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Abstract

This paper introduces Konclude, a high-performance reasoner for the Description Logic SROIQV. The supported
ontology language is a superset of the logic underlying OWL 2 extended by nominal schemas, which allows for ex-
pressing arbitrary DL-safe rules. Konclude’s reasoning core is primarily based on the well-known tableau calculus
for expressive Description Logics. In addition, Konclude also incorporates adaptations of more specialised proce-
dures, such as consequence-based reasoning, in order to support the tableau algorithm. Konclude is designed for
performance and uses well-known optimisations such as absorption or caching, but also implements several new opti-
misation techniques. The system can furthermore take advantage of multiple CPU’s at several levels of its processing
architecture. This paper describes Konclude’s interface options, reasoner architecture, processing workflow, and key
optimisations. Furthermore, we provide results of a comparison with other widely used OWL 2 reasoning systems,
which show that Konclude performs eminently well on ontologies from any language fragment of OWL 2.
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1. Introduction

The current version of the Web Ontology Language
(OWL 2) [1] is based on the very expressive Description
Logic (DL) SROIQ (see [2] for a DL introduction) and
extends the first version of OWL with more expressive
language features such as qualified cardinality restric-
tions and property chains.

Many existing reasoning systems have been adapted
to OWL 2 and several new optimisations have been
developed to deal with the latest language features or
specific profiles. Despite all the progress, reasoning
performance still shows up as a noticeable issue for
users. Because of the N2EXPTIME-complete worst-
case complexity for standard reasoning tasks inSROIQ
[3], this is expected at least for some ontologies. How-
ever, there are several clues which indicate that further
improvements are possible. For instance, an effective
coupling of fully-fledged OWL 2 reasoning procedures
with tractable procedures for OWL 2 profiles could im-
prove the overall performance. Moreover, multi-core
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computers are ubiquitous now, but state-of-the-art rea-
soners for expressive DLs do not yet implement an ef-
fective parallelised processing architecture.

In this system description, we introduce the novel rea-
soning system Konclude,1 which addresses both afore-
mentioned issues. It incorporates different reasoning
procedures and implements new as well as extensions
of existing optimisations adapted to concurrent process-
ing within a multi-core, shared memory architecture.
This significantly improves the running time of reason-
ing tasks for many real-world ontologies.

As of now, Konclude handles the DL SROIQ and
also supports nominal schemas [4] which generalise ar-
bitrary DL-safe rules [5]. Konclude supports the most
common reasoning services such as classification, real-
isation, queries for sub-classes, class instances or types
of individuals and it can be used as server or via com-
mand line on various platforms.

The rest of this system description is organised as fol-
lows: we next introduce the system’s architecture; in
Section 3 we give an overview of the integrated optimi-
sations; in Section 4 we present the result of a compre-
hensive evaluation and comparison to other state-of-the-
art reasoners before we conclude in Section 5.

1Available at http://www.konclude.com/
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2. System Architecture

Konclude is implemented in C++ and makes use of
the cross-platform application framework Qt.2 The rea-
soner runs on all Qt supported platforms including Win-
dows, OS X, Linux, and Solaris.

Konclude offers two communication options: First,
it is an OWLlink server that exposes ontology man-
agement and reasoner functionality to one or more
clients (usually ontology-based applications) via the
W3C OWLlink protocol [6]. As OWLlink server,
Konclude supports OWL 2 XML as content format
with HTTP as transport protocol as specified in the
OWLlink HTTP/XML binding.3 Since OWLlink is
an implementation-neutral and extensible protocol, it is
well-suited for complex and distributed semantic appli-
cations that aim for independent system components on
dedicated machines in order to achieve overall stability
as well as scalability. Ontology-aware applications that
use the OWL API can easily link to Konclude via the
OWLlink OWL API Adapter.4 Depending on the com-
munication volume, the latter may result in some perfor-
mance drain caused by the additional serialisation and
parsing overhead in comparison to native OWL API im-
plementations. Second, users can interact with the rea-
soner via a command line interface, which can, for ex-
ample, be used for testing or benchmarking. The latter
is similar to those of other OWL reasoners and allows
for loading an ontology (in OWL 2 XML syntax or as
OWLlink request), executing a basic reasoning request
with a particular system configuration, and optionally
for saving any results or OWLlink response.

2.1. Reasoner Management
The main components of Konclude and their interac-

tion is shown in Figure 1. The overall workflow for han-
dling ontologies and reasoning requests can be divided
into three main processing stages: parsing, loading, and
reasoning. Some processing stages are divided into sev-
eral steps (e.g., loading consists of building the internal
representation of the ontology and preprocessing the ax-
ioms). Each processing step is usually controlled by a
manager, e.g., the preprocessing manager.

Konclude can simultaneously handle several ontolo-
gies and all ontologies are processed lazily, i.e., only
those steps are performed, which are necessary to an-
swer a given request for a certain ontology. In that re-
spect, parsing of ontology axioms does not immediately

2http://qt-project.org/
3http://w3.org/Submission/owllink-httpxml-binding
4http://owllink-owlapi.sourceforge.net/

trigger the creation of an internal representation nor the
preprocessing of these axioms. Instead, the parsed ax-
ioms (possibly from different clients) are first collected
in containers in order to keep track of the different revi-
sions of an ontology.

As depicted in Figure 1, the Reasoning Manager is
a key component of Konclude for the handling of re-
quests that require reasoning. Such requests are char-
acterised by a list of conditions that have to be satis-
fied in order to generate an answer. The Reasoning

Manager is then responsible for identifying and man-
aging the processing workflow that is necessary to sat-
isfy the conditions of these requests. For instance, if the
user requests the class hierarchy of an ontology, then it
is necessary to build the internal representation, to pre-
process these data structures, to test the consistency of
the ontology and, finally, to classify. Furthermore, rea-
soning tasks, such as classification, might trigger sev-
eral other precomputing steps, such as the construction
and population of internal data structures and caches,
to make reasoning more efficient. Further delegation to
sub-managers is stopped by the Reasoning Manager

if required processing steps cannot be successfully com-
pleted. For instance, classification is initialised only if
the ontology is first proved to be consistent. The work-
flow of a particular request depends on the characteris-
tics of its respective ontology. For example, for a deter-
ministic ontology the Classification Manager cre-
ates a Deterministic Classifier.

2.2. Reasoning Procedures
At its core, Konclude is based on the tableau calculus

for SROIQ [7]. Tableau calculi are extensible, sound,
and complete decision procedures for expressive DLs
and are used in many well-known reasoning engines.
More precisely, they are refutation-based calculi that
transform reasoning tasks into one or more consistency
problems. The objective of the tableau decision proce-
dure is to check whether the consistency problems can
be satisfied or not. For that purpose the calculus tries to
systematically construct an abstract model of the satisfi-
ability input – the so-called completion graph. Roughly
speaking, a completion graph is a graph of nodes re-
lated by edges. Each node represents an individual in
a model of the ontology and is labelled with a set of
concepts (called classes/class expressions in OWL) that
this individual has to satisfy. Edges relate nodes with
successor nodes and are labelled with roles (called prop-
erties/property expressions in OWL). The tableau algo-
rithm uses a set of expansion rules to syntactically de-
compose concepts in node labels, where each such rule
application can add new concepts to node labels and/or
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Figure 1: Architecture and important components of Konclude

new nodes and edges to the completion graph, thereby
explicating the structure of a model. The rules are re-
peatedly applied until either the graph is fully expanded
(no more rules are applicable) or a contradiction (called
a clash) is discovered. If the rules (some of which are
non-deterministic) can be applied such that they build
a fully expanded, clash-free completion graph, then the
checked consistency problem can be satisfied. Termi-
nation of the algorithm is ensured by a technique called
blocking which prevents the generation of infinite com-
pletion graphs for cyclic concepts, i.e., for concepts that
are defined with axioms such that they directly or in-
directly refer to themselves. For example, if an axiom
states that each Person has a father that is also a Person,
then the class Person is cyclic.

In addition to the tableau calculus, Konclude incorpo-
rates more specialised reasoning procedures. Most no-
tably, it utilises a variant of completion-/consequence-
based saturation procedure [8, 9] that is adapted to the
data structures of the tableau algorithm.

2.3. Parallel Processing Levels

Konclude allows for parallelisation at three different
levels of its processing architecture:

Parallel Ontology Processing Konclude is able to pro-
cess several ontologies concurrently. For instance, it
can classify several ontologies at the same time since
the classifiers and many other important system compo-
nents are instantiated in separate, independent threads.
This is especially useful if Konclude is run as an
OWLlink server to serve multiple clients that operate
on different ontologies. In order to avoid inter-process
bottlenecks, communication among main components
is based on peer-to-peer messages.

Parallel Query/Sub-Query Answering Konclude is
able to answer several queries for one particular ontol-
ogy at a time. In case these queries depend on each
other (such as realisation or classification) they will also
benefit from already finished processing steps or cached
(intermediate) results from previous requests. Further-
more, one particular query (such as satisfiability of all
classes, classification, realisation) can be naturally split
up into sub-queries (e.g. concept subsumption or satis-
fiability). These sub-queries are scheduled for concur-
rent processing and will incrementally contribute to the
globally available result caches.

Parallel Completion Graph Processing The most so-
phisticated parallelisation mechanism in Konclude is on
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the completion graph level. Konclude allows for con-
current processing of alternative branches caused by
non-deterministic tableau rules, i.e., non-deterministic
alternatives such as disjuncts of a disjunction or merges
caused by an at-most cardinality restriction. However,
special mechanisms are required in order to control this
kind of concurrency. As an example, in case of a suc-
cessful expansion of one alternative its sibling branches
(and sub-branches thereof) need to be discarded.

The number of worker threads used by Konclude is
adjustable by the user on start up. This is not only use-
ful for fair benchmarking with single-threaded systems,
as done in our cross evaluation, but also has an effect on
memory consumption since each worker has to set up
and maintain some exclusive working memory. Con-
sequently, reasoning with more worker threads usually
increases the memory consumption.

As of now, parallelisation in Konclude is applied to
the tableau procedure as well as on the overall system
level. Other processing steps such as preprocessing,
precomputation, and saturation are currently not carried
out in parallel.

2.4. Task Scheduling

As mentioned in the previous section, Konclude of-
fers parallelisation at different processing levels and at
various levels of user control. Whereas the potential in-
crease of concurrency at ontology level (cf. 2.3) is just
a factor of the number of distinguished ontologies, the
increase at query or completion graph level easily be-
comes exponential. Therefore, the latter ones are man-
aged by a dedicated component within the Kernel of
Konclude, namely the Task Calculation Manager.
Instead of creating a new thread for every task, the
Kernel has access to a configurable number of threads,
namely its Task Calculation Units. The number of
Task Calculation Units (or workers) does not nec-
essarily have to match the number of CPU cores, but the
latter typically is a practical upper bound for scalability
from parallelisation.

The Task Calculation Scheduler is a vital and
highly optimised Kernel component that distributes
tasks to the different Task Calculation Units. In
case the number of tasks exceeds the number of avail-
able Task Calculation Units – either initially or
due to sub-tasks generated in consequence of non-
determinism – the remaining tasks are buffered tem-
porarily for later allocation by the Task Calculation

Scheduler. Furthermore, the Task Calculation

Scheduler also has to take care of certain task in-
terdependencies. For example, the classifiers in Kon-

clude typically create several basically independent sub-
sumption tests. Some of the latter may require to
branch non-deterministically which in turn schedules a
multitude of new sub-tasks. The Task Calculation

Scheduler ensures a balanced assignment of tasks
to Task Calculation Units, where more high-level
and independent tasks are delegated with higher prior-
ity to different Task Calculation Units. This helps
with keeping communication between threads small.

The Task Calculation Units can exchange in-
formation over caches, whereby also intermediate re-
sults can be shared. Likewise to other key infrastructure,
Konclude relies on its own, highly-optimised cache im-
plementation that ensures that any cache is accessible
without significant blocking, which is of fundamental
importance for parallel read operations.

Moreover, the Kernel uses a specialised memory
management, which allocates memory in larger blocks
and releases these blocks if the corresponding tasks are
not required anymore. This is especially useful in a
parallelised environment, where memory is often allo-
cated and released by different threads, in order to avoid
blocking and defragmentation of memory.

The Task Calculation Units are typically used
to construct completion graphs with the tableau algo-
rithm. However, the Task Calculation Units can
also be used to process certain tasks with other algo-
rithms (e.g., saturation of concepts) and, as a result,
all the CPU-intensive work from the processing steps
can be delegated to Task Calculation Units. Thus,
the main work can be done within the Kernel, which
makes the majority of the parallelisation controllable.

3. Optimisations

A naive tableau algorithm is not suitable for handling
typical real-world ontologies since completion graphs
can easily become very large and may contain many
sources of non-determinism. To tackle these challenges,
Konclude applies a significant range of state-of-the-art
and new optimisations. The main conceptual and tech-
nical challenge of the system was to extend important
optimisations to work with more expressive languages
as well as to effectively implement them within an in-
herently parallel system architecture.

Optimisations within DL reasoning systems are typ-
ically associated with one of the three main phases of
processing and are, therefore, divided into optimisations
for preprocessing, consistency checking, and higher rea-
soning tasks. In the following, we provide a short
overview about Konclude’s most important optimisa-
tions for each of these categories.
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Preprocessing Optimisations A well-known and very
important optimisation of this kind is absorption, which
aims at rewriting general concept inclusion (GCI) ax-
ioms to avoid non-determinism in the tableau algorithm.
The partial absorption used in Konclude (see [10] for
details) is an optimised version of the standard absorp-
tion, which further reduces non-determinism by also ab-
sorbing parts of concepts. This also allows for rewrit-
ing axioms that use more expressive language features
such as at-most cardinality restrictions. The technique
generalises other known absorption techniques such as
binary absorption [11], role absorption [12] and nomi-
nal absorption [13]. Moreover, we use the absorption in
Konclude to achieve a very efficient handling of nominal
schemas [10]. Of course, we integrated also other stan-
dard preprocessing optimisations such as lexical nor-
malisation and simplification to simplify the detection
of clashes [2].
Consistency Checking Optimisations Checking the
consistency of a problem is the core decision procedure
of a tableau-based reasoner. Since these checks typi-
cally occur very often, we have optimised this task in
particular. First, Konclude integrates many standard op-
timisations including lazy unfolding, semantic branch-
ing, boolean constant propagation, anywhere blocking,
dependency directed backtracking, and caching of sat-
isfiability status (see [2] for a more detailed descrip-
tions of these optimisations). Many of these optimi-
sations have been adapted to a parallelised environ-
ment, e.g., dependency directed backtracking requires
that (sub-)tasks of irrelevant non-deterministic branches
are cancelled even when these tasks are already dis-
tributed to other Task Calculation Units. Second,
some optimisations have been extended significantly to
achieve better performance and to work well with more
expressive languages. For instance, caching has been
extended to work with ontologies that use nominals and
inverses. In contrast to traditional caching, Konclude
also distinguishes between unsatisfiability and satisfi-
ability caching, which allows for optimised retrieval
from these caches. Moreover, Konclude uses a sophisti-
cated dependency tracking mechanism that keeps track
of how consequences have been derived. The tracked
dependencies are then used to realise a precise unsatis-
fiability caching [14] and to cache required expansions
for nodes in the completion graph, which allows for
blocking nodes earlier in Konclude and works partic-
ularly well for mostly deterministic ontologies. Third,
we have devised a range of new optimisations. Kon-
clude supports, for example, the reuse and caching of
entire completion graphs, which significantly reduces

the reasoning time for ontologies with nominals after
the first consistency check. Although also other rea-
soners reuse deterministic parts of the completion graph
from the initial consistency check [13], the approach re-
alised in Konclude is an extension in several ways. For
instance, Konclude caches also those parts of comple-
tion graphs where non-deterministic choices have been
made and employs a sophisticated mechanism to find
cache matches. Once a completion graph is cached (e.g,
after the initial consistency check), Konclude only has
to process the nodes for those individuals for which
the expansion to the cached versions of these individ-
uals cannot be trivially ensured. Hence, also for non-
deterministic ontologies with nominals, Konclude can
significantly reduce the number of nodes that have to be
processed in subsequent consistency checks. Further-
more, we have combined the tableau algorithm with a
saturation-based reasoning technique [15], which is an
adaptation of the completion-/consequence-based rea-
soning procedures [8, 9] as used for the OWL 2 EL pro-
file. Since our saturation procedure is adapted to the
data structures of the tableau algorithm, we achieve a
very tight integration of the two reasoning techniques,
i.e., even for non-EL ontologies Konclude can quickly
obtain many sound inferences by combining both rea-
soning methods, while EL reasoners cannot be used or
become incomplete as soon as some non-EL features
(e.g., some disjunction) are used. Moreover, the cou-
pling with the saturation procedure is used to block ear-
lier in tableau-based consistency checks and to extract
interesting information such as obvious subsumptions
and non-subsumptions. Finally, the developed pool-
based merging [14] reduces the non-determinism when
handling cardinality restrictions. Together with many
low level optimisations such as the incremental comple-
tion graph building of (non-deterministic) branches and
sophisticated processing queues, consistency checking
in Konclude is usually unproblematic in practice even
for ontologies with high expressivity (e.g., inverse roles,
nominals, and cardinality restrictions).

Higher Level Optimisations Higher level reasoning
tasks (such as classification or realisation) are usually
reduced to a multitude of consistency checks such that
they benefit from the optimisations of the latter kind as
much as possible. In addition, dedicated higher level
optimisations aim at reducing the number of consis-
tency checks. For classification and realisation this is
achieved by a known/possible set classification and re-
alisation approach [16], which is additionally supported
by different model merging techniques [17]. Further-
more, the combination with the saturation-based reason-
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Table 1: Statistics of ontology metrics for the evaluated ontology repositories (Ø stands for average and M for median)
Repository # Ontol- Axioms Classes Properties Individuals % % % %

ogies Ø M Ø M Ø M Ø M DL EL QL RL

Gardiner 276 6, 143 95 1, 892 16 36 7 90 3 59.4 15.9 17.8 23.9
NCBO BioPortal 403 25, 561 1, 068 7, 617 339 47 13 1, 782 0 61.5 33.7 28.0 18.9
NCIt 185 178, 818 167, 667 69, 720 68, 862 116 123 0 0 71.9 4.3 4.3 1.6
OBO Foundry 422 44, 424 1, 990 8, 033 839 28 6 24, 868 66 58.7 18.7 11.6 25.1
Oxford 383 74, 248 4, 249 8, 789 544 52 13 18, 798 12 85.9 20.6 13.8 22.7
TONES 200 7, 697 337 2, 907 100 28 5 66 0 87.0 37.5 26.5 21.0
Google Crawl 413 6, 282 194 1, 122 38 69 15 830 1 68.5 8.5 10.2 7.5
OntoCrawler 544 1, 876 119 125 18 56 12 637 0 70.5 8.3 9.9 7.4
OntoJCrawl 1, 680 5, 847 218 1641 43 29 8 810 0 55.2 13.2 9.7 7.2
Swoogle Crawl 1, 335 2, 529 109 420 21 26 8 888 0 67.8 9.7 10.6 12.4
ALL 6, 141 18, 583 252 4, 635 50 39 9 3, 674 0 65.1 14.4 12.6 12.3

ing technique often allows a one-pass handling of those
parts of ontologies that are in the OWL EL profile. In
particular, this enables the very fast one-pass classifica-
tion of EL ontologies (and similar less expressive on-
tologies).

4. Evaluation

In this section we provide an evaluation that com-
pares the current version (0.5.0) of Konclude and the
state-of-the-art reasoners FaCT++ 1.6.2 [18], HermiT
1.3.8 [19], Pellet 2.3.1 [20], and ELK 0.4.1 [21] (for
EL ontologies). The evaluation uses a large test cor-
pus of ontologies that have been obtained by collect-
ing all downloadable and parseable ontologies from the
Gardiner ontology suite [22], the NCBO BioPortal,5 the
National Cancer Institute thesaurus (NCIt) archive6, the
Open Biological Ontologies (OBO) Foundry [23], the
Oxford ontology library,7 the TONES repository,8 and
those subsets of the OWLCorpus [24] that were gath-
ered by the crawlers Google, OntoCrawler, OntoJCrawl,
and Swoogle.9 We used the OWL API 3.4.5 for pars-
ing and we converted all ontologies to self-contained
OWL/XML files. For each of the 1,380 ontologies with
imports, we also created a version with resolved imports
and a version, where the import directives are simply
removed (which allows for testing the reasoning perfor-
mance on the main ontology content without imports,

5http://bioportal.bioontology.org/
6http://ncit.nci.nih.gov/
7http://www.cs.ox.ac.uk/isg/ontologies/; We ignored

repositories that are redundantly contained in the Oxford ontology li-
brary (e.g., the Gardiner ontology suite).

8http://owl.cs.manchester.ac.uk/repository/
9In order to avoid too many redundant ontologies, we only used

those subsets of the OWLCorpus which were gathered with the
crawlers OntoCrawler, OntoJCrawl, Swoogle, and Google.

which are frequently shared by many ontologies). Since
Konclude does not yet support datatypes, we removed
all data properties and we replaced all data property re-
strictions with owl:Thing in all ontologies. Note that all
reasoners were evaluated on the same modified ontolo-
gies. Table 1 shows an overview of our obtained test
corpus with overall 6,141 ontologies including statistics
of ontology metrics for the source repositories. Please
note that there are many ontologies that are not in the
OWL 2 DL profile, which is almost always due to unde-
clared entities. Parsers can usually fix such issues and
there is no effect on the reasoning.

The evaluation was carried out on a Dell PowerEdge
R420 server running with two Intel Xeon E5-2440 hexa
core processors at 2.4 GHz with Hyper-Threading and
48 GB RAM under a 64bit Ubuntu 12.04.2 LTS. Each
test was executed with a time limit of 5 minutes, but
without any limitation of memory allocation. All rea-
soners were queried via the OWLlink protocol, which
is natively supported by Konclude and we used the
OWLlink OWL API Adapter for all other reasoners. In
order to facilitate a comparison between the reasoners
that is independent of the number of CPU cores, we
first configured the parallelised reasoners ELK and Kon-
clude to use only one worker thread (indicated with the
suffix x1, e.g., Konclude 0.5.0 x1) and then we sepa-
rately evaluated the effect of parallelisation.

The shown times do not include loading times. This
is a disadvantage for Konclude since most reasoners do
some preprocessing while loading, whereas Konclude
only performs preprocessing on demand. This seems to
be confirmed by the accumulated loading time, which
is 1, 400 s for Konclude, 4, 130 s for FaCT++, 6, 452 s
for Pellet and 7, 869 s for HermiT. However, even just
parsing with the OWL API often requires more time in
comparison to the built-in parser of Konclude.
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Figure 2: Comparison of separate sorted classification times for all ontologies in milliseconds

We further ignored all errors of other reasoners, e.g.,
if a reasoner failed to load an ontology or some of its
axioms (e.g., due to unsupported axioms or irregular
role inclusions) or produced fatal errors (e.g., program
crashes, unhandled Java exceptions), we tried to con-
tinue the test. This usually means that the reasoner pro-
cessed an ontology with less or even no axioms. There-
fore, the runtime of a reasoner that produced many er-
rors may seem to be better than they actually are.

4.1. Classification

Figure 2 shows an overview of the classification
times for FaCT++, HermiT, Konclude (with one worker
thread), and Pellet over all ontologies in our corpus. The
classification times (shown at a logarithmic scale in mil-
liseconds) are sorted in ascending order for all reason-
ers separately, i.e., the “easiest” ontologies for each rea-
soner are shown on the left side, whereas the “hardest”
ontologies are shown on the right side. Not included
are the times for loading and for outputting the class hi-
erarchy. Due to Konclude’s lazy processing approach,
processing steps after parsing, such as the creation of
internal data structures and preprocessing, are triggered
with the classification request and, therefore, the times
required for these steps are also included for Konclude.

Konclude processed all ontologies, but only approxi-
mated consequences of role inclusions if they were not
regular as specified for OWL 2 DL. HermiT reported er-
rors for 260, FaCT++ for 280, and Pellet for 318 ontolo-
gies. As indicated by the errors, these ontologies were
usually not completely processed by Pellet, FaCT++,
and HermiT. An often occurring error consisted of ax-
ioms that are used to declare individuals as different, but
where only one individual was specified. In contrast,
Konclude simply ignores such axioms and prints out a
warning.

In summary, the overall classification performance
of Konclude is better than that of FaCT++, HermiT,
and Pellet. Although Konclude does not outperform
the other reasoners on each ontology, it mostly domi-
nates in the number of ontologies that could be clas-
sified in a given time limit. A particular strength of
Konclude is the handling of very difficult ontologies,
where the sophisticated optimisation techniques pay off.
For example, the Brain Architecture Management Sys-
tem (BAMS) ontology from the Oxford ontology li-
brary can be classified by Konclude in 3.4 s, whereas
all other reasoners timed out. Especially the compre-
hensive absorption technique in Konclude dramatically
improves the performance for such ontologies. For
other very complex ontologies also the detailed caching
technique of Konclude is very important, which re-
sults, especially in combination with absorption, in bet-
ter classification times. To give a few examples, the
x-anatomy (Gardiner), the x-metazoan-anatomy (Gar-
diner), the composite-metazoan (Oxford), and the On-
tology of Adverse Events (OAE) (OBO Foundry) can
only be classified by Konclude within the given time
limit. Moreover, due to the caching and reusing of
entire completion graphs, Konclude shows significant
improvements for ontologies that are intensively using
nominals. For example, the well-known wine ontology
can be classified by Konclude in 0.1 s, whereas the other
reasoners require 2.5 – 6.3 s. It is also worth point-
ing out that a large amount of ontologies contain only
a few axioms which do not fall into the OWL EL pro-
file, e.g., by using language features such as inverse or
functional object properties. For example, the Biomod-
els ontology, the Cell Cycle Ontology (CCO), and the
Regulation of Gene Expression Ontology (ReXO) from
the NCBO BioPortal are very big (500, 000 – 850, 000
axioms), but almost completely in the EL profile. For
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Figure 3: Comparison of separate sorted classification times for EL ontologies in milliseconds

such ontologies the tight coupling of the tableau- and
the saturation-based methods in Konclude results in a
very good pay-as-you-go behaviour and the ontologies
can be classified in 33.5 s, 46.8 s, and 55.1 s, respec-
tively. All other tableau-based reasoners failed to clas-
sify these ontologies within the time limit and OWL EL
reasoners are incomplete. Furthermore, complex roles
(e.g., due to property chains) are usually not causing sig-
nificant problems for Konclude. In particular, the Data
Mining OPtimization (DMOP) ontology from the On-
toJCrawl of the OWLCorpus defines several symmetric
and transitive roles in combination with role composi-
tions (property chains in OWL), but can easily be clas-
sified by Konclude in 0.8 s, whereas HermiT already
requires 142.9 s and the other reasoners completely fail
to classify the ontology within the time limit.

Overall, Konclude reached the time limit only for
15 ontologies due to the wide range of optimisations,
whereas HermiT timed out for 129, FaCT++ for 183,
and Pellet for 355 ontologies. Moreover, Konclude was
the fastest reasoner for the classification of 4, 652 of
the 6, 141 ontologies in our corpus. In comparison,
FaCT++ was the fastest for 1, 362, HermiT for 69, and
Pellet for 58 ontologies. Of course, it has to be noticed
that there is a natural advantage for the C++ reasoners
(FaCT++ and Konclude) since they have less overhead
than Java implementations and many ontologies are so
simple that hardly any reasoning is required.

Konclude has, however, also downsides. In partic-
ular, the handling of (big) cardinality restrictions still
leaves room for improvement. For example, Konclude
requires for the classification of the atom-complex-
proton-2.0 ontology from the TONES repository 35.2 s,
whereas Pellet only requires 11.4 s (FaCT++ and Her-
miT timed out). Especially the integration of algebraic
methods, where cardinality restrictions are handled as a

system of linear (in)equations [25], could provide sig-
nificant improvements. Furthermore, for a few ontolo-
gies the saturation can hardly gain any useful informa-
tion and its overhead causes a performance decrease.
This is, for example, the case for the classification of
the teleost-taxonomy ontology from the OBO Foundry,
where Konclude requires 5.5 s, whereas the other rea-
soners only require 1.2 – 2 s.

The classification results of Konclude are identical
with those of HermiT for all ontologies where Kon-
clude and HermiT processed the ontology without re-
porting an error. There are, however, a few differences
to FaCT++ and Pellet (and there are also differences
between these reasoners) mainly for ontologies with ir-
regular role inclusion axioms (HermiT refuses the pro-
cessing of such ontologies). We analysed the results for
such ontologies manually and, to the best of our knowl-
edge, Konclude derived the correct subsumptions.

Figure 3 shows an overview of the classification times
for FaCT++, HermiT, Konclude, Pellet, and ELK over
all EL ontologies in our corpus. Again, the classifica-
tion times are shown at a logarithmic scale and they
are separately sorted for each reasoner. Please also note
that the classification times for Konclude and ELK were
obtained by using only one worker thread. Unsurpris-
ingly, ELK performs well for many larger EL ontolo-
gies, but the current version of ELK was not able to
classify the hierarchy closure ontology from the Ox-
ford ontology library. Furthermore, ELK required more
time for the classification of many very small ontologies
than the majority of the other reasoners, which is pos-
sibly also a consequence of a delayed preprocessing or
due to the creation of additional threads within the Java
environment. Only Konclude successfully classified all
881 EL ontologies within the time limit and it was also
the fastest reasoner for 784 ontologies. However, there
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Figure 4: Comparison of the accumulated classification times in sec-
onds grouped by the OWL 2 profiles

are some larger EL ontologies, where ELK is signifi-
cantly faster than Konclude. This is possibly due to the
fact that Konclude is designed as a SROIQV reasoner
and has, therefore, a more comprehensive preprocess-
ing mechanism (e.g., the axioms have to be absorbed
and cannot be directly indexed), which possibly requires
more time for some ontologies.

Figure 4 shows a comparison of the accumulated
classification times for all ontologies and also for on-
tologies of the different OWL 2 profiles. Note that the
accumulated classification times are again shown at a
logarithmic scale, but now in seconds. The chart reveals
that Konclude has the least accumulated classification
times for all OWL 2 profiles with respect to the ontolo-
gies in our corpus. They are especially low for the EL,
QL, and RL profile since Konclude did not reach the
time limit for any ontology in these profiles.

4.2. Consistency
We also evaluated the reasoning task of consistency

checking for all ontologies in our corpus with FaCT++,
HermiT, Konclude, and Pellet. Again, we only mea-
sured the time for the consistency check and we used
only one worker thread for Konclude. If we accumulate
the times, we get 3, 893 s for Konclude, 7, 076 s for Her-
miT, 17, 535 s for FaCT++, and 32, 622 s for Pellet. Al-
though Konclude has again the best overall performance
and, in particular, the fewest number of timeouts, Kon-
clude is also the slowest system for some ontologies.
Again, this is often a consequence of the lazy process-
ing paradigm in Konclude, which starts processing not
before receiving the consistency checking request and,
therefore, the reported times by Konclude also include
the loading and preprocessing of ontologies.

4.3. Parallelisation
In addition, we evaluated the effects of the paralleli-

sation. For that purpose, we run the classification rea-

soning tasks for all ontologies in our corpus also with
two and four worker threads (i.e., Task Calculation

Units) in Konclude. Two worker threads reduced the
accumulated classification time from 11, 097 s that were
obtained without parallelisation to 9, 980 s. Four worker
threads further reduced the accumulated classification
time to 9, 249 s. Clearly, the gained speedup through
parallelisation is far from linear, which is, on the one
hand, a consequence of the hardware that disadvantages
parallelisation by dynamically overclocking the proces-
sor if only few CPU cores are active10 and, on the other
hand, it has to be considered that the measured classifi-
cation times also include unparallelised processing steps
such as the building of the reasoner’s internal ontology
representation, preprocessing and several kinds of pre-
computing. Since many ontologies are relatively easy
for Konclude due to the implemented optimisations, the
time spent on the unparallelised processing steps often
has a significant portion of the overall processing time.
In particular, the saturation in Konclude is not yet paral-
lelised and, therefore, increasing the number of worker
threads does not significantly improve the overall per-
formance for many EL-like ontologies. In contrast,
there exists a range of ontologies where the paralleli-
sation works very well. For example, the classification
for the fmaOwlDLComponent 1 4 0 ontology from the
TONES repository can be improved from 79.8 s with
one worker thread to 45.5 s with two worker threads
and to 27.1 s with four worker threads. Similar improve-
ments are achieved for many expressive ontologies such
as FMA, DOLCE, several variants of GALEN, and the
majority of all NCI Thesaurus ontologies.

We also evaluated the effects of the parallelisation of
ELK for the classification of all EL ontologies in our
corpus. By increasing the worker threads to two, ELK
was able to reduce the accumulated classification time
from 706.2 to 637.1 s, and with four worker threads the
accumulated classification time was further reduced to
591.2 s. Similarly to Konclude, the improvement factor
from the parallelisation is not ideal, which probably re-
lies on the same causes: unparallelised (pre-)processing
steps and hardware influences.

5. Conclusions and Future Work

In this system description we have introduced Kon-
clude, a new OWL 2 DL reasoner that supports the

10http://www.intel.com/content/www/us/en/

architecture-and-technology/turbo-boost/

turbo-boost-technology.html
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DL SROIQV. We have described Konclude’s parallel
processing architecture and the integrated key optimi-
sation techniques that result in remarkable overall rea-
soning performance. In order to support the latter, we
have presented and discussed results of a comprehen-
sive comparison between Konclude and other state-of-
the-art reasoners for different reasoning tasks and many
ontologies. The comparison has revealed that Kon-
clude performs eminently well for all evaluated reason-
ing tasks on all OWL 2 profiles. The bottom line is that
Konclude significantly outperforms any other reasoner
in terms of accumulated runtime over our test suite of
over 6,000 ontologies for either classification or con-
sistency checking. The good performance of Konclude
has also been verified recently at the 2013 OWL Rea-
soner Competition (ORE 2013), where a previous de-
velopment version of Konclude won 3 out of 9 offline
benchmark categories [26].

Note that Konclude is still under development. Our
plan is to work on the integration of new optimisation
techniques and we will further extend parallelisation to
more processing steps and more reasoning tasks. More-
over, we want to improve support for incremental rea-
soning and enhance the query options (e.g. conjunctive
queries). The integration of OWL 2 datatypes, which
will make Konclude a fully compliant OWL 2 DL rea-
soner, is already work in progress.
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