
Breaking the Black Box - Using Background
Knowledge for Efficient Stream Reasoning

Birte Glimm and Markus Brenner

The University of Ulm, Germany
{birte.glimm, markus.brenner}@uni-ulm.de

Abstract. Current approaches to stream reasoning neglect knowledge
about the system as a whole. We present first steps towards self-describing
streams by outlining a possible definition of the data produced by differ-
ent streams. We give an outlook on future paths and how such descrip-
tions can be used to improve reasoning about the streamed data.

1 Introduction

Building artificial intelligences and, more specifically, companion systems, re-
quires technologies to capture human knowledge about the domain that the
system will interact with. The semantic web provides us with technologies like
OWL and RDF, which can be used to build machine usable knowledge bases
(also called ontologies) for this purpose. By modeling explicit knowledge, a rea-
soner can be used to derive additional, implicit information.

Similar to how classical relational databases store data, triple stores are used
to store knowledge bases and to provide access via a query language, namely
SPARQL. Modern triple stores use a technique called materialization to speed
up data access by making implicit knowledge explicit. Doing so is costly and,
therefore, many triple stores assume only infrequent updates to the stored data
(e.g. once every other week).

Now assume a system, which uses some domain about fitness to provide users
with assistance for planning and executing a workout specific to their needs.
Such a system will frequently receive changes to its world view (for example
information that a workout has been completed) from different sources (sensors,
other system components, . . . ). To cope with this, a knowledge base needs to
provide reasoning services on dynamic data.

Stream reasoning is the idea of combining triple stores with data streams,
which provide changes to the stored knowledge. The goal is to be able to perform
reasoning on vast amounts of data in real time. An often used example to visu-
alize the concept is a traffic control system, which receives data from thousands
of sensors and is supposed to reason on the actual traffic conditions.

In the context of our fitness application, a stream of data might come from
a pulse sensor. With additional knowledge about the physique of different age
groups and the age of the current user, the stream reasoning system might
deduce, whether the current amount of exertion is appropriate for an exercise.



Current stream reasoning approaches handle the streams of data as if they
were black boxes. They assume no structure on the incoming data and utilize
sliding windows to make the calculation of the materialization bearable, com-
bined with some other approaches [6, 2]. In this paper, we outline the concept
of self-describing streams: streams aware of the types of data they contribute to
the system, allowing for further optimizations in the materialization algorithms.

Section 2 introduces the necessary basics for this paper. Section 3 introduces
our contribution and outlines the future direction of our work. Section 4 provides
a short conclusion and outlook.

2 Preliminaries

The following sections of this paper introduce the basic concepts needed to un-
derstand our approach.

2.1 Semantic Web

Originating from the idea of enriching web pages with additional semantic in-
formation, the semantic web provides us with technologies for the construction
of knowledge bases for use with different kinds of applications.

Knowledge is written down in RDF triples of the form

s u b j e c t p r e d i c a t e ob j e c t .

denoting, that the subject is related to the object by a property predicate.
By defining semantics and special keywords, we can, for example, express

that someone is a man and that this man is married to someone else

John rd f : type Man.
John marriedTo Mary .

This example makes use of the predefined RDF keyword rdf:type, which expresses
that the subject of the triple belongs to some group or class of things we denote
by the object of the triple.

RDF only defines simple semantics. RDF Schema (RDFS) allows more ad-
vanced constructs. E.g., it is common knowledge that every thing we identify as
a Man (that is, it belongs to the class Man) is intuitively also a Person. RDFS
provides the keyword rdfs:subClassOf, which expresses exactly this relation:

Man r d f s : subClassOf Person .

The Web Ontology Language (OWL) further extends the semantics of the
triples, allowing for the definition of complex classes, e.g. using a disjunction as
in statements like ”every person is a man or a woman”. OWL defines different
subsets of itself, differing in the provided reasoning features.

The triples of an ontology can be divided into different parts or boxes, the
most common being the T-Box and the A-Box. Without going into too much
detail, the T-Box is analogous to the schema of a relational data base, providing



terminological knowledge, and the A-Box can be interpreted as the actual data,
providing assertional knowledge.

Knowledge bases consist of explicitly stated information, such as the triples
above. They also have some implicit information: For example combining the
triples about John with our statement about Man and Person results in the
information, that John is also a Person. Obtaining such implicit information is
the job of a reasoner.

More on RDF can be found in [7] and more on OWL in [8].

2.2 Triple Stores

Similar to how relational databases are used to store data for common applica-
tions, triple stores are used to store the triples of a knowledge base. To enable
easy access to the stored knowledge, they also provide a query language. The
most widely used one is SPARQL [4]. The interplay of a triple store and an
application is roughly depicted in Figure 1. Similar to SQL it allows the appli-
cation to specify what data should be retrieved by matching a query onto the
triples. As opposed to relational data, a knowledge base should not only provide
information explicitly stored, but also information derived using reasoning.

Most of the time reasoning is costly and queries are usually of a rather
high frequency, while often requesting similar data. Therefore common triple
stores employ a technique called materialization to limit the actual reasoning
to a minimum. This technique uses a reasoner to derive all implicit information
hidden in the explicit triples (such as the ”John is a Person” information in the
example above) and adds them to the triple store. The store still keeps track of
which triples where originally there and which were added to the materialization.
When the information in the triple store changes, because new triples are added
or removed, the materialized triples are dropped and the store uses the reasoner
again to add implicit information.

Materialization itself is costly due to the reasoning involved and therefore
the data is only updated very infrequently. Furthermore, estimating the effects
of an update is already very costly and therefore recalculating the complete
materialization is often the more reasonable approach.

:s1 :p1 :o1 .
:s2 :p2 :o2 .
...
Triple Store

Application
SPARQL

Fig. 1. Triple store interacting with an application



2.3 Stream Reasoning

Stream reasoning [10] is the idea of processing vast amounts of steadily incoming
data (for example from sensors) by using background knowledge from ontologies
to reason about the meaning of the data. Consider for example the setting of
a big factory, in which several thousand sensors monitor different parts of the
production process. A stream reasoner could use this data to continuously reason
about the productivity of the factory, check for errors and potential problems
etc.

In contrast to static triple stores, where all data is equally relevant, stream-
ing data becomes obsolete after some time when new data arrives. Therefore
reasoning needs to be done continuously as the data changes, which means that
the maintenance of the materialization is a major problem.

Furthermore, instead of one-time queries to the knowledge base, stream rea-
soning considers on-going queries, which keep producing results as new data
is inserted. In our factory setting we usually don’t want to query only once if
everything is alright, but we want to keep asking this question.

C-SPARQL [1] is one approach to stream reasoning and an extension to
the SPARQL Query Language. It processes streams as RDF streams [3], which
consist of RDF triples annotated with timestamps, and evaluates the streaming
data over its modified query language. A more detailed overview of the general
architecture of a stream reasoning system can be found in [3] and [9].

To the core features of C-SPARQL belongs the notion of windows. A window
essentially describes which triples are evaluated with the query at each point of
time. It consists of a time range r and a time step s. Every s time units, the win-
dow slides forward and is evaluated over the triples seen in the last r time units.
This helps to reduce the amount of calculation needed in the materialization
step. In particular, [1] uses two optimizations: First of all, the materialization is
maintained via the general algorithm presented in [6]. Furthermore, [2] presents
an extension, which uses the fact, that the triple store already knows upon arrival
of a triple, when it will be discarded again.

3 Self-Describing Streams

We previously introduced the concept of stream reasoning and RDF streams.
Current works do not make any assumption about the data a stream contains.
Instead, streams are handled as black boxes producing arbitrary triples. Usually,
this is not the case. When constructing an application using a stream reasoner,
we already have knowledge about the data a stream will produce. Furthermore
we can assume that connecting a data stream to the system will not occur very
often and in particular all streams will most likely be connected during the set-up
of the system. We present an approach to specifying knowledge about the streams
such that a stream reasoner can use this information to optimize the calculation
of the materialization. The idea of self-describing systems (or components) is
not new. For example, in the semantic web area, SPARQL Service Descriptions



[11], allow SPARQL endpoints (interfaces, which provide access to a triple store
via SPARQL) to describe their capabilities and the data they provide.

First of all, we assume that the provided data can be partitioned into distinct
events. Such an event might be a new pulse reading from a sensor or perhaps
a more sophisticated event from some preprocessing component, which delivers
more complex data. Furthermore, even though the actual data of an event might
differ, it is possible to group similar events. In the pulse sensor example, the
actual pulse readings only differ in the reading itself.

We therefore introduce the notion of stream statement. A stream statement
describes classes of events and consists of two parts: First, a definition of one
or more triples (forming an A-Box assertion) with template variables. Actual
events replace these template variables with actual elements. E.g., the triple

s ensor1 pulseValue t1 .

with the template variable t1 could be part of a stream statement and a corre-
sponding event could produce the triple

s ensor1 pulseValue ”80”ˆˆ xsd : i n t e g e r .

We make the restriction to A-Box assertions, as streams should mostly only
deliver actual data to the system.

The second part of a stream statement provides restrictions on the template
variables, by specifying the elements which can replace them. These can be
literals (such as the ”80” above, which is typed as an XML-Schema datatype to
clarify its semantics), fresh elements never seen before, or elements which have
already occurred in the ontology or in other streams.

Each template variable can only have one specified source. If an event can
reference an element from several sources, it will be described using several
different stream statements, which will be grouped in a statement group.

Stream statements can be used as follows: Upon connecting streams and triple
store, each stream will provide all contributed statements. The triple store can
then decide, how it will react upon receiving an actual event through a stream.

At runtime, whenever a stream experiences an event, it will tell the triple
store to which statement group it belongs. Note that the stream cannot decide
efficiently if an element is new to the triple store, even when it knows which
source the element will have. Therefore the stream only declares which state-
ment group the event belongs to and the triple store has to decide on the actual
stream statement, which should be an easy lookup on the nature of the pro-
vided element. Therefore stream and triple store together can classify incoming
events efficiently, allowing for optimized materialization routines depending on
the incoming element.

3.1 Where We Are so Far

So far we are still exploring the idea of self-describing streams. The definition
and syntax of stream statements needs to be formalized. The usefulness of the



approach will have to be verified first as well, but declaring the information pro-
vided by a stream provides at least the possibility to speed up the materialization
by neglecting parts of the knowledge base, which clearly will not contribute new
triples in combination with the new data. This is possible through the use of
existing modularization algorithms such as [5].

We expect further optimizations to be possible, also empowered by the fact
that preprocessing the stream descriptions happens only at setup, allowing for
computationally expensive algorithms to be used.

4 Conclusion

We have presented a new approach to formalizing knowledge about streams in
stream reasoning. Careful considerations give rise to hope for a speed up of the
materialization time. Should the presented approach lead to a significant im-
provement, then perhaps future stream reasoners can consider different notions
of time and allow for different triple lifetimes, e.g. keeping data about users until
explicitly deleted, while still dropping pulse data frequently.

References

1. Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle,
and Michael Grossniklaus. C-SPARQL: a continuous query language for RDF
data streams. Int. J. Semantic Computing, 4(1):3–25, 2010.

2. DavideFrancesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and
Michael Grossniklaus. Incremental reasoning on streams and rich background
knowledge. In The Semantic Web: Research and Applications, volume 6088 of
LNCS, pages 1–15. Springer, 2010.

3. Emanuele Della Valle, Stefano Ceri, Davide Francesco Barbieri, Daniele Braga, and
Alessandro Campi. A first step towards stream reasoning. Springer, 2009.

4. Steve H. Garlik, Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1 Query
Language. http://www.w3.org/TR/sparql11-query/.

5. Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike Sattler. Just
the right amount: extracting modules from ontologies. In Proceedings of the 16th
Int. Conf. on World Wide Web, pages 717–726. ACM, 2007.

6. Ashish Gupta, Inderpal Singh Mumick, and Venkatramanan Siva Subrahmanian.
Maintaining views incrementally. ACM SIGMOD Record, 22(2):157–166, 1993.

7. Frank Manola and Eric Miller, editors. RDF Primer. W3C Recommendation.
W3C, February 2004.

8. W3C OWL Working Group. OWL 2 Web Ontology Language: Docu-
ment Overview. W3C Recommendation, 27 October 2009. Available at
http://www.w3.org/TR/owl2-overview/.

9. Heiner Stuckenschmidt, Stefano Ceri, ED Valle, and Frank Van Harmelen. Towards
expressive stream reasoning. In Proceedings of the Dagstuhl Seminar on Semantic
Aspects of Sensor Networks, page 241, 2010.

10. Emanuele Della Valle, Stefano Ceri, Frank van Harmelen, and Dieter Fensel. It’s
a streaming world! reasoning upon rapidly changing information. IEEE Intelligent
Systems, 24(6):83–89, 2009.

11. Gregory Todd Williams. SPARQL 1.1 Service Description, October 2010.


