
Coupling Tableau Algorithms for Expressive Description
Logics with Completion-based Saturation Procedures

Andreas Steigmiller∗1, Birte Glimm1, and Thorsten Liebig2

1 University of Ulm, Ulm, Germany, <first name>.<last name>@uni-ulm.de
2 derivo GmbH, Ulm, Germany, liebig@derivo.de

Abstract. Nowadays, saturation-based reasoners for the OWL EL profile are
able to handle large ontologies such as SNOMED very efficiently. However,
saturation-based reasoning procedures become incomplete if the ontology is ex-
tended with axioms that use features of more expressive Description Logics, e.g.,
disjunctions. Tableau-based procedures, on the other hand, are not limited to a
specific OWL profile, but even highly optimised reasoners might not be efficient
enough to handle large ontologies such as SNOMED. In this paper, we present
an approach for tightly coupling tableau- and saturation-based procedures that
we implement in the OWL DL reasoner Konclude. Our detailed evaluation shows
that this combination significantly improves the reasoning performance on a wide
range of ontologies.

1 Introduction

The current version of the Web Ontology Language (OWL 2) [19] is based on the very
expressive Description Logic (DL) SROIQ [6]. To handle (standard) reasoning tasks,
sound and complete tableau algorithms are typically used, which are easily extensible
and adaptable. Moreover, the use of a wide range of optimisation techniques allows
for handling many expressive, real-world ontologies. Since standard reasoning tasks
for SROIQ have N2EXPTIME-complete worst-case complexity [9], it is, however, not
surprising that larger ontologies easily become unpractical for existing systems.

In contrast, the OWL 2 profiles define language fragments of SROIQ for which
reasoning tasks can be realised efficiently, e.g., within polynomial worst-case complex-
ity. For example, the OWL 2 EL profile is based on the DL EL++ which can be handled
very efficiently by variants of saturation-based reasoning procedures [2,10]. These sat-
uration algorithms have also been pushed to more expressive DLs (e.g., Horn-SHIQ
[10] orALCH [12]) for which they are often able to outperform the more general tab-
leau algorithms. In particular, they allow a fast one-pass handling of several reasoning
tasks such as classification (i.e., the task of arranging the named concepts of an ontology
in a subsumption hierarchy), whereas tableau-based procedures perform classification
by a pairwise comparison of the named concepts. Handling cardinality restrictions with
saturation procedures is, however, still an open question.

∗ The author acknowledges the support of the doctoral scholarship under the Postgraduate Schol-
arships Act of the Land of Baden-Wuerttemberg (LGFG).



Recently, new approaches have been proposed to also improve the reasoning perfor-
mance for ontologies of more expressive DLs by combining saturation procedures and
fully-fledged tableau reasoners in a black box manner [1,14]. These approaches try to
delegate as much work as possible to the specialised and more efficient reasoner, which
allows for reducing the workload of the fully-fledged tableau algorithm, and often re-
sults in a better pay-as-you-go behaviour than using a tableau reasoner alone.

In this paper, we present a much tighter coupling between saturation- and tableau-
based algorithms, whereby further performance improvements are achieved. After in-
troducing some preliminaries (Section 2), we present a saturation procedure that is
adapted to the data structures of a tableau algorithm (Section 3). This allows for easily
passing information between the saturation and the tableau algorithm within the same
reasoning system. Moreover, the saturation partially handles features of more expres-
sive DLs in order to efficiently derive as many consequences as possible (Section 3.1).
We then show how parts of the ontology can be identified for which the saturation
procedure is possibly incomplete and where it is necessary to fall-back to the tableau
procedure (Section 3.2). Subsequently, we present several optimisations that are based
on passing information from the saturation to the tableau algorithm (Section 4) and back
(Section 5). Finally, we present the results of a detailed evaluation (Section 6) before we
conclude (Section 7). Further details, proofs, an extended evaluation, and comparisons
with other reasoners are available in a technical report [16].

2 Preliminaries

For brevity, we do not introduce DLs (see, e.g., [3]) and we only present our approach
for the DL ALCHOIQ. However, the approach can easily be extended to SROIQ
(see [16]), e.g., by encoding role chains and adding appropriate rules for the remaining
features such as ∃r.Self concepts.

2.1 Tableau Algorithm

For ease of presentation, we assume in the remainder of the paper that all concepts are
in negation normal form (NNF) and we use ¬̇ to denote the negation of a concept in
NNF. Moreover, we assume that all ABox axioms are internalised into the TBox of a
knowledge base.3

A tableau algorithm decides the consistency of a knowledge base K by trying to
construct an abstraction of a model for K , a so-called “completion graph”. A comple-
tion graph G is a tuple (V, E,L, ,̇), where each node v ∈ V (edge 〈v,w〉 ∈ E) represents
one or more (pairs of) individuals. Each node v (edge 〈v,w〉) is labelled with a set of
concepts (roles), L(v) (L(〈v,w〉)), which the individuals represented by v (〈v,w〉) are
instances of. The relation ,̇ records inequalities between nodes.

The algorithm works by initialising the graph with one node for each nominal in
the input knowledge base. Complex concepts are then decomposed using a set of ex-
pansion rules, where each rule application can add new concepts to node labels and/or

3 In the presence of nominals, this can easily be realised, e.g., by expressing a concept assertion
C(a) (role assertion r(a, b)) as {a} v C ({a} v ∃r.{b}).



new nodes and edges to the completion graph, thereby explicating the structure of a
model. The rules are applied until either the graph is fully expanded (no more rules are
applicable), in which case the graph can be used to construct a model that is a witness
to the consistency ofK , or an obvious contradiction (called a clash) is discovered (e.g.,
both C and ¬̇C in a node label), proving that the completion graph does not correspond
to a model. The input knowledge base K is consistent if the rules (some of which are
non-deterministic) can be applied such that they build a fully expanded, clash-free com-
pletion graph. A cycle detection technique called blocking ensures the termination of
the algorithm.

Typically, lazy unfolding rules are used in the tableau algorithm to process axioms
of the form A v C, where the concept C is added to the label of a node if it contains
the atomic concept A. Axioms that are not directly supported by this lazy unfolding
approach must be internalised, which can be realised by expressing a general concept
inclusion (GCI) axiom C v D by > v ¬̇C t D. Given that > is satisfied at each node,
the disjunction is then also added to all node labels.

2.2 (Binary) Absorption

Absorption is used as a preprocessing step in order to reduce the non-determinism in
the tableau algorithm. Basically, axioms are rewritten into (possibly several) simpler
concept inclusion axioms such that lazy unfolding rules in the tableau algorithm can be
used and, therefore, internalisation of axioms is often not required. Algorithms based on
binary absorption [8] allow for and create axioms of the form (A1 u A2) v C, whereby
also more complex axioms can be absorbed. To efficiently support a binary absorption
axiom (A1 u A2) v C in the tableau algorithm, a separate unfolding rule is used, which
adds C only to node labels if A1 and A2 are already present. More sophisticated ab-
sorption algorithms, such as partial absorption [15], further improve the handling of
knowledge bases for more expressive DLs since the non-determinism that is caused
by disjunctions on the right-hand side of axioms is further reduced. Roughly speaking,
the non-absorbable disjuncts are partially used as conditions on the left-hand side of
additional inclusion axioms such that the processing of the disjunctions can further be
delayed. Many state-of-the-art reasoning systems are at least using some kind of binary
absorption, which makes the processing of simple ontologies (e.g., EL ontologies) also
with the tableau algorithm deterministic. In the following, we assume that knowledge
bases are, at least, preprocessed with a variant of binary absorption and we also use the
syntax of binary absorption axioms to illustrate the algorithms and examples.

3 Saturation Compatible with Tableau Algorithms

In this section, we describe a saturation method that is an adaptation of the completion-
based procedure [2] such that it generates data structures that are compatible for further
usage within a fully-fledged tableau algorithm for more expressive DLs. Similarly to
completion graphs, this saturation generates nodes that are labelled with sets of concepts
and, therefore, it directly allows for transferring results from the saturation to the tableau
algorithm. For example, the saturated labels can be used to initialise the labels of new



nodes in the completion graph or to block the processing of nodes. In some cases, it is
directly possible to extract completion graphs from the data structures of the saturation,
which makes an explicit model construction with the tableau algorithm unnecessary.

Note, the adapted saturation method is not designed to cover a certain OWL 2 profile
or a specific DL language. In contrast, we saturate those parts of a knowledge base
that can easily be supported with an efficient algorithm (see Section 3.1). Unsupported
concept constructors are (partially) ignored by the saturation, but we dynamically detect
which parts have not been completely handled afterwards (see Section 3.2). Hence, the
results of the saturation are possibly incomplete, but since we know how and where
they are incomplete, we can use the results from the saturation appropriately.

3.1 Saturation based on Tableau Rules

The adapted saturation method generates so-called saturation graphs, which approxi-
mate completion graphs in a compressed form (e.g., it allows for “reusing” nodes).

Definition 1 (Saturation Graph). Let Rols(K) (fclos(K)) denote the roles (concepts)
that occur in K (in completion graphs for K). A saturation graph for K is a directed
graph S = (V, E,L) with the nodes V ⊆ {vC | C ∈ fclos(K)}. Each node vC ∈ V
is labelled with a set L(vC) ⊆ fclos(K) such that L(vC) ⊇ {>,C}. We call vC the
representative node for the concept C. Each edge 〈v, v′〉 ∈ E is labelled with a set
L(〈v, v′〉) ⊆ Rols(K). We say that a node v ∈ V is clashed if ⊥ ∈ L(v).

A major difference to a completion graph is the missing ,̇ relation, which can be
omitted since the saturation is not designed to completely handle cardinality restrictions
and, therefore, we also do not need to keep track of inequalities between nodes in the
saturation graph. Furthermore, each node in the saturation graph is the representative
node for a specific concept, which allows for reusing nodes. For example, instead of
creating new successors for existential restrictions, we reuse the representative node for
the existentially restricted concept as a successor.

In principle, the nodes, edges, and labels are used as in completion graphs (cf. [6])
and, therefore, we also use the (r-)neighbour, (r-)successor, (r-)predecessor, ancestor
and descendant relations analogously. Please note, however, that a node in the saturation
graph can have several predecessors due to the reuse of nodes.

We initialise the saturation graph with the representative nodes for all concepts that
have to be saturated. For example, if the satisfiability of the concept C has to be tested,
then we are interested in the saturation of the concept C and, therefore, we add the node
vC with the label L(vC) = {>,C} to the saturation graph. Note that we only build one
saturation graph, i.e., if we are later also interested in the saturation of a concept D that
is not already saturated, then we simply extend the existing saturation graph by vD. For
knowledge bases that contain nominals, we also add a node v{a} with L(v{a}) = {>, {a}}
for each nominal {a} occurring in the knowledge base.

For the initialised saturation graph, we apply the saturation rules depicted in Ta-
ble 1. Note that if a saturation rule refers to the representative node for a concept C
and the node vC does not yet exist, then we assume that the saturation graph is auto-
matically extended by this node. Although the saturation rules are very similar to the



Table 1. Saturation rules for the (partial) handling ofALCHOIQ knowledge bases

v1-rule: if H ∈ L(v), H v C ∈ K with H = A, H = {a}, or H = >, and C < L(v),
then L(v) −→ L(v) ∪ {C}

v2-rule: if {A, B} ⊆ L(v), (A u B) v C ∈ K , and C < L(v),
then L(v) −→ L(v) ∪ {C}

u-rule: if C1 uC2 ∈ L(v) and {C1,C2} * L(v),
then L(v) −→ L(v) ∪ {C1,C2}

∃-rule: if ∃r.C ∈ L(v) and r < L(〈v, vC〉),
then L(〈v, vC〉) −→ L(〈v, vC〉) ∪ {r}

∀-rule: if ∀r.C ∈ L(v), there is an inv(r)-predecessor v′ of v, and C < L(v′),
then L(v′) −→ L(v′) ∪ {C}

t-rule: if C1 tC2 ∈ L(v), there is some D ∈ L(vC1 ) ∩ L(vC2 ), and D < L(v),
then L(v) −→ L(v) ∪ {D}

>-rule: if >n r.C ∈ L(v) with n ≥ 1 and r < L(〈v, vC〉),
then L(〈v, vC〉) −→ L(〈v, vC〉) ∪ {r}

o-rule: if {a} ∈ L(v), there is some D < L(v), and
D ∈ L(v{a}) or there is a descendant v′ of v with {{a},D} ⊆ L(v′),

then L(v) −→ L(v) ∪ {D}
⊥-rule: if ⊥ < L(v), and

1. {C, ¬̇C} ⊆ L(v), or
2. {>nr.C,6m s.D} ⊆ L(v) with n > m, r v∗ s and D ∈ L(vC), or
3. >nr.C ∈ L(v) with n > 1, and {a} ∈ L(vC), or
4. there exist a successor node v′ of v with ⊥ ∈ L(v′), or
5. there exist a node v{a} with ⊥ ∈ L(v{a}),

then L(v) −→ L(v) ∪ {⊥}

corresponding expansion rules in the tableau algorithm, there are some differences. For
example, the number of nodes is limited by the number of (sub-)concepts occurring in
the knowledge base due to the reuse of nodes for satisfying existentially restricted con-
cepts. Consequently, the saturation is terminating since the rules are only applied when
they can add new concepts or roles to node or edge labels. Moreover, a cycle detection
technique such as blocking is not required, which makes the rule application very fast.
Note also that the ∀-rule propagates concepts only to the predecessors of a node, which
is necessary in order to allow the reuse of nodes for existentially restricted concepts.
Language features of more expressive DLs are only partially supported. For instance,
the t-rule adds only those concepts that are implied by both disjuncts. In order to (par-
tially) handle a nominal {a} in the label of a node v, we use an o-rule that adds those
concepts that are derived for v{a} or for descendant nodes that also have {a} in their label
(instead of merging such nodes as in tableau procedures). This enables a very efficient
implementation and is sufficient for many ontologies.

The rules also include a⊥-rule, which adds the concept⊥ to the label of those nodes
for which a clash can be discovered. Furthermore, it propagates⊥ to the ancestor nodes.
In case ⊥ occurs in the label of a representative node for a nominal, the knowledge base
is inconsistent and⊥ is propagated to every node label in the saturation graph; otherwise
⊥ in the label of a node vC indicates the unsatisfiability of C. Although it is, in principle,
possible to detect also several other kinds of clashes for the incompletely handled parts



vA vB v{a}
s− s

r

L(vA) =
{
>, A,∃s−.B, B t {a},C

}
L(vB) =

{
>, B,C,∃s.{a},61 s.C

}
L(v{a}) =

{
>, {a},C,>2 r.B

}
Fig. 1. Generated saturation graph for testing the satisfiability of A1 for Example 1

in the saturation (e.g., for a concept C that has to be propagated to a successor node v,
where v has already the negation of C in its the label), the presented conditions of the
⊥-rule are already sufficient to show the completeness. Hence, we omit further clash
conditions for ease of presentation. Note, the use of a ⊥-rule is typical for saturation
procedures since we are interested in associating clashes with specific nodes instead of
entire completion graphs. As a consequence, the saturation allows for handling several
independent concepts within the same saturation graph, while unsatisfiable nodes can
nevertheless be distinguished from nodes that are (possibly) still satisfiable.

Example 1. Let us assume that the TBox T contains the following axioms:
A v ∃s−.B A v B t {a} B v C B v ∃s.{a}
B v 61 s.C {a} v C {a} v >2 r.B

In order to test the satisfiability of the concept A, we initialise the saturation graph with
the representative node for A and the nominal {a}. Applying the rules of Table 1 yields
the saturation graph depicted in Figure 1. Note that the procedure creates new nodes
on demand, e.g., for the processing of disjunctions, existential restrictions, and at-least
cardinality restrictions. Although the concept C is added to node labels, a node for C
is not created since C is not used in a way that requires this. Also note that the t-rule
application adds C to the label of vA, because C is in the label of the representative
nodes for both disjuncts of the disjunction B t {a} (i.e., C ∈ L(vB) ∩ L(v{a})).

With a suitable absorption technique, the saturation is usually able to derive and
add the majority of those concepts that would also be added by the tableau algorithm
for an equivalent node. This is especially the case for ontologies that primarily use fea-
tures of the DL EL++. Since EL++ covers many important and often used constructors
(e.g., u,∃), the saturation does already the majority of the work for many ontologies (as
confirmed by our evaluation in Section 6).

3.2 Saturation Status Detection

If used alone, the presented saturation procedure easily becomes incomplete for more
expressive DLs, similarly to other saturation-based procedures. Our aim is, however, to
gain as much information as possible from the saturation, i.e., we would like to detect
more precisely for which nodes the saturation was incomplete. In principle, this can
easily be approximated by testing for which nodes the actual tableau expansion rules
are applicable. However, since we partially saturate some more expressive concept con-
structors, this approach is often too conservative. For example, consider a saturation
graph without nominals and at-most cardinality restrictions, but with an at-least cardi-
nality restriction > n r.C with n > 1 in some node label. When constructing a model



from the saturation graph, we could create the required n successors by “copying” the
node vC . Nevertheless, the tableau expansion rule for this at-least cardinality restriction
is still applicable since we only have one successor. It would, however, be sufficient
to check whether the number of successors is possibly limited by at-most cardinality
restrictions or nominals. Similar relaxations are also possible for other concept con-
structors, which is exploited by the approach described in this section.

In order to identify nodes for which the saturation procedure might be incomplete,
we first identify nodes that depend (directly or indirectly) on nominals and nodes that
have tight at-most restrictions.

Definition 2. Let S = (V, E,L) be a saturation graph and v ∈ V a node. We say that
v is directly nominal dependent if {a} ∈ L(v); v is nominal dependent if v is directly
nominal dependent or v has a successor node v′ such that v′ is nominal dependent.

For a role s and a concept D, the number of merging candidates for v w.r.t. s and D
is defined as

∑
>n r.C∈G n with

G = {>n r.C ∈ L(v) | r v∗ s and D ∈ L(vC)} ∪
{>1 r.C | ∃r.C ∈ L(v), r v∗ s and D ∈ L(vC)}.

The node v has tight at-most restrictions if there is an at-most cardinality restriction
6m s.D ∈ L(v) and the number of merging candidates for v w.r.t. s and D is exactly m.

For nodes with tight at-most restrictions, it is not necessary to merge some of its merg-
ing candidates, but every additional candidate might require merging and, therefore,
these nodes cannot be used arbitrarily.

We can now identify critical nodes that are possibly incompletely handled by the
saturation as follows:

Definition 3. Let S = (V, E,L) be a saturation graph and v ∈ V a node. We say that v
is directly critical, if
C1 ∀r.C ∈ L(v) and there is an r-successor v′ of v such that C < L(v′);
C2 C t D ∈ L(v) and C,D < L(v);
C3 6m s.D ∈ L(v) and there is an s-successor v′ of v such that L(v′) ∩ {D, ¬̇D} = ∅;
C4 6m s.D ∈ L(v) and the number of merging candidates for v w.r.t. s and D is greater

than m;
C5 v has an inv(s)-successor v′ with 6m s.D ∈ L(v′) and L(v) ∩ {D, ¬̇D} = ∅;
C6 v has an inv(s)-successor v′ with 6 m s.D ∈ L(v′), D ∈ L(v), and the number of

merging candidates for v′ w.r.t. s and D is m;
C7 {a} ∈ L(v) and there is some v′ ∈ V with {a} ∈ L(v′) and L(v) * L(v′);
C8 v is nominal dependent and for some nominal {a} the node v{a} is critical; or
C9 v has an inv(s)-successor v′ with 6m s.D ∈ L(v′) and {a} ∈ L(v′).
We say that v is critical if v is directly critical or v has a critical successor v′.

Conditions C1, C2, and C3 identify nodes as critical for which the ∀-, the t-, or the
ch-rule of the tableau algorithm is applicable. Note that in Condition C1 it is only
necessary to check whether the concept can be propagated to successor nodes since
the propagation to predecessors is ensured by the saturation procedure. Condition C4
identifies nodes as critical for which at-most restrictions might not be satisfied. Condi-
tions C5 and C6 work analogously to C3 and C4, but check this from the perspective



of a predecessor node. Note that C6 only has to check whether the number of merging
candidates is equal to m since nodes with an at-most cardinality restriction 6m s.D and
more merging candidates than m are already critical due to C4. Condition C7 checks
whether merging different nodes in the saturation graph that have the same nominal in
their label could lead to problems, while C8 marks nominal dependent nodes as critical
if representative nodes for nominals are critical since it cannot be excluded that more
consequences are propagated to these nodes over the nominals. Finally, Condition C9
identifies nodes as critical for which an interaction between at-most restrictions, nomi-
nals and inverse roles could occur and thus the NN-rule of the tableau algorithm could
be applicable.

A concept C is obviously unsatisfiable if its representative node is clashed (i.e.,
⊥ ∈ L(vC)), whereas the satisfiability of C can only be guaranteed (for the general
case) if vC is not critical, vC does not depend on a nominal, and the knowledge base
is consistent. Consistency is explicitly required, because a concept is satisfiable only if
the knowledge base is consistent, which, however, cannot always be determined by the
saturation procedure since it might not be able to completely handle all representative
nodes for nominals. In particular, if the saturation graph contains a critical represen-
tative node for a nominal, then only the nominal dependent nodes are also marked as
critical. Thus, for the remaining nodes, we have to require that the knowledge base is
consistent in order to be able to guarantee the satisfiability of their associated concepts.
In addition, if a node vC is nominal dependent, then the consequences that are propa-
gated to vC obviously depend on the labels of the corresponding representative nodes for
these nominals. Therefore, we cannot generally guarantee the satisfiability of C without
knowing the status of the representative nodes for those nominals on which vC depends.

Please also note that a critical representative node for a nominal also makes all
nominal dependent nodes critical, which can obviously be very problematic in practice.
In Section 5, we show how we can use information from a completion graph, e.g., from
the initial consistency check, to improve the status of the saturation graph.

Example 1 (continued). For the saturation graph depicted in Figure 1, vA, vB, and v{a}
are nominal dependent, vB has a tight at-most restriction, and only vA is critical: First,
C6 applies to vA since vB is an s−-successor of vA due to ∃s−.B ∈ L(vA), 61 s.C ∈ L(vB)
and the number of merging candidates for vB w.r.t. s and C is 1. Second, C2 applies to
vA since none of the disjuncts of B t {a} ∈ L(vA) occurs in L(vA).

4 Assisting Tableau Algorithms

In this section, we show how we can use the saturation graph to improve the tableau
algorithm such that existing optimisations can still be used. For example, to further
support the important dependency directed backtracking [3,18], which allows for eval-
uating only relevant non-deterministic alternatives, we have to correctly manage the
dependencies for all results that we transfer from the saturation into a completion graph.

4.1 Transfer of Saturation Results to Completion Graphs
Since the saturation uses compatible data structures, we can directly transfer the satura-
tion results into the completion graph. For example, if we create a new successor node v



due to an existential restriction ∃r.C, then we can directly initialise v with the concepts
fromL(vC) and record that the added concepts deterministically depend on C. The most
notable advantage of the transferred consequences is that they often allow for blocking
much earlier. Basically, concepts that would be propagated back from successor nodes
are already present in the node label and, thus, a block can often be established even
without creating and processing the required successors.

Furthermore, the successors of a node v in the completion graph can be blocked
if there is a node v′ in the saturation graph such that v and v′ are labelled with the
same concepts and v′ is neither clashed, critical nor nominal dependent. If v′ is nominal
dependent and we would block the successors of v, then we might miss the handling
of new consequences if the dependent nominal nodes are modified in this completion
graph. If v′ does not have a tight at-most restriction, then we can directly block v since
merging with a predecessor can be excluded. Of course, if new concepts are propagated
to v, then the block becomes invalid and the processing of the successors has to be
reactivated unless another node can be used for the blocking.

4.2 Subsumer Extraction

Higher level reasoning tasks such as classification often exploit information that can be
extracted from the constructed completion graphs [5]. Obviously, we can also use the
saturation graph to improve classification. For example, if a node vA is neither clashed
nor critical, then A is satisfiable and L(vA) contains all of its subsumers. In particular,
if no nodes are critical (which is the case for many EL ontologies), only a transitive
reduction is necessary for classification and, thus, we automatically get a one-pass clas-
sification for simple ontologies. Otherwise, the subsumers identified by the saturation
can be used to initialise the tableau-based classification algorithm, which is more accu-
rate than the often used told subsumers extracted from the ontology axioms.

4.3 Model Merging

Many ontologies contain axioms of the form C ≡ D, which can be seen as an abbre-
viation for C v D and D v C. Treating axioms of the form A ≡ D with A an atomic
concept as A v D and D v A can, however, downgrade the performance of tableau al-
gorithms since absorption might not apply to D v A, i.e., the axiom is internalised into
> v ¬̇D t A. To avoid this, many implemented tableau algorithms explicitly support
A ≡ D axioms by an additional unfolding rule, where the concept A in the label of a
node is unfolded to D and ¬A to ¬̇D (exploiting that D v A is equivalent to ¬A v ¬̇D)
[7].4 Unfortunately, using such an unfolding rule also comes at a price since the tableau
algorithm is no longer forced to add either A or ¬̇D to each node in the completion
graph, i.e., we might not know for some nodes whether they represent instances of A
or ¬A. This means that we cannot exclude A as possible subsumer for other (atomic)
concepts if the nodes in the completion graph (or in the saturation graph) do not contain
A, which is an important optimisation for classification procedures (cf. Section 4.2).

4 Note that this only works as long as there are no other axioms of the form A v D′ or A ≡ D′

with D′ , D in the knowledge base.



To compensate this, we can create a “candidate concept” A+ for A, for example by
partially absorbing D, which is then automatically added to a node in the completion
graph if the node is possibly an instance of A. Hence, if A+ is not added to a node label,
then we know that A is not a possible subsumer of the concepts in the label of this node.
Although the candidate concepts already allow a significant pruning of subsumption
tests, there are still ontologies where we have to add these candidate concepts to many
node labels, especially if only a limited absorption of D is possible. Hence, A can still
be a possible subsumer for many concepts.

The saturation graph can, however, again be used to further improve the identifica-
tion of (more or less obvious) non-subsumptions. Basically, if a candidate concept A+

for A ≡ D is in the label of a node v in the completion graph, then we test whether we
can merge v with the saturated node v¬̇D. Since D is often a conjunction, we can also
try to merge v with the representative node for a disjunct of ¬̇D. If the “models” can be
“merged” as defined below, then v is obviously not an instance of A.

Definition 4 (Model Merging). Let S = (V, E,L) be a fully saturated saturation graph
and G = (V ′, E′,L′, ,̇) be a fully expanded and clash-free completion graph for a
knowledge base K . A node v ∈ V is mergeable with a node v′ ∈ V ′ if

• v is not critical, not nominal dependent, and not clashed;
• {C, ¬̇C} ∩ (L(v) ∪ L′(v′)) = ∅ for some concept C;
• if {A1, A2} ⊆ (L(v) ∪ L′(v′)) and (A1 u A2) v C ∈ K , then C ∈ (L(v) ∪ L′(v′));
• if ∀r.C ∈ L(v) (6 m r.C ∈ L(v)), then C ∈ L′(w′) (¬̇C ∈ L′(w′)) for every r-

neighbour w′ of v′;
• if ∀r.C ∈ L′(v′) (6 m r.C ∈ L′(v′)), then C ∈ L(w) (¬̇C ∈ L′(w′)) for every

r-successor w of v.

The conditions that guarantee that the models are mergeable can be checked very
efficiently. Note that it is possible to relax some of the conditions. For instance, it is
not necessary to enforce that v is not nominal dependent as long as we can ensure that
there is no interaction with the generated completion graph. This can, for example, be
guaranteed if the completion graph does not use nominals.

5 Saturation Improvements

Obviously, the tableau algorithm can benefit more from the saturation, if few nodes are
critical. In the following, we present different approaches for improving the saturation
by reducing the number of critical nodes.

5.1 Extending Saturation to more Language Features

One way to improve the saturation is to extend the rules to cover more language fea-
tures, e.g., as in the consequence-based reasoning procedure for Horn-SHIF [10].
Although we cannot directly modify existing r-successors to support universal restric-
tions of the form ∀r.C, we can easily create a new r-successor whose label additionally
contains C. By further removing the previous r-successor, the node is no longer critical



due to C1. Analogously, to (partially) support at-most restrictions of the form 6 1 r.>,
several r-successors can be merged into a new node. To completely cover the DL EL++,
it would be necessary to integrate a more sophisticated handling of nominals. Currently,
we are, however, not aware of real-world ontologies where this would result in signifi-
cant improvements. Note that it is possible to limit the number of additionally created
nodes for these extensions and to consider parts that are not handled as critical, thus the
overhead of the saturation can be managed.

5.2 Improving Saturation with Results from Completion Graphs

As already mentioned, even if there is only one critical representative node for a nom-
inal, all nominal dependent nodes have to be considered critical. Analogously, nodes
with incompletely handled concepts (e.g., disjunctions) are considered critical and also
all nodes that indirectly refer to other critical nodes, even if all concepts in their labels
can be handled completely. Extending the saturation rules only also has its limits since
we are not aware of saturation-based procedures that cover very expressive DLs such
as SROIQ. Hence, we can still get many critical nodes in knowledge bases that use
unsupported features.

An approach to overcome this issue is to “patch” the saturation graph with results
from fully expanded and clash-free completion graphs, e.g., from consistency or satis-
fiability checks. Roughly speaking, we replace the labels of critical nodes in the satura-
tion graph with corresponding labels from a completion graph, where we know that they
are completely handled. Applying the saturation rules again, then hopefully results in a
saturation graph with less critical nodes. However, since the completion graph contains
deterministically and non-deterministically derived consequences, we also have to dis-
tinguish them for the saturation. An interesting way to achieve this is to simultaneously
manage two saturation graphs: one where only the deterministically derived concepts
are added and a second one, where also the non-deterministically derived concepts and
consequences are considered. If the non-deterministic consequences have only a locally
limited influence, i.e., the non-deterministically added concepts propagate new conse-
quences only to a limited number of ancestor nodes, then, by comparing both saturation
graphs, we can possibly identify ancestor nodes that are not further influenced by non-
deterministic consequences and, thus, do not have to be considered critical.

6 Implementation and Evaluation

We extended Konclude5 [17] with the presented saturation procedure and optimisations.
Konclude is a tableau-based reasoner for SROIQ [6] with extensions for the handling
of nominal schemas [15]. It integrates many state-of-the-art optimisations such as lazy
unfolding, dependency directed backtracking, caching, etc. Moreover, Konclude uses
partial absorption in order to significantly reduce the non-determinism in ontologies,
which makes Konclude very suitable for the integration of saturation procedures.

The saturation algorithm integrated in Konclude almost covers the DL Horn-SRIF
by using the extensions described in Section 5.1 for universal restrictions and functional

5 Available at http://www.konclude.com/

http://www.konclude.com/


Table 2. Statistics of ontology metrics for the evaluated ontology repositories (Ø stands for aver-
age and M for median)

Repository # Ontol- Axioms Classes Properties Individuals
ogies Ø M Ø M Ø M Ø M

Gardiner 276 6, 143 95 1, 892 16 36 7 90 3
NCBO BioPortal 403 25, 561 1, 068 7, 617 339 47 13 1, 782 0
NCIt 185 178, 818 167, 667 69, 720 68, 862 116 123 0 0
OBO Foundry 422 44, 424 1, 990 8, 033 839 28 6 24, 868 66
Oxford 383 74, 248 4, 249 8, 789 544 52 13 18, 798 12
TONES 200 7, 697 337 2, 907 100 28 5 66 0
Google Crawl 413 6, 282 194 1, 122 38 69 15 830 1
OntoCrawler 544 1, 876 119 125 18 56 12 638 0
OntoJCrawl 1, 680 5, 848 218 1, 641 43 29 8 810 0
Swoogle Crawl 1, 635 2, 529 109 420 21 26 8 888 0
ALL 6, 141 18, 583 252 4, 635 50 39 9 3, 674 0

at-most restrictions (only merging with predecessors is not implemented). The number
of nodes that are additionally processed for the handling of these saturation extensions
is mainly limited by the number of concepts occurring in the knowledge base. However,
the saturation in Konclude only supports a very limited handling of individuals since the
individuals also have to be handled by the tableau algorithm (at least in the worst-case)
and several representations of the individuals easily multiply the memory consumption.
To compensate this, Konclude primarily handles individuals with the tableau algorithm
and uses patches from completion graphs (as presented in Section 5.2) to improve those
parts in the saturation graph that depend on nominals.

In the following, we present a detailed evaluation that shows the improvement
of Konclude due to the integrated saturation procedure. The evaluation uses a large
test corpus of ontologies which have been obtained by collecting all downloadable
and parseable ontologies from the Gardiner ontology suite [4], the NCBO BioPortal,6

the National Cancer Institute thesaurus (NCIt) archive,7 the Open Biological Ontolo-
gies (OBO) Foundry [13], the Oxford ontology library,8 the TONES repository,9 and
those subsets of the OWLCorpus [11] that were gathered by the crawlers Google, On-
toCrawler, OntoJCrawl, and Swoogle.10 All ontologies were parsed and converted to
self-contained OWL/XML files with the OWL API. For the 1,380 ontologies with im-
ports we created a version with resolved imports and another one without the imports
(for testing the reasoning performance on the main ontology content without imports,
which are frequently shared by many ontologies). Since Konclude does not yet support
datatypes, we removed all data properties and we replaced all data property restrictions

6 http://bioportal.bioontology.org/
7 http://ncit.nci.nih.gov/
8 http://www.cs.ox.ac.uk/isg/ontologies/; We ignored repositories that are redun-

dantly contained in the Oxford ontology library (e.g., the Gardiner ontology suite).
9 http://owl.cs.manchester.ac.uk/repository/

10 In order to avoid too many redundant ontologies, we only used those subsets of the OWLCor-
pus which were gathered with the crawlers OntoCrawler, OntoJCrawl, Swoogle, and Google.

http://bioportal.bioontology.org/
http://ncit.nci.nih.gov/
http://www.cs.ox.ac.uk/isg/ontologies/
http://owl.cs.manchester.ac.uk/repository/


with owl:Thing in all ontologies. Table 2 shows an overview of our obtained test cor-
pus with overall 6,141 ontologies including statistics of ontology metrics for the source
repositories. Please note that 34.9 % of all ontologies are not even in the OWL 2 DL
profile, which is, however, mainly due to undeclared entities.

The evaluation was carried out on a Dell PowerEdge R420 server running with two
Intel Xeon E5-2440 hexa core processors at 2.4 GHz with Hyper-Threading and 48
GB RAM under a 64bit Ubuntu 12.04.2 LTS. Our evaluation focuses on classification,
which is a central reasoning task that is supported by many reasoners and, thus, it is
ideal for the comparison of results. In principle, we only measured the wall clock time
for classification, i.e., the times spent for parsing and loading ontologies as well as
for writing classification output to files are not included. Each test was executed with
a time limit of 5 minutes, but without any limitation of memory allocation. Although
Konclude supports parallelisation, we only used one worker thread, which allows for a
comparison independent of the number of CPU cores and facilitates the presentation of
the improvements through saturation.

Table 3 shows a comparison of the accumulated classification times for the evalu-
ated repositories (in seconds) between the following versions of Konclude:

• NONE, where none of the saturation optimisations are activated,
• NONE+RT, where only the transfer of results from the saturation into the comple-

tion graph (as presented in Section 4.1) is activated;
• NONE+SE, where only the extraction of subsumers from the saturation (as pre-

sented in Section 4.2) is activated;
• NONE+MM, where only the model merging with the saturation graph (as presented

in Section 4.3) is activated;
• ALL−SI, where the saturation improvements (as presented in Section 5) are deacti-

vated (i.e., all the saturation optimisations presented in Setion 4 are activated),
• ALL, where all saturation optimisations and saturation improvements are activated.

In addition, the column on the right side shows the performance gains (in percent) from
NONE to the version ALL. Please note that the saturation improvements are optimisa-
tions to further improve the saturation procedure and, therefore, a separate evaluation
of these techniques does not make sense.

It can be observed that the most significant improvements are achieved with the
model merging optimisation (cf. NONE+MM), which is due to the large amount of
NCI-Thesaurus ontologies in the NCIt archive, where this optimisation significantly
reduces the classification effort. In contrast, if only the transfer of the saturation re-
sults (NONE+RT) or the extraction of subsumers from the saturation (NONE+SE) is
activated, then only minor improvements with respect to the version NONE are possi-
ble. However, the combined activation of these optimisations (cf. ALL−SI) again leads
to a significant performance gain for the repositories, which indicates that there is a
synergy effect from the combination of these optimisation. Since all of these optimisa-
tions are based on the saturation procedure, which also requires a significant amount
of processing time for large ontologies (approximately 1, 953 s for all repositories),
this synergy effect is not very surprising. By further activating the saturation improve-
ments (cf. ALL), we obtain another performance gain. Considering all repositories, the



Table 3. Accumulated classification times (in seconds) with separately activated saturation opti-
misations for the evaluated ontology repositories

Repository NONE NONE+RT NONE+SE NONE+MM ALL−SI ALL ↓ [%]

Gardiner 531 611 469 535 558 559 −5.2
NCBO BioPortal 2, 071 1, 947 971 2, 156 988 793 61.7
NCIt 28, 639 28, 538 28, 276 3, 223 2, 496 2, 457 91.4
OBO Foundry 879 821 979 1, 078 741 649 26.2
Oxford 6, 623 5, 006 6, 012 6, 510 3, 429 2, 743 58.6
TONES 1, 756 1, 456 1, 413 494 321 337 80.8
Google Crawl 465 428 448 467 363 138 70.3
OntoCrawler 26 25 24 25 23 22 14.7
OntoJCrawl 1, 417 923 715 1, 427 517 548 61.4
Swoogle Crawl 2, 501 2, 502 2, 493 1, 402 1, 248 1, 343 46.3
ALL 44, 910 42, 256 41, 800 17, 317 10, 684 9, 589 78.6

combined activation of all saturation optimisations and improvements reduces the accu-
mulated reasoning time by 78.6 %. It is also worth pointing out that the version NONE
timed out for 128 ontologies, whereas the version ALL only reached the time limit for
10 ontologies. Thus, an evaluation with an increased time limit would show even better
performance gains. For example, the Oxford ontology library contains the SCT-SEP
ontology,11 which can be classified by the version ALL in 181.2 s, whereas the version
NONE requires 1709.4 s. SCT-SEP is a SNOMED extension that intensively uses dis-
junctions and disjointness and, thus, is clearly outside the OWL EL fragment. Neverthe-
less, large parts of the ontology have an EL structure and, therefore, our optimisations
are able to improve the reasoning performance by almost one order of magnitude.

Table 3 also reveals that some saturation optimisations are not really relevant for
some repositories. For instance, the activated result transfer yields worse reasoning
times for the ontologies in the Gardiner ontology suite. Moreover, the model merg-
ing optimisation causes significant performance losses for some repositories (e.g., for
OBO Foundry), which indicates that further optimisation is possible; e.g., one could
learn statistics about the success of model merging with certain nodes in the saturation
graph and automatically skip a merging test if there is a high likelihood that it will fail.

7 Conclusions

In this paper, we have presented a technique for tightly coupling saturation- and tableau-
based procedures. Unlike standard consequence-based procedures, the approach is ap-
plicable on arbitrary OWL 2 DL ontologies. Furthermore, it has a very good pay-as-you-
go behaviour, i.e., if only few axioms use features that are problematic for saturation-
based procedures (e.g., disjunction), then the tableau procedure can still benefit signif-
icantly from the saturation. This seems to be confirmed by our evaluation over several
thousand ontologies, where the integration of the presented saturation optimisations into
the reasoning system Konclude significantly improves the classification performance.

11 Originally from https://code.google.com/p/condor-reasoner/

https://code.google.com/p/condor-reasoner/


References
1. Armas Romero, A., Cuenca Grau, B., Horrocks, I.: MORe: Modular combination of OWL

reasoners for ontology classification. In: Proc. 11th Int. Semantic Web Conf. (ISWC’12).
LNCS, vol. 7649, pp. 1–16. Springer (2012)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. 19th Int. Joint Conf. on
Artificial Intelligence (IJCAI’05). pp. 364–369. Professional Book Center (2005)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press, 2nd edn. (2007)

4. Gardiner, T., Horrocks, I., Tsarkov, D.: Automated benchmarking of description logic rea-
soners. In: Proc. 19th Int. Workshop on Description Logics (DL’06). vol. 198. CEUR (2006)

5. Glimm, B., Horrocks, I., Motik, B., Shearer, R., Stoilos, G.: A novel approach to ontology
classification. J. of Web Semantics 14, 84–101 (2012)

6. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc. 10th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR’06). pp. 57–67. AAAI
Press (2006)

7. Horrocks, I., Tobies, S.: Reasoning with axioms: Theory and practice. In: Proc. 7th Int. Conf.
on Principles of Knowledge Representation and Reasoning (KR’00). pp. 285–296. Morgan
Kaufmann (2000)

8. Hudek, A.K., Weddell, G.E.: Binary absorption in tableaux-based reasoning for description
logics. In: Proc. 19th Int. Workshop on Description Logics (DL’06). vol. 189. CEUR (2006)

9. Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: Proc. 11th Int. Conf. on Princi-
ples of Knowledge Representation and Reasoning (KR’08). pp. 274–284. AAAI Press (2008)

10. Kazakov, Y.: Consequence-driven reasoning for Horn-SHIQ ontologies. In: Proc. 21st Int.
Conf. on Artificial Intelligence (IJCAI’09). pp. 2040–2045. IJCAI (2009)

11. Matentzoglu, N., Bail, S., Parsia, B.: A corpus of OWL DL ontologies. In: Proc. 26th Int.
Workshop on Description Logics (DL’13). vol. 1014. CEUR (2013)

12. Simančík, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond Horn ontolo-
gies. In: Proc. 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI’11). pp. 1093–1098.
IJCAI/AAAI (2011)

13. Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L.J., Eil-
beck, K., Ireland, A., Mungall, C.J., The OBI Consortium, Leontis, N., Rocca-Serra, P., Rut-
tenberg, A., Sansone, S.A., Scheuermann, R.H., Shah, N., Whetzeland, P.L., Lewis, S.: The
OBO Foundry: coordinated evolution of ontologies to support biomedical data integration.
Nature Biotechnology 25, 1251–1255 (2007)

14. Song, W., Spencer, B., Du, W.: WSReasoner: A prototype hybrid reasoner forALCHOI on-
tology classification using a weakening and strengthening approach. In: Proc. 1st Int. Work-
shop on OWL Reasoner Evaluation (ORE’12). vol. 858. CEUR (2012)

15. Steigmiller, A., Glimm, B., Liebig, T.: Nominal schema absorption. In: Proc. 23rd Int. Joint
Conf. on Artificial Intelligence (IJCAI’13). pp. 1104–1110. AAAI Press (2013)

16. Steigmiller, A., Glimm, B., Liebig, T.: Coupling tableau algorithms for the DL SROIQ with
completion-based saturation procedures. Tech. Rep. UIB-2014-02, University of Ulm, Ulm,
Germany (2014), available online at http://www.uni-ulm.de/fileadmin/website_
uni_ulm/iui/Ulmer_Informatik_Berichte/2014/UIB-2014-02.pdf

17. Steigmiller, A., Liebig, T., Glimm, B.: Konclude: system description. J. of Web Semantics
(2014), accepted

18. Tsarkov, D., Horrocks, I., Patel-Schneider, P.F.: Optimizing terminological reasoning for ex-
pressive description logics. J. of Automated Reasoning 39, 277–316 (2007)

19. W3C OWL Working Group: OWL 2 Web Ontology Language: Document Overview. W3C
Recommendation (27 October 2009)

http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui/Ulmer_Informatik_Berichte/2014/UIB-2014-02.pdf
http://www.uni-ulm.de/fileadmin/website_uni_ulm/iui/Ulmer_Informatik_Berichte/2014/UIB-2014-02.pdf

	Coupling Tableau Algorithms for Expressive Description Logics with Completion-based Saturation Procedures
	Introduction
	Preliminaries
	Tableau Algorithm
	(Binary) Absorption

	Saturation Compatible with Tableau Algorithms
	Saturation based on Tableau Rules
	Saturation Status Detection

	Assisting Tableau Algorithms
	Transfer of Saturation Results to Completion Graphs
	Subsumer Extraction
	Model Merging

	Saturation Improvements
	Extending Saturation to more Language Features
	Improving Saturation with Results from Completion Graphs

	Implementation and Evaluation
	Conclusions


