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Abstract Nominal schemas have recently been introduced as a new approach for the inte-
gration of DL-safe rules into the Description Logic framework. The efficient processing of
knowledge bases with nominal schemas remains, however, challenging. We address this by
extending the well-known optimisation of absorption as well as the standard tableau calcu-
lus to directly handle the (absorbed) nominal schema axioms. We implement the resulting
extension of standard tableau calculi in the novel reasoning system Konclude and present
further optimisations. In our empirical evaluation, we show the effect of these optimisations
and we find that the proposed nominal schema handling performs well even when compared
to (hyper)tableau systems with dedicated rule support.

Keywords Description Logics · Nominal Schemas · Tableau Theorem Proving · Absorp-
tion · Implementation and Optimisation Techniques

1 Introduction

Description Logics (DLs) already have a long tradition as declarative knowledge represen-
tation formalisms. In recent years, they gained in popularity since they form the logical un-
derpinning of the Web Ontology Language (OWL) [32], which is standardised by the World
Wide Web Consortium (W3C). In many application contexts, it is, however, convenient to
combine a knowledge base (called ontology in the context of OWL) with a set of rules. Con-
sequently, combining OWL and rules is an active area of research and, recently, so-called

Andreas Steigmiller
Institute of Artificial Intelligence, University of Ulm, Ulm, Germany
E-mail: andreas.steigmiller@uni-ulm.de

Birte Glimm
Institute of Artificial Intelligence, University of Ulm, Ulm, Germany
E-mail: birte.glimm@uni-ulm.de

Thorsten Liebig
derivo GmbH, Ulm, Germany
E-mail: liebig@derivo.de



2 Andreas Steigmiller et al.

nominal schemas have been proposed [17] for expressing arbitrary DL-safe rules (as spec-
ified in the W3C standards SWRL [8] or RIF [15]) natively in DLs and, consequently, in
OWL ontologies.

We address the problem of an efficient handling of nominal schema axioms in tableau
calculi for Description Logics. Although some attempts (see, e.g., [16]) have been made to
improve the performance of tableau calculi when extended with nominal schemas, handling
of nominal schemas remains challenging. We tackle this problem by extending the well-
know tableau optimisation of absorption [12]. The resulting calculus extends a standard
tableau calculus by additional rules to deal with the absorbed nominal schema axioms and
shows a considerable performance improvement over existing techniques.

Nominal schemas extend the nominal constructor that is present in many DLs and which
allows for specifying a concept as a singleton set with a named individual as member, e.g.,
the interpretation of the concept {a} consists of the element that represents the named indi-
vidual a. Nominal schemas introduce a new concept constructor {x}, where x is a variable
that binds to individuals of the knowledge base. To ensure decidability and similarly to the
safeness restriction for rules, one usually assumes that x binds only to individuals that are
named in the knowledge base and not to anonymous individuals whose existence can only
be inferred, e.g., due to existential restrictions in the knowledge base.

We use the same running example (or parts thereof) as Krisnadhi and Hitzler [16], which
describes a conflicting review assignment between a person and a paper if the individual has
to review a paper x that has an author (y) with whom that individual has a joint publication
in the same venue (z):

∃hasReviewAssignment.({x} u ∃hasAuthor.{y} u ∃atVenue.{z})
u ∃hasSubmittedPaper.(∃hasAuthor.{y} u ∃atVenue.{z})
v ∃hasConflictingAssignedPaper.{x}.

For brevity, we shorten hasReviewAssignment to r, hasAuthor to a, atVenue to v, hasSub-
mittedPaper to s, and hasConflictingAssignedPaper to c in the remainder. Obviously, this
axiom can neither be directly expressed in a DL knowledge base nor as ordinary DL-safe
rule (e.g., if we were to express the complex concepts as role atoms, we would have to intro-
duce a variable for the submitted paper, which then would only bind to named individuals).
However, such nominal schema axioms can easily be eliminated by replacing them with all
corresponding grounded axioms, i.e., the axioms that are obtained by replacing each nom-
inal schema by a nominal, in all possible combinations, where all nominal schemas with
the same variable are replaced by the same nominal. Thus, a knowledge base for a DL with
nominal schema constructs, which is denoted by an additional V in the DL nomenclature,
can be reduced, with this upfront grounding approach, to a knowledge base without nominal
schema axioms. The upfront grounding is, however, very inefficient. For example, a nomi-
nal schema axiom with 3 variables can be grounded for a knowledge base with 100 named
individuals in 1003 different ways, which is prohibitive even for small examples. One way
to restrict the effort of reasoning with nominal schemas is to restrict the expressiveness of
the nominal schema axioms, whereby it is possible to achieve that the grounding adds only
linearly or polynomially many new axioms [17]. For less expressive Description Logics,
it is in principle also possible to convert the knowledge base into Datalog [21], or to use
resolution-based decision procedures for reasoning [33]. However, it is not clear how effi-
cient these approaches are in comparison to established DL reasoners and how to extend
these approaches to more expressive Description Logics.
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For efficient reasoning in OWL ontologies extended with nominal schemas, i.e., knowl-
edge bases in the DL SROIQV, it is more promising to adapt the established tableau al-
gorithms, which are dominantly used for sound and complete reasoning systems. One such
approach extends a tableau algorithm such that grounding is delayed until it is required [16].
The standard rules are blocked until the new grounding rules ensure that a concept with
nominal schemas can be processed safely, e.g., the concept ∃r.({x} u C) has to be grounded
before the ∃-rule can be applied. However, this requires significant changes to the tableau
algorithm and, thus, existing optimisations, which are crucial for a reasonable performance
on real-world ontologies, have to be adapted as well. Furthermore, it is not clear in which
way concepts have to be grounded to achieve a well-performing implementation and some
concepts even cannot be grounded efficiently, e.g., disjunctions that have the same nomi-
nal schema variable in several disjuncts have to be grounded before the disjunction can be
processed.

In this paper, we present a new approach that works more from the opposite direction by
collecting possible bindings for the nominal schema variables during the application of rules
and, then, these bindings are used to complete the processing of the nominal schema axioms.
To implement this idea, we extend the absorption, which is a widely used preprocessing
step (Section 2.3 and 3), to handle nominal schemas (Section 4.1), and we adapt or add new
rules to the tableau calculus, which create and propagate bindings of variables through the
completion graph constructed by the tableau algorithm (Section 4.2). These bindings are
then used to ground the remaining, non-absorbable part of the nominal schema axioms.

Our rules can be completely separated from other standard rules and, thus, can be in-
tegrated well into existing implementations without any adaptation of other optimisations.
We have implemented our nominal schema absorption technique into the novel SROIQ
reasoning system Konclude and the empirical evaluation shows that our approach works
well, even if we convert ordinary DL-safe rules to nominal schema axioms and compare
our approach to other DL reasoners with dedicated rule support. Our evaluation focuses on
consistency checking, which is the elementary reasoning task in tableau-based reasoning
system. In particular, higher level reasoning tasks, such as classification and realisation, are
usually reduced to a multitude of consistency tests and, thus, the improvements shown for
consistency checking by the presented approach also pay off for other reasoning tasks.

Note that this paper is based on a previous workshop [25] and conference publica-
tion [26]. Compared to these previous publications, this paper contains significantly ex-
tended examples and explanations, full proofs, descriptions of further optimisations, and an
extended evaluation. In particular, the absorption technique presented in this paper is ex-
tended to more concept constructors and allows for generating so-called candidate concepts,
which can be used for further absorption and to prune possible subsumers (Section 3). In
addition, this paper contains proofs for the correctness of the absorption technique (Sec-
tion 3.2) and the propagation of the bindings for nominal schema variables with the tableau
algorithm (Section 4.3). Whereas the previous publications contain only sketches of ideas
of further optimisation techniques (e.g., backward chaining, propagation of representatives),
this paper presents these optimisations in detail (Section 5 and 7). Moreover, this paper de-
scribes new optimisation techniques and relevant implementation improvements (Section 6
and 7). Last but not least, the evaluation presented in this paper is significantly extended and
covers more (benchmark-)ontologies and a greater diversity of DL-safe rules (Section 7).

The paper is organised as follows: Section 2 summarises some preliminaries about De-
scription Logics and model construction calculi. Section 3 introduces the absorption mech-
anism that forms the basis for integrating nominal schemas. In Section 4 we present our
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new nominal schema absorption technique, which is then further optimised in Section 5 and
Section 6. The empirical evaluation is shown in Section 7 and we conclude in Section 8.

2 Preliminaries

In this section, we first give a brief introduction into Description Logics extended with nom-
inal schemas. For ease of presentation, we introduce only the DL ALCOIQ with its ex-
tension to nominal schemas here instead of SROIQ [7], which underpins OWL 2, but our
technique to handle nominal schemas can easily be used with SROIQV too, since the ad-
ditional features can either be encoded inALCOIQ (possibly via an exponential encoding)
[7,14,23] or they can be handled by simple additional tableau rules.

2.1 The Description LogicALCOIQV

We first define the syntax and semantics of roles, and then go on to ALCOIQV-concepts,
individuals, and ontologies/knowledge bases.

Definition 1 (Syntax of ALCOIQV) Let NC, NR, NI , and NV be countable, infinite, and
pairwise disjoint sets of concept names, role names, individual names, and variable names,
respectively. We call S = (NC,NR,NI ,NV ) a signature. The set rol(S) ofALCOIQV-roles
over S (or roles for short) is NR ∪ {r− | r ∈ NR}, where roles of the form r− are called inverse
roles. Since the inverse relation on roles is symmetric, we can define a function inv, which
returns the inverse of a role and, therefore, we do not have to consider roles of the from r−−.
For r ∈ NR, let be inv(r) = r− and inv(r−) = r.

The set of ALCOIQV-concepts (or concepts for short) over S is the smallest set built
inductively over symbols from S using the following grammar, where a ∈ NI , x ∈ NV , n ∈
IN0, A ∈ NC, and r ∈ rol(S):

C ::= > | ⊥ | {a} | {x} | A | ¬C | C1 uC2 | C1 tC2 | ∀r.C | ∃r.C | 6n r.C | >n r.C.

Definition 2 (Semantics ofALCOIQV-concepts) An interpretation I = (∆I, ·I) consists
of a non-empty set ∆I, the domain of I, and a function ·I, which maps every concept name
A ∈ NC to a subset AI ⊆ ∆I, every role name r ∈ NR to a binary relation rI ⊆ ∆I × ∆I,
and every individual name a ∈ NI to an element aI ∈ ∆I. For each role name r ∈ NR,
the interpretation of its inverse role (r−)I consists of all pairs 〈δ, δ′〉 ∈ ∆I × ∆I for which
〈δ′, δ〉 ∈ rI. A variable assignment for I is a function µ : NV → ∆I such that, for each
x ∈ NV , µ(x) = aI for some a ∈ NI .

For any interpretation I and assignment µ, the semantics ofALCOIQV-concepts over
a signature S is defined by the function ·I,µ as follows:

>I,µ = ∆I AI,µ = AI ({a})I,µ = {aI}
⊥I,µ = ∅ rI,µ = rI ({x})I,µ = {µ(x)}

(¬C)I,µ = ∆I \CI,µ (C u D)I,µ = CI,µ ∩ DI,µ (C t D)I,µ = CI,µ ∪ DI,µ

(∀r.C)I,µ = {δ ∈ ∆I | if 〈δ, δ′〉 ∈ rI, then δ′ ∈ CI,µ}
(∃r.C)I,µ = {δ ∈ ∆I | there is a 〈δ, δ′〉 ∈ rI with δ′ ∈ CI,µ}

(6n r.C)I,µ = {δ ∈ ∆I | ]{δ′ ∈ ∆I | 〈δ, δ′〉 ∈ rI and δ′ ∈ CI,µ} ≤ n}
(>n r.C)I,µ = {δ ∈ ∆I | ]{δ′ ∈ ∆I | 〈δ, δ′〉 ∈ rI and δ′ ∈ CI,µ} ≥ n},

where ]M denotes the cardinality of the set M.
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Definition 3 (Syntax and Semantics of Axioms and Ontologies) For C,D concepts, a
general concept inclusion (GCI) is an expression C v D. We introduce C ≡ D as an abbre-
viation for C v D and D v C. A finite set of GCIs is called a TBox. An (ABox) assertion
is an expression of the form C(a) or r(a, b),1 where C is a concept, r is a role, and a, b ∈ NI

are individual names. An ABox is a finite set of assertions. We call T ∪A a knowledge base
with T a TBox andA an ABox.

Let I = (∆I, ·I) be an interpretation and µ an assignment, then I and µ satisfy an axiom
or assertion α, written I, µ |= α if (i) α is a GCI C v D and CI,µ ⊆ DI,µ, (ii) α is an assertion
C(a) and aI ∈ CI,µ or (iii) α is an assertion r(a, b) and 〈aI, bI〉 ∈ rI. The interpretation I
satisfies α if I, µ |= α for every assignment µ. I satisfies a TBox T (ABoxA) if it satisfies
each GCI in T (each assertion in A). We say that I satisfies K if I satisfies T and A. In
this case, we say that I is a model of K and write I |= K . We say that K is consistent if K
has a model.

In the remainder of the paper we assume w.l.o.g. that all axioms in a knowledge base
use different variable names. Furthermore, one usually imposes a “safeness” condition on
variable assignments. A variable assignment µ for an interpretation I of a knowledge base
K is safe if, for each nominal schema variable x occurring in K with µ(x) = d, there is
an individual a ∈ NI that occurs in K such that aI = d. We also make this assumption
in the remainder of this paper. Hence, from now on, when we say that an interpretation I
for a knowledge base K satisfies an axiom or an assertion α, then I, µ |= α for every safe
assignment µ.

In the following proposition, we write I |=S α if I, µ |= α holds for every variable as-
signment µ whose range is restricted to the (finite) set S and we use Inds(K) to denote the
set of individual names occurring in a knowledge baseK .Without the unique name assump-
tion, the following proposition is a straightforward consequence of the defined semantics
and the safeness condition (cf. [18]):

Proposition 1 LetK be a knowledge base and I an interpretation, then I |= K iff I |=S K ,
where S = {aI | a ∈ Inds(K)}.

We assume that the safeness condition is similarly imposed for satisfiability of ABoxes,
TBoxes, and for the consistency of knowledge bases.

Note, the safeness condition allows us to focus on the signature symbols that actually
occur in a knowledge base for solving the reasoning tasks. In particular, with the safeness
condition, the upfront grounding can be restricted to the named individuals that occur in a
knowledge base and, thus, the upfront grounding of anALCOIQV knowledge base results
in a finite set of axioms.

Also note that if the knowledge base does not contain any nominal schemas, then we
do not have to consider the variable assignments for the satisfiability of axioms, TBoxes,
ABoxes and knowledge bases. We exploit this in the following to improve readability, i.e.,
we omit the variable assignments where possible.

2.2 Tableau Calculus

Model construction calculi, such as tableau, decide the consistency of a knowledge base
K by trying to construct an abstraction of a model for K , a so-called “completion graph”.

1 Many DLs allow for expressing other types of ABox assertions, e.g., a , b. We omit this here for ease of
presentation since such assertions can easily be expressed with GCIs in the presence of nominals, e.g., a , b
is equivalent to the GCI {a} v ¬{b}.
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The concepts that are possibly used in the completion graph by a tableau calculus can be
described with the concept closure.

Definition 4 (Closure) The closure clos(C) of a concept C is a set of concepts that is closed
under sub-concepts of C and also contains C. The full closure fclos(C) of a concept C is
defined as:

fclos(C) := clos(C) ∪ {6m r.C |6n r.C ∈ clos(C) and m ≤ n}.

Given a set Z of axioms and assertions, we extend the full closure as follows:

fclos(Z) := {fclos(nnf(¬C t D)) | C v D ∈ Z} ∪ {fclos(C) | C(a) ∈ Z}.

Now, the completion graph for anALCOIQ knowledge base K is defined as follows:

Definition 5 (Completion Graph) A completion graph for K is a directed graph G =

(V, E,L, ,̇). Each node v ∈ V is labelled with a set L(v) ⊆ fclos(K). Each edge 〈v, v′〉 ∈ E
is labelled with the set L(〈v, v′〉) ⊆ rol(K), where rol(K) are the roles occurring in K . The
symmetric binary relation ,̇ is used to keep track of inequalities between nodes in V . We say
G = (V, E,L, ,̇) contains the concept fact C(v) (role fact r(v, v′)) if C ∈ L(v) (〈v1, v2〉 ∈ E
and r ∈ L(〈v1, v2〉)).

In the following, we often use r ∈ L(〈v1, v2〉) as an abbreviation for 〈v1, v2〉 ∈ E and
r ∈ L(〈v1, v2〉).

Definition 6 (Successor, Predecessor, Neighbour) If 〈v1, v2〉 ∈ E, then v2 is called a suc-
cessor of v1 and v1 is called a predecessor of v2. Ancestor is the transitive closure of pre-
decessor, and descendant is the transitive closure of successor. A node v2 is called an r-
successor of a node v1 if r ∈ L(〈v1, v2〉). A node v2 is called a neighbour (r-neighbour) of a
node v1 if v2 is a successor (r-successor) of v1 or if v1 is a successor (inv(r)-successor) of v2.

For a role r and a node v ∈ V , we define the set of v’s r-neighbours with the concept C
in their label, written neighbs(v, r,C), as {v′ ∈ V | v′ is an r-neighbour of v and C ∈ L(v′)}.

The completion graph is initialised for the tableau algorithm by creating one node for
each ABox individual/nominal in the input knowledge base (w.l.o.g. we assume that the
ABox is non-empty, should this not be the case, we can always add an assertion >(a) for a
fresh individual a) and by adding the concept and role facts for the ABox assertions ofK . If
v1, . . . , v` are the nodes for the ABox individuals a1, . . . , a` ofK , then the initial completion
graph G = ({v1, . . . , v`}, E,L, ∅) has to contain (i) for each ABox assertion of the form C(ai)
the concept fact C(vi), i.e., C ∈ L(vi), (ii) for each ABox assertion of the form r(ai, a j) the
role fact r(vi, v j), i.e., 〈vi, v j〉 ∈ E and r ∈ L(〈vi, v j〉). Furthermore, we add for each ABox
individual ai the nominal {ai} and the concept > to the label of vi, i.e., {{ai},>} ⊆ L(vi).

Additionally, we assume all concepts to be in negation normal form (NNF). Each con-
cept can be transformed into an equivalent one in NNF by pushing negation inwards, mak-
ing use of de Morgan’s laws and the following equivalences that exploit the duality between
existential and universal restrictions, and between at-most and at-least cardinality restric-
tions [11]:

¬(∃r.C) ≡ ∀r.¬C ¬(>k r.C) ≡6 (k − 1) r.C ¬(>0 r.C) ≡ ⊥
¬(∀r.C) ≡ ∃r.¬C ¬(6n r.C) ≡> (n + 1) r.C
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Table 1 Tableau expansion rules forALCOIQ knowledge bases

>-rule if > v C ∈ K , C < L(v), and v is not indirectly blocked
then L(v) = L(v) ∪ {C}

u-rule if C1 uC2 ∈ L(v), v is not indirectly blocked, and {C1,C2} * L(v)
then L(v) = L(v) ∪ {C1,C2}

t-rule if C1 tC2 ∈ L(v), v is not indirectly blocked, and {C1,C2} ∩ L(v) = ∅
then L(v′) = L(v′) ∪ {H} for some H ∈ {C1,C2}

∃-rule if ∃r.C ∈ L(v), v is not blocked, and v has no r-neighbour v′ with C ∈ L(v′)
then create a new node v′ and an edge 〈v, v′〉 with L(v′) = {>,C} and L(〈v, v′〉) = {r}

∀-rule if ∀r.C ∈ L(v), v is not indirectly blocked, and
there is an r-neighbour v′ of v with C < L(v′)

then L(v′) = L(v′) ∪ {C}
ch-rule if 6n r.C ∈ L(v), v is not indirectly blocked, and

there is an r-neighbour v′ of v with {C, nnf(¬C)} ∩ L(v′) = ∅
then L(v′) = L(v′) ∪ {H} for some H ∈ {C, nnf(¬C)}

>-rule if 1. >n r.C ∈ L(v), v is not blocked, and
2. there are not n r-neighbours v1, . . . , vn of v with C ∈ L(vi) and vi,̇v j

for 1 ≤ i < j ≤ n
then create n new nodes v1, . . . , vn with L(〈v, vi)〉 = {r}, L(vi) = {>,C} and vi,̇v j

for 1 ≤ i < j ≤ n.
6-rule if 1. 6n r.C ∈ L(v), v is not indirectly blocked,

2. ]neighbs(v, r,C) > n and there are two r-neighbours v1, v2 of v with
C ∈ (L(v1) ∩ L(v2)) and not v1,̇v2

then a. if v1 is a nominal node, then merge(v2, v1)
b. else if v2 is a nominal node or an ancestor of v1, then merge(v1, v2)
c. else merge(v2, v1)

o-rule if there are two nodes v, v′ with {a} ∈ (L(v) ∩ L(v′)) and not v,̇v′
then merge(v, v′)

NN-rule if 1. 6n r.C ∈ L(v), v is a nominal node, and there is a blockable
r-neighbour v′ of v such that C ∈ L(v′) and v is a successor of v′,

2. there is no m such that 1 ≤ m ≤ n, (6m r.C) ∈ L(v),
and there exist m nominal r-neighbours v1, . . . , vm of v
with C ∈ L(vi) and vi,̇v j for all 1 ≤ i < j ≤ m

then 1. guess m with 1 ≤ m ≤ n and L(v) = L(v) ∪ {6m r.C}
2. create m new nodes v′1, . . . , v

′
m with L(〈v, v′i 〉) = {r},

L(v′i ) = {>,C, {ai}} with each ai ∈ NI new in G and K , and
v′i ,̇v′j for 1 ≤ i < j ≤ m.

where k ∈ IN and n ∈ IN0. For C a concept possibly not in NNF, let nnf(C) be the equivalent
concept to C in NNF.

The tableau algorithm works by decomposing concepts in the completion graph with
a set of expansion rules (see Table 1). Each rule application can add new concepts to node
labels and/or new nodes and edges to the completion graph, thereby explicating the structure
of a model for the input knowledge base. The rules are repeatedly applied until either the
graph is fully expanded (no more rules are applicable), in which case the graph can be used
to construct a model that is a witness to the consistency of K , or an obvious contradiction
(called a clash) is discovered (e.g., both C and ¬C in a node label), proving that the com-
pletion graph does not correspond to a model. The input knowledge base K is consistent if
the rules (some of which are non-deterministic) can be applied such that they build a fully
expanded and clash-free completion graph.

During the expansion it is sometimes necessary to merge two nodes or to delete (prune)
a part of the completion graph. When a node w is merged into a node v (e.g., by an appli-
cation of the 6-rule), we “prune” the completion graph by removing w and, recursively, all
blockable successors of w to prevent a further rule application on these nodes.
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Intuitively, when we merge a node w into a node v, we add L(w) to L(v), “move” all the
edges leading to w so that they lead to v and “move” all the edges leading from w to nominal
nodes so that they lead from v to the same nominal nodes; we then remove w (and blockable
sub-trees below w) from the completion graph.

Definition 7 (Pruning, Merging) Pruning a node w in the completion graph G = (V, E,L, ,̇),
written prune(w), yields a graph that is obtained from G as follows:

1. for all successors v′ of w, remove 〈w, v′〉 from E and, if v′ is blockable, prune(v′);
2. remove w from V .

Merging a node w into a node v in G = (V, E,L, ,̇), written merge(w, v), yields a graph that
is obtained from G as follows:

1. for all nodes v′ such that 〈v′,w〉 ∈ E
(a) if {〈v, v′〉, 〈v′, v〉} ∩ E = ∅, then add 〈v′, v〉 to E and set L(〈v′, v〉) = L(〈v′,w〉),
(b) if 〈v′, v〉 ∈ E, then set L(〈v′, v〉) = L(〈v′, v〉) ∪ L(〈v′,w〉),
(c) if 〈v, v′〉 ∈ E, then set L(〈v, v′〉) = L(〈v, v′〉) ∪ {inv(r) | r ∈ L(〈v′,w〉)}, and
(d) remove 〈v′,w〉 from E;

2. for all nominal nodes v′ such that 〈w, v′〉 ∈ E
(a) if {〈v, v′〉, 〈v′, v〉} ∩ E = ∅, then add 〈v, v′〉 to E and set L(〈v, v′〉) = L(〈w, v′〉),
(b) if 〈v, v′〉 ∈ E, then set L(〈v, v′〉) = L(〈v, v′〉) ∪ L(〈w, v′〉),
(c) if 〈v′, v〉 ∈ E, then set L(〈v′, v〉) = L(〈v′, v〉) ∪ {inv(r) | r ∈ L(〈w, v′〉)}, and
(d) remove 〈w, v′〉 from E;

3. L(v) = L(v) ∪ L(w);
4. add v,̇v′ for all v′ such that w,̇v′; and
5. prune(w).

Unrestricted application of the ∃-rule and >-rule can lead to the introduction of infinitely
many new tableau nodes and, thus, prevent the calculus from terminating. To counteract
that, a cycle detection technique called (pairwise) blocking [9] is used that restricts the
application of these rules. To apply blocking, we distinguish blockable nodes from nominal
nodes, which have either an original nominal from the knowledge base or a new nominal
introduced by the calculus in their label.

Definition 8 (Pairwise Blocking) A node is blocked if either it is directly or indirectly
blocked. A node v is indirectly blocked if an ancestor of v is blocked; and v with predecessor
v′ is directly blocked if there exists an ancestor node w of v with predecessor w′ such that

1. v, v′,w,w′ are all blockable,
2. w,w′ are not blocked,
3. L(v) = L(w) and L(v′) = L(w′),
4. L(〈v′, v〉) = L(〈w′,w〉).

In this case, we say that w directly blocks v and w is the blocker of v.

In order to guarantee that each node of the completion graph indeed satisfies all axioms
of the TBox, one can “internalise” the TBox into a concept that is added to each node label.
For example, if the TBox contains the axioms

A1 v ∃r.(B1 u B2) (1)

∃r.(B1 t B2) v ∃s.A2 (2)
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Table 2 Lazy unfolding rules for tableau algorithms

v1-rule if A ∈ L(v), A v C ∈ K , C < L(v), and v is not indirectly blocked
then L(v) = L(v) ∪ {C}

v2-rule if {A1, A2} ⊆ L(v), (A1 u A2) v C ∈ K , C < L(v), and v is not indirectly blocked
then L(v) = L(v) ∪ {C}

the internalised concept CI contains one conjunct for each axiom that is a disjunction with
the negated left-hand side of the axiom and the right-hand side:

CI = nnf(((¬A1 t ∃r.(B1 u B2)) u (¬(∃r.(B1 t B2)) t ∃s.A2))).

A tableau algorithm based on the expansion rules of Table 1 adds the internalised concept
with an auxiliary axiom> v CI by the>-rule. It is well-known that such a tableau algorithm
decides the consistency of knowledge bases [7,10]:

Theorem 1 A tableau algorithm based on the rules of Table 1 builds a clash-free and fully
expanded completion graph for an internalised ALCIOQ knowledge base K iff K is con-
sistent.

However, this internalisation technique introduces a large number of disjunctions in each
node label, which possibly require several non-deterministic choices and backtracking if the
choice resulted in a clash.

It would be more efficient to integrate a rule into the tableau calculus that checks for
each GCI C v D whether C is satisfied for a node and if this is the case, then D is also
added to the node label. For Axiom (1), for example, it is easy to check whether the atomic
concept A1 is satisfied at a node and if this is the case, then ∃r.(B1 u B2) has to be added to
the label of the node. This lazy unfolding for atomic concepts can be realised by additionally
using the v1-rule of Table 2 in the tableau algorithm, whereby we do not have to internalize
axioms of the form A v C.

Checking whether a complex left-hand side of an axiom is satisfied can, however, be
non-trivial. For example, it can often not be verified syntactically, whether a node satisfies
∃r.(B1tB2), which would be required for Axiom (2). For example, any instance of A1 has an
r-successor that satisfies B1uB2 and, therefore, this A1 instance (semantically) also satisfies
∃r.(B1 t B2). In order to avoid the internalisation of such GCIs with axioms of the form
> v nnf(¬C tD) (and the resulting processing of disjunctions), practical reasoning systems
use elaborate transformations in a preprocessing step called absorption, which we describe
in more detail in Section 2.3 and 3.

2.3 Absorption

An absorption algorithm extracts those conditions of an axiom for which it can be ensured
that if one of these conditions is not satisfied for a node in a completion graph, then the
axiom is trivially satisfiable. The extracted conditions are then used for expressing the axiom
in such a way that internalisation and the processing of disjunctions in the tableau algorithm
can be avoided as much as possible, which significantly reduces non-determinism.

For example, one would like to avoid treating Axiom (2) as > v ∀r.(¬B1 u ¬B2) t
∃s.A2 as motivated in the previous section. Any node that does not have an r-neighbour
trivially satisfies ∀r.(¬B1 u ¬B2) and, hence, the overall disjunction that corresponds to the
internalised axiom. Thus, the existence of an r-neighbour node can be used as condition to
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rewrite the axioms such that the disjunction is only added to nodes that satisfy this condition,
e.g.,> v ∀r−.(∀r.(¬B1u¬B2)t∃s.A2). We can, however, go even further by first identifying
nodes that satisfy B1 or B2. If we find such a node, we can make sure that its r−-neighbour
has to satisfy ∃s.A2. This is captured by the following axioms:

B1 v T1 B2 v T1 T1 v ∀r−.T2 T2 v ∃s.A2,

where T1 and T2 are fresh atomic concepts that are used to enforce the semantics of the
original axiom. We call the disjunct ∀r.(¬B1 u ¬B2) completely absorbable since it can be
moved to the left-hand sides of simple inclusion axioms which trigger the remaining, non-
absorbable part of the original axiom (i.e., ∃s.A2 is automatically added for corresponding
nodes in the completion graph by the v1-rule). Accordingly, we also use the term of ab-
sorption in the context of concepts, i.e., the absorption of a concept C generates all those
axioms that are required to “automatically” detect whether C is satisfied for a node in the
completion graph. For instance, the atomic concept T2 from the absorption above implies
that ∀r.(¬B1 u¬B2) is satisfied and T2 is automatically added by lazy unfolding. Hence, the
axioms B1 v T1, B2 v T1, and T1 v ∀r−.T2 are the absorption of the concept ∀r.(¬B1u¬B2).
Generally, the goal of the absorption preprocessing step is the extraction of such easy to ver-
ify conditions that allow for expressing a GCI by possibly several simpler inclusion axioms
that ideally do not require a disjunction, e.g., as in the case of Axiom (2) above.

For the absorption of more complex concepts it is often necessary to join several con-
ditions, say A1 to An. A possibility to do this in an efficient way is binary absorption [13],
where two concepts A1 and A2 imply a new concept T1 by the axiom (A1 u A2) v T1. We
can then combine T1 with the next condition A3 and so on, until (Tn−2 u An) v Tn−1, where
Tn−1 can then be used for further absorption or to initiate the addition of the remaining and
non-absorbed part of the disjunction. By joining the conditions binarily, it is possible to
reuse more of these joins for several axioms if the axioms have some common conditions.
Note, a binary absorption axiom (A1 u A2) v C is usually handled by a separate v2-rule
(cf. Table 2), which adds the concept C to a label only if A1 and A2 are already present.

3 A Recursive Algorithm for Partial Absorption

Since our handling of nominal schemas is based on absorption methods and the quality of the
absorption technique is crucial for this approach to work well, we next present an improved
variant of a recursive binary absorption algorithm, which we then extend to nominal schemas
in the next section.

The recursion facilitates further optimisations such as backward chaining, which are
required for the handling of nominal schemas (see Section 5). In order to avoid infinite re-
cursion, the presented absorption only handles acyclic concepts, where acyclicity is defined
as follows: A1 directly uses A2 w.r.t. a TBox T if A1 ≡ C ∈ T or A1 v C ∈ T and A2 occurs
in C; uses is the transitive closure of “directly uses”. Then, a concept D is acyclic w.r.t. a
TBox T if it contains no concept A that uses itself. We use the acyclicity restriction to keep
the absorption algorithm simple, however, this restriction is not relevant in practice, because
a cyclic concept A with the definition A v C can simply be made acyclic by representing
A v C as > v ¬A tC.

Due to the recursion, the presented algorithm works quite differently in comparison to
the original binary absorption. We exploit this for the integration of further improvements
such as partial absorption and candidate concepts. In particular, the presented algorithm
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Algorithm 1 isCA(C) and isPA(C)
Output: Returns whether the concept C is com-

pletely absorbable
1: procedure isCA(C)
2: if C = C1 tC2 then
3: return isCA(C1) ∧ isCA(C2) .
4: else if C = C1 uC2 then
5: return isCA(C1) ∧ isCA(C2)
6: else if C = ∀r.C′ then
7: return isCA(C′) .
8: else if C = 6 n r.C′ then
9: return false .

10: else if C = ¬{a} then
11: return true

. . .
12: else if C = ¬A then
13: if A is not acyclic then
14: return false
15: end if
16: for all A ≡ C′ ∈ T do
17: if ¬isCA(nnf(¬C′)) then
18: return false
19: end if
20: end for
21: return true
22: end if
23: return false
24: end procedure

Output: Returns whether the concept C is par-
tially absorbable

1: procedure isPA(C)
2: if C = C1 tC2 then
3: return isPA(C1) ∨ isPA(C2) .
4: else if C = C1 uC2 then
5: return isPA(C1) ∧ isPA(C2)
6: else if C = ∀r.C′ then
7: return true .
8: else if C = 6 n r.C′ then
9: return true .

10: else if C = ¬{a} then
11: return true

. . .
12: else if C = ¬A then
13: if A is not acyclic then
14: return false
15: end if
16: for all A ≡ C′ ∈ T do
17: if ¬isPA(nnf(¬C′)) then
18: return false
19: end if
20: end for
21: return true
22: end if
23: return false
24: end procedure

completely handles an axiom X in one step, i.e., the absorbable (sub-)concepts of X are re-
cursively traversed and all required (simple) inclusion axioms for the absorption are directly
generated. In contrast, the original binary absorption algorithm introduces new GCIs for the
absorption of an axiom, which are then (possibly) further absorbed in separate steps.

This complete handling of axioms allows for partially absorbing parts of axioms without
creating additional disjunctions. Hence, it significantly improves the original binary absorp-
tion for more expressive Description Logics. Roughly speaking, partial absorption also uses
parts of non-absorbable concepts as conditions to delay the processing of the non-absorbable
part of the axiom. For example, the TBox axiom >5 r.A v D is, without absorption, handled
as > v6 4 r.A t D. None of the disjuncts can be absorbed completely, but it is neverthe-
less possible to delay the processing of the disjunction until there is an r-neighbour with
the concept A in its label. The partial absorption is able to extract these conditions, and
rewrites the axiom such that the disjunction is propagated from a node with A in its label to
all r−-neighbours (if there are any), which results in A v ∀r−.T1 and T1 v64 r.A t D.

Algorithms that absorb parts of axioms in separate steps, e.g., by introducing new GCIs
that are handled separately, often create additional disjunctions, especially if the axioms have
more complex (sub-)concepts. For instance, by simplifying the axiom > 5 r.(> 3 s.A) v D
into > 5 r.T v D and T ≡ > 3 s.A, for T a fresh atomic concept that is used to split the
original axiom, the GCI T ≡ >3 s.A cannot further be absorbed without creating additional
disjunctions. In contrast, the partial absorption creates the axioms A v ∀s−.T1, T1 v ∀r−.T2,
and T2 v6 4 r.(> 3 s.A) t D, whereby the processing of the disjunction is significantly
delayed (or even completely avoided if there is no node in the completion graph for which
T2 is added).
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Algorithm 2 collectDisjuncts(C, absorbable)
Output: Returns the absorbable/not absorbable disjuncts of the concept C
1: S ← {C}
2: while (C1 tC2) ∈ S do
3: S ← (S \ (C1 tC2)) ∪ {C1,C2}
4: end while
5: if absorbable then
6: return { C ∈ S | isPA(C) }
7: else
8: return { C ∈ S | ¬isCA(C) }
9: end if

Algorithm 3 absorbJoined(S )
Output: Returns the atomic concept that is implied by the join of the absorptions of S
1: S ′ ← ∅
2: for all C ∈ S do
3: A′ ← absorbConcept(C)
4: S ′ ← S ′ ∪ {A′}
5: end for
6: while A1 ∈ S ′ and A2 ∈ S ′ and A1 , A2 do
7: T ← fresh atomic concept
8: T ′ ← T ′ ∪ {(A1 u A2) v T }
9: S ′ ← (S ′ ∪ {T }) \ {A1, A2}

10: end while
11: if S ′ = ∅ then return >
12: else return the element A′ ∈ S ′ . S ′ is a singleton
13: end if

In the following, we describe the absorption algorithm and we use C(i),D(i) for (possibly
complex) concepts, A(i),T(i) for atomic concepts with T(i) for fresh concepts, and S for a set
of concepts. For simplicity, we also consider > as an atomic concept. The algorithm uses
the following functions to absorb axioms of a (global) TBox T into the new (global) TBox
T ′ (T and T ′ are considered to be global for the ease of presentation2):

• isCA(C) (isPA(C)), shown in Algorithm 1, returns whether the concept C is completely
(partially) absorbable. Note, if a concept C is completely absorbable, then it is also
partially absorbable, and moreover, if a concept C is not partially absorbable, then it is
also not completely absorbable. We have tagged the lines 3, 7 and 9 with a comment
symbol to highlight where isPA might allow additional absorption in comparison to the
isCA function.

• collectDisjuncts(C, absorbable), shown in Algorithm 2, returns a set of (partially or
completely) absorbable disjuncts for a concept C if absorbable = true and a set of not
completely absorbable disjuncts otherwise. If C is not a disjunction, then {C} itself is
returned, in case it conforms to the specified absorbable condition.

The absorption itself is invoked by the absorbTBox procedure (see Algorithm 5). Each
axiom of T is processed and the resulting axioms are added to T ′. For a possibly absorbable
axiom, the set of all absorbable disjuncts is extracted with collectDisjuncts from the corre-
sponding disjunction and then absorbJoined is called for generating the absorption. Please
note that if all disjuncts of an axiom can be completely absorbed, then an empty disjunc-

2 T and T ′ are used as global variables, i.e., they can be directly accessed from all functions and algo-
rithms. Hence, the algorithms have side effects, which can, however, be eliminated by extending the algo-
rithms with additional parameters.
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Algorithm 4 absorbConcept(C)
Output: Returns the atomic concept for the absorption of C
1: if C = C1 uC2 then
2: A1 ← absorbJoined(collectDisjuncts(C1, true))
3: A2 ← absorbJoined(collectDisjuncts(C2, true))
4: T ← fresh atomic concept
5: T ′ ← T ′ ∪ {A1 v T, A2 v T }
6: return T
7: else if C = ∀r.C′ then
8: Anb ← absorbJoined(collectDisjuncts(C′, true))
9: T ← fresh atomic concept

10: T ′ ← T ′ ∪ {Anb v ∀ inv(r).T }
11: return T
12: else if C = 6 n r.C′ then
13: Anb ← absorbJoined(collectDisjuncts(nnf(¬C′), true))
14: T ← fresh atomic concept
15: T ′ ← T ′ ∪ {Anb v ∀ inv(r).T }
16: return T
17: else if C = ¬{a} then
18: T ← fresh atomic concept
19: T ′ ← T ′ ∪ {{a} v T }
20: return T

. . .
21: else if C = ¬A then
22: if A ≡ C′ < T then
23: return A
24: else
25: for all A ≡ C′ ∈ T do
26: A′ ← absorbJoined(collectDisjuncts(nnf(¬C′), true))
27: T ′ ← T ′ ∪ {A′ v A+}
28: end for
29: return A+

30: end if
31: end if

tion is created (line 15 and 19), which corresponds to ⊥. The methods absorbJoined (Al-
gorithm 3) and absorbConcept (Algorithm 4) are recursively calling each other, whereby
absorbJoined is joining several (possibly fresh) atomic concepts with binary absorption
axioms and absorbConcept creates the absorption for a specific, absorbable concept, i.e.,
absorbJoined handles the absorbable disjunctions, whereas the remaining absorbable con-
cepts are handled by absorbConcept.

For instance, a concept of the form ∀r.C′ can be absorbed (lines 7–11 of Algorithm 4)
by creating a propagation from the atomic concept Anb, which is obtained by the absorption
of the concept C′, back over the r-edge, to trigger a fresh atomic concept T . Note, if C′

cannot be absorbed, then absorbJoined returns > and the axiom > v ∀r−.T is created,
which corresponds to ∃r.> v T and, thus, is similar to the well-known role absorption
technique [30].

Of course, the absorption can be extended to concept constructors of more expressive
DLs (which we have denoted by “. . .” in the algorithms), for example, the ¬∃r.Self concept
of SROIQ can be partially absorbed with> v ∀r−.A. It is even possible to extend the partial
absorption technique to datatypes [27]. However, it is clear that some concept constructors,
such as existential restrictions of the form ∃r.C, cannot be directly absorbed since they do
not provide conditions that could be used to trigger other concepts. In particular, to prove
that an existential restriction ∃r.C is satisfied, the tableau algorithm has to show that an r-
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Algorithm 5 absorbTBox
Output: Creates a new TBox T ′ with absorbed axioms for the original TBox T
1: T ′ ← ∅
2: for all X ∈ T do
3: if X = A ≡ C then
4: A′ ← absorbJoined(collectDisjuncts(nnf(¬C), true))
5: if isCA(nnf(¬C)) then
6: T ′ ← T ′ ∪ {A v C, A′ v A, A′ v A+}
7: else if | {A v C′ ∈ T } ∪ {A ≡ C′ ∈ T } | > 1 then
8: T ′ ← T ′ ∪ {A v C, A′ v nnf(¬C t A), A′ v A+}
9: else

10: T ′ ← T ′ ∪ {A ≡ C, A′ v A+}
11: end if
12: else if X = C v D or X = C ≡ D then
13: A′ ← absorbJoined(collectDisjuncts(nnf(¬C t D), true))
14: {D1, . . . ,Dn} ← collectDisjuncts(nnf(¬C t D), false)
15: T ′ ← T ′ ∪ {A′ v D1 t . . . t Dn}
16: if X = C ≡ D then
17: A′′ ← absorbJoined(collectDisjuncts(nnf(¬D tC), true))
18: {C1, . . . ,Cm} ← collectDisjuncts(nnf(¬D tC), false)
19: T ′ ← T ′ ∪ {A′′ v C1 t . . . tCm}
20: end if
21: end if
22: end for

neighbour with C in its label can exist, i.e., it is indeed necessary to build such a neighbour
node.

For an atomic concept A, which is completely defined by an axiom of the form A ≡ C
in T , it is often inefficient to decompose the axiom A ≡ C into A v C and C v A, because
nnf(¬C) might not be completely absorbable and then the disjunction ¬C t A has to be
processed for the nodes in the completion graph. In order to determine the satisfiability of a
concept, it is, however, for many nodes not relevant whether A or ¬A is in their label as long
as it can be ensured that one of both alternatives is not causing a clash. Obviously, if the
atomic concept A is only defined once in the knowledge base, then C or ¬C and therefore
also A or ¬A must be satisfiable and only in this case the axiom A ≡ C can be directly
handled by a separate rule, which unfolds A to C and ¬A to ¬C. Thus, there is no need to
rewrite the axiom A ≡ C for an efficient handling in T ′ (Algorithm 5, line 10). If there are
more definitions for A, then A v C as well as C v A must be explicitly represented in the
new TBox T ′ so that possible interactions between these several definitions can be handled.
Of course, if nnf(¬C) is partially absorbable, then the disjunction ¬C t A can be triggered
with A′, which is generated for the absorption of nnf(¬C) (Algorithm 5, line 7).

Furthermore, for each atomic concept A, which is completely defined by an axiom A ≡ C
in T , a candidate concept A+ is generated (line 6,8 and 10 of Algorithm 5). An occurrence
of A+ in the label of a node signalises that the node might be an instance of the concept
A, which is obviously the case if A itself is in the label, but this is also the case if ¬A
cannot safely be added. As described above, we are, however, not interested in forcing the
decision between A and ¬A for all nodes in the completion graph. In contrast, we generate
the candidate concept A+ that can be used in the absorption instead of A if ¬A occurs,
whereby it is often possible to delay branching significantly. The creation of A+ is realised
by absorbing the concept nnf(¬C) for the axiom A ≡ C for which the disjunction ¬C t A
is represented as ¬A v ¬C. The absorption of nnf(¬C) generates the atomic concept A′ and
the axiom A′ v A+ is added to T ′ (line 8 of Algorithm 5). If nnf(¬C) is not absorbable,
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then the absorption returns > for A′ and > v A+ is added to T ′. Note, we also generate the
candidate concepts in the absorbConcept function (lines 25-28 of Algorithm 4) in order to
make the absorption of a separate concept complete for the proofs. Of course, if a candidate
concept is already created, then it is not necessary to create it again. Besides using candidate
concepts in the absorption, they can also be used to identify completely defined concepts as
possible subsumers [6] and, therefore, it is almost always useful to generate these candidate
concepts.

The absorbJoined function creates binary absorption axioms (Algorithm 3, lines 6-10)
for the atomic concepts returned by absorbConcept. Thus, absorbJoined is joining several
conditions into one fresh atomic concept, which can be used for further absorption or to
initiate the addition of the remaining and non-absorbable part of the axiom. In principle, it
is not necessary to always create new axioms with fresh atomic concepts for the absorption
of identical concepts. In practice, the binary absorption axioms as well as the axioms for
absorbing specific concepts can be reused.

absorbTBox
collectDisjuncts( 8r.(¬A t 8r.¬{b}) t 9s.{a}, true )
 {8r.(¬A t 8r.¬{b})}

absorbJoined( {8r.(¬A t 8r.¬{b})} )
absorbConcept( 8r.(¬A t 8r.¬{b}) )

collectDisjuncts( ¬A t 8r.¬{b}, true )
 {¬A, 8r.¬{b}}

absorbJoined( {¬A, 8r.¬{b}} )
absorbConcept( ¬A )
 A

absorbConcept( 8r.¬{b} )
collectDisjuncts( ¬{b}, true )
 {¬{b}}

absorbJoined( {¬{b}} )
absorbConcept( ¬{b} )

T 0  T 0 [ {{b} v T1}
 T1

 T1

T 0  T 0 [ {T1 v 8r�.T2}
 T2

T 0  T 0 [ {(A u T2) v T3}
 T3

T 0  T 0 [ {T3 v 8r�.T4}
 T4

 T4

collectDisjuncts( 8r.(¬A t 8r.¬{b}) t 9s.{a}, false )
 {9s.{a}}

T 0  T 0 [ {T4 v 9s.{a}}

Fig. 1 Call diagram for the absorbTBox procedure assuming T = {∃r.(A u ∃r.{b}) v ∃s.{a}}, where the
axioms corresponds to the disjunction ∀r.(¬A t ∀r.¬{b}) t ∃s.{a} in negation normal form

Example 1 As an example, we consider the TBox T = {C v D} with C = ∃r.(A u ∃r.{b})
and D = ∃s.{a}. Note that nnf(¬C t D) = ∀r.(¬A t ∀r.¬{b}) t ∃s.{a}. Figure 1 shows
the call diagram for the procedure absorbTBox. We indicate the return values of the sub-
procedures with ;, but we omit the calls to isPA and isCA. Note that isPA(·) is true for
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∀r.(¬A t ∀r.¬{b}), ¬A, ∀r.¬{b}, and ¬{b}, while ¬isCA(·) is true for ∃s.{a}. During the
recursive procedure, the TBox T ′ is step-by-step constructed, based on the axiom in T and
when the procedure terminates, we have in T ′:

{b} v T1 T1 v ∀r−.T2 (A u T2) v T3

T3 v ∀r−.T4 T4 v ∃s.{a}.
where T1, . . . ,T4 are fresh atomic concepts generated by the absorption. To process the one
and only axiom in T , the absorbJoined function is called (line 13 of Algorithm 5) for the
absorbable parts of ∀r.(¬At∀r.¬{b})t∃s.{a}, which is only the disjunct ∀r.(¬At∀r.¬{b}).
First, the absorbConcept function processes the ∀-concept by recursively absorbing its filler
¬A t ∀r.¬{b}, which is split into the disjuncts ¬A and ∀r.¬{b}. The disjunct ¬A does not
require further absorption since A is already an atomic concept. The other disjunct requires
another recursion to first generate {b} v T1 and, afterwards, the associated propagation of
the trigger T2 over the r−-role with T1 v ∀r−.T2. The absorbJoined function is then joining
the atomic concepts A and T2 by the new binary axiom (A u T2) v T3. Then, the absorption
of the outer ∀-concept can be finished by adding the axiom T3 v ∀r−.T4. The remaining
non-absorbable part of the disjunction is handled with T4 v ∃s.{a}. The new axioms are not
causing any non-determinism and, furthermore, {b} v T1 can be handled very efficiently as
an assertion ({b} v T1 is equivalent to the assertion T1(b)), by lazy unfolding [2] (for axioms
of the form A v C) and by a binary absorption rule (for axioms of the form (A1 u A2) v C).

Example 2 In order to also illustrate the absorption for more complex axioms with language
features of more expressive Description Logics, let the TBox T contain the axioms

A1 ≡ ∃r.A2 u ∀r.A3 (A4 t {a}) u ∃s.(A1u > 3 r.A5) v A6,

which can be absorbed into a new TBox T ′ consisting of the following axioms:

A2 v ∀r−.T1 A1 ≡ ∃r.A2 u ∀r.A3 T1 v A+
1

{a} v T2 A4 v T3 T2 v T3

A5 v ∀r.T4 (A+
1 u T4) v T5 T5 v ∀s−.T6

(T3 u T6) v T7 T7 v ∀s.(¬A1t 6 2 r.A5) t A6.

First, the axiom A1 ≡ ∃r.A2 u ∀r.A3 is handled by line 4 and 10 of procedure absorbTBox,
which generate the first three axioms of T ′, i.e., A2 v ∀r−.T1, A1 ≡ ∃r.A2 u ∀r.A3, and
T1 v A+

1 . The axioms A2 v ∀r−.T1 and T1 v A+
1 are used to trigger the candidate concept A+

1
of the completely defined concept A1, and A1 ≡ ∃r.A2u∀r.A3 is used for the unfolding of A1.
Similarly to the previous example, the other eight axioms ofT ′ are created for the absorption
of (A4 t {a}) u ∃s.(A1u > 3 r.A5) v A6. Again, T1, . . . ,T7 are the fresh atomic concepts and
although not all disjunctions can be eliminated for these axioms, it is nevertheless possible
to optimise the structure of the axioms for a more efficient handling in the tableau algorithm.
Additionally to the axioms of the form {a} v C, A v C, (A1uA2) v C, which are also created
in the previous example, the absorption ensures that all remaining axioms of the form A ≡ C
can be efficiently handled by lazy unfolding, i.e., A can be unfolded to C and ¬A to ¬C
(exploiting that C v A is equivalent to ¬A v ¬C).3

The new axioms dramatically delay or completely avoid non-deterministic branching
caused by disjunctions. For example, without absorption, the disjunction (¬A4 u ¬{a}) t

3 Note that this only works as long as there are no other axioms of the form A v D or A ≡ D with D , C
in the knowledge base, which is, however, ensured by the absorption.
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∀s.(¬A1t 6 2 r.A5)tA6 obtained from the second axiom in the unprocessed TBox T has to
be processed for each node in a completion graph. With absorption, we have one remaining
disjunction, ∀s.(¬A1t 6 2 r.A5)tA6, which is triggered by T7. The concept T7 is only added
to the label of a node if the original disjunction is not trivially satisfiable. For example, if
a node does not have any s-neighbours, then T6 would not be added to the label and, as
a consequence of the axiom (T3 u T6) v T7, T7 would also not be added. In this case,
it would not be necessary to make non-deterministic decisions since the second disjunct
∀s.(¬A1t 6 2 r.A5) of the original disjunction is trivially satisfiable. Please also note that
the decision between ¬A1 and A1 is not enforced for every node in a completion graph for
T ′ and, nevertheless, A1 can be partially used in the absorption by replacing it with A+

1 .
As long A+

1 is not in the label of a node of a fully expanded completion graph, we know
that ¬A1 must be satisfiable, because ∀r.¬A2 of the disjunction ∀r.¬A2 t ∃r.¬A3 cannot not
cause a clash. This can be utilised in the absorption of the other axiom, because as long as
we know that ¬A1 can be added to a s-neighbour without causing a clash, we also know that
the axiom (A4 t {a}) u ∃s.(A1u > 3 r.A5) v A6 can be trivially satisfied.

3.1 Related Absorption Techniques

In comparison to other absorption techniques, the presented approach is often able to further
delay non-determinism. In particular, this is the case for axioms that use more expressive
concept constructors, such as Axiom (3):

∃r.(A u ∀r.B1) v B2. (3)

Without absorption, this axioms has to be processed as

> v ∀r.(¬A t ∃r.¬B1) t B2 (4)

which would produce a significant amount of non-determinism. Clearly, none of the parts
of (3) can be absorbed completely, but it is nevertheless possible to delay the processing
of the disjunctions until there is an r-neighbour with the concept A in its label. In order to
capture this, the presented absorption algorithm rewrites the axiom such that the disjunction
is propagated from a node with A in its label to all r−-neighbours (if there are any), which
results in Axiom (5) and (6):

A v ∀r−.T ′ (5)

T ′ v ∀r.(¬A t ∃r.¬B1) t B2 (6)

In comparison, the original binary absorption algorithm creates Axiom (7) and (8):4

A v ∃r.¬B1 t ∀r−.T ′ (7)

T ′ v B2 (8)

Consequently, it is necessary to process disjunctions for all those nodes for which the con-
cept A is derived, whereas the processing of disjunctions can further be delayed with the
partial absorption technique until there is also an r-neighbour. Although Axiom (6) gives

4 The binary absorption algorithm presented in [13] has a looping bug for concepts of the form ∀r.C, which
can, however, easily be repaired. We simply ignored the repeated absorption of concepts that are introduced
by the algorithm.
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the impression that it contains more disjunctions and thus produces more non-determinism,
this is usually not the case in practice. For example, only the disjunct ∃r.¬B1 can be applied
for the inner disjunction ¬At∃r.¬B1 of Axiom (6) on those nodes for which Axiom (5) has
been triggered.

It is also well-known that clausification for the hypertableau algorithm reduces many
cases of non-determinism [22]. For Axiom (3), however, clausification creates the DL-
clauses (9) and (10):

r(x, y)→ B2(x) ∨ T ′(y) (9)

T ′(x) ∧ A(x)→ ∃r.¬B1(x) (10)

Hence, the hypertableau algorithm has to choose between B2 and T ′ for every node with an
r-neighbour, whereas the partial absorption technique allows for further delaying the pro-
cessing of disjunctions until the node also has the concept A in its label. Besides that, the
presented partial absorption technique shares other interesting features with clausification
of the hypertableau algorithm. In particular, both use conditions of more expressive concept
constructors to trigger the processing of disjunctions. For instance, Axiom (11) is automati-
cally satisfied if there is no r-successor with the concept A in its label.

>2 r.A v B (11)

This is utilised by the partial absorption by generating Axiom (12) and (13), and also by
clausification for the hypertableau algorithm, which generates the DL-clause (14):

A v ∀r−.T (12)

T v 61 r.A t B (13)

r(x, y1) ∧ A(y1) ∧ r(x, y2) ∧ A(y2)→ B(x) ∨ y1 ≈ y2 (14)

Note that clausification eliminates at-most cardinality restrictions, whereas the partial ab-
sorption has to use the concept 6 1 r.A in Axiom (13) since > 2 r.A is not completely ab-
sorbable. Consequently, a ch-rule is not required in the hypertableau algorithm, which pos-
sibly further reduces non-determinism in comparison to a standard tableau algorithm that
has to choose between ¬A and A for all r-neighbours of nodes with T in their label.

3.2 Correctness

Termination for the absorption algorithm is ensured by the acyclicity of the axioms. How-
ever, if it is ensured that the candidate concepts are exclusively created by the absorbTBox
procedure for all atomic concepts, which are completely defined with axioms of the form
A ≡ C in T , then in the recursion between absorbJoined and absorbConcept only the cur-
rent axiom has to be processed. Since we generate the candidate concepts in absorbConcept
only to make the functions absorbJoined and absorbConcept complete for the absorption
of a concept for the proofs, the acyclicity restriction would not be necessary for termination.

In the following we prove the correctness of our modified absorption algorithm. We first
show that the complete absorption of a disjunct of an axiom is correct, i.e., it preserves the
satisfiability (Lemma 1 and Lemma 2), and then we show that the correctness of a partially
absorbed concept disjunct can be reduced to the complete absorption (Lemma 3).
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Lemma 1 Let T denote a TBox, I = (∆I, ·I) an interpretation such that I |= T , C a
concept that is completely absorbable, A the concept returned by absorbJoined({C}), and
T ′ the extension of T with all the axioms created by absorbJoined({C}), then

1. for every extension I′ of I such that I′ |= T ′, it holds that I′ |= T ,
2. for every extension I′ of I such that I′ |= T ′, it holds for all δ ∈ ∆I′ that δ ∈ AI

′
if

δ < CI
′
, and

3. there exists an interpretation I′ = (∆I
′
, ·I′ ) with ∆I

′
= ∆I such that I′ |= T ′ and, for

each δ ∈ ∆I′ , δ ∈ AI
′

only if δ < CI
′
.

Proof (Claim 1) Since T ′ is an extension of T , it trivially follows that I′ |= T .
(Claim 2) We first prove the simple cases where C is completely absorbable and afterwards
we show by induction that the lemma also holds for the complex cases.

• If C is of the form ¬A and A ≡ C′ < T , then absorbConcept(C) directly returns A,
which is then also returned by absorbJoined({C}). Thus, if δ ∈ ∆I′ and δ < CI

′
, i.e.,

δ < (¬A)I
′
, then δ ∈ AI

′
. Hence, the lemma holds if C is of the form ¬A.

• If C is of the form ¬{a}, then absorbConcept(C) adds the axiom {a} v A to T ′ and
returns A, which is then also returned by absorbJoined({C}). Thus, if δ < CI

′
, i.e.,

δ < (¬{a})I′ , then δ ∈ aI
′

and because of the assumption I′ |= T ′, i.e., I′ |= {a} v A, it
follows that δ ∈ AI

′
. Hence, the lemma holds if C is of the form ¬{a}.

For the complex cases we assume that all nested disjunctions are replaced by a single dis-
junction with all disjuncts, i.e., (C1 t (C2 tC3)) is replaced by (C1 tC2 tC3). Furthermore,
we automatically decompose a disjunction into the set of disjuncts by calling absorbJoined.
This conversion is also done by the algorithm with the collectDisjuncts function, which is
always called before absorbJoined. Therefore, we can omit collectDisjuncts for calling
absorbJoined, which improves the readability. Now, for a disjunct C j, it follows that C j is
not a disjunction itself and it also follows that absorbJoined({C j}) only returns the atomic
concept that is returned by absorbConcept(C j).

Let C1, . . . ,Cn be completely absorbable concepts and A1, . . . , An the atomic concepts
returned by absorbJoined({C1}), . . . ,absorbJoined({Cn}). By our induction hypothesis, the
lemma holds for A1 w.r.t. C1, . . . , An w.r.t. Cn.

• If C is now of the form C1t. . .tCn, then absorbJoined({C1, . . . ,Cn}) collects the atomic
concepts A1, . . . , An by calling absorbConcept(C j) for each C j, 1 6 j 6 n, and creates
the binary absorption axioms (A1 u A2) v T1, (T1 u A3) v T2, . . . , (Tn−2 u An) v A.
Thus, if δ < CI

′
, i.e., δ < (C1 t . . . t Cn)I

′
, then δ ∈ (¬C1 u . . . u ¬Cn)I

′
and, as a

consequence, δ ∈ (¬C j)I
′

for 1 6 j 6 n. Therefore, by the induction hypothesis we
have δ ∈ AI

′
j for all 1 6 j 6 n. Thus, δ ∈ AI

′
1 and δ ∈ AI

′
2 and since the interpretation

I′ |= T ′ with {(A1 u A2) v T1, (T1 u A3) v T2, . . . , (Tn−2 u An) v A} ⊆ T ′ it follows that
δ ∈ TI

′
1 , δ ∈ TI

′
2 , . . . , δ ∈ AI

′
. Hence, the lemma holds by induction if C is of the form

C1 t . . . tCn.
• If C is of the form C1 u C2, then absorbJoined({C}) returns A, which is obtained by

calling absorbConcept(C), where additionally the axioms A1 v A and A2 v A are
created. If δ < CI

′
, i.e., δ < (C1 u C2)I

′
, then δ ∈ (¬C1 t ¬C2)I

′
. There are now two

cases: If δ ∈ (¬C1)I
′
, then by the induction hypothesis we have δ ∈ AI

′
1 and, due to

the axiom A1 v A, we have δ ∈ AI
′
. For the other case we have δ ∈ (¬C2)I

′
, by the

induction hypothesis it follows that δ ∈ AI
′

2 and, due to the axiom A2 v A, we also have
δ ∈ AI

′
. Hence, the lemma holds by induction if C is of the form C1 uC2.
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• If C is of the form ∀r.C1, then absorbConcept(C) creates A1 v ∀ inv(r).A and A is
returned by absorbJoined({C}). Thus, if δ < CI

′
, i.e., δ < (∀r.C1)I

′
, then δ ∈ (∃r.¬C1)I

′
.

It follows that there exists γ ∈ ∆I′ , (δ, γ) ∈ rI
′

with γ ∈ (¬C1)I
′

and by the induction
hypothesis we have γ ∈ AI

′
1 . As a consequence of the axiom A1 v ∀ inv(r).A we also

have δ ∈ AI
′
. Hence, the lemma holds by induction if C is of the form ∀r.C1.

• If C is of the form¬A′ and A′ is completely defined by the axioms A′ ≡ C′1 ∈ T , . . . , A′ ≡
C′n ∈ T , then the candidate concept A′+ is returned for A by the absorption. Let C1 =

¬C′1, . . . ,Cn = ¬C′n, then the candidate concept A′+ is implied by A1, . . . , An, which are
the atomic concepts created for absorbing ¬C′1, . . . ,¬C′n, i.e., C1, . . . ,Cn. Now, this case
is similar to the case where C is of the form C1tC2, because if δ < CI

′
, i.e., δ < (¬A′)I

′
,

then δ ∈ A′I
′

and as a consequence of the axioms A′ ≡ ¬C1, . . . , A′ ≡ ¬Cn we also have
δ ∈ (¬C j)I

′
for 1 6 j 6 n. Therefore, by the induction hypothesis it follows that δ ∈ AI

′
j

for all 1 6 j 6 n and, because of the axioms that imply the candidate concept A′+, we
also have δ ∈ (A′+)I

′
. Hence, the lemma holds by induction if C is of the form ¬A′ and

A′ is completely defined with axioms of the form A′ ≡ C′, where nnf(¬C′) is completely
absorbable.

(Claim 3) We construct the interpretation I′ from I such that, for each δ ∈ ∆I′ , δ ∈ AI
′

only if δ < CI
′
. Therefore, let I′ = (∆I

′
, ·I′ ) be an interpretation with ∆I

′
= ∆I and ·I′

reduced from ·I such that only the atomic concepts, atomic roles, and individuals occurring
in T are interpreted. Obviously, it still holds that I′ |= T since the interpretation of all
axioms in T coincides with I. We now define the interpretation of the fresh atomic concepts
A1, . . . , Am introduced for the absorption of C in I′. Note that we treat absorption axioms of
the form A′ v ∀r.Ai in their equivalent form ∃ inv(r).A′ v Ai.

Now, for each δ ∈ ∆I′ , for 1 6 i 6 m and for each axiom H v Ai generated by the
absorption, we exhaustively add δ to AI

′
i if

(i) H = A′ and δ ∈ A′I
′
,

(ii) H = {a} and δ ∈ {a}I′ ,
(iii) H = (A′ u A′′) and δ ∈ A′I

′ ∩ A′′I
′
, or

(iv) H = ∃ inv(r).A′ and δ ∈ (∃ inv(r).A′)I′ , i.e., δ has some inv(r)-neighbour γ such that
(γ, δ) ∈ rI

′
and γ ∈ A′I

′
.

For each δ ∈ ∆I′ , we have δ ∈ AI
′

i , only if δ satisfies the left-hand side of an axiom A′ v Ai,
{a} v Ai, (A′ u A′′) v Ai, or ∃ inv(r).A′ v Ai. Consequently, it follows that I′ |= T ′.
Furthermore, δ < AI

′
if δ ∈ CI

′
, because of the following cases:

• If C is of the form ¬A, A ≡ C′ < T and δ ∈ CI
′
, i.e., δ ∈ (¬A)I

′
, then δ < AI

′
.

• If C is of the form ¬{a} for which the absorption has generated {a} v A, and if δ ∈ CI
′
,

i.e., δ ∈ (¬{a})I′ , then δ < {a}I′ and then δ < AI
′
, because the left-hand side of {a} v A

is not satisfied and there is also no other axiom that implies A (A is freshly used for the
generation of the axiom {a} v A).

For the remaining cases, we again assume that the lemma holds for A1 w.r.t. C1, . . . , An

w.r.t. Cn, where A1, . . . , An are the atomic concepts for absorbing the completely absorbable
concepts C1, . . . ,Cn. Therefore, it follows by induction that δ < AI

′
if δ ∈ CI

′
, because of

the following cases:

• If C is of the form C1 t . . . t Cn and δ ∈ CI
′
, i.e., δ ∈ (C1 t . . . t Cn)I

′
, then there

exists a C j, 1 6 j 6 n with δ ∈ CI
′

j . By the induction hypothesis it follows that δ < AI
′

j
and by the binary axiom chain (A1 u A2) v T1, (T1 u A3) v T2, . . . , (T j−2 u A j) v
T j−1, . . . , (Tn−2 u An) v A, which is generated for absorbing C1 t . . . t Cn, we have
δ < AI

′
, because the left-hand side of the axiom (T j−2 u A j) v T j−1 cannot be satisfied.
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• If C is of the form C1 u C2 and δ ∈ CI
′
, i.e., δ ∈ (C1 u C2)I

′
, then δ ∈ CI

′
1 and δ ∈ CI

′
2 .

By the induction hypothesis we have δ < AI
′

1 and δ < AI
′

2 . The left-hand side of the
axioms A1 v A and A2 v A is not satisfied and the absorptions does not generate other
axioms that imply A. Thus, δ is not added to AI

′
.

• If C is of the form ∀r.C1 and δ ∈ CI
′
, i.e., δ ∈ (∀r.C1)I

′
, then for all γ ∈ ∆I′ with

(δ, γ) ∈ rI
′

we also have γ ∈ CI
′

1 . By the induction hypothesis it follows that γ < AI1
and since the left-hand side of the generated axiom ∃ inv(r).A1 v Ai is not satisfied, and
there are not any other axioms that imply A, we do not add δ to AI

′
and, thus, δ < AI

′
.

• If C is of the form ¬A′, A′ is completely defined by the axioms A′ ≡ C′1 ∈ T , . . . , A′
≡ C′n ∈ T , and δ ∈ CI

′
, i.e., δ ∈ (¬A′)I

′
, then, for C1 = ¬C′1, . . . ,Cn = ¬C′n and, as a

consequence of the axioms A′ ≡ C′1, . . . , A
′ ≡ C′n, we also have δ ∈ CI

′
1 , . . . , δ ∈ CI

′
n . By

the induction hypothesis we have δ < AI
′

1 , . . . , δ < AI
′

n and, thus, the left-hand side of
all axioms that imply the candidate concept A = A′+ is not satisfied. Therefore, we have
δ < AI

′
. ut

We can now use Lemma 1 to show the correctness of the absorption for the case of a
completely absorbable concept C in an axiom C v D.

Lemma 2 For T a TBox and C t D a disjunction, where C is completely absorbable and
D is not completely absorbable, let T1 denote the TBox with T1 = T ∪ {> v C t D} and
T2 denote the TBox with T2 = T ∪ {A v D} ∪ X, where X are the axioms created by A ←
absorbJoined({C}). Then, a concept C′ is satisfiable with respect to T1 iff it is satisfiable
with respect to T2.

Proof If direction: For I2 an interpretation with C′I2 , ∅ and I2 |= T2, we show that
I2 |= T1. Because of the axiom A v D ∈ T2 it holds for each δ ∈ ∆I2 that either δ < AI2

(and thus δ ∈ CI2 by Lemma 1) or δ ∈ DI2 . Thus, the axiom > v (C t D) ∈ T1 is satisfied
for every δ ∈ ∆I2 and, therefore, I2 |= T1.

Only if direction: For I1 an interpretation with C′I1 , ∅ and I1 |= T1, we construct an
interpretation I′1 with C′I

′
1 , ∅ and I′1 |= T2. Since I1 |= T1 and T1 is an extension of T ,

it follows that I1 |= T . Because of Lemma 1, there exists an interpretation I′1 that can be
constructed from I1 for which it holds that I′1 |= T ∪X and for all δ ∈ ∆I′1 that δ ∈ AI

′
1 only

if δ < CI
′
1 . Thus, it also follows that I′1 |= A v D, because ∆I

′
1 = ∆I1 and for all δ ∈ ∆I′1 it

holds that either δ ∈ CI
′
1 and thus δ < AI′1 or δ ∈ DI

′
1 . Thus, if C′I1 , ∅, then C′I

′
1 , ∅. ut

In order to show the correctness of the partial absorption of a disjunction C t D, where
C is partially absorbable and D is neither completely nor partially absorbable, we reduce
the problem to the complete absorption of C′ t C t D, where for C′ it holds that C′ is
completely absorbable and C′ v C. We show that the partial absorption of C is equivalent
to the complete absorption of the concept C′. Therefore, the partial absorption of C t D
corresponds to the complete absorption of C′ tC t D, which is obviously equisatisfiable to
C t D since C subsumes C′.

Lemma 3 Let C be a partially absorbable concept, then absorbJoined({C}) generates the
absorption of a concept C′ for which it holds that C′ v C and C′ is completely absorbable.

Proof If C is already completely absorbable, then the lemma trivially holds since in this
case C′ is C. Thus, we show in the following for all cases where C is partially absorbable
but not completely absorbable that absorbJoined({C}) generates the absorption of a more
specific concept C′ for which it holds that C′ v C and C′ is completely absorbable.
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• If C is of the form ∀r.D′ (of the form 6 n r.D′ with n ≥ 0) and D′ (nnf(¬D′)) is neither
completely nor partially absorbable, then absorbConcept(C) creates > v ∀ inv(r).A,
which corresponds to the complete absorption of ∀r.¬> for which it holds that ∀r.¬> v
∀r.D′ (∀r.¬> v 6 n r.D′ for n ≥ 0).

To prove the complex cases by induction, we assume that the concepts D1, . . . ,Dm are par-
tially absorbable and the lemma holds for D1, . . . ,Dm, i.e., the absorption completely ab-
sorbs the concepts D′1, . . . ,D

′
m, for which it holds that D′1 v D1, . . . ,D′m v Dm, and let

A1, . . . , Am be the atomic concepts that are achieved for absorbing D′1, . . . ,D
′
m.

• If C is of the form ∀r.D1 (of the form 6 n r.D′ with n ≥ 0 and D1 = nnf(¬D′)) and
D1 is partially absorbable, then absorbConcept(C) creates A1 v ∀ inv(r).A, where A1

is the atomic concept that is returned by absorbConcept(D1) for completely absorbing
D′1. The absorption of C corresponds to the complete absorption of ∀r.D′1 and, by the
induction hypothesis, we have D′1 v D1. Thus, it also holds that ∀r.D′1 v ∀r.D1 (∀r.D′1 v
6 n r.D′ for n ≥ 0, because D′1 v ¬D′).

• If C is of the form D1 t . . . t Dm t C1 t . . . t Cn with D1, . . . ,Dm partially absorbable
and C1, . . . ,Cm neither partially nor completely absorbable, then the absorption creates
the binary axiom chain (A1 u A2) v T1, (T1 u A3) v T2, . . . , (Tm−2 u Am) v A, which
corresponds to the complete absorption of D′1t . . .tD′m, where A1, . . . , Am are again the
atomic concepts for absorbing D′1, . . . ,D

′
m. Because of the induction hypothesis it holds

that D′1 t . . . t D′m v D1 t . . . t Dm tC1 t . . . tCn.
• If C is of the form D1 uD2 with D1,D2 partially absorbable, then the absorption creates

the axioms A1 v A and A2 v A, which corresponds to the complete absorption of
D′1 uD′2, where A1 and A2 are the atomic concepts for absorbing D′1 and D′2. Because of
the induction hypothesis it holds that D′1 u D′2 v D1 u D2.

• If C is of the form ¬A, A is completely defined by the axioms A ≡ D̂1 ∈ T , . . . , A ≡
D̂m ∈ T and D1 = ¬D̂1, . . . ,Dm = ¬D̂m are partially absorbable, then the absorption
returns A+ and also creates the axioms that imply the candidate concept A+. Let A′ be
the atomic concept that is completely defined by the axioms A′ ≡ ¬D′1, . . . , A

′ ≡ ¬D′m,
then the complete absorption of D′1, . . . ,D

′
m creates the atomic concepts A1, . . . , Am and

additionally the axioms that imply A′+. The partial absorption of ¬A corresponds to
complete absorption of ¬A′ and thus it obviously holds by the induction hypothesis that
¬A′ v ¬A and A′+ v A+. ut
As a consequence of the above lemmas, we find that the above presented absorption

algorithms indeed produce a TBox for which concept satisfiability is preserved, which ob-
viously also holds for knowledge base consistency:

Theorem 2 Let K = T ∪ A denote a knowledge base, and K ′ = T ′ ∪ A the knowledge
base where T is absorbed into T ′ by the absorbTBox function, i.e., T ′ = absorbTBox(T ),
then K is consistent iff K ′ is consistent.

Clearly, the presented tableau algorithm in Section 2 can also be used to show the con-
sistency of an absorbed knowledge base, i.e., it builds a clash-free and fully expanded com-
pletion graph for K iff a class-free and fully expanded completion graph exists for K ′.

4 Nominal Schema Absorption

Axioms with nominal schemas are very expressive in comparison to many decidable alterna-
tives based on rules. For instance, the atoms in the heads or bodies of DL-safe SWRL rules
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can only be instantiated with individuals that occur in the ABox. In tableau algorithms, it is,
therefore, only necessary to check whether the bodies of such rules are satisfied on tableau
nodes that represent ABox individuals/nominals. If this is the case, then the atoms of the
heads have to be added, however, also exclusively to individual/nominal nodes. This is no
longer the case for axioms with nominal schemas. For example, given the nominal schema
axiom

∃t.∃t.∃t.(∃r.{x} u ∃s.{x}) v ∃t.{x},

we have to check whether the left-hand side is satisfied at any tableau node, although the
variable x can only bind to nodes that represent individuals/nominals. That is, checking may
also involve blockable nodes in the completion graph that do not represent ABox individu-
als. Furthermore, such axioms can then also enforce the addition of the right-hand side on
blockable nodes. As a consequence, typical approaches for rule processing, such as Rete [5],
cannot be used in a straightforward way since blocking easily becomes unsound.

Due to the fact that it would be necessary to also process all blockable nodes with the
Rete algorithm, i.e., also the concepts in the label of blockable nodes as well as the roles
in the edge labels to these blockable nodes have to be used as input facts for the Rete al-
gorithm, and because Rete does not provide blocking information, it is not clear when the
expansion of new successors can be stopped in the tableau algorithm. For example, if the
knowledge base also contains the axiom > v ∃t.> u ∃r.{a} u ∃s.{a} and the construction of
new successors is already blocked after, e.g., two successively created t-successors, then the
Rete algorithm cannot infer the right-hand side of the considered nominal schema axiom for
any constructed node since this requires the successive creation of at least three t-successors.
Obviously, this is even more complicated if some of the roles are complex.

Our approach to overcome this issue is to emulate well known rule processing algo-
rithms such as Rete by adapted tableau rules, which propagate bindings of variables for
concepts through the completion graph. The propagated bindings of variables can be con-
sidered in the blocking condition, which allows for ensuring completeness, soundness and
termination. As a nice side-effect, the propagation of bindings in the completion graph also
means that complex roles can be supported without further adjustments.

This approach works well if the axioms have a typical rule structure, i.e., the axioms
have a large absorbable part and almost every nominal schema variable appears at least once
in the absorbable part. This is hardly surprising, because ordinary GCIs without nominal
schema variables must also have a large absorbable part for reasoning systems to handle
such axioms efficiently.

In order to actually bind variables to individuals (or nodes in a completion graph), we
use the ↓ binder operator, as known from Hybrid Logics [3]. The unrestricted extension of
a Description Logic with binders easily leads to undecidability of the standard reasoning
problems. However, we retain the decidability since we only bind variables to individuals
that occur in the ABox. In order to realise this, we extend a knowledge base with nominal
schemas with axioms of the form {a} v O for each individual a, where O is a fresh atomic
concept, and the axioms created by the absorption ensure that binders are then only triggered
in the completion graph if the special concept O occurs in the label of the node. In the
remainder of this paper, we assume that all considered knowledge bases already contain the
{a} v O axioms for each ABox individual a.
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Algorithm 6 Absorption extensions for Algorithms 1
1: procedure isCA(C)

. . .
2: if C = ¬{x} then
3: return true
4: end if

. . .
5: end procedure

1: procedure isPA(C)
. . .

2: if C = ¬{x} then
3: return true
4: end if

. . .
5: end procedure

Algorithm 7 Absorption extensions for Algorithm 4
1: procedure absorbConcept(C)

. . .
2: if C = ¬{x} then
3: Tx ← fresh atomic concept
4: T ′ ← T ′ ∪ {O v ↓x.Tx}
5: return Tx
6: end if

. . .
7: end procedure

4.1 Absorption of Axioms with Nominal Schemas

The absorption of axioms with nominal schema variables works very similar to the absorp-
tion of ordinary axioms without nominal schema variables. Typically, the absorption algo-
rithm can be directly extended to handle the new concept construct. However, to avoid some
special cases for conjunctions C1 u C2 in an absorbable disjunct, where different nominal
schema variables are used in C1 and C2, we require for the nominal schema absorption that
all conjunctions in absorbable positions are eliminated. This can be done by duplicating the
disjunction that is absorbed and replacing the corresponding conjunction in one case with
C1 and in the other case with C2. For example, the axiom {x} t A v ∃r.{x} is handled as the
disjunction (¬{x} u ¬A) t ∃r.{x} in the absorption and the conjunction ¬{x} u ¬A has to be
eliminated by replacing the original axiom with {x} v ∃r.{x} and A v ∃r.{x}.

For our absorption algorithm of Section 3, the following two modifications are necessary
in order to handle nominal schemas in the remaining axioms (cf. Algorithms 6 and 7):

• isCA(C) (isPA(C)) is extended to return that a negated occurrence of a nominal schema
¬{x} is completely (partially) absorbable.

• absorbConcept(C) must now also handle a negated occurrence of a nominal schema
¬{x} by absorbing it to O v ↓x.Tx, where Tx is a fresh atomic concept and O is the
special atomic concept that is added to the label of every individual {a} in the ABox by
axioms of the form {a} v O.

Other concepts can be absorbed as before, however, the final atomic concept A created
by the absorption cannot initiate the addition of the remaining, non-absorbed part of the ax-
iom in the same way. If the remaining disjuncts D1, . . . ,Dn still contain nominal schemas,
then the disjunction has to be grounded with those bindings of variables that have been
propagated to A. In the tableau algorithm this can be done dynamically, e.g., with a new
“grounding concept” and a corresponding rule. Therefore, if D1, . . . ,Dn still contain con-
cepts with nominal schema variables, then A v gr(D1 t . . . t Dn) has to be added to the
TBox, where gr(C) is the new grounding concept. For simplicity, let us assume that gr(C)
is always used to add the remaining, non-absorbed part of the axiom, even if C or the axiom
does not contain any nominal schema variables.
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Example 3 As an example, the axiom ∃r.({x}u∃a.{y}u∃v.{z})u∃s.(∃a.{y}u∃v.{z}) v ∃c.{x}
can be almost completely absorbed into the following axioms:

O v ↓x.Tx

O v ↓z.Tz

T3 v ∀s−.T4

(T4 u T6) v T7

O v ↓y.Ty

Tz v ∀v−.T2

(T3 u Tx) v T5

T7 v gr(∃c.{x})

Ty v ∀a−.T1

(T1 u T2) v T3

T5 v ∀r−.T6

Again, Tx, Ty, Tz, T1, . . . ,T7 are fresh atomic concepts. Only ∃c.{x} cannot be absorbed and
has to be grounded on demand. In the example, we have reused axioms for the absorption of
the same concepts to reduce the total number of axioms. The basic algorithm of Section 3
would generate for each occurrence of ¬{y} a separate binder concept, i.e., we would have
O v ↓y.Ty as well as O v ↓y.T ′y, which is obviously not necessary.

4.2 Tableau Algorithm Extensions to Handle Variable Bindings

We can now extend a standard tableau decision procedure to support (absorbed) nominal
schema axioms. The ↓ binders and gr(·) concepts are handled by new rules. Furthermore,
the v1- and v2-rules to handle TBox axioms and the ∀-rule (for transitivity support also the
∀+-rule) have to be adapted in order to propagate variables bindings.

Roughly speaking, for each concept C in the label of a node v, we keep a set of mappings
that records bindings for variables. A mapping set is created, when a concept of the form
↓x.C occurs in the label of a node v. In this case, we add C to the label of v and, in order
to “remember” the binding x 7→ v, we add the mapping µ with µ(x) = v to the mappings of
C. Note that, as a consequence of our absorption algorithm, a binder concept ↓x.C is always
such that C does not contain further binders.

Definition 9 (Variable Mapping) A variable mapping µ is a (partial) function from vari-
able names to individual names. For a variable mapping µ – and more generally for any
(partial) function – the set of elements on which µ is defined is the domain, written dom(µ),
of µ, and the set ran(µ) = {µ(x) | x ∈ dom(µ)} is the range of µ.

We use ε for the empty variable mapping, i.e., dom(ε) = ∅, and we associate a concept
fact C(v) with a set of variable mappings, denoted by B(C, v). Given a (possibly empty) set
of variable mappings M, let Mε = {ε} if M = ∅ and Mε = M otherwise.

If no confusing is likely to arise, we simply write mapping instead of variable mapping. The
mappings for a concept fact have to be propagated by the tableau rules for the concepts and
axioms that are used in the absorption. For example, if we apply the v1-rule (cf. Table 3)
to an axiom of the form A v C, we keep the mappings also for the concept C. Similarly,
we extend other rules (see Table 3) and we describe the not so straightforward extensions
in more detail below. Note, it is only necessary to extend those rules, which are related to
concepts and axioms that are used in the absorption, because if the mappings are propagated
to the gr-concept, then the remaining, non-absorbed part of the axiom is grounded and thus
corresponds to an ordinary concept.

Some major adjustments are necessary in order to handle binary absorption axioms of
the form (A1 u A2) v C correctly (cf. v2-rule). First of all, we want to keep the default
behaviour if there are no variable mappings associated to the concept facts for which the
rule is applied, i.e., if B(A1, v)∪B(A2, v) = ∅, then we add C to the label of v. In contrast, if
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Table 3 Tableau rule extensions to propagate variable mappings

∀-rule: if ∀r.C ∈ L(v), v not indirectly blocked, there is an r-neighbour w of v with C <
L(w) or B(∀r.C, v) * B(C,w)

then L(w) −→ L(w) ∪ {C} and B(C,w) −→ B(C,w) ∪ B(∀r.C, v)
v1-rule: if A v C ∈ K , A ∈ L(v), v not indirectly blocked, and C < L(v) or B(A, v) *

B(C, v)
then L(v) −→ L(v) ∪ {C} and B(C, v) −→ B(C, v) ∪ B(A, v)

v2-rule: if (A1 u A2) v C ∈ K , {A1, A2} ⊆ L(v), v not indirectly blocked, and
1. B(A1, v) ∪ B(A2, v) = ∅ and C < L(v), or
2. (B(A1, v) 1ε B(A2, v)) , ∅ and C < L(v) or (B(A1, v) 1ε B(A2, v)) * B(C, v)

then L(v) −→ L(v) ∪ {C} and B(C, v) −→ B(C, v) ∪ (B(A1, v) 1ε B(A2, v))
↓-rule: if ↓x.C ∈ L(v), v not indirectly blocked, and C < L(v) or {x 7→ v} < B(C, v)

then L(v) −→ L(v) ∪ {C} and B(C, v) −→ {{x 7→ v}}
gr-rule: if gr(C) ∈ L(v), v not indirectly blocked, there exists a variable mapping µ ∈

compKVars(C)(B(gr(C), v)) with C[µ] < L(v)
then L(v) −→ L(v) ∪ {C[µ]}

B(A1, v) , ∅ or B(A2, v) , ∅, we propagate the join of the mapping sets to the implied con-
cept. In the case B(A1, v) = ∅ and B(A2, v) , ∅, we extend B(A1, v) by the empty mapping
ε so that the join of B(A1, v) and B(A2, v) results in B(A2, v), which is then propagated to C.
We proceed analogously for B(A2, v) = ∅ and B(A1, v) , ∅. In principle, the join combines
variable mappings that map common variables to the same individual name and to point out
that the empty sets of mappings are specially handled, we have extended the join operator 1
with the superscript ε.

Definition 10 (Variable Mapping Join) Two variable mappings µ1 and µ2 are compatible
if µ1(x) = µ2(x) for all x ∈ dom(µ1) ∩ dom(µ2). A variable mapping µ1 ∪ µ2 is defined by
setting (µ1 ∪ µ2)(x) = µ1(x) if x ∈ dom(µ1), and (µ1 ∪ µ2)(x) = µ2(x) otherwise. The join
M1 1ε M2 is defined as {µ1 ∪ µ2 | µ1 ∈ Mε

1, µ2 ∈ Mε
2 and µ1 is compatible with µ2} \ {ε}.

Note, the extension by the empty variable mapping ε is required to propagate variable
mappings to a concept C if B(A1, v) = ∅ or B(A2, v) = ∅ for a binary absorption axiom of
the form (A1 u A2) v C. For instance, if B(A1, v) = {{x 7→ a}} and B(A2, v) = ∅, then the
variable mapping {x 7→ a} has to be propagated to C(v). This is realised by the v2-rule since
{{x 7→ a}} is joined with the singleton variable mapping set consisting only of the empty
variable mapping ε instead of ∅, which results in {{x 7→ a}}. In contrast, we cannot simply
associate all concept facts also with the empty variable mapping, because all mappings are
compatible with the empty variable mapping. Hence, if B(A1, v) , ∅ and B(A2, v) , ∅, also
the variable mappings of B(A1, v) and B(A2, v) would directly be propagated to C, whereas
only the combination of the mappings should be propagated. For example, if for B(A1, v) =

{{x 7→ a}} and B(A2, v) = {{x 7→ b}} also the empty variable mapping was associated to the
concept facts A1(v) and A2(v), i.e., B(A1, v) = {{x 7→ a}, ∅} and B(A2, v) = {{x 7→ b}, ∅},
then the join of B(A1, v) and B(A2, v) would propagate {x 7→ a} and {x 7→ a} to C although
these variable mappings are not compatible. Clearly, it would be possible to only associate
all concept facts in the initial completion graph with the empty variable mapping. One could
then propagate these empty variable mappings to newly added concepts as long as no other
variable mappings are created for these concepts through the binder rule (↓-rule). However,
it would be necessary to adapt all other tableau rules as well, whereas the dynamic extension
with ε during a join allows for not modifying other tableau rules.
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Besides the new ↓-rule, we also have to handle a grounding concept gr(C) in the label
of a node v with the tableau algorithm. Therefore, the gr-rule grounds the concept C based
on the variable mappings that are associated to gr(C) on the node v.

Definition 11 (Grounding, Completion) For a concept C, Vars(C) is the set of nominal
schema variables that syntactically occur in C. A concept C is grounded if Vars(C) = ∅. Let
µ be a variable mapping. We write C[µ] to denote the concept obtained by replacing each
nominal schema {x} that occurs in C and x ∈ dom(µ) with the nominal {µ(x)}.

Given a set of variables Y and a variable mapping set M with Mε as the extension by the
empty mapping ε if M = ∅, we define the completion compKY (M) of M w.r.t. the variable set
Y and a knowledge base K containing the individuals Inds(K) as

compKY (M) := {µ ∪ {x1 7→ v1, . . . , xn 7→ vn} | µ ∈ Mε , x1, . . . , xn ∈ (Y \ dom(µ)),

v1, . . . , vn ∈ Inds(K)}.
In order to ground the concept C for a concept fact gr(C)(v), the gr-rule uses the variable

mappings of compKVars(C)(B(gr(C), v)). Since the mappings that are propagated toB(gr(C), v)
might not contain all nominal schema variables that occur in C, it is necessary to extend
the mappings with every combination of named individuals for the remaining variables.
This is realised by the completion function compKVars(C)(B(gr(C), v)), where each variable
mapping µ ∈ B(gr(C), v) is extended to all possible variable mappings such that also the
variables that occur in C but not inB(gr(C)), i.e., Vars(C)\dom(µ), are bound to individuals
occurring inK . As a consequence of this completion, all concepts obtained by the grounding
of C are fully grounded and can now be added and handled as ordinary concepts in the
completion graph. Therefore, it is also not necessary to further propagate variable mappings
to the grounded concepts.

In order to support the more expressive Description Logic SROIQ with our absorption
technique of nominal schemas, it would be necessary to further extend the ∀-rule to complex
roles. This extension can easily be achieved by also propagating the variable mappings over
those ∀-concepts that are introduced to handle the automata of the role inclusion axioms [7].
Alternatively we could adapt the technique to eliminate role chains (incl. transitivity) [4].
The remaining SROIQ features are straightforward to support.

Standard pairwise blocking is extended by the new condition in the definition below to
ensure that the expansion of the completion graph is not stopped too early, even if variable
mappings are propagated through the completion graph.

Definition 12 (Blocking with Variable Mappings) A node v with predecessor v′ is directly
blocked if there exists an ancestor node w of v with predecessor w′ such that

• v is directly pairwise blocked by w (see conditions 1 - 4 of Definition 8), and
• B(C, v) = B(C,w) and B(D, v′) = B(D,w′) for all C ∈ L(v) and D ∈ L(v′).

Example 3 (continued) The completion graph in Figure 2 is obtained in the course of testing
the consistency of a knowledge base containing the axioms of Example 3 and the following
assertions:

r(a0, a1) s(a0, a2) a(a1, a3) v(a1, a4) a(a2, a3) v(a2, a4).
The set of variable mappings that is associated to a concept fact is shown in the superscript
of the concept in the label of the corresponding node. Note, we have highlighted those
concepts and variable mappings that are responsible for the grounding of new concepts
in this example. However, since O and thereby also the binder concepts are added to all
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a3 a4

a1 a2

a0

a
v a

v

r, c s

L(a3) =

>, {a3},O, ↓x.Tx,↓y.Ty , ↓z.Tz,

T {{x 7→a3}}
x ,T {{y7→a3}}

y ,T {{z7→a3}}
z ,

(∀a−.T1){{y7→a3}} , (∀v−.T2){{z 7→a3}}



L(a4) =

>, {a4},O, ↓x.Tx, ↓y.Ty,↓z.Tz ,

T {{x 7→a4}}
x ,T {{y7→a4}}

y ,T {{z7→a4}}
z ,

(∀a−.T1){{y7→a4}}, (∀v−.T2){{z7→a4}}



L(a1) =

>, {a1},O,↓x.Tx , ↓y.Ty, ↓z.Tz,T
{{x 7→a1}}
x ,

T {{y7→a1}}
y ,T {{z7→a1}}

z , (∀a−.T1){{y7→a1}},

(∀v−.T2){{z 7→a1}},T {{y7→a3}}
1 ,T {{z7→a4}}

2 ,

T {{y7→a3 ,z7→a4}}
3 , (∀s−.T4){{y7→a3 ,z7→a4}},

T {{x 7→a1 ,y7→a3 ,z7→a4}}
5 , (∀r−.T6){{x 7→a1 ,y7→a3 ,z7→a4}}



L(a2) =

>, {a2},O, ↓x.Tx, ↓y.Ty, ↓z.Tz,T
{{x 7→a2}}
x ,

T {{y7→a2}}
y ,T {{z 7→a2}}

z , (∀a−.T1){{y7→a2}},

(∀v−.T2){{z 7→a2}},T {{y7→a3}}
1 ,T {{z 7→a4}}

2 ,

T {{y7→a3 ,z7→a4}}
3 , (∀s−.T4){{y7→a3 ,z 7→a4}} ,

T {{x 7→a2 ,y7→a3 ,z 7→a4}}
5 , (∀r−.T6){{x 7→a2 ,y7→a3 ,z 7→a4}}



L(a0)=


>, {a0},O, ↓x.Tx, ↓y.Ty, ↓z.Tz,T

{{x 7→a0}}
x ,T {{y7→a0}}

y ,T {{z7→a0}}
z , (∀a−.T1){{y7→a0}}, (∀v−.T2){{z7→a0}},

T {{y7→a3 ,z7→a4}}
4 ,T {{x 7→a1 ,y7→a3 ,z7→a4}}

6 ,T {{x 7→a1 ,y7→a3 ,z 7→a4}}
7 ,gr(∃c.{x}){{x 7→a1 ,y 7→a3 ,z7→a4}} ,∃c.{a1}



Fig. 2 Generated completion graph with propagated variable mappings for Example 3

ABox individuals, they automatically create variable mappings for every ABox individual.
Obviously, many of these mappings are not necessary and their creation can easily be limited
by additional axioms. For example, the variable x only has to be bound if an a-neighbour
and also a v-neighbour exists for an individual node, i.e., the binding of x can be delayed
with ∃v.> v T ′1, ∃a.> v T ′2, (T ′1 u T ′2) v T ′3 and (O u T ′3) v ↓x.Tx. Similar delays for the
creation and propagation of variable mappings can be realised systematically by extending
the presented absorption algorithm with a backward chaining technique, which we present
in Section 5 in more detail.

The joins of the mapping sets are created in the nodes a1 and a2 for the concepts T3

and T5 and finally in node a0 for the concept T7. Only the variable mapping {x 7→ a1, y 7→
a3, z 7→ a4} is propagated to the grounding concept gr(∃c.{x}) and thus, by replacing the
nominal schema {x} with the nominal {a1}, we have ∃c.{a1} as the only grounded concept.
Hence, the individual a0 is found to have a conflicting review assignment with the paper a1.

4.3 Correctness

In the following we prove the correctness of our nominal schema absorption technique.
For this, we roughly proceed as follows: Given a nominal schema axiom C v D and an
absorbed TBox T , then for Tns and Tug as the TBoxes obtained from absorbing T ∪ {C v D}
and T ∪ {U1, . . . ,Uh}, respectively, where U1, . . . ,Uh are the upfront grounded axioms of
C v D, we show that a fully expanded and clash-free completion graph Gns for Tns can be
converted to a fully expanded and clash-free completion graph Gug for Tug. Furthermore, we
show that our extended tableau algorithm constructs a complete and clash-free completion
graph Gns for Tns if there exists a fully expanded and clash-free completion graph Gug for
Tug that is constructed by a standard tableau algorithm.

Please note that we only work with TBoxes instead of knowledge bases. This assump-
tion is w.l.o.g. since in the presence of nominals ABoxes can be internalised (e.g., C(a)
is equivalent to the GCI {a} v A, r(a1, a2) to {a} v ∃r.{b}, etc.). We assume, therefore,
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that a completion compTY (M) is analogously defined to the completion compKY (M) with
K = (T , ∅).

To simplify the conversion between a completion graph for Tns and a standard comple-
tion graph for Tug, we ensure that all concept facts can directly be converted into concept
facts for the other completion graph. Therefore, we make the following simplifying assump-
tions: We assume that the absorption of nominals of the form ¬{a} generates {a} v > u T
instead of {a} v T (cf. Algorithm 4, line 19), which is obviously logically equivalent. As a
result, binder concepts such as ↓x.T can be directly converted to concepts of the form >uT .
We also assume that the absorption of the upfront grounded axiom C[µ] v D[µ], by the
variable mapping µ, creates a new special grounding concept grµ(D) to add the remaining,
non-absorbable part of the axiom instead of directly implying D[µ]. This new concept con-
struct retains the mapping µ and corresponds to the grounding concept gr(D) that is created
for the absorption of the nominal schema axiom C v D.

Before introducing the actual conversion, we first define the notion of concept and axiom
set closure in the context of absorption:

Definition 13 (Absorption Closure) Let fclos(C) and fclos(Z) be the full closure of a con-
cept C and the set of axioms Z, respectively, as in Definition 4. For a TBox T and an axiom
C′ v D′ with nnf(¬C′) completely and D′ not completely absorbable, the absorption closure
aclosT (C′ v D′) for T and C′ v D′ contains the new concepts introduced by the absorption
of C′ v D′ and is defined as:

aclosT (C′ v D′) := fclos(X′1, . . . , X
′
n) \ (fclos(T ) ∪ fclos(D′)),

where X′1, . . . , X
′
n are the axiom introduced by the absorption of C′ v D′.

Note that the concepts in the absorption closure are those that are relevant for the conversion
between completion graphs since these are the concepts with variable mappings.

Now, the actual conversion of concepts and axioms obtained from the absorption is
defined as follows:

Definition 14 (Conversion) Let C v D be a nominal schema axiom where nnf(¬C) is
completely and D not completely absorbable, and let µ be a mapping with dom(µ) =

Vars(¬C t D) . Furthermore, let T be an absorbed TBox, Tns and Tug TBoxes obtained
by absorbing T ∪ {C v D} and T ∪ {U1, . . . ,Uh}, respectively, where U1, . . . ,Uh are the
axioms obtained by the upfront grounding of C v D. We denote the axioms (in creation
order) and fresh atomic concepts obtained by absorbing nnf(¬C t D) with X1, . . . , Xn and
T1, . . . ,Tg, respectively. Similarly, we use Xµ

1 , . . . , X
µ
n and T µ

1 , . . . ,T
µ
g for the case of absorb-

ing nnf((¬C t D)[µ]).
For the concept C′, we inductively define the concept conversion convµ(C′) of C′ w.r.t.

T , C v D and µ as

convµ(C′) :=



C′ if C′ < aclosT (C v D)
(> u convµ(C′′)) if C′ = ↓x.C′′
grµ(D) if C′ = gr(D)
C′

[T1/T
µ
1 ,...,Tg/T

µ
g ]

otherwise,

where C′
[T1/T

µ
1 ,...,Tg/T

µ
g ]

denotes the syntactic replacement of each occurrence of Ti in C′ with

T µ
i , for 1 ≤ i ≤ g. The extension to axioms xconvµ(X) is defined as:

xconvµ(X) :=


{µ(x)} v > u convµ(D′) if X = O v ↓x.D′
convµ(C′) v convµ(D′) otherwise.
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In the remainder of the section, we use C v D, µ, T , Tns, Tug, T1, . . . ,Tg, T µ
1 , . . . ,T

µ
g ,

X1, . . . , Xn, and Xµ
1 , . . . , X

µ
n as in the above definition.

Note that the restrictions on C v D are w.l.o.g. since any nominal schema axiom can be
transformed into the desired form in an equivalence preserving manner. If nnf(¬C) is only
partially absorbable, then a completely absorbable concept nnf(¬C′) can be extracted from
C (cf. Lemma 3), which can be used to obtain an axiom C′ v D′, where it holds that C′ v C,
C′ is completely absorbable and D′ = nnf(¬C′)tD is not completely absorbable. Also note
that ¬> and ⊥ can always be used to extend a disjunction that corresponds to an axiom in
order to obtain a completely absorbable and not completely absorbable disjunct w.r.t. our
absorption algorithm.

We can now show that we can convert the axioms obtained by absorbing nnf(¬C t D)
from the nominal schema axiom C v D into the axioms that are obtained by absorbing the
grounded version nnf((¬C t D)[µ]), which is the first step in the conversion of a completion
graph with nominal schema concepts to a standard completion graph:

Lemma 4 Let T be an absorbed TBox, C v D a nominal schema axiom, U1, . . . ,Uh the
upfront grounding, µ a mapping, Tns and Tug TBoxes, and X1, . . . , Xn and Xµ

1 , . . . , X
µ
n axioms

as in Definition 14. The set {xconvµ(X1), . . . , xconvµ(Xn)} is identical to the set {Xµ
1 , . . . , X

µ
n }.

Proof Let T1, . . . ,Tg and T µ
1 , . . . ,T

µ
g be the fresh atomic concepts introduced by the absorp-

tion of nnf(¬C t D) and nnf((¬C t D)[µ]), respectively. Since the concepts nnf(¬C t D)
and nnf((¬C t D)[µ]) only differ in the nominal schemas that are replaced by nominals, the
absorption of nnf(¬C t D) and nnf((¬C t D)[µ]) is identical expect for axioms of the form
O v ↓x.Ti and Tg v gr(D) in Tns, which correspond to axioms of the form {a} v (> u T µ

i )
and T µ

g v grµ(D) in Tug. Hence, by Definition 14, the claim holds. ut
For the conversion, we use the implicitly associated sets of variable mappings, which

are defined as follows:

Definition 15 (Implicitly Associated Mappings) The implicitly associated set of variable
mappings mappG(C′(v)) for a concept fact C′(v) and C′ in the absorption closure w.r.t. a
completion graph G = (V, E,L, ,̇,B) is defined as:

mappG(C′(v)) :=



{{x 7→ v}} if C′ = ↓x.D′
B(C′, v) if B(C′, v) , ∅
{ε} otherwise.

Now, let Gns be a completion graph showing the satisfiability of the TBox Tns. We can
replace each concept fact C′(v) with the implicitly associated variable mappings M and C′ ∈
aclosT (C v D), by the concept facts (convµ1 (C′))(v), . . . , (convµk (C

′))(v), where µ1, . . . , µk

are the mappings obtained from the completion compTVars(¬CtD)(M) of M. As a result, we
obtain a fully expanded completion graph Gug that shows the satisfiability of the upfront
grounded TBox Tug.

Lemma 5 (Soundness) Let T be an absorbed TBox, C v D a nominal schema axiom,
U1, . . . ,Uh the upfront grounding for C v D, and Tns and Tug TBoxes as in Definition 14.
If there is a fully expanded and clash-free completion graph for Tns, then there is a fully
expanded and clash-free completion graph for Tug.

Proof Let Gns = (Vns, Ens,Lns, ,̇ns,Bns) be a fully expanded and clash-free completion
graph for Tns. We convert Gns into a fully expanded and clash-free completion graph Gug
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by replacing every concept fact C′(v), C′ ∈ aclosT (C v D), v ∈ Vns, with the implicitly
associated variable mappings M = mappGns (C′(v)), by the concept facts (convµ1 (C′))(v),
. . . , (convµk (C

′))(v) with {µ1, . . . , µk} = compTVars(¬CtD)(M). Furthermore, let λ1, . . . , λ` be
all possible variable mappings for the variables Vars(¬C t D) w.r.t. T , i.e., {λ1, . . . , λ`} =

compTVars(¬CtD)({ε}).
In the following we show that none of the standard tableau rules for the concepts and

axioms used in the absorption are applicable to Gug. Please note that the extended tableau
rules (Table 3) coincide with the standard tableau rules (cf. Table 1) if no variable mappings
are associated to the concept facts. Also note that the concept facts and axioms, which are
not related to the absorption, are not affected by the conversion. Thus, the corresponding
rules are not applicable for these concepts and axioms. Furthermore, since identical node
labels are converted in the same way, blocking is not affected, i.e., if a node is blocked
before the conversion, then it is also blocked after the conversion.

• We firstly consider the application of the ∀-rule, which is not applicable for Gug, be-
cause C′ = ∀r.D′(v) is converted to (convµ1 (∀r.D′))(v), . . . , (convµk (∀r.D′))(v) and for
each r-neighbour node w of v the concept fact D′(w) is either also not associated with
variable mappings (which is ensured by the absorption algorithm by creating separate
axioms with fresh atomic concepts for the absorption of concepts that do not contain
nominal schemas) or is at least also associated with the same variable mappings (other-
wise the ∀-rule would be applicable for Gns) and thus D′(w) is at least also converted to
(convµ1 (D′))(w), . . . , (convµk (D

′))(w).
• We now consider the application of the v1-rule. The absorption creates axioms of the

form H v D′ with D′ ∈ aclosT (C v D) and H = {a} or H = A. If D′ , ↓x.D′′
(the replacement axioms for O v ↓x.D′′ are considered together with the ↓-concepts),
H < aclosT (C v D) and H = A or H = {a}, then we would have the axioms H v
convλ1 (D′), . . . , H v convλ` (D

′) in Tug and the v1-rule is not applicable, because, for
every node v in Gns with the concept fact H(v), D′(v) is also present and Bns(D′, v) = ∅.
Thus, D′(v) is replaced by (convλ1 (D′))(v), . . . , (convλ` (D

′))(v). If A ∈ aclosT (C v D),
then we would have the axioms convλ1 (A) v convλ1 (D′), . . . , convλ` (A) v convλ` (D

′)
and the v1-rule is not applicable, because for every node v in Gns with the concept
fact A(v) and the associated variable mappings µ1, . . . , µk, A(v) would be replaced by
(convµ1 (A))(v), . . . , (convµk (A))(v), and D′ is either also not associated with variable
mappings (which is ensured by the absorption algorithm) or is at least also associated
with the variable mappings µ1, . . . , µk (otherwise Gns would not be fully expanded), and
is at least also replaced by (convµ1 (D′))(v), . . . , (convµk (D

′))(v). Thus, the v1-rule is not
applicable for Gug.

• Next, we consider the application of the v2-rule for an axiom (A1 u A2) v D′. There are
three cases:
1. If Bns(A1, v) = ∅ and Bns(A2, v) = ∅, then Bns(D, v) = ∅ and every concept fact

D′(v) is replaced by (convλ1 (D′))(v), . . . , (convλ` (D
′))(v) and thus the rule is not ap-

plicable for the axioms (convλ1 (A1) u convλ1 (A2)) v convλ1 (D′), . . . , (convλ` (A1) u
convλ` (A2)) v convλ` (D

′).
2. If Bns(A1, v) , ∅ (Bns(A2, v) , ∅), then the v2-rule is analogously to the v1-rule not

applicable, because either there is no variable mapping that is associated to A2(v)
(A1(v)) and, as a consequence, there is also no variable mapping associated to D′(v)
(which is ensured by the absorption algorithm), or every variable mapping that is
associated to A2(v) (A1(v)) is also associated to D′(v) if A1 (A2) is also in the label of
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v. Thus, the v2-rule cannot add a convλ j (D
′) concept to v that is not already present,

because the corresponding convλ j (A1) (convλ j (A2)) is missing.
3. IfBns(A1, v) , ∅ andBns(A2, v) , ∅, the v2-rule is also not applicable to the comple-

tion graph that is obtained by the conversion, because A1(v) and A2(v) are replaced
by the concept facts (convµ1 (A1))(v), . . . , (convµk (A1))(v) and (convµ′1 (A2))(v), . . . ,
(convµ′k′ (A2))(v), respectively, where µ1, . . . , µk and µ′1, . . . , µ

′
k′ are the completion

of the sets of variable mappings mappGns (A1(v)) and mappGns (A2(v)). The v2-rule
is, however, only applicable for an axiom (convµ(A1) u convµ(A2)) v convµ(D′)
if convµ(A1) as well as convµ(A2) is in the same label, but convµ(D′) is not al-
ready present, i.e., µ ∈ {µ1, . . . , µk} and µ ∈ {µ′1, . . . , µ′k′ }, but µ < {µ1, . . . , µk} 1ε

{µ′1, . . . , µ′k′ }, which is a contradiction, because {µ1, . . . , µk} 1ε {µ′1, . . . , µ′k′ } is the
same as the completion of Bns(A1, v) 1ε Bns(A2, v) to all possible variables used in
C v D.

• The ↓-concepts are more complicated. Concept facts of the form ↓x.D′(a) are not ex-
plicitly associated with variable mappings. However, because of the axiom O v ↓x.D′,
they only occur in the label of ABox individual nodes. Thus, we can use the implicit
information that x will be bound to the ABox individual node a, and we use the comple-
tion of the variable mapping {x 7→ a} for µ1, . . . , µk. Therefore, we replace ↓x.D′(a) with
the concept facts (> u convµ1 (D′))(a), . . . , (> u convµk (D

′))(a). It is not hard to see that
(> u convµ1 (D′)), . . . , (> u convµk (D

′)) cannot be unfolded in Gug, because the ↓-rule
ensures that D′ is also already present in the label of the node and is associated with the
variable mapping {x 7→ a} and, thus, D′ is also replaced by convµ1 (D′), . . . , convµk (D

′).
Analogously, for the axioms {a} v > u convµ1 (D′), . . . , {a} v > u convµk (D

′) that we
have to consider in Gug instead of O v ↓x.D′, the rules for these axioms are also not ap-
plicable, because the concept ↓x.D′ in the label of a has been replaced by the concepts
>u convµ1 (D′), . . . ,>u convµk (D

′) and ↓x.D′ is in the label of a, because it is added to
every ABox individual node due to the axiom O v ↓x.D′.

• The argumentation for the gr-concepts and the corresponding rules is very similar. As
mentioned before, we assume that the grounding concept is always used to add the re-
maining, non-absorbable part of the axiom. Thus, gr(D) is always in aclosT (C v D),
even if Vars(D) = ∅. Furthermore, we also use the assumption that the absorption of
an upfront grounded axiom, by the variable mapping µ, also uses a special grounding
concept grµ(D), which has to be unfolded to D[µ] and is, therefore, not problematic for
the tableau algorithm, because it corresponds to a conjunction with only one conjunct.
Thus, a concept fact gr(D)(v) is replaced by (convµ1 (gr(D)))(v), . . . , (convµk (gr(D)))(v),
which is the same as (grµ1 (D))(v), . . . , (grµk (D))(v). Obviously, these replaced ground-
ing concepts cannot be unfolded to D[µ1], . . . ,D[µk], because D[µ1], . . . ,D[µk] are already
present due to the application of the gr-rule for gr(D)(v), for which also the completion
of the associated set of variable mappings is used for the grounding of D. ut
Next, we show that we can steer our extended tableau algorithm to construct a complete

and clash-free completion graph Gns for Tns if there exists a fully expanded and clash-free
completion graph Gug for Tug that is constructed by a standard tableau algorithm.

Lemma 6 (Completeness) Let T be an absorbed TBox, C v D a nominal schema axiom,
U1, . . . ,Uh the upfront grounding for C v D, and Tns and Tug TBoxes as in Definition 14.
If there is a fully expanded and clash-free completion graph for Tug, then there is a fully
expanded and clash-free completion graph for Tns.

Proof Let Gug be a completion graph for Tug that is obtained by applying only rules for
concepts and axioms of T . Since our extended rules coincide with the standard tableau rules
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if no variable mappings are associated to concept facts, our extended tableau algorithm can
create Gns, which exactly coincides with Gug. We show that the application of a rule in
Table 3 to Gns deterministically adds only concept facts and possibly variable mappings, for
which the conversion of these facts and variable mappings are also consequences in Gug that
are added in the course of applying standard tableau rules to Gug. Thus, Gug can obviously
be used for steering the non-deterministic decisions for Gns to construct a fully expanded
and clash-free completion graph if Gug is fully expanded and clash-free.

Now, let Gns and Gug be completion graphs for Tns and Tug, respectively, and Gns and
Gug coincide with the inferred facts so far, i.e., the conversion of concept facts and variable
mappings from Gns corresponds to the contained concept facts in Gug. To show by induc-
tion that each rule application for Gns only adds concept facts and variable mappings, for
which the conversion of these facts and variable mappings are also consequences in Gug, let
λ1, . . . , λ` be all possible variable mappings, i.e., {λ1, . . . , λ`} = compTVars(¬CtD)({ε}). Please
note, it suffices to consider only the extended rules for concepts and axioms used for absorb-
ing C v D, because only the concepts in aclosT (C v D) can be associated with variable
mappings, for which the extended rules differ to standard rules.

• First, we consider the ∀-rule for a concept fact ∀r.D′(v), ∀r.D′ ∈ aclosT (C v D),
which adds the concept fact D′(w) to an r-neighbour w of v in Gns and possibly the
variable mapping µ ∈ Bns(∀r.D′, v) to Bns(D′,w). If the ∀-rule only adds the con-
cept fact D′(w) for cases where B(∀r.D′, v) = ∅, then mappGns (D′(w)) = {ε} (which
is ensured by the absorption algorithm) and we have to show that in the completion
graph Gug the concept facts (convλ1 (D′))(w), . . . , (convλ` (D

′))(w) are also added by
rule applications. Obviously, this is the case, because the concept fact ∀r.D′(v) cor-
responds to (convλ1 (∀r.D′))(v), . . . , (convλ` (∀r.D′))(v) in the completion graph Gug

and by applying the ∀-rule for all concept facts (convλ j (∀r.D′))(v), 1 ≤ j ≤ `, we
have the concepts convλ1 (D′), . . . , convλ` (D

′) in the label of all neighbour nodes. If
the ∀-rule adds a variable mapping µ ∈ Bns(∀r.D′, v) to Bns(D′,w), then we have to
show that (convµ1 (D′))(w), . . . , (convµk (D

′))(w) with {µ1, . . . , µk} = compTVars(¬CtD)({µ})
are added to Gug by rule applications. But this is also the case since ∀r.D′(v) corre-
sponds to (convµ1 (∀r.D′))(w), . . . , (convµk (∀r.D′))(w) in Gug and applying the ∀-rule for
(convµ1 (∀r.D′))(w), . . . , (convµk (∀r.D′))(w) adds (convµ1 (D′))(w), . . . , (convµk (D

′))(w)
to the label of all neighbour nodes.

• Next, we consider the v1-rule for an axiom H v D′ with H = A or H = {a} and
D′ , ↓x.D′′ (we consider the addition of the binder concepts together with the ↓-
rule). If Bns(H, v) = ∅ and the v1-rule adds only the concept fact D′(v) to a node,
then we have to show that (convλ1 (D′))(v), . . . , (convλ` (D

′))(v) are also added to Gug

by rule applications. Again, this is obviously the case, because for Gug we have the
rules convλ1 (H) v convλ1 (D′), . . . , convλ` (H) v convλ` (D

′). If Bns(H, v) , ∅, then
H = A and the v1-rule adds also a variable mapping µ to Bns(D′, v), whereby we have to
show that (convµ1 (D′))(v), . . . , (convµk (D

′))(v) with {µ1, . . . , µk} = compTVars(¬CtD)({µ})
are added to Gug by rule applications. Again, this is a consequence of the concept
facts (convµ1 (A))(v), . . . , (convµk (A))(v) in Gug and the axioms convµ1 (A) v convµ1 (D′),
. . . , convµk (A) v convµk (D

′) that we have to consider for Gug.
• Let us now consider the v2-rule for an axiom (A1uA2) v D′. If the v2-rule only adds the

concept fact D′(v), then we have to show that (convλ1 (D′))(v), . . . , (convλ` (D
′))(v) are

also added to Gug by rule applications. However, this is the case, because A1(v) and A2(v)
corresponds to (convλ j (A1))(v) and (convλ j (A2))(v) in Gug, respectively, and, since we
have the axiom (convλ j (A1)uconvλ j (A2)) v convλ j (D) for each 1 ≤ j ≤ `, it follows that
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all (convλ1 (D′))(v), . . . , (convλ` (D
′))(v) are also added to Gug. If the v2-rule also adds

the variable mapping µ to Bns(D′, v), then we have to show that (convµ1 (D′))(v), . . . ,
(convµk (D

′))(v) with {µ1, . . . , µk} = compTVars(¬CtD)({µ}) are also added to the com-
pletion graph Gug by rule applications. Let us first assume that Bns(A1, v) = ∅ and
Bns(A2, v) , ∅. As a consequence, we have in Gug the concept facts (convλ1 (A2))(v),
. . . , (convλ` (A2))(v) and (convµ1 (A2))(v), . . . , (convµk (A2))(v). As a result of the ax-
ioms (convλ j (A1) u convλ j (A2)) v convλ j (D), for all 1 ≤ j ≤ `, the concept facts
(convµ1 (D′))(v), . . . , (convµk (D

′))(v) are also added to Gug by rule applications. Anal-
ogously, this holds for the case where Bns(A2, v) = ∅ and Bns(A1, v) , ∅. Let us now
assume that Bns(A1, v) , ∅ as well as Bns(A2, v) , ∅. We show that (convµ1 (D′))(v), . . . ,
(convµk (D

′))(v) has to be added to Gug, because (convµ1 (A1))(v), . . . , (convµk (A1))(v)
as well as (convµ1 (A2))(v), . . . , (convµk (A2))(v) are in Gug. Obviously, there exists the
variable mappings µ′ ∈ Bns(A1, v) and µ′′ ∈ Bns(A2, v) with µ = dom(µ′) ∪ dom(µ′′)
and for each x ∈ (dom(µ′) ∩ dom(µ′′)) it holds that µ′(x) = µ′′(x). Thus, µ′ ⊆ µ
and µ′′ ⊆ µ and as a consequence of the completion of µ′ and µ′′ it follows that
{µ1, . . . , µk} ⊆ {µ′1, . . . , µ′k} and {µ1, . . . , µk} ⊆ {µ′′1 , . . . , µ′′k }. Therefore, the concept facts
(convµ1 (A1))(v), . . . , (convµk (A1))(v) and (convµ1 (A2))(v), . . . , (convµk (A2))(v) are also
in Gug.

• The ↓-rule for a concept fact ↓x.D′(a) adds D′ to the label of a and the variable mapping
{x 7→ a} to Bns(D′, a). We have to show that the concept facts (convµ1 (D′))(a), . . . ,
(convµk (D

′))(a) with {µ1, . . . , µk} = compTVars(¬CtD)({x 7→ a}) are also added to Gug by
rule applications. But this is obviously the case, because in Gug we have the concept facts
(convµ1 (↓x.D′))(a), . . . , (convµk (↓x.D′))(a), which is nothing else than the unfolding of
the concept facts (> u convµ1 (D′))(a), . . . , (> u convµk (D

′))(a). Furthermore, we have
to show that (> u convµ1 (D′))(a), . . . , (> u convµk (D

′))(a) is added to Gug, because, as
a consequence of the axiom O v ↓x.D′, ↓x.D′(a) is added to Gns. Obviously, this is
the case, because for Gug we have the axioms {a} v > u convµ1 (D′), . . . , {a} v > u
convµk (D

′).
• The application of the gr-rule adds for a concept fact gr(D′)(v) and a (possibly empty)

variable mapping µ ∈ Bεns(gr(D′), v) the concept facts D[µ1], . . . ,D[µk] with {µ1, . . . , µk} =

compTVars(¬CtD)({µ}). We have to show that D[µ1], . . . ,D[µk] are also added to the comple-
tion graph Gug by rule applications. Again, this is obviously the case, because in Gug we
have the concept facts (convµ1 (gr(D′)))(v), . . . , (convµk (gr(D′)))(v), which is the same
as grµ1 (D′)(v), . . . , grµk (D

′)(v). ut
The extended tableau algorithm is still terminating. This is due to the fact that the num-

ber of variable mappings is limited by the number of ABox individuals and the number of
variables in axioms. Thus, blocking is ensured since the nodes in the completion graph can
only be labelled with a limited number of concepts and only a limited number of variable
mappings can be associated to these concepts.

Lemma 7 (Termination) Let L be a Description Logic without nominal schemas and LV
its extension with nominal schemas. Extending a tableau decision procedure for the satis-
fiability of L-TBoxes based on the rules of Table 1 with the rules of Table 3 results in a
terminating algorithm for absorbed LV-TBoxes.

As a result, we obtain a terminating tableau algorithm that is sound and complete for
absorbed TBoxes with nominal schema axioms:

Theorem 3 Let L be a Description Logic without nominal schemas and LV its extension
with nominal schemas. Extending a tableau decision procedure based on the rules of Table 1
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Fig. 3 Naive propagation and resulting combinatorial explosion of variable mappings

for satisfiability of L-TBoxes with the rules of Table 3 yields a decision procedure for the
satisfiability of absorbed LV-TBoxes.

5 Backward Chaining Optimisations

In comparison to the upfront grounding approach, the nominal schema absorption is usually
a huge improvement for knowledge bases, where axioms with absorbable nominal schemas
do not match to every combination of ABox individuals. However, the propagation of vari-
able mappings can still lead to practical problems. On the one hand, it is unfavourable that
the mappings are created and propagated to many nodes and even to such nodes, where
the conditions of the absorptions cannot be satisfied. On the other hand, if there are several
neighbour nodes that satisfy some absorption condition, then the join potentially creates
quite a lot of new mappings.

Example 4 In order to illustrate the problems, let us assume that we have an axiom ∃r.{x} u
∃s.{y} u A v B, which is absorbed as follows:

O v ↓x.Tx

Ty v ∀s−.T2

T4 v gr(B).

Tx v ∀r−.T1

(T1 u T2) v T3

O v ↓y.Ty

(T3 u A) v T4

Moreover, the knowledge base contains the assertions:
r(c0, a0) r(c0, a1) s(c0, b0) s(c0, b1).

Subsequently, the completion graph in Figure 3 is generated by testing the consistency of
the knowledge base. Obviously, both of the aforementioned problems occur in the generated
completion graph. Due to the missing concept A in the label of node c0, it is impossible to
propagate the variable mappings to the grounding concept gr(B). Nevertheless, the algorithm
creates mappings with new bindings for the variables x and y for each node. Furthermore,
the concept T3 in the label of c0 is already associated with four new variable mappings that
are created by joining the mappings associated to T1 and T2.

Although the problems cannot be completely avoided in worst-case scenarios, it is nev-
ertheless possible to optimise the creation and combination of variable mappings with back-
ward chaining for many practical knowledge bases. In Example 4, no individual can ever
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have the grounding concept in its label. To make the example more interesting, let us as-
sume that the knowledge base of Example 4 is extended by the assertions r(c1, a1), s(c1, b1)
and A(c1) (cf. Figure 3, extension in dashed lines). Now, the basic idea is to first detect,
with a simpler method, “interesting” nodes that can satisfy the conditions of the absorption,
i.e., nodes that can possibly have the grounding concept in their label, and also those ABox
individuals that might be “candidates” for binding the nominal schema variables.

Let us assume that we are able to detect c1 as “interesting” with a1 as a “candidate” for
x and b1 as a “candidate” for y. We now propagate these binding candidates back from the
interesting node to the concepts and nodes that are relevant to imply the grounding concept
for c1. For example, the axiom (T1 u T2) v T3 tells us that the variable mappings that are
associated to T1 and T2 on the node c1 have to be joined and then propagated to T3 before
the grounding concept can be implied. If we can use the information of the back propagated
binding candidates, then we can limit the join of variable mappings such that only those
mappings are combined, which represent the expectation of the candidates, i.e., we combine
only the mapping µ1 and µ2 for which we know that for every z ∈ dom(µ1 ∪µ2), (µ1 ∪µ2)(z)
is a back propagated candidate for z. Thus, we can control the join with the back propagated
binding candidates. Of course, to retain completeness, the set of binding candidates must
be a superset of those bindings in variable mappings that are indeed required to ground all
necessary concepts. Moreover, we can further propagate the candidates back over the r and
s roles to control the binder concepts, which is, as a consequence of the axioms Tx v ∀r−.T1

and Ty v ∀s−.T2, also a requirement to imply the grounding concept.

We next describe a more systematic approach to this idea of back propagation from
nodes such as c1 in the above example. A nice feature of this approach is that our absorption
algorithms only require slight modifications for this purpose.

In the following, we extend the tableau and absorption algorithm such that we can propa-
gate candidates for variables and use the (back) propagated candidates to control the creation
and combination of variable mappings. For now, let us assume that for each nominal schema
variable x all individuals a1, . . . , am, which are a candidate for x, are already identified. Thus,
we get the binding candidates x/a1, . . . , x/am and we encode these bindings also as variable
mappings, i.e., if a j is an individual that is a candidate for the variable x, then we encode this
in the variable mapping {x 7→ a j}. Hence, we can also use the rules in Table 3 for the back
propagation of the binding candidates. To consider the back propagated bindings in the ↓-
and v2-rules, it is necessary to know to which ↓x.C concepts and (A1 u A2) v C axioms the
back propagated bindings are associated. Moreover, to distinguish the previously introduced
concepts (rules) from the new ones for the optimisation, we use ↓BPx.C and (A1, A2)→BP C
for the new binder and join concepts (↓BP and→BP for the new rules), where BP denotes the
considered back propagation. Note, instead of using a binary absorption axiom of the form
(A1 u A2) v C, we now use the concept (A1, A2) →BP C, because then the binding candi-
dates can be directly propagated to the concept (A1, A2) →BP C and this makes it easier to
consider the candidates in the associated rule.

The new rules with the considered backward chaining propagation are shown in Table 4.
The main difference is that now only those variable mappings are created and combined, for
which all the individuals can be found in the back propagated binding candidates. Thus, the
↓BP-rule creates a new variable mapping {x 7→ v} on a node v only if the concept ↓BP x.C
is in the label of v and the backward chaining has propagated the binding candidate x/v to
the concept ↓BP x.C in the node v. Since the binding x/v is also propagated as mapping,
we can use {x 7→ v} ∈ B(↓BP x.C, v) as condition to trigger the application of the ↓BP-rule.
Analogously, the →BP-rule only creates the join of the variable mappings µ1 and µ2 on a
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Table 4 Tableau rules to handle variable mappings with considered backward chaining propagations

→BP-rule: if (A1, A2)→BP C ∈ L(v), {A1, A2} ⊆ L(v), v not indirectly blocked, and
if B(A1, v) ∪ B(A2, v) = ∅, C < L(v)
then L(v) −→ L(v) ∪ {C}
if there exist µ ∈ (B(A1, v) 1ε B(A2, v)) with {x 7→ µ(x)} ∈

B((A1, A2)→BP C, v) for all x ∈ dom(µ), C < L(v) or µ * B(C, v)
then L(v) −→ L(v) ∪ {C} and B(C(v)) −→ B(C(v)) ∪ {µ}

↓BP-rule: if ↓BPx.C ∈ L(v), v not indirectly blocked, {x 7→ v} ∈ B(↓BPx.C, v), and C < L(v)
or {x 7→ v} < B(C, v)

then L(v) −→ L(v) ∪ {C} and B(C, v) −→ {{x 7→ v}}

Algorithm 8 absorbJoinedBP(S , ABP)
Output: Returns the atomic concept that is implied by the join of the absorptions of S
1: S ′ ← ∅
2: for all C ∈ S with Vars(C) = ∅ do
3: A′ ← absorbConcept(C)
4: S ′ ← S ′ ∪ {A′}
5: end for
6: S ′′ ← { absorbJoined(S ′)\{>} }
7: for all C ∈ S with Vars(C) , ∅ do
8: A′ ← absorbConceptBP(C, ABP)
9: S ′′ ← S ′′ ∪ {A′}

10: end for
11: while A1 ∈ S ′′ and A2 ∈ S ′′ and A1 , A2 do
12: T ← fresh atomic concept
13: T ′ ← T ′ ∪ {ABP v (A1, A2)→BP T }
14: S ′′ ← (S ′′ ∪ {T }) \ {A1, A2}
15: end while
16: if S ′′ = ∅ then return >
17: else return the element A′ ∈ S ′′ . S ′′ is a singleton
18: end if

node v if all individuals for the variables can be found in the back propagated bindings, i.e.,
{x 7→ (µ1 ∪ µ2)(x)} ∈ B((A1, A2)→BP C, v) for every x ∈ dom(µ1 ∪ µ2).

In order to support the backward chaining propagation in the absorption algorithm, some
minor adjustments in the absorbJoined and absorbConcept functions are necessary, which
results in the new absorbJoinedBP and in the new absorbConceptBP function. Both new
functions are extended to create the concepts and axioms for the back propagation of binding
candidates during the absorption.

Again, absorbJoinedBP is joining several (possibly fresh) atomic concepts, which are
created or simply returned by the functions absorbConcept or absorbConceptBP. Addition-
ally, absorbJoinedBP (Algorithm 8) propagates the bindings candidates, which were prop-
agated to the concept ABP, back to all join concepts of the form (A1, A2) →BP C (line 13).
Since not all concepts of S necessarily still contain nominal schema variables, the con-
cepts without nominal schema variables are absorbed as before by the absorbJoined and
absorbConcept functions (lines 2-6).

The adjustment of absorbConceptBP in Algorithm 9 is very similar. The function is
also called with an additional atomic concept ABP, for which the back propagation for the
new absorption is appended. As an example, for the absorption of a ∀r.C concept, the back
propagation is extended with the propagation over an r-edge to a fresh atomic concept TBP−nb

(lines 2-3). The bindings that are back propagated to TBP−nb can then be used to control the
join or also to limit the creation of new variable mappings.
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Algorithm 9 absorbConceptBP(C, ABP)
Output: Returns the atomic concept for the absorption of C
1: if C = ∀r.C′ then
2: TBP−nb ← fresh atomic concept
3: T ′ ← T ′ ∪ {ABP v ∀r.TBP−nb}
4: Anb ← absorbJoinedBP(collectDisjuncts(C′, true),TBP−nb)
5: T ← fresh atomic concept
6: T ′ ← T ′ ∪ {Anb v ∀ inv(r).T }
7: return T
8: else if C = 6 n r.C′ then
9: TBP−nb ← fresh atomic concept

10: T ′ ← T ′ ∪ {ABP v ∀r.TBP−nb}
11: Anb ← absorbJoinedBP(collectDisjuncts(nnf(¬C′), true),TBP−nb)
12: T ← fresh atomic concept
13: T ′ ← T ′ ∪ {Anb v ∀ inv(r).T }
14: return T
15: else if C = ¬{x} then
16: Tx ← fresh atomic concept
17: T ′ ← T ′ ∪ {(O u ABP) v ↓BPx.Tx}
18: return Tx

. . .
19: end if

Example 5 If we absorb the axiom ∃r.{x} u ∃s.{y} u A v B of Example 4 with the new ab-
sorption algorithms, which also generate the back propagation of binding candidates, then
we obtain the following axioms:

TBP1 v ∀r.TBP2

TBP1 v ∀s.TBP3

TBP1 v (T1,T2)→BP T3

(O u TBP2) v ↓x.Tx

(O u TBP3) v ↓y.Ty

TBP1 v (T3, A)→BP T4

Tx v ∀r−.T1

Ty v ∀s−.T2

T4 v gr(B).
The algorithm is called with TBP1 as the initial atomic concept for the back propagation, i.e.,
absorbJoinedBP({∀r.¬{x}, ∀s.¬{x},¬A, B}, TBP1), and TBP2, TBP3 are atomic concepts that
are additionally created for the back propagation of binding candidates. Now, if we ensure
that such binding candidates are automatically propagated to TBP1, then only the desired
mappings are propagated to the grounding concept and the creation, combination and prop-
agation of other mappings can be limited significantly.

5.1 Identification of Interesting Nodes and Binding Candidates

So far, we have assumed that the interesting nodes and the binding candidates used for the
backward chaining are already available. In the following, we present different approaches
of how these interesting nodes and bindings candidates can be identified.

A very simple, but already very effective method is to first absorb the absorbable part
of an axiom W, where all nominal schemas are replaced by O. In comparison to the absorp-
tion of the original nominal schema axiom, we do not generate a grounding concept since
we are only interested in the atomic concept, say AO, which is generated for absorbing W,
where the nominal schemas are replaced by O. During the expansion of a completion graph,
the concept AO now marks all nodes for which it is possible that the variable mappings are
propagated to the grounding concept gr(C) that is created for the absorption of the nominal
schema axiom W. Obviously, if AO is not in the label of a node v, then there is no vari-
able mapping, which could be propagated to gr(C), because the absorption with O is more
general by allowing every combination of ABox individuals to match the conditions of the
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Table 5 Additional tableau rules for creating binding candidates

→CP-rule: if (A1, A2)→CP C ∈ L(v), {A1, A2} ⊆ L(v), v not indirectly blocked,
if C < L(v), and B(A1, v) ∪ B(A2, v) = ∅
then L(v) −→ L(v) ∪ {C}
if for all x ∈ {y | y ∈ dom(µ1)∩dom(µ2) with µ1 ∈ B(A1, v), µ2 ∈ B(A2, v)},

there exists a mapping µ′ ∈ B(A1, v) ∩ B(A2, v) with x ∈ dom(µ′), and
1. µ ∈ (B(A1, v) ∩ B(A2, v)), µ ∈ B((A1, A2)→CP C, v), or
2. µ ∈ B(A1, v), µ ∈ B((A1, A2) →CP C, v) and there exists no µ′′ ∈
B(A2, v) with dom(µ) ∩ dom(µ′′) , ∅, or
3. µ ∈ B(A2, v), µ ∈ B((A1, A2) →CP C, v) and there exists no µ′′ ∈
B(A1, v) with dom(µ) ∩ dom(µ′′) , ∅

then L(v) −→ L(v) ∪ {C} and B(C(v)) −→ B(C(v)) ∪ {µ}

absorption. Thus, the concept AO marks interesting nodes, which are good candidates to
start the backward chaining propagation.

However, AO does not provide direct means for controlling the creation and combination
of mappings. Thus, for the backward chaining all possible bindings with all ABox individ-
uals have to be propagated as candidates. Of course, in practice, also a flag or a special
variable mapping can be propagated, which represents all bindings and does not lead to an
unnecessary overhead. Hence, the preceding absorption with O and the resulting AO con-
cept ensures that the variable mappings are not uselessly created in the completion graph.
At least, all the required facts have to exist in the neighbourhood of a node, even if the con-
nection between the nodes does not exactly match the absorption conditions of the axiom.
Regarding the simplicity of this preceding absorption, its usage is usually worthwhile for all
axioms with nominal schema variables.

So far, the combinatorial explosion of the join is still unhandled. In the worst-case,
the join creates, for an absorbed axiom with n nominal schema variables and a knowledge
base with m ABox individuals, mn different mappings and this possibly for each node in the
completion graph. Of course, this cannot be avoided in the worst-case, but for many practical
knowledge bases the amount of created combinations can be restricted significantly.

In the following, we present a preceding method that generates in the worst-case an
amount of at most m · n binding candidates and can be used to control and limit the actual
join, whereby we can possibly avoid creating all mn mappings. Therefore, we simplify the
→BP-rule such that specific variable mappings are further propagated instead of combining
them with the join. Again, we use a concept itself to handle the binary absorption axioms
for the compatibility with the introduced backward chaining. The new →CP-rule (depicted
in Table 5) propagates a variable mapping µ ∈ B((A1, A2) →CP C, v) to B(C, v) if for every
variable x that occurs in one mapping of B(A1) as well as in one mapping of B(A2), there
exists a variable mapping µ′ ∈ (B(A1, v) ∩ B(A2, v)), and

• µ is both in B(A1, v) and B(A2, v), or
• µ ∈ B(A1, v) (µ ∈ B(A2, v)), and the variable x ∈ dom(µ) is not used in the mappings

that are associated to A2 (A1).

As a result, only those variable mappings of B(A1, v) and B(A2, v) are filtered, which are us-
ing variables that occur in the mappings of B(A1, v) as well as in the mappings of B(A2, v).
Note, the→CP-rule does not combine or create new variable mappings and, thus, the map-
pings that are propagated to B(C, v) also map only one variable to an individual name if
the mappings of B(A1, v) and B(A2, v) map only one variable to an individual name. Thus,
the mappings that are created by the binder concepts can be filtered with the→CP-rule and
we create the desired binding candidates encoded as mappings that map one variable to
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an individual name. For example, if the mappings {x 7→ a1}, {x 7→ a2}, {y 7→ b} are as-
sociated to A1 and {x 7→ a1}, {z 7→ c} are associated to A2, then the →CP-rule propagates
{x 7→ a1}, {y 7→ b}, {z 7→ c} to the concept C.

We simply get an absorption algorithm that generates these kind of binding candidates
by changing Algorithm 8 and 9 such that ABP v (A1, A2)→CP A′ is added to T ′ in line 13 of
Algorithm 8 instead of ABP v (A1, A2)→BP A′. Note, for the creation of binding candidates
it is also useful to use the absorption with the backward chaining optimisation, because then
the creation of binding candidates can be triggered with AO.

6 Variable Elimination Optimisations

It is often the case that the number of nominal schema variables can be reduced by rewriting
the axiom. The basic idea is to replace unimportant nominal schemas with O, the special
atomic concept that is added to the label of every ABox individual. A nominal schema {x}
can obviously be replaced if {x} occurs only once in the axiom and only in a completely ab-
sorbable position. Such an occurrence merely requires that there exists an ABox individual
for x, but it is not relevant to remember the individual since x is only used once. Thus, we
can use O instead of {x}. If {x} is not in a completely absorbable position, then we have to
be more careful. For example, {x} cannot be replaced by O in the axioms A v > 3 r.{x} and
A v ∀r.{x}u > 3 r.>.

We can sometimes also eliminate nominal schema variables that have more than one
occurrence in the axiom. Therefore, we need an analogous definition of safe environments
of a nominal schema as Krötzsch et al. [17]:

Definition 16 (Safety) Let C be a completely absorbable concept in NNF, i.e., isCA(C) =

true, and C′,D sub-concepts of C such that ∀r.D ∈ collectDisjuncts(C′, true). An occur-
rence of a nominal schema {x} in D is safe if x is the only nominal schema variable in D,
i.e., Vars(D) = {x}, and ¬{o} ∈ collectDisjuncts(C′, true), where {o} is a nominal or a nom-
inal schema. In this case, C′ is a safe environment for this occurrence of {x}. A nominal
schema variable x is safe for an axiom C v D if {x} does not occur in any non-absorbable
disjunct of nnf(¬C t D), i.e., x < Vars(E) for all E ∈ collectDisjuncts(nnf(¬C t D), false),
and there is at most one not safe occurrence of {x} in all absorbable disjuncts of nnf(¬CtD).

A safe nominal schema variable can be eliminated by rewriting the axiom. For example,
for C v D, let us consider the axiom

∃r.({x} u ∃a.{y} u ∃v.{z}) u ∃s.(∃a.{y} u ∃v.{z}) v ∃c.{x}.

By transfering C v D into the form nnf(¬C t D), we obtain the following disjunction

∀r.(¬{x} t ∀a.¬{y} t ∀v.¬{z}) t ∀s.(∀a.¬{y} t ∀v.¬{z}) t ∃c.{x},

which contains the completely absorbable disjuncts

∀r.(¬{x} t ∀a.¬{y} t ∀v.¬{z}) and ∀s.(∀a.¬{y} t ∀v.¬{z}).

The occurence of the nominal schema {y} is safe in ∀r.(¬{x}t∀a.¬{y}t∀v.¬{z}), because of
the disjuncts ¬{x} and ∀a.¬{y}; analogously the occurrence of {z} is safe. Both occurrences
of these nominal schemas are, however, not safe in ∀s.(∀a.¬{y} t ∀v.¬{z}), but they do not
occur in the non-absorbable part ∃c.{x} and, hence, y and z are safe for the axiom.
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In order to eliminate y and z, one builds the inverse path of universal restrictions from the
safe occurrences of {y} and {z} to the nominal schema {x} in the safe environment and then
appends this path together with O to the not safe occurrences of y and z, respectively. For
instance, the safe environment of {y} is the concept ∀r.(¬{x}t∀a.¬{y}t∀v.¬{z}), where {y} is
used within the universal restriction ∀a.¬{y}. To eliminate the nominal schema variable y, we
replace the not safe occurrence of {y}, which is the nominal schema {y} in the (sub-)concept
∀s.(∀a.¬{y} t ∀v.¬{z}), with O u ∃a−.{x}, i.e., ¬{y} is replaced by ¬O t ∀a−.¬{x}. Obvi-
ously, we can also remove ∀a.¬{y} from ∀r.(¬{x} t ∀a.¬{y} t ∀v.¬{z}) since ∀a.¬{y} is now
expressed by ¬O t ∀a−.¬{x}. Hence, we obtain the disjunction

∀r.(¬{x} t ∀v.¬{z}) t ∀s.(∀a.(¬O t ∀a−.¬{x}) t ∀v.¬{z}) t ∃c.{x}.

By analogously eliminating the nominal schema variable z, we obtain the disjunction

∀r.¬{x} t ∀s.(∀a.(¬O t ∀a−.¬{x}) t ∀v.(¬O t ∀v−.¬{x})) t ∃c.{x}

which corresponds to the axiom

∃r.{x} u ∃s.(∃a.(O u ∃a−.{x}) u ∃v.(O u ∃v−.{x})) v ∃c.{x}

with x as the only remaining nominal schema variable.

7 Implementation and Evaluation

Our reasoning system Konclude5 [29] is able to deal with SROIQ knowledge bases and
uses, besides many other optimisations, an absorption technique that is based on the one
presented in Section 3. We have extended Konclude to SROIQV by integrating (i) an up-
front grounding of nominal schema axioms and (ii) tableau extensions with different optimi-
sations for propagating variable mappings in order to support the presented nominal schema
absorption in Section 4. The upfront grounding is not only used to compare our nominal
schema absorption technique, but also to eliminate axioms with nominal schemas that can-
not be absorbed at all. The upfront grounding is more efficient for concepts that are certainly
used in the completion graph, because upfront grounded concepts can be better preprocessed
and it is not necessary to dynamically extend the knowledge base during the construction
of the completion graph for the grounded concepts. This is especially useful for Konclude,
since it supports the parallel processing of non-deterministic alternatives for which it would
be necessary to synchronise the extensions of the knowledge base or to separately extend
the knowledge base in each alternative.

Unfortunately, a straightforward implementation of the proposed propagation of variable
mappings still bears the following sources of inefficiency:

• If a knowledge base contains an ABox individual a that is connected to many other indi-
viduals by a role r, some mappings are propagated to a, and the propagation is continued
over r, then these mappings are propagated to all such connected r-neighbours, even if
the mappings are only required on a few of them.

• Dependency information for each propagated mapping has to be held separately in order
to support dependency directed backtracking [1,31].

5 Available at http://www.konclude.com/

http://www.konclude.com/
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Table 6 Ontology metrics

Ontology Expressiveness Axioms Classes Properties Individuals Rules
UOBM1\D SHOIN 190093 69 36 25453 0
family\D ALCHOIN 212 19 16 23 12
ODGI\D SHIN 2391 346 83 356 2

Table 7 Hand-crafted DL-safe rules R1-R5 for the evaluation of UOBM1\D
Name DL-safe Rule Matches
R1 isFriendOf(?x, ?y), like(?x, ?z), like(?y, ?z)→ friendWithSameInterest(?x, ?y) 4,037
R2 isFriendOf(?x, ?y), takesCourse(?x, ?z), takesCourse(?y, ?z)→ 82

friendWithSameCourse(?x, ?y)
R3 takesCourse(?x, ?z), takesCourse(?y, ?z), hasSameHomeTownWith(?x, ?y)→ 940

classmateWithSameHomeTown(?x, ?y)
R4 hasDoctoralDegreeFrom(?x, ?z), hasMasterDegreeFrom(?x, ?w), 369

hasDoctoralDegreeFrom(?y, ?z), hasMasterDegreeFrom(?y, ?w),
worksFor(?x, ?v),worksFor(?y, ?v),→ workmateSameDegreeFrom(?x, ?y)

R5 isAdvisedBy(?x, ?z), isAdvisedBy(?y, ?z), like(?x, ?w), like(?y, ?w), 286
like(?z, ?w)→ personWithSameAdviserAllSameInterest(?x, ?y)

• To create the correct dependencies, the variable mappings have to be joined on each
node separately, even if we already have joined the same sets of variable mappings on
other nodes.

We have, therefore, also implemented a variant of the propagation, where we create a rep-
resentative for a set of variable mappings. We then propagate only these representatives
and track the dependencies only for propagated representatives as in [28]. If a clash is dis-
covered, then we extract and backtrack only the dependencies for those mappings, which
are involved in the creation of the clash. In order to extract the relevant dependencies, we
save for the representatives how they are composed from other representatives and variable
mappings.

Furthermore, Konclude uses a batch processing mode for the variable mappings, i.e.,
Konclude tries to apply standard deterministic rules first and then the new rules that handle
variable mappings are applied in the same order as the corresponding concepts and axioms
are created in the absorption. Usually, this is a big advantage, because then many variable
mappings can be handled together and the overhead of separate rule applications is mini-
mized.

Our evaluation is primarily based on DL-safe rules to enable a comparison between
the propagation of variable mappings that is integrated in Konclude and the DL reasoners
HermiT 1.3.76 and Pellet 2.3.0 [24], which have dedicated rule support. To the best of our
knowledge, these are the only reasoning systems that support DL-safe rules for such ex-
pressive ontologies. We have integrated a converter into Konclude, which transforms the
DL-safe rules into nominal schema axioms. The conversion is straightforward, however, es-
pecially for nominal schema axioms that are obtained from DL-safe rules, it is often possible
to eliminate variables as discussed in Section 6, which is intensively used by Konclude. For
example, the DL-safe Rule (R1) is converted to the Nominal Schema Axiom (R1′) and then

6 http://www.hermit-reasoner.com

http://www.hermit-reasoner.com
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Table 8 Comparison of the increases in reasoning time of the consistency tests for UOBM1\D extended by
the rules R1–R5 between different techniques in seconds (additional preprocessing time in parentheses)

Rule upfront grounding direct propagation representative propagation
without BP with BP without BP with BP

R1 (10.99) mem 9.12 7.10 5.06 3.38
R2 (10.92) 4.05 3.33 2.33 2.13 2.11
R3 (13.33) 3.55 1.98 0.62 2.20 0.76
R4 (16.44) 0.30 1.08 0.09 1.06 0.07
R5 (time) – 1.87 0.50 1.80 0.43

{x} and {z} are replaced by O, which results in Axiom (R1′′).

isFriendOf(?x, ?y), like(?x, ?z), like(?y, ?z)→ friendWithSameInterest(?x, ?y) (R1)

{x} u ∃like.({z} u ∃like−.{y}) u ∃isFriendOf.{y} v ∃friendWithSameInterest.{y} (R1′)

O u ∃like.(O u ∃like−.{y}) u ∃isFriendOf.{y} v ∃friendWithSameInterest.{y} (R1′′)

All experiments were carried out on an Intel Core i7 940 quad core processor running at
2.93 GHz, however, all reasoners are restricted to use only one core for the computation. All
results are the average of three separate runs. The execution of a test was aborted if either a
reasoner required more than 24 hours or more than 10 GByte memory which is denoted by
time resp. mem in the results.

7.1 UOBM-Benchmarks

For the evaluation, we have extended the University Ontology Benchmark (UOBM) [20]
with DL-safe rules. We are only using the smallest UOBM ontology since many reasoning
systems already require for this ontology a lot of memory as well as reasoning time if it is
extended with rules. Furthermore, we have removed all data properties from the ontology
because these are not yet supported by Konclude. We refer to this ontology as UOBM1\D
(cf. Table 6).

The hand-crafted DL-safe rules R1–R5 are depicted in Table 7, where the number of
matches for each rule in the consistency check is shown in the column on the right side,
i.e., how often a rule can be instantiated with different variable bindings. However, since the
UOBM1\D ontology is not completely deterministic, these numbers might vary between
different executions and between different reasoners. All these rules contain at least one
cycle, i.e., they do not have a tree-shaped form, and hence, these rules are not completely
trivial.

The UOBM1\D ontology without rules can be preprocessed by Konclude in 1.03 sec-
onds and the corresponding consistency test requires only 1.09 seconds. Table 8 shows the
increases in reasoning time of the consistency tests for Konclude using different approaches
and optimisations to handle the nominal schema axioms that are obtained by converting the
DL-safe rules R1–R5 of Table 7. The additional required preprocessing time for the upfront
grounding is shown in parentheses (column 2). Note, we show only the additional required
times in order to facilitate the comparison, i.e., to get the actual required times, 1.03 and
1.09 have to be added to the preprocessing and reasoning times, respectively.

Clearly, the upfront grounding requires additional preprocessing time for the grounding
of the rules, but the majority of the time is required for further processing the grounded ax-
ioms (e.g., absorption, lexical normalisation, etc.). Note, the upfront grounding totally fails
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Table 9 Comparison of the increases in reasoning time of the consistency tests for UOBM1\D extended by
the rules R1–R5 between Konclude, HermiT and Pellet in seconds

Rule Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
R1 3.38 31.46 6.33
R2 2.11 4.79 7.4
R3 0.76 1.67 142.25
R4 0.07 1.42 122.85
R5 0.43 28.41 mem

Table 10 Comparison of the increases in memory consumption of the consistency tests for UOBM1\D ex-
tended by the rules R1–R5 between different techniques in MBytes

Rule upfront grounding direct propagation representative propagation
without BP with BP without BP with BP

R1 mem 4387 3451 1522 1234
R2 1116 729 475 350 349
R3 1089 491 125 433 160
R4 292 237 44 221 36
R5 time 375 144 367 110

Table 11 Comparison of the increases in memory consumption of the consistency tests for UOBM1\D ex-
tended by the rules R1–R5 between HermiT, Pellet and Konclude in MBytes

Rule Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
R1 1234 ≤ 10 659
R2 349 ≤ 10 963
R3 160 ≤ 10 3654
R4 36 ≤ 10 9420
R5 110 ≤ 10 mem

for R5, because the variable elimination can only eliminate two of four variables and the
upfront grounding tries to generate 647, 855, 209 new axioms. Furthermore, the reasoning
time for the upfront grounding is not as good as for the other approaches. This is due to the
fact that the implicit propagation of variable mappings as concepts requires a lot of sepa-
rate rule applications and each rule application has some overhead, e.g., the dependencies
have to be managed correctly. The direct propagation of variable mappings (as presented
in Section 4) and the propagation of representatives are shown without as well as with the
back propagation optimisation (BP) in Table 8. Of course, the back propagation can only
improve the reasoning time if it enables a significant reduction of the creation, combination
and propagation of variable mappings. For example, the savings for R2 are very limited,
because most of the students in the UOBM ontology take courses and also have friends and
thus, almost all students match the conditions to be identified as a candidate for which the
creation and propagation of variable mappings is necessary. Usually, the propagation of rep-
resentatives further improves the reasoning time and, moreover, since the dependencies can
be stored in a more compact way, it also saves a significant amount of memory.

Table 9 shows a comparison of the increases in reasoning time of the consistency tests
for UOBM1\D extended by the DL-safe rules R1–R5 of Table 7 between Konclude, Her-
miT and Pellet. Again, the times for the consistency test of UOBM1\D without rules is not
included to facilitate the comparison, i.e., to get the actual required times, it would be neces-
sary to add for Konclude 1.09, for HermiT 23.24 and for Pellet 2.22 seconds. HermiT already
requires a lot of time for the consistency test itself, which is possibly also a consequence of
a delayed clausification of axioms and rules. However, since HermiT is not supporting com-
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Table 12 DL-safe rules Q1–Q15 obtained from UOBM queries

Name DL-safe Rule
Q1 UndergraduateStudent(?x), takesCourse(?x,D0.U0/Course0)→ Q1(?x)
Q2 Employee(?x)→ Q2(?x)
Q3 Student(?x), isMemberOf(?x,D0.U0)→ Q3(?x)
Q4 Publication(?x), publicationAuthor(?x, ?y),Faculty(?y),

isMemberOf(?y,D0.U0)→ Q4(?x)
Q5 ResearchGroup(?x), subOrganizationOf(?x,U0)→ Q5(?x)
Q6 Person(?x), hasAlumnus(U0, ?x)→ Q6(?x)
Q7 Person(?x), hasSameHomeTownWith(?x,D0.U0/FullPro f essor0)→ Q7(?x)
Q8 SportsLover(?x), hasMember(D0.U0, ?x)→ Q8(?x)
Q9 GraduateCourse(?x), isTaughtBy(?x, ?y), isMemberOf(?y, ?z),

subOrganizationOf(?z,U0)→ Q9(?x)
Q10 isFriendOf(?x,D0.U0/FullProfessor0)→ Q10(?x)
Q11 Person(?x), like(?x, ?y),Chair(?z), isHeadOf(?z,D0.U0), like(?z, ?y)→ Q11(?x)
Q12 Student(?x), takesCourse(?x, ?y), isTaughtBy(?y,D0.U0/FullProfessor0)→ Q12(?x)
Q13 PeopleWithHobby(?x), isMemberOf(?x,D0.U0)→ Q13(?x)
Q14 Woman(?x), Student(?x), isMemberOf(?x, ?y), subOrganizationOf(?y,U0)→ Q14(?x)
Q15 PeopleWithManyHobbies(?x), isMemberOf(?x,D0.U0)→ Q15(?x)

Table 13 Comparison of the increases in reasoning time of the consistency tests for UOBM1\D extended by
the rules Q1–Q15 between Konclude, HermiT and Pellet in seconds

Rule Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
Q1 ≤ 0.1 ≤ 0.1 3.9
Q2 ≤ 0.1 ≤ 0.1 720.0
Q3 ≤ 0.1 ≤ 0.1 2.5
Q4 ≤ 0.1 ≤ 0.1 2.5
Q5 ≤ 0.1 ≤ 0.1 12.4
Q6 ≤ 0.1 ≤ 0.1 2.0
Q7 ≤ 0.1 ≤ 0.1 mem
Q8 ≤ 0.1 ≤ 0.1 113.4
Q9 0.2 0.9 460.9
Q10 ≤ 0.1 1.5 5.5
Q11 0.1 26.3 12.6
Q12 0.2 1.4 4.6
Q13 ≤ 0.1 0.6 256.9
Q14 0.3 1.2 2730.4
Q15 1.2 ≤ 0.1 2.9

plex roles in the body of rules, the consistency test might be incomplete for some rules.
For example, the role hasSameHomeTownWith of rule R3 is transitive. Konclude uses the
propagation of representatives combined with the back propagation optimisation and often
tests the consistency for the UOBM1\D ontology even with rules faster than HermiT or Pel-
let. In contrast, HermiT hardly requires additional memory for the reasoning with the rules
(less than 10 MBytes for R1–R5, cf. Table 11), whereby the memory consumption of Her-
miT is often better than the memory consumption of Konclude and Pellet. This is possibly
a consequence of the not supported complex roles, wherefore it is not necessary to manage
the dependencies as long as the new consequences from the rules are not instantiated. Ta-
ble 10 and 11 shows the complete comparison of the increases in memory consumption in
MBytes. Here, too, we would have to add for Konclude 564, for HermiT 684 and for Pellet
551 MBytes to get the actual memory consumption.

In addition, we have converted the accompanying queries 1–15 from the University
Ontology Benchmark [20] to the DL-safe rules Q1–Q15 (see Table 12). The comparison
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of the increases in reasoning time of the consistency tests for UOBM1\D extended by these
rules is shown in Table 13. Konclude is dominating the other reasoners for nearly all rules,
which is possible due to the variable elimination optimisation, which allows for absorbing
the relatively simple and tree-shaped rules to ordinary concepts. HermiT can also handle
many of these rules without significant performance losses, however, some of these rules
again use transitive roles, wherefore HermiT might be incomplete (e.g., Q5, Q7, Q9, Q14).
Pellet has more problems with the handling of the these rules and also requires significantly
more memory. Pellet is even reaching the memory limit of 10 GBytes for rule Q7, whereas
the other reasoners can process the consistency tests for all rules with less than one GByte.

Note, the consistency checking is also influenced by many optimisations in the reason-
ing system that are not related to the rule processing mechanism. For example, dependency
directed backtracking [1,31] allows for evaluating only “relevant” non-deterministic alterna-
tives with the tableau algorithm, i.e., reasoning systems that use a better dependency directed
backtracking technique can prune bigger parts of the search tree. This may also influences
the increase in reasoning time for the addition of rules to the knowledge base, since the
rules possibly add non-determinism and cause clashes for which backtracking is required.
A worse dependency directed backtracking technique then requires the evaluation of more
non-deterministic alternatives, which results in more processing time even if the integrated
rule processing mechanism is better. Hence, the consistency test is not an optimal way to
compare different reasoners for their rule processing mechanism.

However, such comparisons are even more problematic for higher level reasoning tasks
such as instance retrieval or classification. In particular, Konclude uses sophisticated caching
mechanisms, where also the fully expanded and clash-free completion graph from the initial
consistency check of the ABox is cached and reused for subsequent tests [29]. In addition,
for each subsequent test only the nodes for those ABox individuals are processed for which
it cannot be safely ensured that these nodes could be expanded in the same way as for the
cached completion graph from the initial consistency check. As a consequence, only small
parts of the ABox have to be reactivated for processing of subsequent instance tests or sat-
isfiability tests of concepts that use nominals. Obviously, this significantly influences the
processing time of higher level reasoning tasks. For example, Konclude needs only 0.2 sec-
onds to classify the UOBM1\D ontology after the consistency check due to these caching
mechanisms, whereas Pellet requires 9.9 and HermiT 271.7 seconds. As a consequence,
the comparison of the nominal schema absorption technique in Konclude with rule process-
ing mechanisms of other reasoners for higher level reasoning tasks such as realisation is
hardly informative since Konclude can often fall back on cached data, whereas many other
reasoners usually repeat the construction of the ABox (especially if the knowledge base is
non-deterministic).

7.2 OpenRuleBench-Benchmarks

We adapted tests from OpenRuleBench [19] to compare the reasoning systems for some
specific test cases. Basically, the LargeJoin test case gives an impression of the capability
of handling binary joins. Therefore, the reasoners have to create new role instantiations for
the roles c1, b1, b2 and finally a between ABox individuals based on the following non-
recursive, tree-shaped rules:

d1(?x, ?y), d2(?y, ?z) → c1(?x, ?z)
c3(?x, ?y), c4(?y, ?z) → b2(?x, ?z)

c1(?x, ?y), c2(?y, ?z) → b1(?x, ?z)
b1(?x, ?y), b2(?y, ?z) → a(?x, ?z)

The assertions for the base roles d1, d2, c2, c3 and c4 were randomly generated. Table 14
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Table 14 Comparison of the reasoning times of the consistency tests for the LargeJoin test case between
Konclude, HermiT and Pellet in seconds

# individuals # assertions per base role Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
50,000 10,000 1.2 1.0 3.7
50,000 20,000 3.4 2.0 6.2
50,000 30,000 6.9 3.4 10.5
100,000 20,000 3.5 1.6 7.0
100,000 40,000 11.1 3.8 25.4
100,000 60,000 23.6 10.5 97.1

Table 15 Comparison of the memory consumption of the consistency tests for the LargeJoin test case be-
tween Konclude, HermiT and Pellet in MBytes

# individuals # assertions per base role Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
50,000 10,000 507 985 1452
50,000 20,000 847 1240 1739
50,000 30,000 1480 1453 2548
100,000 20,000 1129 1175 2023
100,000 40,000 2380 1358 3535
100,000 60,000 4304 1940 7400

shows the comparison of the reasoning times of the consistency tests between Konclude,
HermiT and Pellet for different data sizes, i.e., the number of individuals is shown in the
first column and the number of randomly added assertions for each base role is shown in the
second column. Clearly, HermiT is dominating the other systems for this test case. Again,
Konclude uses the back propagation optimisation and the propagation of representatives.
However, the rules are very simple, wherefore the benefits of these optimisations are limited.
Furthermore, Konclude does not directly add the implied role instantiation, but adds an
existential restriction for the corresponding role, which is processed in a separate step and
is, therefore, more costly.

Table 15 shows the comparison of the memory consumption of the consistency tests
for the LargeJoin test case between Konclude, HermiT and Pellet. Also for this test case
Konclude has a significant higher memory consumption than HermiT, which is not very sur-
prising, because Konclude saves intermediate results (e.g., the propagated variable mappings
with dependency information) and also requires some additional memory for the grounded
existential restrictions.

LargeJoin-M is a variant of the test case LargeJoin, where only the final role a has to be
instantiated by the reasoners, which is achieved by merging the rules of the LargeJoin test
case together into the following rule:

d1(?x, ?y1), d2(?y1, ?y2), c2(?y2, ?y3), c3(?y3, ?y4), c4(?y4, ?z) → a(?x, ?z).
Table 16 and 17 shows the comparison of the reasoning times and memory consumption, re-
spectively, of the consistency tests for LargeJoin-M with the same test data as for LargeJoin.
Now, the back propagation optimisation significantly improves the reasoning time and mem-
ory consumption for Konclude and there are also some improvements for Pellet, which is
possibly due to the reduced number of role instantiations that have to be created. In contrast,
HermiT performs worse for bigger data sizes than for the LargeJoin test case.

The transitive closure test TransClos-T, which is also adapted from OpenRuleBench
[19], demonstrates the performance for a simple transitive/recursive problem. All individu-
als in the test are connected in a big cycle with the transitive role par, and the rule

par(?x, ?y) → tc(?x, ?y)
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Table 16 Comparison of the reasoning times of the consistency tests for the LargeJoin-M test case between
Konclude, HermiT and Pellet in seconds

# individuals # assertions per base role Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
50,000 10,000 0.7 0.9 1.6
50,000 20,000 1.1 1.4 4.2
50,000 30,000 2.6 2.6 7.6
100,000 20,000 1.4 1.6 5.7
100,000 40,000 5.1 5.3 18.0
100,000 60,000 11.8 20.4 94.9

Table 17 Comparison of the memory consumption of the consistency tests for the LargeJoin-M test case
between Konclude, HermiT and Pellet in MBytes

# individuals # assertions per base role Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
50,000 10,000 342 974 1361
50,000 20,000 483 1248 1526
50,000 30,000 702 1289 1623
100,000 20,000 723 1170 1719
100,000 40,000 1405 1393 3435
100,000 60,000 2569 1602 7114

Table 18 Comparison of the reasoning times of the consistency tests for the TransClos-T test case between
Konclude and Pellet in seconds

# individuals # random assertions Konclude 0.4.1 Pellet 2.3.0
500 100 1.2 8021.1
500 200 1.8 7963.6
1,000 200 6.7 time
1,000 400 8.2 time

Table 19 Comparison of the reasoning times of the consistency tests for the TransClos-R test case between
Konclude, HermiT and Pellet in seconds

# individuals # random assertions Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
500 100 2.1 1.0 mem
500 200 1.1 1.0 mem
1,000 200 5.1 4.7 mem
1,000 400 3.3 5.1 mem

is used to enforce that the transitive closure is explicitly represented with the role tc. Ad-
ditionally, some random assertions for the role par were added to make the test case not
completely straightforward. Table 18 shows the comparison of the reasoning times of the
consistency tests for the test case TransClos-T between Konclude and Pellet. HermiT does
not consider the transitivity in the body of the rule and is, therefore, omitted in this compar-
ison. The transitivity can, however, be simulated for this test case by using the recursive rule

tc(?x, ?y), par(?y, ?z) → tc(?x, ?z),
which is denoted by TransClos-R, i.e., TransClos-R is a variant of TransClos-T in which
this rule is used instead of the transitivity axiom for the role par. Thus, this test case is also
correctly handled by HermiT. The comparison of the reasoning times of the consistency
tests for this test case is shown in Table 19. Konclude requires more or less the same amount
of resources for both test cases. However, there are some differences in the propagation,
wherefore the memory consumption for the test case TransClos-T is slightly higher. Al-
though Konclude and HermiT can easily process TransClos-R with less than one GByte and
approximately the same amount of reasoning time, this test case is much more problematic
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Table 20 Comparison of the reasoning times of the consistency tests for ontologies with DL-safe rules be-
tween Konclude, HermiT and Pellet in seconds

Ontology Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
family\D+100 without rules 0.2 0.6 1.3
family\D+100 with rules 2.5 1.3 mem
ODGI\D+100 without rules 11.4 367.6 13.3
ODGI\D+100 with rules 13.6 467.4 17.8

Table 21 Comparison of the memory consumption of the consistency tests for ontologies with DL-safe rules
between Konclude, HermiT and Pellet in MBytes

Ontology Konclude 0.4.1 HermiT 1.3.7 Pellet 2.3.0
family\D+100 without rules 147 473 771
family\D+100 with rules 954 744 mem
ODGI\D+100 without rules 704 1302 1658
ODGI\D+100 with rules 884 1456 1852

for Pellet, which suddenly requires more than 10 GBytes for TransClos-R compared to less
than 2 GBytes for TransClos-T.

7.3 Benchmarks for Ontologies with Rules

We use family\D+100 and ODGI\D+100 to compare the reasoning times for ontologies with
already integrated rules. The family\D ontology (see Table 6) is obtained from the fam-
ily.swrl.owl demo ontology in the Protégé Ontology Library7 by removing all data properties
and rules with SWRL Built-Ins. In order to get an interesting benchmark size, we created
family\D+100 from family\D by adding 100 copies of the ABox with renamed non-nominal
individuals. Analogously, we obtained ODGI\D (see Table 6) and ODGI\D+100 from the
ontology for disease genetic investigation (ODGI) from the NCBO BioPortal8.

Table 20 shows the comparison of the reasoning times of the consistency tests for these
ontologies with and without rules. Although the family\D+100 ontology contains the rule

Person(?y), hasChild(?y, ?x), hasChild(?y, ?z), ?x ,?z→ hasSibling(?x, ?z),

which uses the atom ?x,?z in the body of the rule that states that two individuals have to be
different, the reasoning time of HermiT is hardly affected. Usually, such rules cannot com-
pletely absorbed and, therefore, the application of such rules lead to non-determinism. Due
to the fact that this rule has to be applied quite often, the reasoning with the family\D+100

ontology is highly non-deterministic. This seems to be more problematic for Konclude and
Pellet, possibly due to their different dependency management. However, HermiT performs
worse for ODGI\D+100 than Konclude and Pellet. The ODGI\D+100 ontology also contains
transitive roles, however, they are not used in the rule bodies, and hence, also the results
for HermiT are complete. Analogously, Table 21 shows the comparison of the memory con-
sumption of the consistency tests for these ontologies with and without rules.

7 http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
8 http://bioportal.bioontology.org/ontologies/1086

http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
http://bioportal.bioontology.org/ontologies/1086
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7.4 Benchmarks beyond Rules

Unfortunately, there exists no test suite for nominal schemas and, to the best of our knowl-
edge, there are also no other reasoners with nominal schema support. Therefore, the eval-
uation of nominal schema axioms, which are more expressive than DL-safe rules, is less
conclusive, since the results cannot be compared to the results of other systems. Also, the
comparison to the upfront grounding is often not very interesting, since the performance of
the upfront grounding mainly depends on the additional required preprocessing time, which
primarily relies on the number of nominal schema variables and the number of ABox indi-
viduals. Hence, the performance of the upfront grounding and the performance gain with the
absorption and the propagation of variable mappings is more or less predictable and, there-
fore, it is easily possible to create tests, where the nominal schema absorption approach
performs as much better as desired. Note, nominal schema axioms that are more expressive
than DL-safe rules often reduce the absorbable amount on the left-hand side of the axiom.
This is, however, not necessarily problematic, because the nominal schemas can often also
be absorbed in other parts of the axiom. For instance, the nominal schema axiom

{x} u ∃like.{y} u ∀isFriendOf.∃like.{y} v HasInterestAndAllFriendsSameInterest

identifies for the UOBM1\D ontology all ABox individuals, which have an interest and the
friends of these individuals have at least also the same interest. Obviously, the universal
restriction ∀isFriendOf.∃like.{y} on the left-hand side cannot be absorbed. However, {y} also
occurs in the absorbable existential restriction ∃like.{y} in an absorbable position, wherefore
the nominal schema absorption approach is still able to significantly reduce the grounding
effort. For UOBM1\D extended with this nominal schema axiom, Konclude requires for the
consistency test with the upfront grounding 6.1 seconds of additional preprocessing time and
3.4 seconds of additional reasoning time, whereas the nominal schema absorption approach
only increases the reasoning time by 0.9 seconds.

Of course, there still exists nominal schema axioms with nominal schemas that only
occur in non-absorbable positions. For example, the axiom

{x} u ∃like.{y} u ∀isFriendOf.({z} u ∃like.{y})
v HasInterestAndAllFriendsSameInterest

extends the previous nominal schema axiom with the nominal schema {z}, which further en-
forces that all friends also have to be known ABox individuals. For this axiom, the grounding
concept that is created by the absorption has to handle the disjunction

HasInterestAndAllFriendsSameInterest t ∃isFriendOf.(¬{z} t ¬∀like.¬{y})
and, since only bindings for the variable y are created and propagated, the grounding rule
has to complete the variable mappings to the variable z by combining them with every ABox
individual. As a consequence, the grounding rule adds quite a lot of different disjunctions
and this for many nodes in the completion graph, wherefore Konclude with the nominal
schema absorption is running out of memory. However, this would obviously also be the
case with the upfront grounding if the preprocessing for the upfront grounding were able to
finish within the time limit, which fails analogously to the processing of rule R5, since only
the nominal schema variable x can be eliminated.

In principle, it would be possible to use a more sophisticated axiom rewriting in order to
improve the absorption and, as a consequence, also the overall performance for the reason-
ing with such axioms. For example, the existentially required connection between {z} and
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{y} over the role like within the universal restriction ∀isFriendOf.({z} u ∃like.{y}) can also
be expressed in the inverse direction within the absorbable existential restriction ∃like.{y},
which results in the axiom:

{x} u ∃like.({y} u ∃like−.{z}) u ∀isFriendOf.({z} u ∃like.{y})
v HasInterestAndAllFriendsSameInterest.

Although now also {z} can be partially absorbed, Konclude still requires for the consistency
test of UOBM1\D extended by this nominal schema axiom 35.9 seconds and 8.2 GBytes
due to the huge number of individuals that are found for {z}. Unsurprisingly, the intensive
use of nominal schemas in not completely absorbable constructs and the frequent grounding
of many such not absorbed concepts results in a lot of work for the reasoning system.

8 Conclusions

We have significantly improved the reasoning performance for nominal schemas with (i) an
extended absorption algorithm as well as (ii) slight modifications of the standard tableau
calculus. The resulting calculus creates bindings for nominal schema variables and is able
to propagate them through the completion graph in order to use these bindings to ground the
remaining and non-absorbable part of the nominal schema axioms. As a consequence, our
approach allows for “collecting” the bindings for those nominal schema axioms that have
to be grounded and considered for a specific node in the completion graph. We have shown
the correctness of the nominal schema absorption and, moreover, we have also presented
techniques for further optimisations.

The approach only improves the handling of “absorbable” axioms, but, to the best of our
knowledge, this restriction is satisfied for the majority of all nominal schema axioms that are
used in practical ontologies. The presented techniques have been integrated into the novel
reasoning system Konclude, which is now able to handle SROIQV knowledge bases, and
the empirical evaluation, which is primarily based on DL-safe rules, shows that our approach
performs well even when compared to other well-known DL reasoners with dedicated rule
support. In particular, the performance for rules with complex roles is significantly better
than in other reasoning systems for more expressive DLs.

The presented techniques are also interesting for the extension of existing tableau-based
DL reasoners to ordinary DL-safe rules, since they allow a direct integration of the sup-
port of DL-safe rules into the tableau algorithm, whereby an additional/separate inference
mechanism for the rules is not required.
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