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Abstract
The integration of the various specialized compo-
nents of cognitive systems poses a challenge, in
particular for those architectures that combine plan-
ning, inference, and human-computer interaction
(HCI). An approach is presented that exploits a
single source of common knowledge contained in
an ontology. Based upon the knowledge contained
in it, specialized domain models for the cognitive
systems’ components can be generated automati-
cally. Our integration targets planning in the form
of hierarchical planning, being well-suited for HCI
as it mimics planning done by humans. We show
how the hierarchical structures of such planning
domains can be (partially) inferred from declar-
ative background knowledge. The same ontology
furnishes the structure of the interaction between
the cognitive system and the user. First, explana-
tions of plans presented to users are enhanced by
ontology explanations. Second, a dialog domain is
created from the ontology coherent with the plan-
ning domain. We demonstrate the application of our
technique in a fitness training scenario.

1 Introduction
Our cognitive skills allow us to interact with our environment
and to smoothly adapt and react to external influences. We
do so by using various senses and by relying on previous ex-
periences from other contextual situations and our ability to
learn, reason, and plan future actions. Technical systems that
implement or imitate the cognitive skills of humans are what
we call cognitive systems. Such systems heavily rely on back-
ground knowledge (about the application domain) for plan-
ning actions, conducting dialogs with users, or when explain-
ing system decisions and actions. Traditionally, each system
component (e.g., the planning or dialog component) uses its
own knowledge model. This distribution of knowledge makes
it difficult to obtain a coherent system and often results in
the redundant creation of formal knowledge in different for-
malisms. In this paper, we propose an integrated approach
to building systems with cognitive abilities. The main distin-
guishing feature of the approach is that knowledge models for
the system’s components are automatically generated (using

automated reasoning) from a centralized knowledge model in
the form of an OWL ontology [W3C OWL Working Group,
2009].

We illustrate how this approach can be applied in a real-
world fitness training scenario, where the ontology and auto-
mated reasoning are used to derive decomposition methods
for the planning domain in the context of Hierarchical Task
Network (HTN) planning. Hence, any standard HTN plan-
ning system can be used with the generated domain. We then
sketch how the same ontology supports the task of explaining
system behavior. To explain plan steps and decompositions
that are hard to explain solely based on a standard planning
domain, one can verbalize the ontology reasoning that led to
them. Further, the same ontology contributes to the creation
of a dialog domain. Using this integrated approach, a coher-
ent human-machine interface can be realized, while avoiding
the creation of redundant knowledge in different components.
In the context of HCI and dialog modeling, it was shown that
interactive systems benefit from increased users’ trust if they
provide additional explanations for their actions [Lim et al.,
2009; Nothdurft et al., 2014]. Bercher et al. [2014] show how
plan explanations can be applied successfully in a real-world
scenario.

The paper is organized as follows: First, we introduce some
preliminaries about planning and ontologies (Sec. 2). In Sec-
tion 3, we present the foundations of the proposed approach
and cover how planning domains can be encoded in an ontol-
ogy such that new decomposition methods can automatically
be inferred by an ontology reasoner. This chapter also intro-
duces our use-case – a fitness training scenario – and serves
to illustrate how our technique can be applied to it. We then
describe how plan explanations can be enriched with knowl-
edge from the ontology (Sec. 4). Thereafter we introduce the
dialog component (Sec. 5) used in the context of our scenario
and outline how such a component can be generated in gen-
eral. We discuss related approaches in Section 6 and conclude
in Section 7.

2 Preliminaries
We now introduce some relevant preliminaries.

2.1 HTN Planning
HTN planning [Erol et al., 1994] has been successfully ap-
plied to many real-world problems [Nau et al., 2005]. We



deem it appropriate for a cognitive system that heavily inter-
acts with a user, since the top-down way in which initially ab-
stract tasks are step-wise refined into more concrete courses
of action is similar to human problem solving. In HTN plan-
ning, the problem to solve is given by means of an initial plan
containing a description of the initial state (a description of
the world properties that are true prior to the execution of a
plan and the interaction with the system), a goal description
(stating the desired world properties after plan execution),
and a partially ordered set of tasks (the initial plan). These
tasks may be primitive, meaning that they can be directly ex-
ecuted by the user, or they may be abstract (also referred to
as complex or compound in the literature). Primitive tasks are
given in terms of their preconditions and effects, specifying
the conditions under which they are applicable in a state and
how they change it if applied. Preconditions and effects are
specified in terms of lists of literals of a function-free first
order logic. Abstract tasks represent high-level activities that
have to be refined into more tangible tasks, being primitive or
abstract. Refining abstract tasks is achieved by applying a so-
called (decomposition) method specifying into which plan the
respective task can be decomposed. More precisely, a method
m is denoted as A 7→≺ B1, ...,Bn and it specifies that the
abstract task A may be decomposed into the plan containing
the subtasks B1 to Bn that are ordered w.r.t. the partial order
≺. We omit the subscript ≺ if no order is defined on the sub-
tasks. The application of m to a plan containing A refines it
into a plan in which A is “replaced” by the subtasks of m
with the given order ≺. Any ordering that was imposed on A
is inherited by all its subtasks Bi. A solution of the problem
is given by any plan that fulfills the goals. That is, a solution
must be obtained from the initial plan, it has to be primitive
(as only primitive tasks are regarded executable by the user),
and any linearization of its tasks that is compatible with the
given order must be executable and transforms the initial state
into a state satisfying the goal description.

2.2 Ontologies
Ontologies based on Description Logics (DLs) are often used
to represent knowledge about concepts and relations (roles)
between them in a subject domain. DLs also underpin the
W3C standard OWL (Web Ontology Language). In this pa-
per, we use the Manchester OWL syntax [Horridge et al.,
2006] and consider the fragment of OWL corresponding to
the DL ALC [Schmidt-Schauss and Smolka, 1991]. It al-
lows for building complex concepts from primitive ones, e.g.,
by using and/or connectives and quantifier-like some/only
constructs, which form concepts by specifying a relation-
ship to other concepts via a role. Since DLs are fragments of
first order logic, their semantics is given model-theoretically,
with concepts interpreted as subsets of a domain and roles
as binary relations. For example, for a concept Course and
a role teaches, the concept (teaches some Course) is inter-
preted as the set of all domain individuals that are related
by teaches to some instance of Course. The interpretation
of (teaches some Course) and (teaches only Course) is
the set of individuals which meet the additional requirement
(due to the conjunction and) that they are only related via
teaches to instances of Course. The two reserved primitive

concepts Thing and Nothing are interpreted as the universe
and empty set, respectively.

An ontology or knowledge base O is a finite set of concept
axioms of the form Class:C SubClassOf:D, stating that
every instance of the concept C is also an instance of the con-
cept D, definitions of the form Class:C EquivalentTo:
D, stating that D subsumes C and vice versa and disjoint-
ness axioms of the form Class:C DisjointWith:D, stat-
ing that no instance of C can be an instance of D and vice
versa. An interpretation that satisfies all axioms ofO is called
a model of O. A basic reasoning task is to decide for a given
ontologyO and concepts C,D, whether C is subsumed by D
wrtO, i.e., whether the concept inclusion is logically entailed
by O. Another important task is to check whether a concept
is satisfiable wrt O, i.e., whether it can have instances. If it is
clear from the context, we omit the reference to O.

3 Integrating Declarative Knowledge
In this section we show how the core knowledge of a cogni-
tive system can be encoded in an ontology and how the central
problem-solving component, in our case a planner, can re-
trieve this knowledge. The two subsequent sections describe
how the same ontology can be used to ensure coherent knowl-
edge in two other components of a cognitive system, i.e., the
explanation and the dialog components. We start by describ-
ing how a (pre-existing) planning domain can be integrated
(some parts only syntactically) into an ontology of the appli-
cation domain. Thereafter, specific domain knowledge can be
drawn from this ontology, i.e., it serves as the sole source of
application knowledge ensuring coherence. Extracting a plan-
ning domain from an ontology is straightforward.

In addition to the obvious advantages for cognitive sys-
tems, encoding the planning domain into an ontology has ad-
ditional benefits. Most importantly, it enables inferring new
decomposition methods for hierarchical planning domains.
Usually, every decomposition method has to be specified by
a domain expert, making it a slow and complicated process.
Generating methods automatically eases the modeling of hi-
erarchical domains and enables on-the-fly changes to do-
mains without the need to consult a modeler. Only a very
limited number of approaches to do so have been published
so far, see Section 6 for further details.

3.1 Exemplary Use-Case
In order to exemplify potential uses and overall benefits of
our approach, as well as to provide illustrative examples we
interleave the formal descriptions in this section with the de-
scription of a use-case of the technique. We have chosen a
fitness-training scenario, in which a user wants to create a
training plan with the help of a planning system in order
to pursue some fitness objective, e.g., to increase his overall
strength or stamina. A plan in this scenario defines a training
schedule, comprising training and rest days, as well as the
exercises and their duration which are necessary to achieve a
given goal. Pulido et al. [2014] considered a similar scenario,
where physiotherapy exercises are arranged by a planner to
help patients recover from upper-limb injuries.

In this scenario, we distinguish four kinds of actions: ex-
ercises, workouts, workout templates, and trainings. Exer-



cises are concrete physical activities, e.g., skip rope jumping.
Workouts are small, predefined partially ordered sets of ex-
ercises, which usually have been created by a fitness trainer
and should be performed in a single training session. Work-
out templates are more abstract descriptions of workouts, in-
tended to group “similar” workouts. Finally, trainings de-
scribe abstract objectives like strength or lower body training.

3.2 Compiling Planning Knowledge into
Ontologies

We start by outlining how a hierarchical planning domain can
be encoded in an ontology such that its contents are described
declaratively (and become amenable to logical reasoning).
Conceptually, we augment an already existing ontology. This
ontology is presumed to contain further background knowl-
edge about the application domain. In our use-case the on-
tology already contains parts of the taxonomy of the NCICB
corpus [NCICB, 2015], which describes muscles, joints and
bones of the human body and their relations.

The link between the planning model and corresponding
information in the ontology is maintained by a common vo-
cabulary – for every planning task T a corresponding con-
cept T is added to the ontology. Concepts representing prim-
itive tasks need to specify preconditions and effects, which
can be modeled in two ways. Where a shallow granularity
of modeling is deemed sufficient, predicates in the planning
domain are represented as string values of four pre-defined
OWL data properties (also known as concrete roles); adds,
deletes, needs and hindered-by. Any parameters of the pred-
icates (and possible restrictions) are represented in the on-
tology only in the form of annotations. A more straight-
forward representation of the first-order axiomatization of
tasks in general is prevented by the limitation of DLs to
the tree model property [Vardi, 1997] stating that non-tree
structures cannot fully be axiomatized, which would be re-
quired. Thus, to allow for a second, more fine-grained, but
domain-dependent, way of modeling, (complex) concepts in
the ontology can be defined to correspond (using a dedicated
mapping) to specific sets of preconditions and effects in the
planning domain. For example, one can specify that a con-
cept description such as (trains some GastrocnemiusMuscle)
(anything that trains the gastrocnemius muscle) maps to a
precondition warmedup(GastrocnemiusMuscle) and an effect
trained(GastrocnemiusMuscle). As an example of a definition
of a primitive exercise, consider the skip rope jumping exer-
cise, which is defined in terms of NCICB concepts (marked
by underlining) and which serves to specify which muscles
are engaged and trained by it.

Class: SkipRopeJumping
SubClassOf: trains some GastrocnemiusMuscle

and engages some QuadricepsFemorisMuscle

and engages some Hamstring

This definition implies that the SkipRopeJumping action has
as a precondition that the gastrocnemius muscle must be
warmed up. The effect of this action is that this muscle is
trained and the two other muscles are warmed up. In our
use-case domain, we utilize these preconditions and effects

to model certain training rules (e.g. muscles must be warmed
up before being used in exercises, more intense exercises be-
fore lighter ones, ...).

The most important part of a hierarchical planning domain
to be represented in the ontology is the hierarchy itself. Our
approach is guided by the principle that individuals, i.e., the
objects belonging to a concept, represent plans. As such, con-
cepts represent a set of plans, i.e., all plans that can be ob-
tained by decomposing the task they represent. Following this
intuition, concept subsumption between two concepts A and
B can be interpreted as: any plan obtainable from B is also ob-
tainable from A. Thus, simple methods of the form A 7→ B,
so-called unit methods, are interpreted as B being a special-
ization of A, since A can be achieved by “executing” B. It
is represented as Class:B SubClassOf: A. In general a
method with multiple subtasks specifies that the abstract task
A can be decomposed into several other tasks B1, ...,Bn. The
relation “can be decomposed into” is represented in the ontol-
ogy by using a role includes. When representing such decom-
position methods in an ontology, however, one needs to take
into account that a decomposition specifies not only what sub-
tasks are needed to achieve an abstract task, but that these are
also sufficient. By contrast, ontologies are built on the open
world assumption – representing a task decomposition sim-
ply by stating that an abstract task can be decomposed into
some particular set of tasks is insufficient. One also needs to
explicitly state that only these tasks are to be included in the
decomposition. Suppose, for instance, that an abstract task for
a workout of the lower body, which contains skip rope jump-
ing and stationary bike exercises, can be represented by

Class: LowerBodyWorkout
EquivalentTo: includes some SkipRopeJumping and

includes some StationaryBikeExercise

Using DL reasoning one could infer that a workout containing
skip rope jumping, stationary bike exercises and also push ups
would be a sub-concept of LowerBodyWorkout. This, in turn,
can be interpreted as the assertion that said workout could be
used (i.e. LowerBodyWorkout could be decomposed into it) as
a lower body workout which should clearly not be the case.

Intuitively, we want a collection C1 (representing tasks in
a plan) to be subsumed by a collection C2 iff for any task
concept (requirement) from C2, there is a task concept in
C1, which achieves it (i.e. C1 is subsumed by C2), and there
are only those task concepts in C1 that meet some require-
ment from C2. This calls for using the onlysome construct
(see e.g. Horridge et al. [2006]), which is provided by the
Manchester OWL syntax as a macro. The macro is of the form
r onlysome [C1, ..., Cn], which expands to r some C1 and
... and r some Cn and r only (C1 or ... or Cn). Using
onlysome we can describe a method decomposing a task
A into a plan containing the tasks B1, ...,Bn by the axiom
Class:A EquivalentTo: includesonlysome [B1, ...,Bn].
If we apply this scheme to the LowerBodyWorkout, we ob-
tain the following axiom, which (as proven below) correctly



reflects our intuition.

Class: LowerBodyWorkout
EquivalentTo: includes onlysome [SkipRopeJumping,

StationaryBikeExercise]

This axiom is semantically equivalent to

Class: LowerBodyWorkout
EquivalentTo: includes some SkipRopeJumping and

includes some StationaryBikeExercise and
includes only (SkipRopeJumping or

StationaryBikeExercise)

Furthermore, the onlysome construct allows a domain expert
to specify trainings in an abstract way without the need to in-
clude every potentially possible decomposition into workouts
in the planning domain. This abstract modeling enables infer-
ring new decomposition methods for trainings into workouts,
which achieve the encoded training objective. The following
axiom defines lower body training as anything that contains
at least one and only exercises targeting muscles in the lower
body.

Class:LowerBodyTraining
EquivalentTo: includes onlysome [trains some

(partOf some LowerBody)]

Here the intended subsumption between LowerBodyWorkout
and LowerBodyTraining holds since both SkipRopeJumping
and StationaryBikeExercise engage only parts of the lower
body.

This approach of translating decomposition methods into
ontology axioms hinges on whether subsumption in our rep-
resentation correctly reflects our intuitions about whether col-
lections of tasks fulfill the “requirements” imposed by an-
other (possibly more abstract) collection of tasks. We show
that in order for this property to hold, it is required that
the role includes is independent of all concepts occurring
in onlysome constructs. Independence holds if a role r has
no semantic relationship with the concepts C1, ..., Cn in the
onlysome construct as captured by the following definition.
Definition 1. Let O be an ontology, r a role, and C1, ..., Cn

concepts. We call r independent of C1, ..., Cn wrt O if, for
any model I of O and any binary relation [s] on the domain
of I, there is a model J of O with the same domain such
that r is interpreted as [s] in J and the interpretation of Ci,
1≤ i≤n, in I and J coincides.
Theorem 1. Let O be an ontology, C1, ..., Cm satisfiable
concepts, D1, ..., Dn concepts, and r a role independent of
C1, ..., Cm, D1, ..., Dn. Then r onlysome [D1, ..., Dn] sub-
sumes r onlysome [C1, ..., Cm] if and only if
(1) ∀i, 1≤ i≤ m,∃j, 1≤j≤n, s.t. Dj subsumes Ci and
(2) ∀j, 1≤j≤n,∃i, 1 ≤ i≤m, s.t. Dj subsumes Ci.

Proof Sketch. The if direction can be shown using mono-
tonicity and above Conditions (1) and (2). Using contrapo-
sition, we can show the only-if direction by constructing a
model of the ontology O in which the subsumption does not

hold. Since each Ci is satisfiable, there are models with some
instance ci of Ci. Using the negation of Condition (1), there
is further a model with an instance x of some Ci that is not
an instance of any Dj . We now build a new model as the dis-
joint union of these models [Baader et al., 2003, p. 195] and
take an arbitrary element d in the constructed model. Using
independence of r, we obtain a model in which r contains
〈d, x〉 and the tuples 〈d, ci〉. We obtain the desired contradic-
tion since d is an instance of r onlysome [C1, ..., Cm], but d
is not an instance of r only (D1 or ... orDm) (due to 〈d, x〉)
and, hence, r onlysome [D1, ..., Dn]. We can proceed simi-
larly for the case of Condition (2) not holding.

So far, we have only dealt with the tasks contained in de-
composition methods, but not with their order. In the general
case, ordering constraints represent partial orders and impose
dependencies in the form of a directed acyclic graph between
tasks. OWL is not suited to represent such partial orders, since
its expressivity is limited by the previously mentioned tree-
model property. In order to include ordering constraints nev-
ertheless, we propose a syntactic encoding for this informa-
tion that is opaque to DL reasoners and has no influence on
the semantics. A task A occurring after a task B in a plan is
expressed by replacing the concept A in onlysome expres-
sions by A or (Nothing and after some B). Note that the
latter disjunct is trivially unsatisfiable and, consequently, the
concept is semantically equivalent to just A.

3.3 Generating Planning Domains

This section describes how the ontology is utilized to in-
fer new decomposition methods for an existing planning do-
main. The decision for representing the whole planning do-
main in the ontology enables using off-the-shelf DL reason-
ers [Gonçalves et al., 2013, Section 3]. In keeping with the
encoding introduced in the previous section, we view sub-
sumption relations between tasks inferred by a reasoner as
new decomposition methods. Suppose there are two task con-
cepts C and D, such that C is subsumed by D and no other
task concept exists that is subsumed by D and subsumes C.
Then, a decomposition method D 7→ C is created. This sim-
ple scheme alone does not suffice, as it only creates meth-
ods with a single subtask. As a next step, we can interpret
onlysome-definitions provided by the ontology modeler as
decompositions, too. This may add new tasks to the planning
domain, as the onlysome construct may contain an arbitrary
OWL expression E without a corresponding planning task. If
so, the task E is added to the planning domain and treated as
a named concept in the ontology.

We are also interested in knowing whether an abstract task
A can be achieved by combining some other tasks B1, ...,Bn.
If so, a new decomposition method for A into B1, ...,Bn can
be created. This capability has proven useful in our use-case
domain to be able to combine two workouts to achieve some
common goal. Consider the following definition of a full body



training:

Class:FullBodyTraining
EquivalentTo: includes onlysome

[trains some (partOf some LowerBody),
trains some (partOf some UpperBody)]

Further suppose that the model contains only workouts which
exclusively train parts of the upper and the lower body, since
workouts often target a specific group of muscles or a particu-
lar part of the musculoskeletal system. Here it would be nec-
essary to combine, e.g., the previously defined LowerBody-
Workout with a workout for the upper body, say UpperBody-
Workout.

Again, we want to connect this to subsumption of some
concepts. As a first naive idea, one could model the combi-
nation of concepts as their conjunction, and check whether
these conjunctions are subsumed by other concepts. How-
ever, in the case of collections of task concepts (using
onlysome) this simple idea does not work – the con-
junction of two onlysome expressions in general is not
equivalent to an onlysome expression containing the same
elements. For example, consider the expressions E1 =
includes onlysome [A,B], E2 = includes onlysome [A′]
and E3 = includes onlysome [B′], where A′ and B′ are sub-
concepts of A and B, respectively. Then neither E2 and E3

nor includes onlysome [E2, E3] is subsumed by E1 as de-
sired. In fact, OWL does not provide a connective that can
directly be used to combine E2 and E3, but the concept
E4 = includes onlysome [A′, B′] that uses the sub-concepts
of E2 and E3 is subsumed by E1 as intended. Due to the lack
of a suitable OWL operator, we next define a new, syntactic
join operator to combine concepts.

Definition 2. Given two concepts E1 = r onlysome
[A1, ..., An] and E2 = r onlysome [B1, ..., Bm], we de-
fine the join of E1 and E2 wrt r, written E1 r-join E2, as
r onlysome [A1, ..., An, B1, ..., Bm].

Using this definition we can combine the workouts Lower-
BodyWorkout and UpperBodyWorkout and infer that they are
subsumed by the FullBodyTraining concept, which is a useful
decomposition method.

To sum up, any conjunction of task concepts, any
onlysome connection of task concepts, and any join of task
concepts can be considered as candidate subtask sets for new
decomposition methods. If such an expression is subsumed
by a task concept in the ontology, the corresponding decom-
position method is added to the planning domain, except if a
combination of a subset of the concepts included in the can-
didate is already subsumed. Considering all possible combi-
nations presents us with a problem if the domain in question
has a realistic size, since there are exponentially many. To
circumvent this problem, we propose a pragmatic approach.
First, the maximal size of connections of concepts can be re-
stricted by some k, which reduces the number of concepts to
be added considerably. For our application example we only
used binary (k = 2) combinations, which already allowed
for inferring a considerable number of tasks and methods.
Second, most real-world domains (including our application

example) have restrictions on which concepts may be com-
bined. Thus, the set of concepts can be partitioned (e.g. via
OWL annotations) and only concepts of the same partition
are combined, leading to a further reduction of the number of
candidates.

3.4 Evaluation and Discussion
In our case-study scenario the initial, non-extended planning
domain contains 310 different tasks and only a few meth-
ods. The described ontology contains 1230 concepts (613 im-
ported from the NCICB corpus) and 2903 axioms (of which
664 are from NCICB). This includes 310 concepts for inte-
grating the planning domain into the ontology. Further, the
ontology contains 9 different training objectives and 24 work-
out templates.

The planning domain, expanded with new decompositions
inferred from the ontology, contains 471 tasks and 967 meth-
ods. Our implemented system employs the OWL reasoner
FaCT++ [Tsarkov and Horrocks, 2006]. On an up-to-date lap-
top computer (Intel R© CoreTM i5-4300U) it takes 3.6 seconds
to compute the whole extended planning domain.

Of the newly generated methods, 203 are created based
upon workouts subsumed by workout templates and 3 meth-
ods have been created by combinations of concepts. Further,
59 decomposition methods for training objectives into work-
out templates have been found of which 24 are combinations
of concepts. We would like to point out that every decomposi-
tion linking workouts and trainings in this scenario is inferred
by the reasoner.

4 Ontology and Plan Explanations
The explanation facility combines techniques from plan ex-
planation (specifically, an approach for explaining hybrid
plans [Seegebarth et al., 2012]) and an approach for explain-
ing ontological inferences [Schiller and Glimm, 2013]. The
first approach is best suited to explain the dependencies of
tasks in the generated plan. The second makes the underlying
principles and further background knowledge relevant to the
plan explicit, in particular, how decomposition methods are
generated.

In more detail, the user may be interested in knowing why
a task is part of a plan, for example “Why do I have to do a
runners’ calf stretch?” when a plan contains such a task. This
question is taken to address the causal and hierarchical struc-
ture of the plan, and the corresponding explanation is directly
generated from the causal dependencies contained in and the
decompositions applied to the plan (as shown for the example
in Figure 1). Such an explanation is an ordered list of argu-
ments, where a causal dependency is expressed as “Task A
was necessary, as it establishes l needed by B” and a decom-
position as “Task A was necessary, since it must be executed
to achieve B”. In the running example, the following expla-
nation is generated:

The runners’ calf stretch is necessary as
it ensures that the gastrocnemius muscle is
warmed up, which is needed by the skip rope
jumping. The skip rope jumping is necessary,
since it is part of the lower body workout.



RunnersCalfStretch SkipRopeJumping LowerBodyWorkout StaminaTraining ...GastrocnemiusMuscle
warmed up

obtained by
decomposing

obtained by
decomposing

Figure 1: Structure of a formal plan for the running example, as used in the explanation

The lower body workout is necessary, since it
is part of the stamina training.

Such explanations treat decomposition methods as facts,
but they are not justified further. While those generated from
causal dependencies may be plausible to a human, those gen-
erated from decompositions might not. For instance, in the
running example, the user may further ask “Why is the lower
body workout a stamina training?”. We use the second expla-
nation mechanism to further justify decompositions, which
are represented by subsumption relationships of the form
Class:A SubClassOf: C and which are logically implied
by the ontology. Here the aim is to present a stepwise explana-
tion making relevant background knowledge explicit. There-
fore, a derivation tree for the subsumption is constructed from
the relevant domain axioms using a consequence-based rea-
soning mechanism. To generate verbal output (with the goal
of imitating natural language), the nodes in this tree are first
ordered in a linear fashion. Each inference rule specifies a
template according to which its premises and conclusions are
output or simply omitted. Formulas that occur as part of the
premises or as the conclusion are converted into phrases by
applying patterns similar to those used by Nguyen [2013], to-
gether with some mechanisms for aggregation. In our running
example, the following justification is provided to the user:

According to its definition, the lower
body workout includes skip rope jumping and
stationary bike exercise. Furthermore, since
skip rope jumping is an aerobic exercise, it
follows that the lower body workout includes
an aerobic exercise. Given that something
that includes an aerobic exercise has stamina
as an intended health outcome, the lower body
workout has stamina as an intended health
outcome. Thus, the lower body workout is a
stamina training according to the definition
of stamina training.

This explanation can be considered more verbose than
needed, since it encompasses all the relevant information that
formally proves the relationship under question. Future work
should address adjustments to the level of detail based on user
modeling and pragmatics. Our approach shares its main ideas
with related work by Nguyen [2013], who also uses stepwise
derivations and template-based verbalization to generate ex-
planations for inferences in ontologies. Both Nguyen and the
present work rely on further related work by Horridge [2011]
to pinpoint those axioms that are relevant for the explana-
tions that are to be presented. The present work contrasts
with a number of other approaches that mainly focus on how
ontology axioms are suitably verbalized in natural language
(so-called ontology verbalization, cf. [Androutsopoulos et al.,
2013]), but that leave inference aside.

Since both the plan-based and the ontology-based explana-
tion mechanisms we use share the same integrated represen-

tation, one can present enhanced and still consistent explana-
tions to the user.

5 Integrating the User
In order to integrate the user into the planning process and to
communicate the generated solution, a dialog management
component is needed to control the flow and the structure
of the interaction. In order to communicate a solution, all
planned tasks have to be represented in the dialog domain,
while integrating the user requires the ongoing presentation
of planning decisions. This includes, most notably, the choice
of a decomposition method if an abstract task is to be re-
fined. The use of shared knowledge considerably facilitates
coherency of the interaction. Although the planning knowl-
edge stored in the ontology alone is not sufficient for the gen-
eration of the dialog domain, it contributes to its structure and
enables a unisono view on the domain, eliminating inconsis-
tency and translation problems.

The integrated planning knowledge, used to infer new de-
compositions for existing planning domains, can be used to
create a basic dialog structure as well. Analogous to Sec-
tion 3, a dialog A can be decomposed into a sequence of
subdialogs containing the dialogs B1, ...,Bn by an axiom
Class:A EquivalentTo: includes onlysome [B1, ...,Bn].
For example, in our application scenario a strength training
can be conducted using a set of workoutsA1, ...,An, each of
which consists of a set of exercises B1, ...,Bn. This way a di-
alog hierarchy can be created, using the topmost elements as
entry points for the dialog between user and machine. How-
ever, in addition to the knowledge used to generate plan steps,
additional resources are required for communicating these
steps to the user. Such texts, pictures or videos can easily be
referenced from an ontology. Using this information, dialogs
suitable for a well-understandable human-computer interac-
tion can be created and presented to the user.

One key aspect of state-of-the-art dialog systems is the
ability to individualize the ongoing dialog according to the
user’s needs, requirements, preferences or history of inter-
action. Coupling the generation of the dialog domain to the
ontology enables us to accomplish these requirements using
ontological reasoning and explanation in various ways. The
dialogs can be pruned using ontological reasoning according
to the user’s needs (e.g. show only exercises which do not
require gym access), to the user’s requirements (e.g. show
only beginner exercises), or adapted to the user’s dialog his-
tory (e.g. preselect exercises which were used the last time)
and preferences (e.g. present only exercises with dumbbells).
Integrating pro-active as well as requested explanations into
the interaction is an important part of imparting used domain
knowledge and clarifying system behavior. Using a coherent
knowledge source to create dialog and planning domain en-
ables us to use predefined declarative explanations [Nothdurft



et al., 2014] together with the plan explanations described in
Section 4, without dealing with inconsistency issues.

6 Related Work
Past research on coupling ontological reasoning and planning
mainly focused on increasing the planners efficiency or the
languages expressivity. A survey of Gil [2005] describes ap-
proaches joining classical planning and ontologies and lists
several planners that use ontological reasoning to speed-up
plan generation. Hartanto and Hertzberg [2008] use an ontol-
ogy to prune a given HTN model by deleting non-reachable
constants. It is not possible to infer additional content for the
domain within their paradigm. Several approaches use on-
tologies to enrich the structure of the planning domain. On-
tologies provide hierarchies of tasks and plans and are used
to represent states with the open world assumption [Sánchez-
Ruiz et al., 2009; Sirin, 2006]. For a survey, we refer to
Sirin [2006, Chapter 8].

Sirin [2006] proposes the HTN-DL formalism, an integra-
tion of HTN and description logics to address Web Service
composition problems. An HTN-DL planning domain is re-
lated to an ontology representing tasks and decomposition
methods as concepts and individuals, respectively, which are
augmented with an additional structure to encode parameter
variables, preconditions, and effects. In that Sirin’s notion of
methods is different from standard HTN, as they do not spec-
ify which abstract task they decompose but merely contain
a partially ordered list of actions. Instead, his methods have
preconditions and effects, like ordinary actions, which are not
necessarily related to the contents of the plan. This poten-
tial inconsistency could be circumvented by using a legality
criterion for decompositions (cf. [Biundo and Schattenberg,
2001]). Although Sirin’s and our approach are similar in the
idea of using an ontology and DL reasoning to generate plan-
ning domains, there are conceptual differences. Most notably,
Sirin assumes that all decomposition methods are given in ad-
vance by a domain modeler, while our approach can infer
completely new decomposition methods. In HTN-DL, rea-
soning is applied to match a decomposition method to a task
to which it may be applied. This matching is based solely on
the preconditions and effects of tasks and methods and not on
the tasks contained in the method. It does not allow a deep
reasoning about these tasks and their decompositions or other
properties, which is possible with our approach. So far, there
has been only little work on inferring decomposition meth-
ods automatically, one example being the work of Knoblock
[1994].

7 Conclusion
We have demonstrated how an ontology, used to generate
planing and dialog domains, facilitates coherence in a cog-
nitive system and at the same time advances its explanation
capabilities. An application scenario was described and the
benefits of our approach outlined.

In future work we will integrate more advanced plan-
ning techniques into the system. Most notably, this includes
mixed-initiative planning. Also we would like to tackle the
task of integrating order directly into the reasoning process,

despite the problems discussed. Our work raises the issue
of verbosity and pragmatics for plan explanations to be ad-
dressed in further studies.
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