.79
LUBM 1 30 30 572 572 1.13 4.83 3.63 3.63
LUBM 10 29 29 7 153 7 153 1.14 5.38 4.31 4.31
LUBM 50 27 27 40 104 40 104 1.15 5.56 4.48 4.48
LUBM 100 27 27 79 765 79 765 1.15 5.56 4.48 4.48
LUBM 500 27 27 377 377 377 377 1.15 5.56 4.48 4.48
UOBM 1 3 104 4 705 8 5 3.02 14.18 7.18 7.35
UOBM 10 11 453 17 347 21 14 3.34 15.48 7.58 7.86
UOBM 50 25 636 43 283 48 28 3.52 16.29 7.82 8.14
UOBM 100 34 992 59 184 70 42 3.59 16.62 7.91 8.24
UOBM 500 65 148 108 691 190 114 3.71 17.31 8.15 8.51

the abstraction after each refinement step. There is certainly room for optimizations,
e.g. by updating the types and computing the abstractions incrementally.

7 Conclusions and Future Work

We have presented an approach for ontology materialization based on abstraction re-
finement. The main idea is to represent ABox individuals using several (overlapping)
equivalent classes and to use information derived for their abstract representatives to
refine the abstraction. Although the approach does not necessarily guarantee that the
abstraction is always smaller than the original ABox, the method particularly pays off
for ontologies with large ABoxes and relatively small and simple TBoxes.

Currently, our approach is complete for HornALCHOI ontologies due to the prop-
erty that only (deterministically) derived assertions are used for abstraction refinement.
We could potentially extend our approach to non-Horn ontology languages by exploit-
ing additional information about non-deterministically derived instances as provided,
for example, by the HermiT reasoner [7]. Some Horn features, on the other hand, could
be supported easily, e.g., it is easy to support transitive roles and role chains by using
the well-known encoding of these axioms via concept inclusions [13].

In this paper we mainly focus on concept materialization since role materialization
for Horn ALCHOI can essentially be computed by expanding role hierarchies (spe-
cial care needs to be taken of nominals though). When ontologies contain role chains
and functional roles, however, materialization of role assertions becomes less trivial,
e.g. the encoding of role chains is not enough and a naive encoding of functionality is
inefficient. We currently investigate how these features can efficiently be supported.

Since the abstraction consists of disjoint parts, these parts can be processed indepen-
dently of each other (if nominals are taken care of). This can be used in the refinement
steps to process only the parts that have really changed or for an efficient support of
updates to the ABox. In addition, the abstract ABoxes could serve not only as a generic
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interface for communication with the reasoner, but also as a compact representation of
the materialization. This can be particularly useful when answering instance and con-
junctive queries over the materialized ABoxes, where the abstraction can be used to
prune the search space.
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12. H. Pérez-Urbina, B. Motik, and I. Horrocks. Tractable query answering and rewriting under
description logic constraints. J. of Applied Logic, 8(2):186–209, 2010.
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