Goal-Directed Tracing of Inferences in EL. Ontologies

Yevgeny Kazakov and Pavel Klinov

The University of Ulm, Germany
{yevgeny.kazakov, pavel . klinov} @uni-ulm.de

Abstract. £L is a family of tractable Description Logics (DLs) that is the basis
of the OWL 2 EL profile. Unlike for many expressive DLs, reasoning in ££ can
be performed by computing a deductively-closed set of logical consequences of
some specific form. In some ontology-based applications, e.g., for ontology de-
bugging, knowing the logical consequences of the ontology axioms is often not
sufficient. The user also needs to know from which axioms and how the conse-
quences were derived. Although it is possible to record all inference steps during
the application of rules, this is usually not done in practice to avoid the overheads.
In this paper, we present a goal-directed method that can generate inferences for
selected consequences in the deductive closure without re-applying all rules from
scratch. We provide an empirical evaluation demonstrating that the method is fast
and economical for large £L ontologies. Although the main benefits are demon-
strated for £L reasoning, the method can be potentially applied to many other
procedures based on deductive closure computation using fixed sets of rules.

1 Introduction and Motivation

The majority of existing DL reasoners are based on optimized (hyper)tableau-based
procedures, which essentially work by trying to construct counter-models for the en-
tailment. If the reasoner could not find a counter-model by trying all alternatives, it
declares that the entailment holds. It is not easy to use such procedures to generate an
explanation for the entailment, or even to determine which axioms are responsible for
the entailment—the axioms that were used to construct the models are not necessar-
ily the ones that are causing the clash. Recently another kind of reasoning procedures,
which work by deriving logical consequences of ontology axioms directly, became pop-
ular. Such consequence-based procedures were first introduced for the ££ family of
tractable ontology languages [1], and later the same principle has been extended to
more expressive (non-tractable) languages such as Horn-SHZQ and ALCH [10, 19].
The consequence-based procedures work by computing the closure under the rules by
forward chaining. The inference rules make sure that the result is complete—all entailed
conclusions of interest are obtained in the closure.

It is easy to extend any consequence-based procedure so that for each derived con-
clusion, it also records the inferences that have produced it. This way, one can easily
generate proofs for the entailed conclusions. Unfortunately, saving all applied infer-
ences during reasoning is not practical, as each conclusion could be derived in many
ways and storing all inferences requires a lot of memory. In practice, one usually does
not need to retrieve all inferences, but just inferences for some particular (e.g., unex-
pected) consequences. In this paper, we demonstrate how these inferences can be traced

Table 1. The syntax and semantics of E£7

Syntax Semantics

Roles:

atomic role R RT
Concepts:

atomic concept A AT

top T AT

conjunction cnb ctnp?

existential restriction 3IR.C {z |3y € CT: (z,y) € R*}
Axioms:

concept inclusion cCCD ¢t c p*

role inclusion RLCS RT C §T

role composition Rjo Ry TS RfoRZ C §7

back in a goal-directed way using the pre-computed set of conclusions. The main idea,
is to split the conclusions on small partitions using the properties of the inference sys-
tem, such that most inferences are applied within each individual partition. It is then
possible to re-compute the inferences for conclusions within each partition by forward
chaining using conclusions from other partitions as “set of support”. A similar idea has
been recently used for incremental reasoning in ££ [11]. We demonstrate empirically
that only a small fraction of inferences is produced when generating proofs for ££7
consequences and that the inferences can be computed in just a few milliseconds even
for ontologies with hundreds thousands of axioms.

2 Tutorial

In this section, we introduce the problem addressed in the paper and present the main
ideas of our solution. For simplicity, we focus on reasoning in ££7 [2]. Later, in Sec-
tion 3, we generalize the method to arbitrary (deterministic) inference systems.

2.1 The Description Logic ££T

The syntax of £L£7 is defined using a vocabulary consisting of countably infinite sets
of (atomic) roles and atomic concepts. Complex concepts and axioms are defined recur-
sively using Table 1. We use letters R, S for roles, C, D, E for concepts, and A, B for
atomic concepts. An ontology is a finite set of axioms. Given an ontology O, we write
T, for the smallest reflexive transitive binary relation over roles such that R Cf, S
holdsforall RC S € O.

An interpretation T = (AT, -T) consists of a nonempty set A called the domain
of Z and an interpretation function - that assigns to each role R a binary relation
RT C AT x AZ, and to each atomic concept A a set AT C AT, This assignment
is extended to complex concepts as shown in Table 1. 7 satisfies an axiom « (written
7 =) if the corresponding condition in Table 1 holds. Z is a model of an ontology
O (written Z = O) if 7 satisfies all axioms in O. We say that O entails an axiom «

L CCD CCD;

P ra—— : [l
ROCEC R|—| CED1|_|D2 D, DQGG(C)
Rt ——: T €G(O) EC3RC CCD 35D ¢G(E)
cLT Rs—Fc3asp ‘RChS
cCCD
R = __:DCFEecO *
CCCcE = ECIR.C CC3r,.p TEoS
Ro EC 35D t B2 Lo 5
R= CCE DDy = 5105 CSeO

CCD, CC D,

Fig. 1. The inference rules for reasoning in ££"

(written O [= «), if every model of O satisfies a.. A concept C is subsumed by D w.r.t.
O if O = C C D. The ontology classification task requires to compute all entailed
subsumptions between atomic concepts occurring in O.

2.2 The Reasoning Procedure for £E£T

The L7 reasoning procedure works by applying inference rules to derive subsump-
tions between concepts. In this paper, we use a variant of the rules that does not require
normalization of the input ontology [14]. The rules for ££ are given in Figure 1, where
the premises (if any) are given above the horizontal line, and the conclusions below.

Some inference rules have side conditions given after the colon that restrict the ex-
pressions to which the rules are applicable. The side conditions are formulated using the
given ontology O and a mapping that assigns to every concept X the set of goal sub-
sumers G(X) consisting of concepts Y (not necessarily occurring in @), subsumptions
which should be checked by the procedure. That is, if we want the procedure to check
whether the subsumption X C Y is entailed, we need to add Y to G(X). Intuitively,
the mapping G(X) restricts the concepts that should be constructed by the inference
rules R, Ry and Rs. For technical reasons, we need to require that each G (X) also
contains all concepts occurring in the left-hand sides of concept inclusion axioms of O
(possibly as a sub-concept). Note that the axioms in the ontology O are only used in
side conditions of the rules R, R, and R,, and never as premises of the rules.

The rules in Figure 1 are complete for deriving all entailed goal subsumptions. That
is,if O =EXCYandY € G(X) (with X and D not necessarily occurring in O) then
X C Y can be derived using the rules in Figure 1 [14]. The rules can be also applied
in a goal-directed way, if the set of concepts X for which subsumptions X C Y should
be derived (with Y € G(X)) is also known in advance.

Theorem 1 (Completeness of the rules in Figure 1 [14]). Let O be an EL™ ontology,
F a set of concepts, G(-) a mapping such that for each X € F, and each C C D € O,
G(X) contains all sub-concepts of C, and S a set of subsumptions such that:

(i) If X € Fand X T 'Y is obtained by a rule in Figure 1 applied to premises in S
using O and G(-) then X CY € S,
(14) If X € Fand X C3R.Y € S for some RandY, thenY € F.

Then for every X € FandY € G(X), wehave O = X CY if XCY € S.

Ro Rc Rs Rc
|—>A;A|—>A§EIR.B}TA§EIH.BI—>A;C

HBQBI—)BQBS.A}LBQHS.CI—)BEC
Ro R Rs Rc

Ro Rc
F— CCChH—CLC3JR.A

Fig. 2. The inference diagram for the proof in Example 1

Example 1. Consider the ££™ ontology O consisting of the following axioms:
AC3R.B, BLJSA dJHBLC(C, 3I5CCC, CC3IRA, RLCH.
Then the following subsumptions can be derived using the rules in Figure 1 using

G(X) ={A, B, C,3H.B, 35.C} for every concept X. We show the premises used
in the inferences in parentheses and the matching side conditions after the colon:

ACA by Ro(), (D
BCB by Ro(), 2
cEcC by Ro(), 3
AC3IRB byRC(AC A) : AC3R.B€O, 4)
BLC3S.A byRc(BC B) : BL3S.A€ 0,)
CC3RA byRo(CCC) : CCIRA€EO, (6)
AC3H.B by R3(AC 3R.B,BC B) : 3H.B€ G(A), RC,H H, (1)
ACC by Rc(AC 3H.B) : JH.BC C € O, (8)
BLC3S.C byR3(BC 3S.A,ACC) :35.C € G(B),RCH R, (9)
BCC by Re(B C 35.C) : 3S.CC C € O. (10)

The inferences (1)—(10) are shown schematically in Figure 2. Let F = {A, B, C}. Itis
easy to see that no new subsumption of the form X C Y with X € FandY € G(X)
can be derived from (1)-(10) using the rules in Figure 1. Furthermore, F' satisfies the
condition (i¢) of Theorem 1 for the set of subsumptions (1)—(10). Hence, by Theorem 1,
all subsumptions of the form X T Y with X € F and Y € G(X) that are entailed
by O must occur in (1)—(10). In particular, all entailed subsumptions between atomic
concepts A, B, and C that are required for classification of O are computed.

By Theorem 1, in order to classify an ontology O, it is sufficient to (%) initialize set
F with all atomic concepts of O, (i7) assign to every X € F aset G(X) consisting of
all atomic concepts and concepts occurring in the left-hand side of concept inclusion
axioms of O, (iii) repeatedly apply the rules in Figure 1 that derive X C Y with
X € F, and (iv) whenever a subsumption of the form X C 3R.Y is derived, extend F'
with Y. By induction, it can be shown that the resulting set S of derived subsumptions
satisfies the condition of Theorem 1 and contains only X C Y for which both X and
Y occur in O. Since the number of such subsumptions is at most quadratic in the size
of O, the classification procedure terminates in polynomial time.

2.3 Tracing of Inferences

As discussed in the previous section, reasoning in ££7 is typically performed by com-
puting a set that is closed under (restricted) applications of rules in Figure 1, from which
all entailed subsumptions of interest (e.g., subsumptions between all atomic concepts
for classification) can be obtained using Theorem 1. It is not difficult to use the same
procedure to also keep track of how each derived subsumption was obtained. Essen-
tially, for every derived subsumptions, the procedure can store the inference information
like in (1)-(10). The inference information specifies by which rules the subsumption
was obtained, from which premises, and using which side conditions. We refer to a rule
application procedure that retains this kind of information as tracing.

Tracing of inferences can be used for extracting proofs that represent a sequence
of inferences producing the given subsumption in the end. Proofs can be reconstructed
by simply traversing the inferences backwards: first take the inferences for the given
subsumption, then for the subsumptions used in the premises of such inferences, and
so on, disregarding cycles. Proofs can be used to automatically check correctness of
entailments (proof checking), or to explain how the entailments were produced to the
user. The latter is important for ontology debugging when the axioms responsible for
erroneous conclusions need to be identified. For example, from Figure 2, one can see
that the subsumption A T C was proved in 5 inference steps involving intermediate
subsumptions AC A, AC dR.B, A C dH.B, and B C B. From the side conditions
of the inferences (4), (7), and (8) used in this derivation, one can see that only axioms
AC3IR.B,RC H,and 3H.B C C in O are responsible for the conclusion A C C.

2.4 Goal-Directed Tracing of Inferences

Keeping information about all inferences in addition to storing the derived subsump-
tions can be impractical. First, the number of inferences can be significantly larger than
the number of the derived conclusions (some conclusions may be derived multiple times
by different rules). Second, storing each inference requires more memory than storing
just the conclusion of the inference. Finally, inferences may not be required very of-
ten. For example, when debugging an ontology, one is usually interested in proofs for
only few (unexpected) subsumptions. In applications using large ontologies, such as
SNOMED CT, which involve hundreds of thousands of concepts, avoiding storing un-
necessary information can make a significant difference in practice.

In this paper, we propose a method for finding the inferences used in the proofs
of given subsumptions without performing full tracing, i.e., storing all inferences dur-
ing rule application. The main idea is (i) to over-estimate a subset of subsumptions in
the closure from which the given subsumption can be derived (in one inference step),
(i7) re-apply the inferences for these subsumptions to find from which premises the
subsumption is actually derived, and (ii%) repeat the process for these premises.

To illustrate the method, suppose that we have computed the closure (1)—(10) under
the rules in Figure 1 (without recording the inference information), and our goal is to
identify how subsumption B C C' was derived. By inspecting the conclusions of rules
in Figure 1, we can see that every subsumption of the form X C Y can be either derived
by rules Ry or R, or by other rules using at least one premise of the form X C Z,

Ro Rc Rs Rc
|-—>A;A|——->A§EIR.B|—I——>AgEIH.Bl——aA;C

4 }_T_)
— BC BI— BLC3S.A BC3SCkE—BLCC
R[) RE REI RE

Fig. 3. The inferences applied for tracing subsumptions of the form B C Y (solid lines) and of
the form A C Y (dashed lines) in (1)-(10).

i.e., with the same concept X on the left-hand side. Thus, B C C must have been
derived either by Rg or R, or from (2), (5), (9), or (10) using other rules (possibly
using other premises from (1)—(10)). It is easy to re-apply all such inferences, this time,
with tracing. This way, we reconstruct all inferences producing subsumptions of the
form B C Y in (1)—(10), and, in particular of B C C—see the solid lines in Figure 3.

After we have recorded all inferences producing conclusions of the form B C Y in
(1)-(10), we traverse the computed inferences backwards to see which other premises
were involved in the proof for B C C. This way, we arrive at premise A T C, for
which no inference was recorded so far. This premise has A on the left-hand side, and
similarly as above, we can now compute all inferences deriving subsumptions of the
form A C Y in (1)—(10): see the dashed lines in Figure 3. After we have done this, all
inferences used in the proof for B C C are found.

Our tracing procedure does not guarantee to save only inferences that are used in
the proof of the given subsumption. For example, to find the proof for the subsumption
B E 35.A, we would have similarly saved all inferences for B (solid lines in Figure 3)
because at that time, we do not know which of these inferences are used in the proof for
B C 3S.A. Note that producing inferences for A would not be necessary in this case
since A C C is not reachable from B T 35.A when traversing inferences backwards.
Similarly, tracing of inferences for B is not necessary when finding proofs for A T
JR.B, and tracing inferences for neither A nor B is necessary when finding proofs for
C C JR.A. In our experiments, we will demonstrate that only few inferences need to be
re-applied when producing proofs of the entailed subsumptions in existing ontologies.

3 Tracing of Inferences

In this section, we provide a formal description of the goal-directed procedure outlined
in the previous section and prove its correctness. The procedure is formulated in a gen-
eral way and can be used with arbitrary rule systems. In the end of the section we discuss
which properties of the inference system are important for efficiency of the method.

3.1 Inferences, Rules, and Closure under the Rules

We start by formalizing the basic notions of inferences and inference rules. Let E be a
fixed countable set of expressions. An inference over E is an object inf which has a finite
set of premises inf.Prem C E and a conclusion inf.concl € E."! When inf.Prem = (), we

"We assume that there can be different inferences with the same premises and conclusions.

Algorithm 1: Computing the inference closure by saturation

saturation(R):
input : R: a set of inferences
output :S = Clos(R)
1S, Q<0
2 for inf € R with inf.Prem = () do /* initialize =/
L Q.add(inf.concl);
while Q # () do /* close */
exp <+ Q.takeNext();
if exp ¢ S then
S.add(exp);
for inf € R with exp € inf.Prem C S do
L Q.add(inf.concl);

w

NI RS B N S

10 returnS;

say that inf is an initialization inference. An inference rule R over E is a countable set
of inferences over E; it is an initialization rule if all these inferences are initialization
inferences. In this paper, we view an inference system consisting of several rules as one
inference rule R containing all the inferences.

Intuitively, an inference corresponds to an application of a rule to particular premises.
For example, the application of R3 producing (7) in Example 1 corresponds to an in-
ference inf with inf.Prem = {A C 3R.B, B C B} and inf.concl = (A C 3H.B). Rule
R3 in Figure 1 consists of all such inferences in which the premises and conclusions
satisfy the side conditions (for the given G(-) and). Similarly, Rq is an initialization
rule consisting of inf with inf.Prem =) and inf.concl = (C' C C) for all C.

We say that a set of expressions Exp C E is closed under an inference inf if
inf.Prem C Exp implies inf.concl € Exp. Exp is closed under an inference rule R if
Exp is closed under every inference inf € R. The closure under R is the smallest set of
expressions Clos(R) that is closed under R. Note that Clos(R) is empty if and only if R
does not contain any initialization inferences.

Using the introduced notation, we can now describe the well-known forward chain-
ing procedure for computing the closure under the inference rules R. The procedure is
formalized in Algorithm 1. Intuitively, the algorithm computes the (expanding) set of
expression S, called the saturation, by repeatedly matching premises of the rules to S
and adding their conclusions back to S until a fixpoint is reached (in contrast, back-
ward chaining procedures match the conclusions of rules to the given goals to find the
premises). A special care is taken to avoid repeated applications of rules to the same
premises. For this purpose, the algorithm uses a queue Q to buffer the conclusions of
the inferences. The queue Q is first initialized with conclusions of the initialization in-
ferences (lines 2-3), and then in a cycle (lines 4-9), repeatedly takes the next expression
exp € Q, and if it does not occur in the saturation S already, inserts it into S and applies
all inferences having this expression as one of the premises and other premises from
S (line 8). The conclusions of such inferences are then inserted back into Q. Note that

Algorithm 2: Full tracing of inferences
fullTracing(R):
input : R: a set of inferences
output : M: a multimap from expressions to inferences such that M.Keys = Clos(R) and
M(exp) = {inf € R | inf.Prem C Clos(R) & inf.concl = exp} (exp € M.Keys)

1 M, Q« 0

2 for inf € R with inf.Prem = () do /* initialize =/
3 L Q.add(inf);

4 while Q # 0 do /* close */
5 inf < Q.takeNext();

6 exp < inf.concl;

7 if exp ¢ M.Keys then

8 M.add(exp — inf);

9 for inf € R with exp € inf.Prem C M.Keys do

10 L Q.add(inf);

1 else

12 | M.add(exp — inf);

13 return M;

every inference inf € R with inf.Prem C S is applied by the algorithm exactly once,
namely, when the last premise of this inference is added to S.

3.2 Proofs, Inference Oracle, and Full Tracing

Given the closure S = Clos(R) under the rules R, i.e, the output of Algorithm 1, we
are interested in finding proofs for a given expression exp € S consisting of inferences
by which exp was derived in S. Formally, a proof (in R) is a sequence of inferences
p = infy,...,inf, (inf; € R,1 < < n) such that inf;.Prem C {inf;.concl | 1 <1 < j}
for each j with 1 < j < n.If exp = inf,,.concl then we say p is a proof for exp. A proof
p =infy,...,inf, for exp is minimal if no strict sub-sequence of inf, . . ., inf,, is a proof
for exp. Note that in this case inf;.concl # inf;.concl when i # j (1 < 4,5 < n). For
example, the sequence of inferences (1)—(10) in Example 1 is a proof for A C C, but
not a minimal proof since there exists a sub-sequence (1), (2), (4), (5), (7)-(10), which
is also a proof for A C C' (in fact, a minimal proof for A C C, see Figure 2).

To find minimal proofs, one can use an inference oracle, that given exp € S returns
inferences inf € R such that inf.Prem C S and inf.concl = exp. Using such an oracle,
the proofs can be easily found, e.g., by recursively calling the oracle for the premises of
the returned inferences, avoiding repeated requests to ensure minimality of the proofs
and termination. If one is interested in retrieving just one proof, it is sufficient to use an
inference oracle that returns one inference per expression; if all proofs are required, the
oracle should return all inferences producing the given expression from S.

The inference oracle can be implemented by simply precomputing all inferences
using a modification of Algorithm 1. This modification is shown in Algorithm 2. We

Algorithm 3: Partial tracing of inferences

partialTracing(R, S, Exp):
input : R:asetof inferences, S C E: a subset of expressions,
Exp C SN Clos({inf € R | inf.Prem C S}): the expressions to trace
output : M: a multimap from expressions to inferences such that M.Keys = Exp and
M(exp) = {inf € R | inf.Prem C S & inf.concl = exp} (exp € M.Keys)

1M, Q<+ 0;

2 for inf € R with inf.Prem C S\ Exp & inf.concl € Exp do /+ initialize «*/
3 L Q.add(inf);

4 while Q # () do /* close */
5 inf + Q.takeNext();

6 exp < inf.concl;

7 if exp ¢ M.Keys then

8 M.add(exp > inf);

9 for inf € R with exp € inf.Prem C M.Keys U (S \ Exp) & inf.concl € Exp do

10 | Q.add(inf);

11 else

12 L M.add(exp — inf);

13 return M;

refer to this algorithm as full tracing. Instead of collecting the expressions derived by
the inferences in S, we collect the inferences themselves and store them in a multimap
M: for each applied inference inf, we add a record exp +— inf to M where exp is the
conclusion of inf (M is a multimap because several inferences can be stored for the same
conclusion). Thus, the keys M.Keys of M is the set of all conclusions of inferences in S.
The newly applied inferences are first buffered in the queue Q. When processed, if the
conclusion of the inference is new (line 7), we add this inference to M for the conclusion
(line 8) and produce all inferences between this conclusion and the previously derived
conclusions (lines 9-10). Otherwise, we just store the new inference and do nothing
else (line 12). Note that it is easy to modify this algorithm so that only one inference
is stored per conclusion. For this, one can just remove line 12 and make M an ordinary
map. Similarly to Algorithm 1, Algorithm 2 generates every inference at most once.

Once the multimap is computed, the inference oracle can be easily implemented by
performing a lookup in the multimap M for the given expression exp.

3.3 Partial Tracing of Inferences and Inference Oracle based on Partitions

The construction in Algorithm 2 can be further extended to perform partial tracing,
that is, to compute not all inferences inf € R with infPrem C S for S = Clos(R),
but only those that produce conclusion in a given set of expressions Exp. This idea is
realized in Algorithm 3. This algorithm constructs a multimap M that is a restriction
of the multimap constructed by Algorithm 2 to the keys from Exp. The only difference
in this algorithm are lines 2 and 9 where the inferences are applied. First, the algorithm
considers only inferences with conclusions in Exp (inf.concl € Exp). Second, since the

algorithm never derives expressions from S\ Exp, all premises in S\ Exp are considered
in each application of the rule. In other words, if to ignore the premises from S \ Exp
in rule applications, the algorithm would look exactly like Algorithm 2. Note that Al-
gorithm 2 is just an instance of Algorithm 3 when Exp = S = Clos(R), in which case
S\ Exp = () and the restriction inf.concl € Exp can be dropped. In the input of Al-
gorithm 3, we require that Exp is a subset of the closure under the inferences inf with
inf.Prem C S. This means that every exp € Exp is derivable by applying inf € R to only
premises in S. This condition holds trivially if Exp C S = Clos(R).

Theorem 2 (Correctness of Algorithm 3). Ler R' = {inf € R | inf.Prem C S} for
some set of inferences R and a set of expressions S. Let Exp C S N Clos(R'), and
M the output of Algorithm 3 on R,S, and Exp. Then M.Keys = Exp and M(exp) =
{inf € R" | inf.concl = exp} for each exp € M .Keys.

Proof. First, observe that M.Keys C Exp since only inferences inf € R with inf.concl €
Exp are added to Q. Next we show that M.Keys = Exp. Let Clos’ = M.Keys U
(Clos(R’) \ Exp). Note that Clos’ C Clos(R’) since M.Keys C Exp C Clos(R’). We
claim that Clos’ is closed under R’, which implies that Clos’ = Clos(R") since Clos(R)
is the minimal set closed under R’. This proves M.Keys = Exp.

To prove that Clos’ is closed under R’, take an arbitrary inference inf € R’ such that
inf.Prem C Clos’. We show that inf.concl € Clos’. There are two cases possible:

1. inf.concl ¢ Exp: Since Clos(R’) is closed under R’, in particular, inf.concl €
Clos(R") \ Exp, so inf.concl € Clos’.

2. inf.concl € Exp: Since inf.Prem C Clos’ NS, then inf.Prem C M.Keys U (S \ Exp).
Hence inf will be applied either in line 2 if inf.Prem C (S\ Exp), or in line 9 for the
last premise exp € inf.Prem N M.Keys added to M.Keys. In both cases, infis added
to Q, which means that inf.concl € M.Keys C Clos'.

It remains to prove that M(exp) = {inf € R’ | inf.concl = exp} for exp € M.Keys:

(D): Take any exp € Exp and any inf € R’ with inf.concl = exp. From Case 2
above, it follows that inf € M(exp).

(©): Take any exp € M.Keys and any inf € M(exp). Then from lines 6, 8, and 12
of Algorithm 3 we have inf.concl = exp and from lines 2 and 9 we have inf.Prem C
M.Keys U (S \ Exp). Since M.Keys C Exp C S, we obtain that inf € R’. O

Performance of Algorithm 3 depends on whether it can efficiently enumerate the
inferences in lines 2 and 9. Enumerating inferences in line 9 can be simply done by ap-
plying all inferences with the given premise exp and other premises from S similarly to
Algorithm 2, and disregarding all inferences that do not satisfy the additional conditions
(it is reasonable to assume that the number of inference applicable to a given expression
exp is already small to start with). Efficient enumeration of inferences in line 2, how-
ever, is more problematic and may depend on the particular inference system R and set
Exp. As shown in Section 2.4, if we take R to be the ££ rules in Figure 1, and Exp
the set of subsumptions of the form X C Y for a fixed concept X, then the inferences
inf € R with inf.Prem C S\ Exp and inf.concl € Exp can be only inferences by Rg
and R+ producing X T X and X C T respectively—the other rules cannot derive a
subsumption of the form X C Z € Exp without a premise of the form X C Y € Exp.

If all expressions E can be partitioned on subsets Exp for which the set of inferences
{inf € R| infPrem C S\ Exp & inf.concl € Exp} can be efficiently enumerated, then
one can implement an inference oracle by (4) identifying the partition Exp to which the
given expression exp belongs, (i) computing the inferences for all expressions in Exp
using Algorithm 3, and (4i7) returning the inferences for exp € Exp. This approach is
more goal-directed compared to the oracle using full tracing, as it only computes and
stores the inferences producing conclusions in one partition.

4 Goal-directed Tracing of Inferences in £E£*

Next we show how to use the approach from Section 3 to implement the tracing proce-
dure for £L£7T described in Section 2.4. We assume that the closure S under the rules R
in Figure 1 is computed (for the given parameters O, F, and G(-)) and we are given a
subsumption X T Y € S for which all inferences used in the proofs should be found.

To partition the closure S, we use the partitioning method used for incremental rea-
soning in £L [11]. Specifically, for a concept X let S[X| be the subset of S consisting
of all subsumption X = Y € S for all Y. Clearly, S is partitioned on disjoint subsets
S[X] for different X. By inspecting the rules in Figure 1, it is easy to see that if the
conclusion of the rule belongs to S[X] then either it has a premise that belongs to S[X]
as well, or it does not have any premises. Thus, for each Exp = S[X] and each inference
inf such that inf.Prem € S\ Exp and inf.concl € Exp, we have inf.Prem = (). Hence,
if Algorithm 3 is applied with Exp = S[X], only initialization inferences need to be
applied in line 2, which can be done very efficiently.

The inference oracle based on Algorithm 3 can be used to compute the proofs for the
derived subsumptions exp = (X C Y') € Clos in a goal directed way. For this, we first
need to apply Algorithm 3 for the partition Exp = S[X], then, retrieve all inferences inf
with conclusion exp from the set of computed inferences, and finally, repeat the process
for each premise of the retrieved inferences. This process can be adapted accordingly if
only one proof should be generated or proofs are to be explored interactively by the user.
Since most inferences by the rules in Figure 1 are applied within individual partitions,
this should not result in many calls of Algorithm 3, and since partitions are typically
quite small, not many inferences should be saved. We will present empirical evidences
confirming these claims in Section 6.

Example 2. Consider the set S consisting of subsumptions (1)—(10) derived in Exam-
ple 1. These subsumptions are assigned to partitions A, B, and C. To compute the
inferences with conclusion B C C, it is sufficient to apply Algorithm 3 for Exp = S[B]
using the precomputed closure S. It is easy to see that only inferences for (2), (5), (9),
and (10) will be produced by this algorithm (see the solid lines in Figure 3). During ini-
tialization (line 2), Algorithm 3 applies only rule Rg deriving B T B. During closure
(line 4), the algorithm applies only inferences to the derived subsumptions in partition
S[B], and keeps only inferences that produce subsumptions in the same partition. For
example, the inference by R3 producing (7) should be ignored, even though it uses a
premise B C B from partition S[B].

Note that knowing S is essential for computing these inferences. E.g., to produce
B C 35.C we need to use the premise A C C' from S, which we do not derive during

tracing. Thus, the precomputed set S is used in our procedure as a ‘set of support’? to
reach the conclusions of interest as fast as possible.

Now, if we want to traverse the inferences backwards to obtain full proofs for
B C C, we need to iterate over the premises that were used to derive B C C and trace
their partitions using Algorithm 3. In our case, B C C was derived from B C 35.C, for
which the partition S[B] was already traced, but continuing further to premise A C C'
will bring us to partition S[A]. When tracing partition S[A] using Algorithm 3, we pro-
duce the remaining inferences for (1), (4), (7), and (8) used in the proof (see Figure 3).
Note that it is not necessary to trace partition S[A] to find the proof for, e.g., B = 35.A4
because no subsumption in partition S[A] was used to derive B C 35.A.

5 Related Work

In the context of ontologies, most research relevant to the issue of explanations has
revolved around justifications’—the minimal subsets of the ontology which entail the
result [3,5, 8,9, 16]. The fact that justifications are minimal subsets is useful to the user
but also makes them intractable to compute [16]. Much research has gone into develop-
ing optimizations to cope with this complexity in practical cases. The known approaches
usually fall into one of the two categories: black-box and glass-box. The former use the
underlying reasoning procedure as a black-box and employ generic model-based diag-
nosis algorithms [17] to find justifications [5, 9, 8]. Thus, they can work for any (mono-
tonic) logic for which a black-box implementation of a decision procedure is available.
On the other hand, such methods cannot use the properties of the reasoning procedure
for optimizations and recover the steps used to prove the entailment. Thus, it is still up
to the user to understand how to obtain the result from the justifications.

Glass-box methods do use the properties of the underlying reasoning procedure,
in particular, for recording how inferences are made. They have been designed for
tableau [7], automata [3], and consequence-based procedures [4, 18]. The latter meth-
ods are similar to what we call full tracing. For example, Sebastiani et. al. [18] encodes
every inference performed during £L£ classification in propositional Horn logic. E.g.,
inference (8) in Example 1 would correspond t0 sjac3n.B) A\ aZ3g.BCo) — S[ACC)-
Once the entire formula ¢ capturing all inferences is built, justifications, e.g., for
A C C, can be found by pinpointing conflicts in ¢o A —s[ac¢) using the correspond-
ing functionality of SAT solvers.

Any algorithm for computing justifications can be optimized using ontology mod-
ularity techniques to obtain a goal-directed behaviour (see, e.g., [5]). The so-called
locality-based modules [6] are well-defined fragments of the ontology which guaran-
tee to contain all justifications for a given entailment. Modules can be often computed
efficiently and can limit the search for justifications to a smaller subset of the ontology.

We conclude this section by briefly discussing the relationship between our tracing
technique and justifications. From any (minimal) proof obtained by unfolding the infer-
ences computed by Algorithm 3 one can extract the axioms used in the side conditions

2 Analogously to the ‘set of support” strategy of resolution, we use premises from S only if at
least one other premise comes from the traced partition.
3Not to be confused with justifications in the context of Truth Maintenance Systems.

of inferences (R, Rg, and R, in the £L case), which represent a subset of the ontol-
ogy that entails the proved subsumption. This subset, however, might be not a minimal
subset for this entailment, but all minimal subsets—that is, justifications—can be easily
computed from all such sets. Note that this can be done “offline”, i.e., the reasoner is not
needed after tracing the inferences. Instead of computing the justification by enumerat-
ing proofs, one can also simply take the set of all axioms used in the proofs and extract
all justifications from this set using any conventional method [4,9, 5, 8, 18]. Our evalu-
ation shows that these subsets are much smaller than the locality-based modules usually
used for this purpose, and computation of justifications from them is much faster.

6 Experimental Evaluation

We implemented algorithms 2 and 3 as well as their recursive extension to obtain
full proofs within the ££™ reasoner ELK* (which implements Algorithm 1 as its base
procedure). We used three large OWL EL ontologies commonly used in evaluations
of £L reasoners [2, 13, 15]: a version of the Gene Ontology (GO),> an ELT -restricted
version of the GALEN ontology,® and the July 2013 release of SNOMED CT.” We used
a PC with Intel Core 15-2520M 2.50GHz CPU, with Java 1.6 and 4GB RAM available
to JVM. The following experiments have been performed:

Full tracing overhead: Our first experiment evaluates the overhead of full tracing
(Algorithm 2) comparing to pure saturation (Algorithm 1). Each ontology was classified
10 times with and without full tracing and the results were averaged (excluding 5 warm-
up runs). The results in Table 2 show that there is roughly x2—x4 time overhead. The
memory overhead is also significant which causes the algorithm to run out of memory
(OOM) when classifying SNOMED CT with full tracing.® In addition, the results show
that the maximal number of conclusions per partition is negligible in comparison with
the total number of conclusions. Thus the fact that Algorithm 3 saves some inferences
not used in proofs of the target expression should not result in a substantial overhead.

Goal-directed tracing: Next we evaluate performance of the recursive proof trac-
ing procedure based on goal-directed tracing with partitions (i.e., on Algorithm 3). The
experimental setup is as follows: each ontology was classified and then each direct
subsumption between concept names was traced with recursive unfolding. Each sub-
sumption was traced independently of others. We separately report results for tracing
all of the inferences for each conclusion or just of the first inference. The former is
useful for generating all proofs whereas the latter can be used to produce one proof.

The results are presented in Table 3. First, they demonstrate that the proposed
method is very fast as it takes just a few milliseconds to find all inferences used in

*Version 0.5.0, projected release date Oct 2014, see http://elk.semanticweb.org.

31t is a richer version with concept equivalences, role hierarchies and chains. We thank Chris
Mungall from the Lawrence Berkley Lab for providing it. It is accessible at:
http://elk.semanticweb.org/ontologies/go_ext.owl.

*http://www.co-ode.org/galen/

"nttp://www.ihtsdo.org/snomed-ct/

8With the smaller ontologies the difference is less observable because of the relatively high
(4GB) memory limit set to JVM; the difference is better observable with lower memory limits.

Table 2. Number of axioms, partitions, conclusions and inferences in test ontologies, running
time (in ms.) and memory consumption (in MB) for classification with and without full tracing.

Ontology

Num. of
axioms

Num. of
partitions

Num. of conclusions
(max per partition)

Num. of
inferences

No tracing
time mem.

Full tracing
time mem.

GO

87,492

46,846

2,450,505

(395)| 5,715,611

1,877 546

5,004 1,102

GALEN

36,547

25,965

1,922,549 (1,350)

3,944,921

1,326 722

3,786 765

SNOMED

297,327

371,642

19,963,726

(484)(54,553,961

16,968 924

OOM OOM

Table 3. Results for recursive goal-directed tracing partitions on all atomic subsumptions in the
ontology when all (resp. the first) inferences for each conclusion are recursively unfolded. All
numbers, e.g., the number of traced partitions, are averaged over all traced subsumptions.

Ontology Total # of traced||# of traced| # of traced|# of inferences| # of used| Time
subsumptions|| partitions| inferences| used in proofs|C axioms| (in ms.)
GO 73,270|| 3.7 (1.4)|456.2 (244.1) 94.9 (6.4)|18.6 (2.5)| 2.0(1.2)
GALEN 38,527|| 1.9(1.5)(414.4 (350.9) 21.7 (10.1)| 5.2(4.4)| 1.9(0.8)
SNOMED 443,402|| 8.6(1.6)[788.3(332.9)| 385.9 (12.7)| 9.7 (3.7)[10.1 (1.9)

all proofs of a given subsumption. This is the effect of its goal-directed nature: it only
traces inferences which belong to the same partitions as inferences actually used in
the proofs, and the partitions are relatively small. From Table 2 one can calculate that
the biggest partitions do not exceed 0.07% of the total number of derived subsump-
tions while on average there are only 122, 152, and 146 inferences per partition in GO,
GALEN, and SNOMED CT respectively. The performance results thus follow from
the low number of traced partitions and traced inferences. Second, the algorithm traces
more inferences when all proofs are needed but the difference is not substantial and the
running times are usually close. This is because alternative proofs overlap and the al-
gorithm rarely needs to trace new partitions when considering more than one inference
per conclusion. Third, the difference between the number of traced and used inferences
shows granularity of partitioning in ££ (inferences not used in proofs are traced only
if they happen to be in one partition with used inferences). Finally, since the results are
averaged over all subsumptions, the reader may wonder if the good performance is be-
cause most of them can be proved trivially. We present a more detailed evaluation in the
technical report [12], where we separately aggregate results over subsumptions that are
provable from at least 10 axioms and show that performance stays on the same level.

Tracing and justifications: In our final experiment, we investigate if it makes sense
to use our tracing method to improve the computation of justifications. As discussed in
Section 5, the set of axioms used in the side conditions of the inferences in each proof
must be a superset of some justification. So it is worth to compare the number of such
axioms with the sizes of justifications. Finding all justifications is intractable so we con-
sider only the first proof and the first justification. In addition, we compare the number
of axioms used in all proofs of a subsumption with the size of the (T _L)*-module ex-
tracted for this subsumption, and the times needed to extract the first justification from

Table 4. Computing the set of subsumption axioms used in all proofs S,;; or the first proof Sy vs.
extracting the module M for the signature of the entailment or computing the first justification
Jh. Size of M and J; is measured as the number of subsumption axioms (concept equivalence
axioms in the ontologies are rewritten as two subsumptions). Running times are in milliseconds.

Ontology Num. of traced| Suy size| Si|Sau| Si| T°| M| M[A 7

subsumptions|(max size)|size |time|time| time| size|time| size|time
GO 73,270|18.6 (288)| 2.5 2.0| 1.2| 25.1| 124.8| 164| 2.2| 85
GALEN 38,527| 5.2(86)| 4.4| 1.9| 0.8/128.1]10,899| 195|4.35|N/A
SNOMED CT||10,000 (sample)| 9.7 (133)| 3.7/10.1| 1.9] 19.0| 38.8| 887| 1.9| 48

these sets—as discussed, both sets must contain all justifications. We use the OWL API
which provides generic methods for extracting modules and finding justifications.

The results are given in Table 4. While we were able to generate the first justifica-
tions for all subsumptions in GO, it was not feasible for GALEN and SNOMED CT
(with a 10 hours time-out). The problem with GALEN is that modules are large and
even the first justification often takes minutes to pinpoint in the corresponding module
(but not in the results of tracing, as explained below). Thus we focus only on the size
of modules and their extraction time. In contrast, modules of SNOMED CT are small
but take nearly a second to extract (since the ontology is large). So instead of extracting
them for all subsumptions, we took a random uniform sample of 10, 000 subsumptions.

For GO and SNOMED CT it can be seen that on average the number of axioms
used in the first proof (S;) is not much larger than the size of the first justification
(J1) while the number of axioms used in all proofs (S,;;) is 3—7 times smaller than the
module (M). The latter difference is several orders of magnitude for GALEN, which
induces very large modules due to cyclic axioms. The time required to extract the first
justification from S,y; (jls time) is also 2.5-3.5 times smaller then the time to extract
the first justification from M (J; time) for the cases where it was possible.

7 Summary

In this paper we have presented a simple, efficient, and generalizable method for goal-
directed tracing of inferences in ££. Depending on the application, the inferences can
be used offline to produce proofs or compute justifications. The method is goal-directed
in the sense that it re-applies only a limited number of inferences using the previously
computed conclusions as a set of support. It does not require storing additional indexing
information or any sort of bookkeeping during the normal classification.

The method is based on the same granularity property of reasoning in EL£™ as was
previously used for concurrent and incremental reasoning [13, 11]. Specifically, concept
subsumers in ££7 most of the time can be computed independently of each other.
This enables efficient partitioning of all derived expressions so that tracing a particular
expression requires re-applying inferences only in few partitions, as shown empirically.

It is worth pointing out that our goal-directed procedure does not guarantee to be an
improvement over full tracing in worst case: it is easy to construct pathological exam-
ples which trigger full tracing. This happens, e.g.,for O = {A; T A;41 |1 <i<n}U

{4,, C A, }, for which every inference is used in the proof of every entailed subsump-
tion (since all concepts are equivalent), or for O = {A C B; | 1 <i < n}, for which
there is only one partition. Arguably, such examples are not to be often expected in prac-
tice as the number of entailed subsumers of each concept is usually relatively small.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Baader, F., Brandt, S., Lutz, C.: Pushing the £L£ envelope. In: Proc. 19th Int. Joint Conf. on
Artificial Intelligence (IICAI’05). pp. 364-369 (2005)

Baader, F,, Lutz, C., Suntisrivaraporn, B.: Efficient reasoning in ££7. In: Proc. 2006 Int.
Workshop on Description Logics (DL06). vol. 189. CEUR-WS.org (2006)

. Baader, F,, Pefialoza, R.: Automata-based axiom pinpointing. J. of Automated Reasoning

45(2), 91-129 (2010)

. Baader, F, Pefaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic ££. In:

Proc. 2007 Int. Workshop on Description Logics (DL’07). vol. 250. CEUR-WS.org (2007)

. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpointing in the

description logic ££7. In: KR-MED. vol. 410. CEUR-WS.org (2008)

. Cuenca Grau, B., Horrocks, 1., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: Theory

and practice. J. of Artificial Intelligence Research 31, 273-318 (2008)

. Halaschek-Wiener, C., Parsia, B., Sirin, E.: Description logic reasoning with syntactic up-

dates. In: OTM Conferences (1). pp. 722—737 (2006)

. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL. In: Proc. 7th

Int. Semantic Web Conf. (ISWC’08). LNCS, vol. 5318, pp. 323-338. Springer (2008)

. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL

entailments. In: Proc. 6th Int. Semantic Web Conf. (ISWC’08). LNCS, vol. 4825, pp. 267—
280. Springer (2007)

Kazakov, Y.: Consequence-driven reasoning for Horn SHZ Q ontologies. In: Proc. 21st Int.
Joint Conf. on Artificial Intelligence (IICAI’09). pp. 2040-2045. IJCAI (2009)

Kazakov, Y., Klinov, P.: Incremental reasoning in OWL EL without bookkeeping. In: Proc.
12th Int. Semantic Web Conf. ISWC’13). LNCS, vol. 8218, pp. 232-247. Springer (2013)
Kazakov, Y., Klinov, P.: Goal-directed tracing of inferences in ££ ontologies. Tech. rep.,
University of Ulm (2014), available from http://elk.semanticweb.org

Kazakov, Y., Krétzsch, M., Simancik, F.: Concurrent classification of ££ ontologies. In:
Proc. 10th Int. Semantic Web Conf. (ISWC’11). LNCS, vol. 7032, pp. 305-320. Springer
(2011)

Kazakov, Y., Krotzsch, M., Simancik, F.: The incredible ELK: From polynomial procedures
to efficient reasoning with £L ontologies. J. of Automated Reasoning 53(1), 1-61 (2014)
Lawley, M.J., Bousquet, C.: Fast classification in Protégé: Snorocket as an OWL 2 EL rea-
soner. In: Proc. 6th Australasian Ontology Workshop (IAOA’10). vol. 122, pp. 45-49 (2010)
Pefaloza, R., Sertkaya, B.: On the complexity of axiom pinpointing in the ££ family of
description logics. In: Proc. 12th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR’10). pp. 280-289. AAAI Press (2010)

Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57-95
(1987)

Sebastiani, R., Vescovi, M.: Axiom pinpointing in lightweight description logics via
Horn-SAT encoding and conflict analysis. In: Proc. 22nd Conf. on Automated Deduction
(CADE’09). pp. 84-99 (2009)

Simancik, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond Horn ontolo-
gies. In: Proc. 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI’11). pp. 1093-1098.
AAAI Press/IJCAI (2011)

