
Journal of Artificial Intelligence Research 54 (2015) 535-592 Submitted 07/15; published 12/15

Pay-As-You-Go Description Logic Reasoning
by Coupling Tableau and Saturation Procedures

Andreas Steigmiller andreas.steigmiller@uni-ulm.de

Birte Glimm birte.glimm@uni-ulm.de

Institute of Artificial Intelligence, University of Ulm, Germany

Abstract

Nowadays, saturation-based reasoners for the OWL EL profile of the Web Ontology
Language are able to handle large ontologies such as SNOMED very efficiently. However,
it is currently unclear how saturation-based reasoning procedures can be extended to very
expressive Description Logics such as SROIQ—the logical underpinning of the current
and second iteration of the Web Ontology Language. Tableau-based procedures, on the
other hand, are not limited to specific Description Logic languages or OWL profiles, but
even highly optimised tableau-based reasoners might not be efficient enough to handle large
ontologies such as SNOMED. In this paper, we present an approach for tightly coupling
tableau- and saturation-based procedures that we implement in the OWL DL reasoner
Konclude. Our detailed evaluation shows that this combination significantly improves the
reasoning performance for a wide range of ontologies.

1. Introduction

The current version of the Web Ontology Language (OWL 2) (W3C OWL Working Group,
2009) is based on the very expressive Description Logic (DL) SROIQ (Horrocks, Kutz,
& Sattler, 2006). Sound and complete tableau algorithms, which are easily extensible and
adaptable, are typically used to handle (standard) reasoning tasks. Moreover, the use
of a wide range of optimisation techniques allows for handling many expressive, real-world
ontologies. Since standard reasoning tasks for SROIQ have N2EXPTIME-complete worst-
case complexity (Kazakov, 2008), it is, however, not surprising that larger ontologies easily
become impractical for existing systems.

In contrast, the OWL 2 profiles define language fragments of SROIQ for which the
standard reasoning tasks are tractable and specialised reasoning procedures are available.
For example, the OWL 2 EL profile is based on the DL EL++, which can efficiently be
handled by completion- or consequence-based reasoning procedures (Baader, Brandt, &
Lutz, 2005; Kazakov, 2009). These saturation algorithms have also been extended to handle
more expressive DLs such as Horn-SHIQ (Kazakov, 2009) for which they are often able to
outperform the more general tableau algorithms. Even saturation procedures for DLs with
non-deterministic language features, such as ALCI (Simanč́ık, Kazakov, & Horrocks, 2011),
ALCH (Simanč́ık, Motik, & Horrocks, 2014), SHIQ (Bate, Motik, Cuenca Grau, Simanč́ık,
& Horrocks, 2015), have been developed and some of their implementations into reasoning
systems show a remarkable performance. In particular, they allow for a one-pass handling
of several reasoning tasks such as classification (i.e., the task of arranging the classes of
an ontology in a hierarchy), whereas the idea of tableau procedures is based on pairwise
testing individual class subsumptions. Although optimised classification algorithms have

c©2015 AI Access Foundation. All rights reserved.

Steigmiller & Glimm

been developed for tableau-based reasoning systems (Baader, Hollunder, Nebel, Profitlich,
& Franconi, 1994; Glimm, Horrocks, Motik, Shearer, & Stoilos, 2012), they still use a
multitude of separate consistency tests in order to decide subsumption relations. Since
a complete handling of DLs providing disjunctions, cardinality restrictions, and inverse
roles causes several difficulties, saturation procedures have not yet been extended to very
expressive DLs such as SROIQ. Hence, only the less efficient tableau-based reasoning
systems can currently be used to handle ontologies with these more expressive language
features.

Unfortunately, a combination of tableau algorithms and saturation procedures is not
straightforward since both techniques work quite differently. Hence, ontology engineers
have to decide whether they only use the restricted features of certain language fragments
such that their ontologies can be handled by specialised reasoners with saturation-based
procedures or they have to face possible performance losses by using more general reasoning
systems based on tableau algorithms. This is especially unfavourable if such language
features are only required for a few axioms in the ontology. In this case, completeness
is no longer ensured for the specialised procedures, while the fully-fledged, tableau-based
reasoners are possibly not efficient enough. Ideally, reasoning systems with a better pay-as-
you-go behaviour could be used, where the part of the ontology that is not affected by the
axioms outside the tractable fragment can still be handled efficiently. This led to the recent
development of approaches that combine saturation procedures and fully-fledged reasoners
in a black box manner (Armas Romero, Cuenca Grau, & Horrocks, 2012; Song, Spencer,
& Du, 2012; Zhou, Nenov, Cuenca Grau, & Horrocks, 2014; Zhou, Cuenca Grau, Nenov,
Kaminski, & Horrocks, 2015). These approaches try to delegate as much work as possible
to the specialised and more efficient reasoner, which allows for reducing the workload of the
fully-fledged tableau algorithm, while still guaranteeing completeness.

In this paper, we present a much tighter coupling between saturation and tableau algo-
rithms, whereby further performance improvements are achieved. After introducing some
preliminaries (Section 2), we present a saturation procedure that is adapted to the data
structures of a tableau algorithm (Section 3). This allows for easily passing information
between the saturation and the tableau algorithm within the same reasoning system. More-
over, the saturation partially handles features of very expressive DLs in order to efficiently
derive as many consequences as possible (Section 3.1). We then show how parts of the
ontology can be identified for which the saturation procedure is possibly incomplete and
where it is necessary to fall-back to the tableau procedure (Section 3.2). Subsequently, we
present several optimisations that are based on passing information from the saturation to
the tableau algorithm (Section 4) and back (Section 5). Finally, we discuss related work
(Section 6) and present the results of a detailed evaluation including comparisons with other
approaches and state-of-the-art reasoners (Section 7) before we conclude (Section 8).

This paper is based on a previous conference publication (Steigmiller, Glimm, & Liebig,
2014a), but contains significantly extended explanations, additional examples, and proofs
for the correctness of the integrated saturation procedure with its incompleteness detection.
Due to the space limitations of the conference publication, the information passing between
the tableau algorithm and the saturation procedure could only be sketched, whereas it is
described in detail in this paper. Moreover, the coupling with the saturation procedure
has been extended in this paper to consider and handle all language features of the DL

536

Pay-As-You-Go Description Logic Reasoning

SROIQ. Furthermore, we show a new and more detailed evaluation that is based on an
updated implementation and we compare the results with other approaches where fully-
fledged and specialised reasoners are combined.

2. Preliminaries

In order to describe our techniques in more detail, we first give, based on the original pre-
sentation of Horrocks et al. (2006), a brief introduction into the DL SROIQ in this section.
For a detailed introduction to DLs, we refer to the Description Logic Handbook (Baader,
Calvanese, McGuinness, Nardi, & Patel-Schneider, 2007). Subsequently, we describe a tab-
leau algorithm as it is typically used by reasoning systems and also refer to the work of
Horrocks et al. (2006) for further details.

2.1 The Description Logic SROIQ

We first define the syntax of roles, concepts (also called classes), and individuals, and then
we go on to axioms and ontologies/knowledge bases. Additionally, we sketch typically
used restrictions for the combination of the different axioms, which are necessary to ensure
decidability for many inference problems of SROIQ. Note that we do not describe all
details of these restrictions since they are well-known in the DL literature (Horrocks et al.,
2006) but not particularly relevant for the proposed optimisation techniques. Subsequently,
we define the semantics of these components.

Definition 1 (Syntax of Individuals, Concepts, and Roles). Let NC , NR, and NI be count-
able, infinite, and pairwise disjoint sets of concept names, role names, and individual
names, respectively. We call Σ = (NC ,NR,NI) a signature. The set Rols(Σ) of SROIQ-
roles over Σ (or roles for short) is NR ∪ {r− | r ∈ NR}, where a role of the form r− is
called the inverse role of r. Since the inverse relation on roles is symmetric, we can define a
function inv, which returns the inverse of a role and, therefore, we do not have to consider
roles of the from r−−. For r ∈ NR, let be inv(r) = r− and inv(r−) = r.

The set of SROIQ-concepts (or concepts for short) over Σ is the smallest set built
inductively over symbols from Σ using the following grammar, where a ∈ NI , n ∈ IN0, A ∈
NC , and r ∈ Rols(Σ):

C ::= > | ⊥ | A | {a} | ¬C | C1 u C2 | C1 t C2 | ∀r.C | ∃r.C | ∃r.Self | >n r.C | 6n r.C.

The roles, concepts, and individuals are used to build ontology axioms as follows:

Definition 2 (Syntax of Axioms and Ontologies). For C,D concepts, a general concept
inclusion (GCI) axiom is an expression C v D. A finite set of GCIs is called a TBox.

A role inclusion (RI) axiom is an expression of the form u v r, where r is a role and u
is a composition of roles, i.e., u = s1 ◦ . . . ◦ sn with the roles s1, . . . , sn and n ≥ 1. For r, s
roles, a role assertion (RA) axiom is of the form Disj(r, s). An RBox is a finite set of RIs
and RAs. Given an RBox R, we use v∗ as the transitive-reflexive closure over all r v s
and inv(r) v inv(s) axioms in R. We call a role r a sub-role of s and s a super-role of r if
r v∗ s.

An (ABox) assertion is an expression of the form C(a) or r(a, b), where C is a concept,
r is a role, and a, b ∈ NI are individual names. An ABox is a finite set of assertions. A

537

Steigmiller & Glimm

knowledge base or ontology K is a tuple (T , R, A) with T a TBox, R an RBox, and A
an ABox.

Note, it is also possible to allow other types of RAs for the RBox, e.g., axioms that
specify roles as asymmetric, irreflexive, transitive, reflexive, or symmetric. However, such
axioms can be expressed indirectly in other ways and, therefore, we omit their presentation
here. For example, an axiom of the form Refl(r), for which the role r has to be interpreted
as reflexive, can be encoded with the axioms r′ v r and > v ∃r′.Self.1 Analogously, we
only allow the most frequently used ABox assertions since, in the presence of nominals, all
ABox assertion can also be expressed with GCIs (which we also utilise below to eliminate all
ABox assertions to simplify the presentation of algorithms). Furthermore, SROIQ usually
allows the usage of the universal role u, but u can also be simulated by a fresh transitive,
reflexive, and symmetric super role, i.e., a role that is implied by all other roles. In the
following, we use K also as an abbreviation for the collection of all axioms in the knowledge
base. For example, we write C v D ∈ K instead of C v D ∈ T and T ∈ K.

In order to ensure decidability (Horrocks, Sattler, & Tobies, 1999; Horrocks & Sattler,
2004), only simple roles are allowed in concepts of the form > n r.C, 6 n r.C, and ∃r.Self
and in axioms of the form Disj(r, s), where, roughly speaking, a role is simple if it is not
implied by any RI that uses role composition. Furthermore, the RBox has to be regular,
i.e., RI axioms are only allowed in a limited form (Horrocks & Sattler, 2004), which restricts
cyclic dependencies between RIs.

Next, we define the semantics of concepts and then we go on to the semantics of axioms
and ontologies/knowledge bases.

Definition 3 (Semantics of Individuals, Concepts, and Roles). An interpretation I =
(∆I , ·I) consists of a non-empty set ∆I , the domain of I, and a function ·I , which maps
every concept name A ∈ NC to a subset AI ⊆ ∆I , every role name r ∈ NR to a binary
relation rI ⊆ ∆I × ∆I , and every individual name a ∈ NI to an element aI ∈ ∆I . For
each role name r ∈ NR, the interpretation of its inverse role (r−)

I
consists of all pairs

〈δ, δ′〉 ∈ ∆I ×∆I for which 〈δ′, δ〉 ∈ rI .

For any interpretation I, the semantics of SROIQ-concepts over a signature Σ is de-
fined by the function ·I as follows:

>I = ∆I ⊥I = ∅ ({a})I = {aI}
(¬C)I = ∆I \ CI (C uD)I = CI ∩DI (C tD)I = CI ∪DI

(∃r.Self)I = {δ ∈ ∆I | 〈δ, δ〉 ∈ rI}
(∀r.C)I = {δ ∈ ∆I | if 〈δ, δ′〉 ∈ rI , then δ′ ∈ CI}
(∃r.C)I = {δ ∈ ∆I | there is a 〈δ, δ′〉 ∈ rI with δ′ ∈ CI}

(6n r.C)I = {δ ∈ ∆I |]{δ′ ∈ ∆I | 〈δ, δ′〉 ∈ rIand δ′ ∈ CI} ≤ n}
(>n r.C)I = {δ ∈ ∆I |]{δ′ ∈ ∆I | 〈δ, δ′〉 ∈ rIand δ′ ∈ CI} ≥ n},

where]M denotes the cardinality of the set M .

Finally, we can define the semantics of ontologies/knowledge bases.

1. Note that we have to use the fresh sub-role r′ of r in the axiom > v ∃r′.Self since r might be complex,
but ∃r.Self expressions are only allowed with simple roles.

538

Pay-As-You-Go Description Logic Reasoning

Definition 4 (Semantics of Axioms and Ontologies). Let I = (∆I , ·I) be an interpretation,
then I satisfies a TBox/RBox axiom or ABox assertion α, written I |= α if

1. α is a GCI C v D and CI ⊆ DI , or

2. α is an RI s1 ◦ . . . ◦ sn v r and sI1 ◦ . . . ◦ sIn ⊆ rI , where ◦ denotes the composition of
binary relations for sI1 ◦ . . . ◦ sIn, or

3. α is an RA of the form Disj(r, s) and rI ∩ sI = ∅, or

4. α is an ABox assertion C(a) and aI ∈ CI , or

5. α is an ABox assertion r(a, b) and 〈aI , bI〉 ∈ rI .

I satisfies a TBox T (RBox R, ABox A) if it satisfies each GCI in T (each RI/RA axiom
in R, each assertion in A). We say that I satisfies K = (T ,R,A) if I satisfies T , R, and
A. In this case, we say that I is a model of K and we write I |= K. We say that K is
consistent if K has a model.

2.2 Normalisation and Preprocessing

In the remainder we assume that each knowledge base is normalised into the following form:

1. The TBox contains only axioms of the form A1 u A2 v C and H v C with H = A,
H = {a}, or H = >, where C is in negation normal form and A,A1, A2 denote concept
names.

2. The RBox contains only RAs and simple role inclusion axioms of the form r1 v r2.

3. The ABox is empty.

This assumption is without loss of generality. For Item 1: Any concept can be transformed
into an equivalent one in negation normal form (NNF) by pushing negation inwards, making
use of de Morgan’s laws and the duality between existential and universal restrictions, and
between at-most and at-least cardinality restrictions (Horrocks, Sattler, & Tobies, 2000).
We use nnf(C) to denote the equivalent concept to C in NNF. Furthermore, a GCI C v
D ∈ T that does not correspond to the normal form can equivalently be written as > v
nnf(¬CtD). This rewriting of GCIs creates (possibly many) disjunctions, which potentially
causes a lot of non-determinism in the reasoning procedure and, therefore, easily decreases
the reasoning performance. To counteract this, a preprocessing step called absorption is
often used (Horrocks & Tobies, 2000; Hudek & Weddell, 2006; Steigmiller, Glimm, & Liebig,
2013, 2014b; Tsarkov & Horrocks, 2004), which tries to rewrite the axioms into possibly
several simpler concept inclusion axioms. For example, instead of treating Au∃r.B v C as
> v ¬At∀r.(¬B)tC, a sophisticated absorption algorithm can avoid the non-determinism
by rewriting the axiom into B v ∀r−.F and A u F v C, where F is a fresh atomic
concept that is used to preserve the semantics of the original axiom. For Item 2: RIs that
use compositions can be eliminated using an encoding based on automata (Horrocks &
Sattler, 2004) or regular expressions (Simanč́ık, 2012). Note that such explicit encodings
of propagations over complex roles might blow up the knowledge base exponentially, but

539

Steigmiller & Glimm

it cannot be avoided in the worst-case, i.e., we could only try to delay it until the actual
reasoning process (Kazakov, 2008) and this is indeed utilised by many reasoners (although
such a blow up seems hardly be caused by real-world ontologies). For Item 3, C(a) (r(a, b))
can equivalently be expressed as {a} v C ({a} v ∃r.{b}).

2.3 Tableau Algorithm for SROIQ

Model construction calculi, such as tableaux, decide the consistency of a knowledge base K
by trying to construct an abstraction of a model for K, a so-called “completion graph”. In
the following, we describe, based on the original presentation of the SROIQ tableau algo-
rithm (Horrocks et al., 2006), the model construction process and the used data structures,
beginning with completion graphs.

Definition 5 (Completion Graph). For a concept C, we use sub(C) to denote the set of
all sub-concepts of C (including C). Let K be a normalised SROIQ knowledge base and
let Cons(K) be the set of concepts occurring in the TBox T of K, i.e., Cons(K) = {C,D |
C v D ∈ K}. We define the closure clos(K) of K as:

clos(K) = {C ∈ sub(D) | D ∈ Cons(K)} ∪ {nnf(¬C) | C ∈ sub(D), D ∈ Cons(K)}.

A completion graph for K is a directed graph G = (V,E,L, ˙6=). Each node v ∈ V is
labelled with a set L(v) ⊆ fclos(K), where

fclos(K) = clos(K) ∪ {6mr.C |6n r.C ∈ clos(K) and m ≤ n}.

Each edge 〈v, v′〉 ∈ E is labelled with the set L(〈v, v′〉) ⊆ Rols(K), where Rols(K) are the
roles occurring in K. The symmetric binary relation ˙6= is used to keep track of inequalities
between nodes in V .

In the following, we often use r ∈ L(〈v1, v2〉) as an abbreviation for 〈v1, v2〉 ∈ E and
r ∈ L(〈v1, v2〉).

Definition 6 (Successor, Predecessor, Neighbour). If 〈v1, v2〉 ∈ E, then v2 is called a
successor of v1 and v1 is called a predecessor of v2. Ancestor is the transitive closure of
predecessor, and descendant is the transitive closure of successor. A node v2 is called an s-
successor of a node v1 if r ∈ L(〈v1, v2〉) and r is a sub-role of s; v2 is called an s-predecessor
of v1 if v1 is an s-successor of v2. A node v2 is called a neighbour (s-neighbour) of a node
v1 if v2 is a successor (s-successor) of v1 or if v1 is a successor (inv(s)-successor) of v2.

For a role r and a node v ∈ V , we define the set of v’s r-neighbours with the concept C in
their label, written mneighbs(v, r, C), as {v′ ∈ V | v′ is an r-neighbour of v and C ∈ L(v′)}.

Note, many inference problems for the DL SROIQ can easily be reduced to consistency
checking and, therefore, they can indirectly be handled although often only consistency
checking reasoning task is specified for the tableau algorithm. For example, in order to
test the satisfiability of a concept C, we introduce a fresh individual a for which we assert
the concept C by an axiom of the form {a} v C. The nodes that represent these (fresh)
individuals are typically called root nodes.

In order to test the consistency of a knowledge base, the completion graph is initialised by
creating one node for each individual/nominal in the input knowledge base. In particular,

540

Pay-As-You-Go Description Logic Reasoning

if v1, . . . , v` are the nodes for the individuals a1, . . . , a` of K, then we create an initial
completion graph G = ({v1, . . . , v`}, ∅,L, ∅) and add for each individual ai the nominal {ai}
and the concept > to the label of vi, i.e., L(vi) = {{ai},>} for all 1 ≤ i ≤ `.

The tableau algorithm works by decomposing/unfolding concepts in the completion
graph with a set of expansion rules (see Table 1). Each rule application can add new
concepts to node labels and/or new nodes and edges to the completion graph, thereby
explicating the structure of a model for the input knowledge base. The rules are repeatedly
applied until either the graph is fully expanded (no more rules are applicable), in which case
the graph can be used to construct a model that is a witness to the consistency of K, or an
obvious contradiction (called a clash) is discovered (e.g., both C and ¬C in a node label),
proving that the completion graph does not correspond to a model. The input knowledge
base K is consistent if the rules (some of which are non-deterministic) can be applied such
that they build a fully expanded and clash-free completion graph.

Definition 7 (Clash). A completion graph G = (V,E,L, ˙6=) for a knowledge base K contains
a clash if there are the nodes v and w such that

1. ⊥ ∈ L(v), or

2. {C, nnf(¬C)} ⊆ L(v) for some concept C, or

3. v is an r-neighbour of v and ¬∃r.Self ∈ L(v), or

4. Disj(r, s) ∈ K and w is an r- and an s-neighbour of v, or

5. there is some concept 6 n r.C ∈ L(v) and {w1, . . . , wn+1} ⊆ mneighbs(v, r, C) with
wi

˙6=wj for all 1 ≤ i < j ≤ n+ 1, or

6. there is some {a} ∈ L(v) ∩ L(w) and v ˙6=w.

Unrestricted application of the ∃-rule and >-rule can lead to the introduction of infinitely
many new tableau nodes and, thus, prevent the calculus from terminating. To counteract
that, a cycle detection technique called (pairwise) blocking (Horrocks & Sattler, 1999) is
used that restricts the application of these rules. To apply blocking, we distinguish blockable
nodes from nominal nodes, which have either an original nominal from the knowledge base
or a new nominal introduced by the calculus in their label.

Definition 8 (Pairwise Blocking). A node is blocked if either it is directly or indirectly
blocked. A node v is indirectly blocked if an ancestor of v is blocked; and v with predecessor
v′ is directly blocked if there exists an ancestor node w of v with predecessor w′ such that

1. v, v′, w, w′ are all blockable,

2. w,w′ are not blocked,

3. L(v) = L(w) and L(v′) = L(w′),

4. L(〈v′, v〉) = L(〈w′, w〉).

In this case, we say that w directly blocks v and w is the blocker of v.

541

Steigmiller & Glimm

v1-rule if H ∈ L(v), H v C ∈ K with H = A, or H = {a}, or H = >, C /∈ L(v),
and v is not indirectly blocked

then L(v) = L(v) ∪ {C}
v2-rule if {A1, A2} ⊆ L(v), A1 uA2 v C ∈ K, C /∈ L(v), and

v is not indirectly blocked
then L(v) = L(v) ∪ {C}

u-rule if C1 u C2 ∈ L(v), v is not indirectly blocked, and {C1, C2} 6⊆ L(v)
then L(v) = L(v) ∪ {C1, C2}

t-rule if C1 t C2 ∈ L(v), v is not indirectly blocked, and {C1, C2} ∩ L(v) = ∅
then L(v′) = L(v′) ∪ {H} for some H ∈ {C1, C2}

∃-rule if ∃r.C ∈ L(v), v is not blocked, and
v has no r-neighbour v′ with C ∈ L(v′)

then create a new node v′ and an edge 〈v, v′〉 with
L(v′) = {>, C} and L(〈v, v′〉) = {r}

Self-rule if ∃r.Self ∈ L(v), v is not blocked, and v is no r-neighbour of v
then create a new edge 〈v, v〉 with L(〈v, v〉) = {r}

∀-rule if ∀r.C ∈ L(v), v is not indirectly blocked, and
there is an r-neighbour v′ of v with C /∈ L(v′)

then L(v′) = L(v′) ∪ {C}
ch-rule if 6n r.C ∈ L(v), v is not indirectly blocked, and

there is an r-neighbour v′ of v with {C, nnf(¬C)} ∩ L(v′) = ∅
then L(v′) = L(v′) ∪ {H} for some H ∈ {C, nnf(¬C)}

>-rule if 1. >n r.C ∈ L(v), v is not blocked, and

2. there are not n r-neighbours v1, . . . , vn of v with C ∈ L(vi) and vi ˙6=vj
for 1 ≤ i < j ≤ n, where v1, . . . , vn are not blocked if v is a nominal node

then create n new nodes v1, . . . , vn with L(〈v, vi)〉 = {r}, L(vi) = {>, C}
and vi ˙6=vj for 1 ≤ i < j ≤ n.

6-rule if 1. 6n r.C ∈ L(v), v is not indirectly blocked,
2.]mneighbs(v, r, C) > n and there are two r-neighbours v1, v2 of v with

C ∈ (L(v1) ∩ L(v2)) and not v1
˙6=v2

then a. if v1 is a nominal node, then merge(v2, v1)
b. else if v2 is a nominal node or an ancestor of v1, then merge(v1, v2)
c. else merge(v2, v1)

o-rule if there are two nodes v, v′ with {a} ∈ (L(v) ∩ L(v′)) and not v ˙6=v′
then merge(v, v′)

NN-rule if 1. 6n r.C ∈ L(v), v is a nominal node, and there is a blockable
r-neighbour v′ of v such that C ∈ L(v′) and v is a successor of v′,

2. there is no m such that 1 ≤ m ≤ n, (6mr.C) ∈ L(v),
and there exist m nominal r-neighbours v1, . . . , vm of v

with C ∈ L(vi) and vi ˙6=vj for all 1 ≤ i < j ≤ m
then 1. guess m with 1 ≤ m ≤ n and L(v) = L(v) ∪ {6mr.C}

2. create m new nodes v′1, . . . , v
′
m with L(〈v, v′i〉) = {r},

L(v′i) = {>, C, {ai}} with each ai ∈ NI new in G and K, and

v′i
˙6=v′j for 1 ≤ i < j ≤ m.

Table 1: Tableau expansion rules for normalised SROIQ knowledge bases

542

Pay-As-You-Go Description Logic Reasoning

During the expansion it is sometimes necessary to merge two nodes or to delete (prune)
a part of the completion graph (Horrocks & Sattler, 2007). Roughly speaking, when a node
w is merged into a node v, e.g., by an application of the 6-rule, written merge(w, v), we
add L(w) to L(v), “move” all the edges leading to w so that they lead to v and “move” all
the edges leading from w to nominal nodes so that they lead from v to the same nominal
nodes; we then remove w (and blockable sub-trees below w) from the completion graph,
written prune(w), to prevent a further rule application on these nodes.

Note, in order to ensure termination of the tableau algorithm, it is in principle necessary
to apply certain “crucial” rules with a higher priority. For example, the o-rule is applied
with the highest priority and the NN-rule has to be applied before the 6-rule. The priority
of other rules is not relevant as long as they are applied with a lower priority than for these
crucial rules.

3. Saturation Compatible with Tableau Algorithms

In this section, we describe a saturation method that is an adaptation of the completion-
based procedure (Baader et al., 2005) such that it generates data structures that are com-
patible for further usage within a fully-fledged tableau algorithm. Roughly speaking, the
saturation approximates completion graphs in a compressed form and, therefore, it directly
allows the extraction and transfer of results from the saturation to the tableau algorithm.
To be more precise, we ensure that the saturation generates nodes that are, similarly to the
nodes in completion graphs, labelled with sets of concepts. The saturated labels can then
be used to initialise the labels of new nodes in completion graphs or to block the processing
of successors. Moreover, in some cases, it is directly possible to build a model from the data
structures of the saturation, which makes the construction of completion graphs with the
tableau algorithm unnecessary.

Note, the adapted saturation method is not designed to cover a certain OWL 2 pro-
file or a specific DL language. In contrast, we saturate those parts of knowledge bases
that can easily be supported with an efficient algorithm (see Section 3.1), i.e., we simply
ignore unsupported concept constructors or only process them partially, and afterwards
(see Section 3.2), we dynamically detect which parts have not been completely handled
by the saturation. Hence, the results of the saturation are possibly incomplete, but since
we know how and where they are incomplete, we can use the results from the saturation
appropriately.

For an easy integration into a highly optimised tableau procedure, the (usually simpler)
saturation procedure is adapted to work on the same (normalised and preprocessed) knowl-
edge base and data structures as the tableau algorithm (but, in principle, also the opposite
direction would be possible). This enables, for example, a direct use of node labels from
the saturation in the tableau algorithm. For this coupling technique, the use of a good
absorption algorithm is crucial since the saturation only handles deterministic parts of the
knowledge base.

3.1 Saturation Based on Tableau Rules

The adapted saturation method generates so-called saturation graphs, which approximate
completion graphs in a compressed form, e.g., by “reusing” nodes.

543

Steigmiller & Glimm

Definition 9 (Saturation Graph). A saturation graph for a knowledge base K is a directed
graph S = (V,E,L) with the nodes V ⊆ {vC | C ∈ fclos(K)}. Each node vC ∈ V is labelled
with a set L(v) ⊆ fclos(K) such that L(vC) ⊇ {>, C}. We call vC the representative node
for the concept C. Each edge 〈v, v′〉 ∈ E is labelled with a set L(〈v, v′〉) ⊆ Rols(K).

Obviously, a saturation graph is a data structure that is very similar to a completion
graph. A major difference is, however, the missing ˙6=-relation, which can be omitted since
the saturation is not designed to completely handle cardinality restrictions. Furthermore,
each node in the saturation graph is the representative node for a specific concept, which
allows for “reusing” nodes as successors. For example, instead of creating new successors
for existential restrictions, we reuse the representative node for the existentially restricted
concept as a successor.

Since nodes, edges, and labels are used as in completion graphs, we use the terms
(r-)neighbour, (r-)successor, (r-)predecessor, ancestor, and descendant analogously. Please
note, however, that all nodes in the saturation graph can have several predecessors due to
the reuse of nodes, whereas in completion graphs, only the nominal nodes can have several
predecessors.

We initialise the saturation graph with the representative nodes for those concepts that
have to be saturated. For example, if the satisfiability of the concept C has to be tested,
then we add the node vC with the label L(vC) = {>, C} to the saturation graph. If we are
later also interested in the saturation of a concept D, then we simply extend the existing
saturation graph by vD. For knowledge bases that contain nominals, we further initialise the
saturation graph with a node v{a} with L(v{a}) = {>, {a}} for each nominal {a} occurring
in the knowledge base. The saturation then simply applies the rules depicted in Table 2 to
the saturation graph.

Definition 10 (Saturation). Let S = (V,E,L) be a saturation graph for a knowledge base
K, then the saturation of S exhaustively applies the rules of Table 2 to S. A saturation
graph is called fully saturated if the rules are not further applicable. We use the function
saturate to denote the saturation of a saturation graph S, i.e., saturate(S) returns S′, where
S′ is the fully saturated extension of S.

Note that if a saturation rule refers to the representative node for a concept C and
the node vC does not yet exist, then we assume that the saturation graph is automatically
extended by this node. Although the saturation rules are very similar to the corresponding
expansion rules in the tableau algorithm, there are some differences. For example, the
number of nodes is limited by the number of (sub-)concepts occurring in the knowledge
base due to the reuse of nodes for satisfying existentially restricted concepts. Consequently,
the saturation terminates since the rules are only applied when they can add new concepts
or roles to node or edge labels. Moreover, a cycle detection such as blocking is not required,
which makes rule application very fast. Note also that the ∀-rule propagates concepts only
to the predecessors of a node. This restriction is necessary in order to allow the reuse of
nodes for existentially restricted concepts.

To efficiently derive as many sound inferences as possible, some saturation rules in
Table 2 only partially support more expressive features of SROIQ. After a full saturation,
we then check where the saturation graph is possibly incomplete. Although there are often

544

Pay-As-You-Go Description Logic Reasoning

v1-rule: if H ∈ L(v), H v C ∈ K with H = A, H = {a}, or H = >, and C /∈ L(v)
then L(v) = L(v) ∪ {C}

v2-rule: if {A1, A2} ⊆ L(v), A1 uA2 v C ∈ K, and C /∈ L(v)
then L(v) = L(v) ∪ {C}

u-rule: if C1 u C2 ∈ L(v) and {C1, C2} 6⊆ L(v)
then L(v) = L(v) ∪ {C1, C2}

∃-rule: if ∃r.C ∈ L(v) and r /∈ L(〈v, vC〉)
then L(〈v, vC〉) = L(〈v, vC〉) ∪ {r}

∀-rule: if ∀r.C ∈ L(v), there is an inv(r)-predecessor v′ of v, and C /∈ L(v′)
then L(v′) = L(v′) ∪ {C}

t-rule: if C1 t C2 ∈ L(v), there is some D ∈ L(vC1) ∩ L(vC2), and D /∈ L(v)
then L(v) = L(v) ∪ {D}

>-rule: if >n r.C ∈ L(v) with n ≥ 1 and r /∈ L(〈v, vC〉)
then L(〈v, vC〉) = L(〈v, vC〉) ∪ {r}

Self-rule: if ∃r.Self ∈ L(v) and v is not an r-successor of v
then L(〈v, v〉) = L(〈v, v〉) ∪ {r}

o-rule: if {a} ∈ L(v), there is some D /∈ L(v), and
D ∈ L(v{a}) or there is a descendant v′ of v with {{a}, D} ⊆ L(v′)

then L(v) = L(v) ∪ {D}
⊥-rule: if ⊥ /∈ L(v), and

1. {C, nnf(¬C)} ⊆ L(v), or
2. v is an r-successor of itself and {¬∃r.Self,¬∃r−.Self} ∩ L(v) 6= ∅, or
3. v′ is an r-successor of v with {a} ∈ L(v) ∩ L(v′) and
¬∃r.Self ∈ L(v) or ¬∃r−.Self ∈ L(v), or

4. {>n r.C,6ms.D} ⊆ L(v) with n > m, r v∗ s, and D ∈ L(vC), or
5. >n r.C ∈ L(v) with n > 1 and {a} ∈ L(vC), or
6. v′ is an r-successor of v, r v∗ s, and Disj(r, s) ∈ K, or
7. v′ is an r-successor of v and v′′ is an s-successor of v and
{a} ∈ L(v′) ∩ L(v′′) and Disj(r, s) ∈ K, or

8. there exists a successor node v′ of v with ⊥ ∈ L(v′), or
9. there exists a node v{a} with ⊥ ∈ L(v{a})

then L(v) = L(v) ∪ {⊥}

Table 2: Saturation rules for (partially) handling SROIQ knowledge bases

several ways to integrate the support of more expressive concept constructors, we chose
a simple one that only allows a partial saturation, but which can be implemented very
efficiently. For instance, the t-rule adds only those concepts that are implied by both
disjuncts. Hence, the addition of concepts by this rule is obviously sound, but its handling
of disjunctions is often incomplete. For at-least cardinality restrictions, we build the edges
to (possibly reused) successor nodes similarly to the ∃-rule. Thereby, the actual cardinality
is ignored, which possibly causes incompleteness if also at-most cardinality restrictions for
related super-roles are in the same label. In order to (partially) handle a nominal {a}
in the label of a node v, we use an o-rule that adds concepts that are derived for v{a}

545

Steigmiller & Glimm

or for descendant nodes that also have {a} in their label (instead of merging such nodes
as in tableau procedures). As a consequence, the unsatisfiability of concepts of the form
∃r.(Au{a})u∃r.(¬Au{a}) cannot be discovered. This simple implementation does, however,
not require the repeated saturation of the same concepts extended by small influences
from the nominals. While tractable and complete saturation algorithms with nominals are
possible (Kazakov, Krötzsch, & Simanč́ık, 2012), many ontologies use nominals in such a
simple way that this o-rule is already sufficient (e.g., by using nominals only in concepts of
the form ∃r.{a}).

We further need an explicit ⊥-rule that uses similar conditions as the ones for clashes
in completion graphs for SROIQ (cf. Definition 7). The ⊥-rule is used to handle several
independent concepts in a one-pass manner within the same saturation graph and to distin-
guish nodes for unsatisfiable concepts from nodes that are (possibly) still satisfiable. The
⊥-rule not only detects trivial reasons for unsatisfiability such as C and ¬C in the label
of a node (Condition 1), but also more involved cases. Violations regarding concepts of
the form ¬∃r.Self and ¬∃r−.Self are handled by Conditions 2 and 3. The former handles
straightforward self-loops, while the latter handles cases that would lead to a loop if the
saturation were to merge neighbouring nodes with the same nominal in their label. Condi-
tions 4 and 5 handle problematic cases with cardinality restrictions. The actual cardinalities
are ignored by the saturation, but it is clear that a clash would occur in a completion graph
in the presence of conflicting at-least and at-most cardinalities (Condition 4) or for at-least
number restrictions of the form >n r.C with n > 1, where the node representing C contains
a nominal. In the latter case, only one instance of C, the nominal, can exist in any model
of the knowledge base. Conditions 6 and 7 handle problems with Disj(r, s) axioms. The
former condition treats the more trivial case, where an r-successor is also an s-successor
due to s being a super-role of r. The latter condition considers that the saturation does
not merge nodes with the same nominal in their label, which would merge the labels of the
edges from and to these nodes. Note that a node vC can be both an r- and an s-successor
due to node reuse in the saturation if the concepts ∃r.C and ∃s.C are in the label of the
same node. This is, however, no problem even in the presence of Disj(r, s) axioms since this
is not required for models of the knowledge base. The ⊥-rule also propagates ⊥ to ancestor
nodes (Condition 8) and, in case ⊥ occurs in the label of a nominal node, ⊥ is propagated
to every other node since the knowledge base is inconsistent (Condition 9).

It is in principle possible to detect also several other kinds of clashes for the incompletely
handled parts in the saturation (e.g., for a concept C that has to be propagated to a successor
node v with ¬C ∈ L(v)), but the presented conditions of the ⊥-rule, in combination with the
detection of incompleteness (see Section 3.2), are already sufficient to identify all potential
causes of unsatisfiability. Hence, we omit further clash conditions for ease of presentation.

Example 1. Let us assume that the TBox T a
1 contains the following axioms:

A v ∃s−.B B v ∃s.{a}

If we are interested in the satisfiability of the concept A, the saturation graph is initialised
with the representative node for A, say vA, with L(vA) = {>, A} and v{a} with L(v{a}) =
{>, {a}} for the representation of the individual a. The v1-rule (cf. Table 2) is applicable
for the first axiom and vA, which results in the addition of ∃s−.B to L(vA) for which the

546

Pay-As-You-Go Description Logic Reasoning

vA vB v{a}
s− s

L(vA) = {>, A,∃s−.B}
L(vB) = {>, B,∃s.{a}}
L(v{a}) = {>, {a}}

vA vB v{a}
s−

s

r
L(vA) = {>, A,∃s−.B,B t {a}, C}
L(vB) = {>, B,∃s.{a}, C,61 s.C}
L(v{a}) = {>, {a}, C,>2 r.B}

Figure 1: Generated saturation graphs for testing the satisfiability of A w.r.t. T a
1 (left) and

T c
1 (right) from Example 1

application of the ∃-rule generates the node vB with L(vB) = {>, B} and an s−-labelled edge
between vA and vB. Now, the v1-rule can be applied to unfold B in the label of vB to ∃s.{a}
for which the ∃-rule is again applicable. Hence, we obtain the fully saturated saturation graph
depicted on the left-hand side of Figure 1. Note that the saturation procedure starts the rule
application with only the nodes vA and v{a}; other nodes, e.g., vB, are created on demand.

Now let T b
1 = T a

1 plus the axioms:

A v B t {a} B v C {a} v C

The v1-rule extends L(vA) with B t {a} and L(vB) as well as L(v{a}) with C. Now the
t-rule is applicable and adds the concept C to the label of vA because C is in the label of
the representative nodes for both disjuncts of the disjunction B t {a}. Note that although
the concept C is added to node labels, a node for C is not created since C is not used in a
way that requires this.

Finally, let T c
1 = T b

1 plus the axioms:

B v 61 s.C {a} v >2 r.B

The v1-rule extends L(vB) with 6 1 s.C and L(v{a}) with > 2 r.B. The latter addition
triggers the >-rule, which adds an r-edge from v{a} to vB such that the saturation graph
depicted on the right-hand side of Figure 1 is obtained. Note that the saturation is inherently
incomplete. For example, there is no saturation rule that handles the concept 61 s.C. The
tableau rules would merge vA and v{a} since vB can have only one s-successor with C in
its label, which possibly leads to conclusions that the saturation misses. We cover how such
incomplete handling of nodes can be detected in the next section.

With a suitable absorption technique, the saturation is usually able to derive and add the
majority of those concepts that would be added by the tableau algorithm for an equivalent
node. This is especially the case for ontologies that primarily use features of the DL EL++

for which saturation-based procedures are particularly well-suited. Since EL++ covers many
important and often used constructors (e.g., u, ∃), the saturation does already the majority
of the work for many ontologies as confirmed by our evaluation in Section 7.

3.2 Saturation Status Detection

Similarly to other saturation procedures, the presented method in Section 3.1 easily becomes
incomplete for more expressive DLs. In order to nevertheless gain as much information as

547

Steigmiller & Glimm

possible from the saturation, we identify nodes for which the saturation was possibly in-
complete. We call such nodes critical. In principle, such nodes can be detected by testing
whether an actual tableau rule is still applicable. However, since we saturate some more ex-
pressive concept constructors partially, this approach is often too conservative. For example,
for at-least cardinality restrictions of the form >n r.C with n > 1, the saturation already
creates or reuses a successor node with the concept C and, therefore, all consequences that
are propagated back from this successor node are already considered. Nevertheless, the
tableau expansion rule for this at-least cardinality restriction is still applicable, since we
have not created n successors that are stated as pairwise different. This is, however, only
relevant if there are some restrictions that limit the number of allowed r-successors with
the concept C in their label. For the DL SROIQ, such limitations are only possible with
nominals and at-most cardinality restrictions. Therefore, it is sufficient to check for such
limitations instead of testing whether the tableau expansion rules are applicable. Similar
relaxations are also possible for other concept constructors.

We use the rules of Table 3 and 4 to detect the “saturation status” of a saturation graph,
where incompletely handled nodes are identified and other information that is relevant for
supporting the tableau algorithm is extracted. To be more precise, the rules are applied to
a saturation graph and gather nodes in the sets So, S≮, and S!, where So represents nodes
that “depend on nominals”, S≮ represents nodes with “tight at-most restrictions”, and S!

represents “critical nodes” that are potentially not completely handled by the saturation. In
order to specify the saturation status in more detail, we first define the number of merging
candidates to facilitate the treatment of possibly incompletely handled at-most cardinality
restrictions.

Definition 11 (Merging Candidates). Let S = (V,E,L) be a saturation graph. For a role
s and a concept D, the number of merging candidates for a node v ∈ V w.r.t. s and D,
written as the function]mcands(v, s,D), is defined as

∑
>n r.C∈L n with

L ={>n r.C ∈ L(v) | r v∗ s and D ∈ L(vC)}∪
{>1 r.C | ∃r.C ∈ L(v), r v∗ s, and D ∈ L(vC)}.

For an at-most cardinality restriction 6 ms.D in the label of a node v, the merging
candidates are those s-successors that have the concept D in their label. This is used by
the C≮-rule (see Table 3) to identify nodes with tight at-most restrictions, which is the case
for a node v with an at-most cardinality restriction 6ms.D in its label if the number of
merging candidates for v w.r.t. s and D is m, i.e., m =]mcands(v, s,D). For such nodes, it is
still not necessary to merge some of the merging candidates, but every additional candidate
might require merging and, therefore, these nodes cannot be used arbitrarily.

The Co-rule adds to the set So all nodes that directly or indirectly depend on nominals,
i.e., it identifies all nodes that directly have a nominal in their label or have a descendant
node with a nominal in its label.

The rules of Table 4 are used to identify critical nodes for which the saturation procedure
might be incomplete, i.e., these nodes are added to the set S! as follows:

• The C↓∀- and Ct-rule identify nodes as critical for which the ∀- or the t-rule of the
tableau algorithm is applicable. Note, for the C↓∀-rule it is only necessary to check

548

Pay-As-You-Go Description Logic Reasoning

C≮-rule: if v /∈ S≮, 6ms.D ∈ L(v), and]mcands(v, s,D) = m
then S≮ = S≮ ∪ {v}

Co-rule: if v /∈ So and either {a} ∈ L(v) or v has a successor node v′ with v′ ∈ So
then So = So ∪ {v}

Table 3: Rules for detecting nodes with tight at-most restrictions and nodes with nominal
dependency in the saturation graph

whether the concepts can be propagated to the successor nodes since the propagation
to predecessors is ensured by the saturation procedure.

• The C↓6-rule checks for every node v whether there is a potentially unsatisfied at-most
cardinality restriction of the form 6ms.D in the label of v, i.e.,]mcands(v, s,D) > m.
Analogously to the ch-rule in the tableau algorithm, the C↓ch-rule identifies nodes as
incompletely handled if they have s-successor nodes with neither D nor nnf(¬D) in
their label. In addition, we have to consider that the successors may have to be
merged into a predecessor. Note that this has to be checked from the perspective
of the predecessors due to the reuse of nodes. Therefore, we check with the C↑6-
and C↑ch-rule on a node v whether there exists an inv(s)-successor node v′ that has
a tight at-most restriction for s, i.e., 6 ms.D ∈ L(v′) and]mcands(v, s,D) = m.
If v is a merging candidate, i.e., D ∈ L(v), or it would be necessary to apply the
ch-rule for v, then we consider v critical. For example, if v has an s−-successor v′

with {>3 s.D,63 s.D} ⊆ L(v′), then the C↑6-rule (C↑ch-rule) identifies v as critical if
D ∈ L(v) ({D, nnf(¬D)} ∩ L(v) 6= ∅).

• We also need several rules for the detection of incompleteness related to nominals.
First, we check with the Coo-rule whether there are two nodes in the saturation graph
that have the same nominal but different concepts in their label. In this case, the
handling of the nominal is possibly incomplete since merging these nodes would also
merge their labels. Note that if we saturate several independent concepts in the same
saturation graph, then merging all nodes with the same nominal in their label is not
always necessary. However, detecting when a merge is really required would involve
a more expensive test. Since many ontologies for less expressive DLs use nominals in
very simple ways, we opt for a simple and efficient solution. In addition, if a node v is
nominal dependent, i.e., it has a descendant node with a nominal in its label, then ar-
bitrary consequences could be propagated to it via other individuals/nominals. Hence,
the Co!-rule adds v to the set S! of critical nodes if a representative node for an indi-
vidual is not completely handled since we cannot guarantee that the saturation has
derived all consequences for v. In contrast, the Co6-rule checks for possible interac-
tions between nominals and at-most cardinality restrictions. Such an interaction is
handled by the NN-rule of the tableau algorithm, but cannot easily be handled by the
saturation and we rather identify such nodes as critical.

• Finally, the C↑-rule marks all predecessors of critical nodes as critical.

549

Steigmiller & Glimm

C↓∀-rule: if v /∈ S!, ∀r.C ∈ L(v), there is an r-successor v′ of v, and C /∈ L(v′)
then S! = S! ∪ {v}

Ct-rule: if v /∈ S!, C tD ∈ L(v), and {C,D} ∩ L(v) = ∅
then S! = S! ∪ {v}

C↓6-rule: if v /∈ S!, 6ms.D ∈ L(v), and]mcands(v, s,D) > m
then S! = S! ∪ {v}

C↓ch-rule: if v /∈ S!, 6ms.D ∈ L(v), there is an s-successor v′ of v, and
L(v′) ∩ {D, nnf(¬D)} = ∅

then S! = S! ∪ {v}
C↑6-rule: if v /∈ S!, D ∈ L(v), v′ is an inv(s)-successor of v, 6ms.D ∈ L(v′), and

]mcands(v′, s,D) = m
then S! = S! ∪ {v}

C↑ch-rule: if v /∈ S!, v
′ is an inv(s)-successor of v, 6ms.D ∈ L(v′), and

L(v) ∩ {D, nnf(¬D)} = ∅
then S! = S! ∪ {v}

Coo-rule: if v /∈ S!, {a} ∈ L(v), {a} ∈ L(v′), and L(v) 6⊆ L(v′)
then S! = S! ∪ {v}

Co!-rule: if v /∈ S!, v ∈ So, and there exist some node v{a} ∈ S!

then S! = S! ∪ {v}
Co6-rule: if v /∈ S!, v

′ is an inv(s)-successor of v, {a} ∈ L(v′), 6ms.D ∈ L(v′),
and nnf(¬D) /∈ L(v)

then S! = S! ∪ {v}
C↑-rule: if v /∈ S!, there is a successor v′ of v, and v′ ∈ S!

then S! = S! ∪ {v}

Table 4: Rules for detecting incompleteness in the saturation graph

The sets So, S≮, and S! are now used to define the saturation status of a saturation
graph as follows:

Definition 12 (Saturation Status). The saturation status S of a saturation graph S =
(V,E,L) is defined as the tuple (So,S≮,S!). We use status as the function that creates S
from S by the exhaustive application of the rules in Table 3 and 4. A node v ∈ V is critical
if v ∈ S!, v is nominal dependent if v ∈ So, and v has tight at-most restrictions if v ∈ S≮.
We call v clashed if ⊥ ∈ L(v).

Note that a concept C is unsatisfiable if its representative node vC is clashed. The
satisfiability of C can, however, only be guaranteed if vC is not critical and the knowledge
base is consistent. Consistency is required, because a concept is satisfiable only if the
knowledge base is consistent, which can only be determined by the saturation if no nominal
node is critical.

Of course, if the satisfiability/completeness of saturated concepts is considered in the
context of arbitrary other concepts that are not handled by the saturation (e.g., in a com-
pletion graph constructed by the tableau algorithm), then nominal dependency becomes
more relevant. In particular, if new consequences are propagated to nominal nodes, then

550

Pay-As-You-Go Description Logic Reasoning

the nominal dependent nodes in the saturation graph could be affected and they have to
be considered as incompletely handled. Hence, also the satisfiability hinges on the status
of the nominal nodes a node depends on.

A problem in practice is that a critical node for a nominal also makes all nominal
dependent nodes critical. Hence, we can easily get many critical nodes for ontologies that
use nominals if the saturation cannot completely handle all individuals. However, we can
improve the saturation graph after the initial consistency check with the tableau algorithm
(see Section 5 for details) by replacing the node labels of critical nominal nodes in the
saturation graph with the ones from the obtained completion graph. Although we have
to distinguish deterministically and non-deterministically derived concepts in these labels,
we know that they correspond to a clash-free and fully expanded completion graph and,
therefore, we can consider them as not critical.

Example 2. Consider again the TBoxes from Example 1. We start with the fully saturated
saturation graph for T a

1 (left-hand side of Figure 1). Only the Co-rule from Table 3 is
applicable, which identifies all nodes as nominal dependent and adds them (iteratively) to
So, but all nodes are completely handled by the saturation and no node is critical or has
tight at-most restrictions.

The situation changes for the extension T b
1 of T a

1 . Since B t {a} ∈ L(vA), but neither
disjunct is, vA is identified as critical (vA ∈ S!) by the Ct-rule from Table 4. The other
nodes are, however, still completely handled by the saturation.

Finally, consider the extension T c
1 of T b

1 (right-hand side of Figure 1). The C≮-rule
from Table 3 now adds vB to S≮ since the number of merging candidates for vB w.r.t. s and
C is 1, i.e.,]mcands(vB, s, C) = 1. This is used to identify nodes as critical that use vB
as an s−-successor such that merging with an s-successor of vB is potentially required. In
particular, the concept ∃s−.B ∈ L(vA) is now problematic because it connects vB with vA
via the role s, 6 1 s.C ∈ L(vB), and]mcands(vB, s, C) = 1. Hence, if vA were not already
identified as critical due to the incompletely handled disjunction, the C↑6-rule would add vA
to S!. Note, however, that vB and v{a} are still completely handled by the saturation.

3.3 Correctness

It is straightforward to see that the saturation rules of Table 2 only produce sound inferences.
In particular, the saturation rules add only those concepts to a label of a node which are
also added by the tableau algorithm for an equivalently labelled node in the completion
graph. The termination of the saturation rules is ensured since the number of nodes and
edges as well as the size of the labels is bounded by the number of concepts, roles, and size
of the closure of concepts in the knowledge base. Furthermore, the rules are only applied
if they add new facts in the saturation graph. Analogously, the application of the rules of
Table 3 and 4 for the generation of a saturation status is terminating, because each rule
application adds the node to a corresponding set (either So, S≮, or S!) and the rules are
only applicable if the node does not already belong to the corresponding set.

It remains to show the completeness, i.e., we show that if a node vD and the nodes
representing individuals are neither critical nor clashed, we can build a model of the knowl-
edge base in which the extension of D is non-empty. Note that a direct transformation of
the saturation graph into a completion graph is not possible since the reuse of nodes in the

551

Steigmiller & Glimm

saturation graph possibly causes problems with certain features of SROIQ. For example, if
two roles r and s are stated disjoint and s is not a super role of r, then the saturation graph
can contain a node that is an r- and an s-successor of another node. However, in principle,
it would be possible to rebuild a completion graph by recursively creating corresponding
successor nodes from the used nodes in the saturation graph until we would reach nominal
nodes or the nodes would be blocked.

Given a fully saturated saturation graph, where all nodes representing individuals are
neither critical nor clashed, we show completeness for a non-critical node vD by providing
an interpretation I = (∆I , ·I) that is a model of the knowledge base with a non-empty
extension of D, i.e., DI 6= ∅ and the interpretation witnesses the satisfiability of D. For
ease of presentation, we assume that existentially quantified concepts of the form ∃r.C are
equivalently expressed as >1 r.C. This is w.l.o.g., since normalised knowledge bases contain
only simple roles.

Since the occurrence of a nominal {a} in the label of a node vC means that the node vC
represents the same element as v{a} in ∆I , we only need one representative element, which
we ensure by defining a suitable equivalence relation over the nodes in the saturation graph.

Definition 13 (Canonical Saturation Model). For a saturation graph S = (V,E,L), let ≈
be the following relation: {(vC , vC) | vC ∈ V } ∪ {(vC , v{a}) | vC ∈ V, {a} ∈ L(vC),L(v{a}) =
L(vC)} and let ≈* be the transitive, reflexive, and symmetric closure of ≈. Since the relation
≈* is an equivalence relation over the nodes in V , we use v[C], for vC ∈ V , to denote the
equivalence class of vC by ≈* . We use the relation ≈* to (recursively) define the elements of
∆I . We first define the set Nom(S) = {v[{a}] | a ∈ NI } of nodes with nominals in their

labels. Further non-nominal elements of ∆I are then obtained by “unravelling” parts of the
saturation graph into paths as usual (Horrocks & Sattler, 2007). We set

PathsS(D) = {v[D]} ∪ Nom(S) ∪
{p · vi[C] | p ∈ PathsS(D),>n r.C ∈ L(v), v ∈ tail(p), v[C] /∈ Nom(S), 1 ≤ i ≤ n},

where · denotes concatenation and tail(v[C]) = tail(p · vi[C]) = v[C].

We can now define the interpretation I = (∆I , ·I) as follows:

∆I = PathsS(D),

and, for each a ∈ NI , we set ·I to

aI = v[{a}],

for each A ∈ NC to

AI = {p | v ∈ tail(p) and A ∈ L(v)},

552

Pay-As-You-Go Description Logic Reasoning

and for each r ∈ NR to

rI = {〈p, q〉 ∈ PathsS(D)× PathsS(D) | q = p · vi[C] and >n s.C ∈ L(v)

for a v ∈ tail(p) with i ≤ n and s v∗ r} ∪
{〈q, p〉 ∈ PathsS(D)× PathsS(D) | q = p · vi[C] and >n inv(s).C ∈ L(v)

for a v ∈ tail(p) with i ≤ n and s v∗ r} ∪
{〈p, x〉 ∈ PathsS(D)× Nom(S) | there is a v ∈ x and a v′ ∈ tail(p)

such that v is an r-successor of v′} ∪
{〈x, p〉 ∈ Nom(S)× PathsS(D) | there is a v ∈ x and a v′ ∈ tail(p)

such that v is an inv(r)-successor of v′} ∪
{〈p, p〉 ∈ PathsS(D)× PathsS(D) | there is a v ∈ tail(p)

such that v is an r-neighbour of itself }

Note that the domain elements are (paths of) equivalent classes and to ensure that the
extension of a role r correctly contains all edges derived by the saturation, we use all nodes
of an equivalent class for the construction of rI .

In order to show that I |= K, we first show that, for every p ∈ ∆I , it holds that p ∈ CI
if C ∈ L(v) with v ∈ tail(p).

Lemma 1. Let S = (V,E,L) be a fully saturated saturation graph for a concept D w.r.t.
K and vD as well as the nodes representing individuals are neither critical nor clashed.
Furthermore, let I = (∆I , ·I) denote an interpretation constructed as described in Defini-
tion 13. For each p ∈ ∆I it holds that p ∈ CI if C ∈ L(v) with v ∈ tail(p).

Proof 1. We observe that all nodes involved in the construction of the interpretation can
neither be critical nor clashed. In particular, if a node v ∈ tail(p) for a p ∈ ∆I were clashed,
then v would be a descendant node of v[D] or of a node representing an individual and, hence,
they would be identified as clashed with the ⊥-rule, which contradicts our assumption that
these nodes are not clashed. Analogously, if v were critical, then v[D] or a node representing
an individual would be identified as critical by the C↑-rule (which is also contradictory to
our assumption). Hence, for considering the different types of concepts for proving the
lemma in the following, it is safe to assume that all nodes used for the construction of the
interpretation are neither clashed nor critical and, hence, ⊥I = ∅.

The base case for C = A with A ∈ L(v) and v ∈ tail(p) trivially holds for all p ∈ ∆I by
the definition of ∆I and ·I , i.e., p ∈ AI if A ∈ L(v) with v ∈ tail(p). Also note that ∆I = >I
due to the definition of the saturation algorithm (in particular due to the initialisation of
nodes) and due to the fact that we never remove concepts from labels in a saturation graph.
Other base cases hold for all elements p ∈ ∆I with v ∈ tail(p) and C ∈ L(v) as follows:

• For C = {a}, we observe that p = v[{a}] due to the use of equivalence classes, the

definition of ≈* , ∆I , ·I , and the fact that the Coo-rule cannot identify v as critical by
assumption. Hence, p ∈ CI .

553

Steigmiller & Glimm

• For C = ¬B, we observe that p /∈ BI due to the definition of I and the fact that the
used nodes are not clashed in the saturation graph. Hence, p ∈ CI .

• For C = ∃r.Self, we observe that the node v is an r-successor of itself due to the
application of the Self-rule. By the definition of ·I , we have 〈p, p〉 ∈ rI . Hence,
p ∈ CI .

• For C = ¬∃r.Self, we observe that the nodes in the saturation graph are not clashed.
Hence, we can exclude loops that are caused by the last part of the definition of ·I since
any such node would be clashed due to Condition 2 of the ⊥-rule. For nominal nodes
we observe that nodes of V with the same nominal in their label are represented by
one element in ∆I . This possibly introduces loops for neighbouring nominal nodes in
the saturation graph. This is, however, excluded by Condition 3 of the ⊥-rule. Hence,
we have 〈p, p〉 /∈ rI and, therefore, p ∈ CI .

The complex cases hold for all elements p ∈ ∆I with v ∈ tail(p) and C ∈ L(v) by
induction as follows:

• For C = C1 u C2, the application of the u-rule ensures that L(v) ⊇ {C1, C2}. By
induction, we have p ∈ CI1 and p ∈ CI2 . Hence, p ∈ CI .

• For C = C1 t C2, we observe that there must be a concept C ′ ∈ L(v) with C ′ ∈
{C1, C2} since the Ct-rule would otherwise have identified the node v ∈ tail(p) as
critical, which contradicts our assumption. Hence, by induction, we have p ∈ C ′I

and, as a consequence, p ∈ CI .

• For C = > n r.C ′, we observe that the saturation algorithm creates and saturates
the node vC′ as r-successor of v for n ≥ 1 and we consider two cases: First, for
v[C′] ∈ Nom(S), we have that n = 1 since v would be clashed for n > 1 due to
Condition 5 of the ⊥-rule, which contradicts our assumption. By the definition of
PathsS(D), ∆I , and ·I , there exists the element q with q ∈ Nom(S) such that 〈p, q〉 ∈
rI . Furthermore, by induction, we have q ∈ C ′I and, consequently, p ∈ CI . Second,
for vi[C′] /∈ Nom(S), by the construction of PathsS(D), p ·v1

[C′], . . . , p ·v
n
[C′] ∈ PathsS(D)

and, by definition of ·I , these elements are n r-successors of p. Finally, by induction,
we have p · v1

[C′], . . . , p · v
n
[C′] ∈ C

′I and, consequently, p ∈ CI .

• For C = ∀r.C ′, we observe that the application of the ∀-rule guarantees that all inv(r)-
predecessors have C ′ in their label. Furthermore, also all r-successors have C ′ in their
label, otherwise the C↓∀-rule would have identified v as critical, which is contradictory
to our assumption. Hence, by definition of PathsS(D), ∆I , ·I , and by induction, it
holds for every r-neighbour element q that q ∈ C ′I and, consequently, p ∈ CI .

• For C = 6n r.C ′, the C↓6-rule guarantees that every node v ∈ p has at most n merging
candidates, i.e., at most n r-successor nodes with C ′ in their labels, otherwise the
node would be critical, which contradicts our assumption. Analogously, the C↓ch-rule
guarantees that every r-successor of v has either C ′ or nnf(¬C ′) in its label. For
p = v[D] with p 6∈ Nom(S), we observe that p does not have any predecessors and,

554

Pay-As-You-Go Description Logic Reasoning

by definition of PathsS(D), ∆I , and ·I , and by induction, we have at most n r-
neighbour elements q1, . . . , qn with q1, . . . , qn ∈ C ′I since for every other r-neighbour
element q it holds that q ∈ nnf(¬C ′)I and, therefore, q /∈ C ′I . Hence, p ∈ CI for
p = v[D]. For p ∈ Nom(S), it holds, for every inv(r)-predecessor element q of p, that

q /∈ C ′I due to induction, the definition of PathsS(D), ∆I , and ·I , and the Co6-rule
(otherwise the node would be identified as critical). Hence, p ∈ CI for p ∈ Nom(S).
For p /∈ {v[D]}∪Nom(S), we have p = q ·vi[D′]. Moreover, the C↑ch-rule guarantees that

for w ∈ tail(q) either C ′ or nnf(¬C ′) is in its label. By induction and the definition
of PathsS(D), ∆I , and ·I , we have either q ∈ C ′I or q ∈ nnf(¬C ′)I . We consider
both cases: First, if q /∈ C ′I because of w ∈ tail(q) with nnf(¬C ′) ∈ L(w), then we can
argue analogously to the case where p = v[D]. Second, if q ∈ C ′I because of w ∈ tail(q)
with C ′ ∈ L(w), then it is guaranteed by the C↑6-rule that v has at most n − 1 r-
successors with C in their labels and, by definition of PathsS(D), ∆I , and ·I , we have
at most n r-neighbour elements q1, . . . , qn of p for which it holds by induction that
q1, . . . , qn ∈ C ′I . Consequently, p ∈ CI .

By using Lemma 1, we can now show the completeness, i.e., we can show that the
constructed interpretation satisfies all axioms in the knowledge base:

Lemma 2 (Completeness). Let S = (V,E,L) be a fully saturated saturation graph for a
concept D w.r.t. K and vD as well as the nodes representing individuals are neither critical
nor clashed, then there exists an interpretation I = (∆I , ·I) such that I |= K and DI 6= ∅ .

Proof 2. We assume that the interpretation I = (∆I , ·I) is built from S as in Definition 13.
Note that due to the definition of the saturation algorithm, there is a node vD ∈ V with
D ∈ L(vD), by the definition of ∆I , v[D] ∈ ∆I and, by the definition of tail and ·I , v[D] ∈
DI . Hence, DI 6= ∅. We can now observe that I satisfies every axiom α of the normalised
knowledge base K (cf. Section 2.2) as follows:

• For α = H v C with H = {a}, H = A, or H = >, we observe that, for every p ∈ ∆I

with v ∈ tail(p), we have HI only if H ∈ L(v) due to the definition of ≈* , PathsS(D),
∆I , and ·I . Due to the applications of the v1-rule, we have C ∈ L(v) if H ∈ L(v),
and, by Lemma 1, we have p ∈ CI if p ∈ HI . Hence, I |= α.

• For α = A1 uA2 v C, we analogously observe that, for every p ∈ ∆I with v ∈ tail(p),
we have (A1uA2)I only if {A1, A2} ⊆ L(v) due to the definition of ≈* , PathsS(D), ∆I ,
and ·I . Due to the applications of the v2-rule, we have C ∈ L(v) if {A1, A2} ⊆ L(v),
and, by Lemma 1, we have p ∈ CI if p ∈ HI . Hence, I |= α.

• For α = r v s, we observe that I |= α due to the definition of successors/predecessors
and by the definition of PathsS(D), ∆I , and ·I .

• For α = Disj(r, s), we assume for a contradiction that there are the elements p, q ∈ ∆I

such that 〈p, q〉 ∈ rI ∩ sI . By definition of a saturation graph and ·I from the edges
in S, either q ∈ Nom(S) or r v∗ s. However, in both cases v ∈ tail(p) is clashed due
to Condition 6 and Condition 7 of the ⊥-rule, respectively. Since it contradictory to
our assumption that v is clashed, we have I |= α.

555

Steigmiller & Glimm

Since I satisfies, for all elements of ∆I , every axiom α of K, I |= K.

From the language features that are completely supported by the presented saturation
algorithm and from the fact that ∃r.C concepts on the left-hand side of GCIs can be
transformed to universal restrictions on the right-hand side (with only propagations to
predecessors if inverse roles are not used), one can observe that completeness of the presented
saturation algorithm is guaranteed for at least ELH knowledge bases.

4. Supporting Tableau Algorithms

In this section, we present a range of optimisations to directly and indirectly support reason-
ing with tableau algorithms for the DL SROIQ. As already mentioned, reasoning systems
for more expressive DLs are usually very complex and they integrate many sophisticated
optimisations which are necessary to make reasoning for many real-world ontologies prac-
ticable. As a consequence, it is important for the development of new optimisations to
consider the interaction with already existing techniques. For example, a very important
and well-known optimisation technique is dependency directed backtracking which allows
for only evaluating “relevant” non-deterministic alternatives with the tableau algorithm.
A typical realisation of dependency directed backtracking is backjumping where every fact
that is added to the completion graph is labelled with those non-deterministic branches on
which the fact depends (Baader et al., 2007; Tsarkov, Horrocks, & Patel-Schneider, 2007).
If a clash is discovered, then we can jump back to the last non-deterministic decision that
is referenced by the clashed facts in the completion graph and, consequently, we do not
have to evaluate non-deterministic alternatives for which it is clear that they would re-
sult in the same clashes. Hence, new optimisation techniques that manipulate completion
graphs must obviously also add these dependencies correctly, otherwise dependency directed
backtracking cannot be completely supported in the presence of these optimisations.

The optimisation techniques that we present in this section are fully compatible with
dependency directed backtracking and, to the best of our knowledge, they also do not
negatively influence other well-known optimisations. Moreover, since the saturation op-
timisations allow for doing a lot of reasoning work very efficiently, they often reduce the
effort for other optimisation techniques. For example, these optimisations directly perform
many simple expansions in the completion graph and, therefore, the effort for conventional
caching methods is often reduced. In particular, tableau-based reasoning systems often
cache satisfiable node labels in order to block the expansion of successors of identically
labelled nodes in subsequent completion graphs. If we can “reuse” the labels of non-critical
and non-clashed nodes from the saturation graph, then we directly know that a further
processing in the completion graph is not required for them, even without checking whether
corresponding node labels are in the satisfiability cache.

4.1 Transfer of Saturation Results to Completion Graphs

Since the presented saturation method uses compatible data structures, we can directly
transfer the saturation results into completion graphs. This improves the tableau algorithm
by a faster clash detection and optimises the construction of a completion graph. For
example, we can directly use unsatisfiability information that is detected by the ⊥-rule in

556

Pay-As-You-Go Description Logic Reasoning

the saturation. In particular, if the application of a tableau expansion rule adds a concept
C to the completion graph, then we can check the saturation status of vC and, in case it
is clashed, we can immediately initiate the backtracking with the dependencies from the
unsatisfiable concept C in the completion graph. Analogously, we can utilise other derived
consequences form the saturation. For instance, if an expansion rule adds a concept C
to a label of a node in the completion graph, then we can add all concepts of L(vC) to
the same label. Of course, in order to further support dependency directed backtracking,
we also have to add the correct dependencies. However, since all concepts of L(vC) are
deterministic consequences of C, we can simply use that D deterministically depends on C
for every additionally added concept D ∈ L(vC).

As a nice side effect, the addition of derived concepts from the saturation improves
the backtracking and processing of disjunctions. Basically, the t-rule from the saturation
extracts shared (super-)concepts from all disjuncts of a disjunction. For example, for the
disjunction A1tA2 and the axioms A1 v B and A2 v B, we derive with the saturation that
L(vA1t A2) ⊇ {A1tA2, B}, i.e., B is a super-concept of both disjuncts and we can add it as
a deterministic consequence of the disjunction A1 t A2. Although we still have to process
the disjunction, we can add some of the consequences (e.g., B) deterministically. Hence,
backtracking does not identify the processing of alternatives of a disjunction as relevant if
only such deterministic consequences are involved in the clash.

The transfer of derived consequences to directly add as many consequences as possible is
helpful in several ways. First, the application of expansion rules from the tableau algorithms
might become unnecessary. For example, if a disjunct of a disjunction has already been
added, then it is not necessary to apply the t-rule. Second, if specific concepts are in the
label of a node, then, at least for some expansion rules of the tableau algorithm, optimised
rule applications are possible. For instance, if the concepts ∃r.C, ∃r.D, and 6 1 r.> are
in the label of the same node, then the second application of the ∃-rule by the tableau
algorithm can directly add the existentially restricted concept to the already present r-
successor instead of creating a new one that has to be merged afterwards. Third, if concepts
are propagated back to ancestor nodes, then it is necessary to again check whether one of
the modified ancestor nodes is blocked before rules on descendant nodes can be applied.
Due to the transfer of derived consequences, many of the concepts that are propagated
back from successors are already added and, therefore, the amount of blocking tests is
significantly reduced. Last but not least, the transfer of derived consequences allows for
blocking much earlier. Blocking of a node v is usually only possible if a node could be
replaced by another non-blocked node from the completion graph that does not influence
any ancestor of v. A simple blocking condition that guarantees completeness for more
expressive DLs is pairwise blocking. However, pairwise blocking can be refined to achieve
more precise blocking conditions that possibly allow for blocking earlier (Horrocks & Sattler,
2001). Since many of the concepts that are propagated back from successors are added by
the transfer of derived consequences from the saturation, it is likely that the creation and
processing of new successor nodes does not influence ancestor nodes. As a result, it might
be possible to block nodes even without the creation and processing of many successors.

Besides the transfer of derived consequences, it is in some cases also possible to directly
block the processing of successor nodes in the completion graph. For this, the node in the
completion graph, say v, has to be labelled with the same concepts as a node v′ in the

557

Steigmiller & Glimm

saturation graph and v′ must neither be clashed, critical, nor nominal dependent. If there
exists such a v′, then the processing of the successors of v can be blocked since v could be
expanded in the same way as v′ in the saturation graph. Obviously, we have to enforce
that v′ is not nominal dependent, because a dependent nominal could be influenced in the
completion graph such that new consequences are propagated back to v and this would
not be considered if the processing of successor nodes is blocked. Furthermore, it is indeed
necessary to create the successors before blocking their processing, because they may have
to be merged into the ancestor node. However, if the saturation node v′ does not have a
tight at-most restriction, i.e., for each at-most cardinality restriction 6mr.C ∈ L(v′), v′

has at most m− 1 r-successors that have not nnf(¬C) in their label, then also the creation
of successor nodes can be blocked, because every at-most cardinality restriction in the label
of the node allows for at least one additional neighbour before some nodes have to be
merged. Since nodes can easily have a large number of successors (e.g., due to at-least
cardinality restrictions with big cardinalities), blocking the creation of new successors can
be a significant improvement in terms of memory consumption and building time of the
completion graph. Of course, if new concepts are propagated to v such that the label of v
differs from v′, then the blocking becomes invalid and the processing of the successors has
to be reactivated or we have to find another compatible blocker node.

4.2 Subsumer Extraction

For tableau-based reasoning systems, many higher level reasoning task are often reduced
to consistency checking. For example, a very naive classification algorithm tests the sat-
isfiability of all classes and then checks the pairwise subsumption relations between these
classes (which are also reduced to satisfiability/consistency tests) in order to build the
class hierarchy of an ontology. In practice, the number of required satisfiability tests can
be significantly reduced by optimised classification approaches such as enhanced traversal
(Baader et al., 1994) or known/possible set classification (Glimm et al., 2012). These opti-
mised classification algorithms use specific testing orders and exploit information that can
be extracted from the constructed models. To optimise their testing order, the algorithms
are usually initialised with told subsumptions, i.e., with the subsumption relations that can
syntactically be extracted from ontology axioms, and, typically, the more told subsumers
can be extracted, the larger is the benefit for the classification algorithms. However, a more
detailed extraction of told subsumers from ontology axioms is usually less efficient than a
simple one. For instance, the ontology axioms A1 v ∃r.C uD and ∃r.C v A2 imply that
A2 is a subsumer of A1, but this can only be detected, when parts of axioms are compared
with each other.

With the saturation, we can significantly improve the told subsumers for the initialisa-
tion of the tableau-based classification algorithm since also (some) semantic consequences
are considered. As new and more accurate told subsumers, we can simply use, for each
concept A that has to be classified, all the (atomic) concepts in L(vA). Moreover, if vA
is clashed, then we know that A is unsatisfiable without performing a satisfiability test.
Analogously, if vA is neither clashed nor critical and the knowledge base is consistent, we
know that A is satisfiable and that L(vA) contains all subsumers. Note that if vA is nominal
dependent and a representative node for a nominal is critical, then also vA is identified as

558

Pay-As-You-Go Description Logic Reasoning

critical. Hence, for the extraction of subsumers, we only have to consider the criticality
status of the considered node, whereas nominal dependency does not matter. If no node
for an ontology is critical, we already get all subsumers from the saturation and, therefore,
only a transitive reduction (i.e., the elimination of those subsumptions that are indirectly
implied through the transitivity property of the subsumption relation) is necessary to build
the class hierarchy. Thus, with the preceding saturation we automatically get a one-pass
classification for simple ontologies.

Note that our completeness proof in Section 3.3 principally only covers the satisfiability
of concepts. However, it is quite obvious that the presented saturation approach also com-
putes all subsumers if the nodes are neither critical nor clashed. In particular, if we assume
that a subsumption A v B is not derived by the saturation but follows from a knowledge
base K, then we obtain a contradiction by considering the saturation of the knowledge base
K′ that extends K by the axiom B v ⊥. Since B v ⊥ can only be added with the v1-rule
if B is in a node label and K′ differs from K only through the axiom B v ⊥, the saturation
would derive the same consequences and, hence, would be incomplete w.r.t. testing the
satisfiability of A, which is contradictory w.r.t. our assumption and our completeness proof.

4.3 Model Merging

Many ontologies contain axioms of the form C ≡ D, which can be seen as an abbreviation
for C v D and D v C. As described in Section 2.2, we utilise this to get a normalised
knowledge base where we do not have to consider such axioms. Treating axioms of the
form A ≡ D with A an atomic concept as A v D and D v A can, however, downgrade
the performance of tableau algorithms since absorption might not apply to D v A, i.e.,
the axiom has to be internalised into > v nnf(¬D t A). To avoid this, many implemented
tableau algorithms explicitly support A ≡ D axioms by an additional unfolding rule, where
the concept A in the label of a node is unfolded to D and ¬A to nnf(¬D) (exploiting that
D v A is equivalent to ¬A v nnf(¬D)) (Horrocks & Tobies, 2000).2 Unfortunately, using
such an unfolding rule also comes at a price since the tableau algorithm is no longer forced
to add either A or nnf(¬D) to each node in the completion graph, i.e., we might not know
for some nodes whether they represent instances of A or ¬A. This means that we cannot
exclude A as possible subsumer for other (atomic) concepts if the nodes in completion graphs
do not contain A (and also not ¬A), which is an important optimisation for classification
procedures (Glimm et al., 2012).

To compensate for this, we can create a “candidate concept” A+ for A, for example by
partially absorbing D (Steigmiller et al., 2014b), which is then automatically added to a
node label in the completion graph if the node is possibly an instance of A, i.e., the candidate
concepts indicate which completely defined concepts are possibly satisfied. Hence, if A+

is not added to a node label, then we know that A is not a (possible) subsumer of the
concepts in the label of such a node (even if we allow the knowledge base to contain concept
equivalence axioms of the form A ≡ D). Formally, we can define the requirements on such
candidate concepts as follows:

2. Note that this only works as long as there are no other axioms of the form A v D′, A u A′ v D′,
A′ uA v D′, or A ≡ D′ with D′ 6= D in the knowledge base.

559

Steigmiller & Glimm

Definition 14 (Candidate Concept). Let K be a knowledge base containing a complete
definition of the form A ≡ D. We say that A+ is a candidate concept for A if for every fully
expanded and clash-free completion graph G = (V,E,L, ˙6=) (fully saturated saturation graph
S = (V,E,L)), it holds that A+ ∈ L(v) if K |= C1u. . .uCn v A, where {C1, . . . , Cn} = L(v)
({C1, . . . , Cn} = L(v) and v as well as the nodes representing individuals are neither critical
nor clashed).

Of course, with axioms of the form > v A+, we can enforce that A+ is added to all node
labels and, hence, it represents a valid candidate concept for A. To be useful in practice, it
is, however, desired that such concepts are added to as few node labels as possible (without
introducing additional overhead) and, therefore, reasoners usually employ sophisticated
absorption techniques to generate “better” candidate concepts (Steigmiller et al., 2014b). As
a consequence, they are very handy for the identification of non-subsumptions as illustrated
in the following example.

Example 3. Let us assume that the TBox T2 consists of the axioms

A1 v ∃r.B A2 v ∃s.B u (∀r.⊥ t ¬B) A3 ≡ ∃s.B u ∀r.B,

and we are interested in the classification of T2. In order to get an (automatic) indication of
concepts that could be subsumed by the completely defined concept A3, we create a candidate
concept for A3 by (partially) absorbing the negation of A3’s definition. Hence, by partially
absorbing ∀s.¬B t ∃r.¬B to B v ∀s−.A+

3 (the part ∃r.¬B cannot be absorbed trivially), we
obtain the candidate concept A+

3 for A3. Note that this absorption only adds B v ∀s−.A+
3 to

T2 without removing or rewriting other axioms. Now, the absence of A+
3 in a label indicates

that A3 is not a subsumer of the concepts in this label, which can be used for classification.
In particular, if we saturate A1, A2, A3, and B, then ∀s−.A+

3 is added to the label of the
representative node for B and A+

3 is propagated to the representative nodes for A2 and A3.
In particular, since the label of the representative node for A1 does not contain A+

3 , we know
that A1 v A3 does not hold without any special consideration of the axiom A3 ≡ ∃s.Bu∀r.B.
However, we still have to determine whether A2 is satisfiable and which concepts are the
subsumers of A2 to complete the classification of T2. For this, we (have to) fall back to the
tableau algorithm and, in principle, we have to perform a satisfiability test for A2 and a
subsumption test for each possible subsumer of A2, i.e., for the (atomic) concepts that are
(possibly non-deterministically) added to the root node in the satisfiability test, we have to
checks whether they are actual subsumers in all models.

Although the candidate concepts already allow for a significant pruning of subsumption
tests, there are still ontologies where these candidate concepts are added to many node
labels, especially if only a limited absorption of D for an axiom of the form A ≡ D is
possible. Hence, A can still be a possible subsumer for many concepts.

The saturation graph can, however, again be used to improve the identification of (more
or less obvious) non-subsumptions. Basically, if a candidate concept A+ for A ≡ D is in
the label of a node v in the completion graph, then we test whether merging v with the
saturated node vnnf(¬D) is possible. Since D is often a conjunction, we can also try to merge
v with the representative node for a disjunct of nnf(¬D). If the “models” can be “merged”
as defined below, then v is obviously not an instance of A.

560

Pay-As-You-Go Description Logic Reasoning

Definition 15 (Model Merging). Let S = (V,E,L) be a fully saturated saturation graph
and G = (V ′, E′,L′, ˙6=) a fully expanded and clash-free completion graph for a knowledge
base K. A node v ∈ V is mergeable with a node v′ ∈ V ′ if

• v is not critical, not nominal dependent, and not clashed;

• L(v) ∪ L′(v′) does not contain {C, nnf(¬C)} for some concept C;

• L(v) ∪ L′(v′) does not contain concepts A1 and A2 such that A1 u A2 v C ∈ K and
C /∈ (L(v) ∪ L′(v′));

• v′ is not an r-neighbour of v′ for a concept ¬∃r.Self ∈ L(v);

• v is not an r-neighbour of v for a concept ¬∃r.Self ∈ L′(v′);

• C ∈ L′(w′) for every r-neighbour w′ of v′ and ∀r.C ∈ L(v);

• C ∈ L(w) for every r-successor w of v and ∀r.C ∈ L′(v′);

• nnf(¬C) ∈ L′(w′) for every r-neighbour w′ of v′ and 6mr.C ∈ L(v); and

• nnf(¬C) ∈ L(w) for every r-successor w of v and 6mr.C ∈ L′(v′).

Note that the conditions are designed such that they can be checked very efficiently and
it is clear that some of the conditions can be relaxed further. For instance, it is not necessary
to enforce that v is not nominal dependent. In principle, we only have to ensure that there
is no interaction with the generated completion graph, which can, for example, also be
guaranteed if the concept tested for satisfiability does not use nominals in the completion
graph. In addition, if the model merging fails due to concepts in the completion graph that
have an interaction with the tested node in the saturation graph, then we can simply extend
the saturation graph with a new node, where also the problematic concepts are considered,
and retest the model merging with this node. For instance, if a node v′ in the completion
graph is not mergeable with a node v in the saturation graph due to an axiom A1uA2 v C
in the knowledge base for which A1 ∈ L′(v′), A2 ∈ L(v), and C /∈ (L′(v′) ∪ L(v)), then we
can saturate a new node w with L(w) ⊇ L(v) ∪ {C} and check whether w is mergeable.

In contrast, if concepts from the tested node in the saturation graph interact with the
completion graph, then it is often not easily possible to extend the model merging approach
such that non-subsumption can be guaranteed. In particular, we are not interested in
modifying the completion graph since it also has to be used for other model merging tests.
In addition, a recursive model merging test, where we check whether the neighbours of a
node in the completion graph are mergeable with propagated concepts from the saturation
graph, is non-trivial since we have to exclude interactions with already tested nodes. For
example, if a node v′ in the completion graph is not mergeable with a node v in the
saturation graph due to an r-neighbour w′ of v′ and a concept ∀r.C in the label of v for
which C /∈ L(w′), then a recursive model merging could test whether w′ is mergeable with
vC . However, it would also be necessary to guarantee that the merging of w′ with vC does
not cause new consequences that are propagated back to v′, which is especially non-trivial
if there are several universal restrictions in the label of v that would affect w′.

561

Steigmiller & Glimm

Example 4. To continue the classification of the TBox T2 from Example 3, we (have to)
build a completion graph for A2 with the tableau algorithm, which is straightforward. In
particular, we can directly see that A2 is satisfiable and only A3 can be a possible subsumer
of A2 (since the candidate concept A+

3 is propagated to the root node for A2 from the existen-
tially restricted s-successor with B in its label). To apply model merging, the saturation of
the different alternatives/disjuncts that correspond to ¬A3 is required, i.e., we now assume
that the concepts ∀s.¬B and ∃r.¬B have also been saturated, which is trivial since no new
consequences are implied and all created and referred nodes can completely be handled by
the saturation. If the tableau algorithm has added the disjunct ∀r.⊥ to satisfy ∀r.⊥ t ¬B,
then the model merging fails since v∀s.¬B has an interaction with the r-successor in the
completion graph that has been constructed to satisfy ∃s.B and for v∃r.¬B an interaction
with ∀r.⊥ can obviously not be excluded. Hence, it would be required to test whether A3 is
a subsumer of A2 by checking the satisfiability of A2 u ¬A3. In contrast, if ¬B has been
added, then none of the model merging conditions are satisfied for v∃r.¬B and, therefore, we
can directly conclude that A3 is not a subsumer of A2.

Note, although other proposed (pseudo) model merging techniques (Haarslev, Möller,
& Turhan, 2001) work, in principle, in a very similar way, there are also some significant
differences. For example, the presented merging test is only applied if corresponding can-
didate concepts are in the label of nodes, which already reduces the number of tests. In
addition, we test the merging against nodes from the saturation graph and, therefore, we
do not have any significant overhead in creating appropriate (pseudo) models. In contrast,
for other approaches it is often necessary to build separate completion graphs for those
concepts for which the model merging is to be applied. Moreover, the presented approach
is also applicable to very expressive DLs such as SROIQ, whereas other approaches often
deactivate model merging if certain language features are used (e.g., nominals). Of course,
very expressive DLs may produce more critical nodes and, therefore, they potentially reduce
the model merging possibilities, but it is not necessary to completely deactivate it, which
results in a very good pay-as-you-go behaviour.

5. Saturation Improvements

Obviously, the support of the tableau algorithm with the saturation works better when
as few nodes as possible are marked critical. However, since our saturation procedure
does not completely support all language features, we easily get critical nodes even when
the unsupported language features are only rarely used in the knowledge base. This is
especially problematic if the critical nodes are referenced by many other nodes, whereby
they also have to be considered critical. In the following, we present different approaches
about how the saturation can be improved such that the number of critical nodes can be
reduced. As a result, a better support of the tableau algorithm is possible.

5.1 Supporting More Expressive Language Features

As known from the literature, saturation procedures can be extended to more expressive
Horn DLs, e.g., Horn-SHIQ (Kazakov, 2009) or even Horn-SROIQ (Ortiz, Rudolph, &
Simkus, 2010). Although it has been shown that such extensions can be very efficient for

562

Pay-As-You-Go Description Logic Reasoning

ontologies in these fragments, it is not completely clear how they perform for ontologies
that use language features outside of these fragments, for example, if they are used to
partially saturate ontologies as for our approach. In particular, the worst-case complexity
for such procedures is not polynomial and, therefore, they can easily cause the construction
of very large saturation graphs with corresponding large memory requirements. However,
in practical implementations, we can simply limit the number of nodes that are processed
by the saturation by directly marking the remaining nodes as critical. Hence, we can easily
support some features of such Horn-languages without risking that the memory consumption
is increased too much without gaining some benefits.

In particular, it is very interesting to relax the restriction that concepts are only propa-
gated to predecessor nodes for universal restrictions of the form ∀r.C. This is required for
the saturation procedure presented in Section 3 to enable the reuse of nodes, but it can be
extended such that a full support of universal restrictions is possible. Of course, we are not
allowed to directly modify existing r-successors, but we can easily create and saturate copies
of the existing r-successors that we extend by the propagated concept C. In addition, we can
remove the edges to the previous r-successors such that the incompleteness detection rule
C↓∀ for the concept ∀r.C does not mark the node as critical, which is obviously not the case
if now all newly connected r-successors include the concept C and are completely handled.
Note that these copies and extensions of nodes can be realised very efficiently. Basically,
we first apply the default saturation rules and, afterwards, we extend only those successors
where the saturation has not already added the concept C. In addition, we can use, for each
successor node that has to be extended, a mapping for the concepts, for which the node has
to be extended, to the copied and extended nodes, whereby we can reuse already created
node extensions. Thus, if several predecessors propagate the same concepts to the same
successors, then we create a node with the corresponding extension only once. This can be
seen as an (efficient) implementation of the so-called node contexts, which serve as basis for
many saturation procedures that can fully handle universal restrictions (Simanč́ık et al.,
2011, 2014; Bate et al., 2015). In particular, our “extension mapping”, i.e., the mapping
from nodes to copies of the nodes extended by the additional concepts, can be seen as a
representation of such node contexts. For example, if we have a node vA as an r-successor
of v and ∀r.B ∈ L(v), then we create a copy of the node vA, say vA,B, for which B is added
and which is then used as r-successor of v instead of vA. With our extension mapping, we
then also store that the extension of vA by B can be found in the node vA,B such that we
can reuse it. Note, however, that we create the copy only if B is not already in the label of
vA. Moreover, by directly copying the nodes (with the derived consequences), a repetition
of many rule applications is not necessary.

Support for at-most restrictions of the form 6 1r.> can be achieved analogously. The
labels of corresponding r-successors can easily be merged into a new node, which can then be
used to replace the other r-successors. Again, we can use a mapping such that the merging
of certain successors always results in the same (possibly new) node. If there is a remaining
r-successor v′ that also has to be merged to a predecessor v′′ for a node v, then we add all
the concepts in the label of v′ to the label of v′′ and we make v also an inv(r)-successor of
v′′. Thus, Horn-SHIF can (almost) completely be supported with rather small extensions
of the presented saturation procedure.

563

Steigmiller & Glimm

More difficult is the support of nominals. Already a complete nominal support for the
DL EL++ would potentially introduce some significant overhead. In particular, it would be
necessary to store, for every node v and every nominal {a}, which descendants of v are using
the nominal {a}, i.e., if a descendant of v has a nominal {a} in its label, then we would have
to store for v that the nominal {a} is used by this descendant. If we would find a node v,
for which it is stored that a nominal {a} is used by several descendant nodes, say v1, . . . , vn,
then we would have to create a new node u where the labels of v1, . . . , vn were merged, and
we would have to “reproduce” the paths of predecessors from the merged nodes up to v
such that potentially new consequences can also be propagated to v. However, since the
majority of EL ontologies use nominals only in much simpler ways (e.g., with concepts of
the form ∃r.{a}) for which the presented saturation procedure is already sufficient, a more
sophisticated nominal handling does currently not seem to be required.

Saturation procedures can further be extended to non-Horn DLs, for instance, satu-
ration procedures have been proposed for the DLs ALCH (Simanč́ık et al., 2011), ALCI
(Simanč́ık et al., 2014), and even for SHIQ (Bate et al., 2015). For this, they also have
to handle non-determinism that is, for example, caused by disjunctions, which is typically
realised by simply considering/saturating all non-deterministic alternatives. If the same
concepts are derived for all alternatives, then they are interpreted as actual consequences
of the knowledge base. If the number of alternatives is very large, then such a (naive)
saturation approach might become impractical. Although also the tableau algorithm has
to consider all alternatives in the worst-case, it is doing it successively, i.e., it is trading
memory requirements against a potentially increased runtime. Moreover, tableau algo-
rithms usually implement a large amount of optimisations to reduce the non-deterministic
alternatives that have to be considered. Most notably, dependency directed backtracking
allows for evaluating only those alternatives of non-deterministic decisions that are indeed
relevant, i.e., which are involved in the creation of clashes. Since saturation algorithms do
not track dependencies between derived facts, their ability to determine which alternatives
of non-deterministic decisions do not have to be considered (since they would result in the
same clashes) is very limited. Unfortunately, the tracking of dependency information makes
a simple reuse of nodes (which is the foundation of saturation procedures) impossible or, at
least, much more involved.

Although it has been shown that saturation procedures extended to non-deterministic
language features can work very well for a range of ontologies (Simanč́ık et al., 2011), more
investigations are required in order to understand whether (or in which cases) they are
better than tableau algorithms for more expressive DLs. However, the development and
the implementation of saturation-based reasoning systems for more expressive DLs seems
challenging and, to the best of our knowledge, a saturation-based procedure/reasoner for
expressive DLs such as SROIQ does not yet exist. Hence, it can be an interesting com-
promise, as presented in this paper, to keep the (basic) saturation algorithm deterministic
and to process the remaining parts with the tableau algorithm, which is typically coupled
with several well-established optimisations (e.g., semantic branching, Boolean constraint
propagation, dependency directed backtracking, unsatisfiability caching) to handle non-
determinism. Alternatively, one can process non-deterministic language features with the
saturation procedure only as long as certain limits are not reached (e.g., a memory limit or

564

Pay-As-You-Go Description Logic Reasoning

vA2vA1 vA3

v{b}v{a} v{c}

s r

s s

r r

L(vA1) =
{
>, A1, ∃s.A2

}
L(vA2) =

{
>, A2, ∃s.{b}, ∃r.A3, A1 tA3

}
L(vA3) =

{
>, A3,∃s.{c}

}

L(v{a}) =
{
>, {a}, B,∀s−.B

}
L(v{c}) =

{
>, {c}

}
L(v{b}) =

{
>, {b}, ∃r.{a},∃r.{c},61r.>

}

Figure 2: Incompletely handled saturation graph for testing the satisfiability of the concept
A1 from Example 5

an upper bound for the number of saturated, non-deterministic alternatives), and can simply
mark remaining nodes as critical such that they are processed by the tableau algorithm.

5.2 Improving Saturation with Results from Completion Graphs

As already mentioned, even if there is only one node for an individual that is critical, then
the presented saturation procedure also marks all nominal dependent nodes as critical.
This easily limits the improvement from the saturation for ontologies that intensively use
nominals. Analogously, if there are few nodes with incompletely handled concepts (e.g.,
disjunctions) and these nodes are referenced by many other nodes, then all these other
nodes are also critical although they do not necessarily have concepts in their label that
cannot be handled completely. Both issues are also illustrated in the following example:

Example 5. Let us assume that the TBox T3 contains the following axioms:

A1 v ∃s.A2 A2 v ∃s.{b} A2 v ∃r.A3 A2 v A1 tA3

A3 v ∃s.{c} B v ∀s−.B
{a} v B {b} v ∃r.{a} {b} v ∃r.{c} {b} v 61r.>

For testing the satisfiability of the concept A1 w.r.t. TBox T3, we generate the saturation
graph that is depicted in Figure 2. Note, the node v{b} for the individual b cannot be
completely handled by the saturation due to the concept 6 1r.> in the label of v{b}, which
would require that v{a} and v{c} are merged. Therefore, v{b} is critical and we also have
to consider all nodes as critical that refer to such critical nodes, which is, for example, the
case for the node vA2. Moreover, since one node for an individual is critical, we cannot
exclude that more consequences are propagated to other individuals and, therefore, possibly
also to other nominal dependent nodes. For instance, the merging of v{a} and v{c} would
propagate the concept B to the label of vA3. Thus, also vA3 is critical although it does
not directly contain a concept that cannot be handled by the saturation. Analogously, the
label of vA2 contains the disjunction A1 tA3, which is also not completely processed by the

565

Steigmiller & Glimm

saturation and, therefore, we have to mark all ancestor nodes of vA2 as critical (if this is
not already the case), even if they do not contain problematic concepts. As a consequence,
we obtain a saturation status S = (So,S≮,S!), where v{b} has a tight at-most restriction,
i.e., S≮ = {v{b}}, and all nodes are nominal dependent as well as critical, i.e., So = S! =
{v{a}, v{b}, v{c}, vA1 , vA2 , vA3}.

Of course, the saturation can be extended in several ways to better support features of
more expressive DLs (see Section 5.1), but, to the best of our knowledge, there exists no
saturation algorithm that completely covers all the features of very expressive DLs such as
SROIQ. Hence, if a knowledge base uses some of the unsupported features, then we easily
run into the problem that the saturation becomes incomplete and we possibly get many
critical nodes.

An approach to overcome the issues with critical nodes is to “patch”, i.e., update, the
saturation graph with results from fully expanded and clash-free completion graphs that
are generated for consistency or satisfiability checks. Roughly speaking, the idea is to
replace the labels of critical nodes in the saturation graph with corresponding labels from
these completion graphs, for which we know that they are completely handled by the tableau
algorithm. We call such nodes patched nodes. Then, we apply the saturation rules again and
we update the saturation status, which hopefully results in an improved saturation graph
with fewer critical nodes. Note, however, that simply adding non-deterministically derived
concepts from labels of completion graphs to the saturation easily leads to unsound results.
Hence, we distinguish deterministically and non-deterministically derived concepts when
updating the saturation by simultaneously managing two saturation graphs: one where only
the deterministically derived concepts are added, i.e., the “deterministic saturation graph”,
and a second one, where also the non-deterministically derived concepts and consequences
are considered, i.e., the “non-deterministic saturation graph”. If the non-deterministic
consequences have only a locally limited influence, i.e., the non-deterministically added
concepts propagate new consequences only to a limited number of ancestor nodes, then,
by comparing both saturation graphs, we can possibly identify ancestor nodes that are
not further influenced, which can then be considered as non-critical. By reducing the
number of critical nodes in the saturation, this approach then allows for further improving
the construction of new completion graphs by transferring new and more results from the
updated saturation.

In order to describe the approach in more detail, we first define a saturation patch,
which constitutes the data structure for managing the information that is necessary for
updating a saturation graph.

Definition 16 (Saturation Patch). Let fclos(K) (Rols(K)) denote the concepts (roles) that
possibly occur in completion graphs for the knowledge base K as defined in Definition 5. A
saturation patch P for a saturation graph S = (V,E,L) w.r.t. K is a tuple P = (Vp,Ld,Ln,
Mc, Vo), where

• Vp ⊆ V denotes the set of patched nodes in the saturation graph,

• Ld : Vp → 2fclos(K) is the mapping of patched nodes to a set of deterministically derived
concepts,

566

Pay-As-You-Go Description Logic Reasoning

• Ln : Vp → 2fclos(K) is analogously the mapping of patched nodes to a set of non-
deterministically derived concepts,

• Mc : Vp × Rols(K)× fclos(K) → IN0 is the mapping of at-most cardinality restrictions
of the form 6mr.C on patched nodes (represented as a tuple of the node v, the role
r, and the qualification concept C) to the number of merging candidates, and

• Vo ⊆ Vp denotes the patched nodes that are nominal dependent.

A saturation patch obviously has to identify the nodes that should be patched/updated,
which is realised with the set Vp. For each node in Vp, the mappings Ld and Ln contain the
concepts from the node’s label in the completion graph that are derived deterministically
and non-deterministically, respectively. Hence, these mappings determine how a node’s
label in the saturation graph can be extended such that it is no longer critical. We also
have to store the number of merging candidates (Mc) and the patched nodes that are
nominal dependent (Vo) because this information is required for the generation of an updated
saturation status. Note that we consider the number of merging candidates and the nominal
dependencies as non-deterministic information since it is often not possible to correctly
extract the corresponding deterministic information from completion graphs. For example,
state-of-the-art reasoners are usually searching blocker nodes by checking more detailed
conditions as defined for pairwise blocking, whereby a node can possibly also be blocked if
the label is a subset of the label from the blocker node (Horrocks & Sattler, 2001). If the
blocker node is directly or indirectly using nominals, i.e., it is nominal dependent, then also
the blocked node has to be considered as nominal dependent. Hence, we have to consider
the nominal dependency as non-deterministic information since the nominal dependency
could be caused by a concept that is in the label of the blocker node but not in the label of
the blocked one.

Especially the root nodes of completion graphs constructed for satisfiability and consis-
tency tests are very suitable for the extraction of patches. For instance, in a fully expanded
and clash-free completion graph for testing the satisfiability of a concept C, the root node
has C in its label and can be used as a patch for the node vC in the saturation graph. The
completion graph of a consistency check can be used to patch representative nodes for nom-
inals. Of course, for the patching of nominal dependent nodes, we have to ensure some kind
of consistency, i.e., the dependent nominals have to be compatible with the representative
nodes of these nominals in the saturation graph and the already applied patches for these
nodes. A simple form of compatibility can be defined as follows:

Definition 17 (Saturation Patch Compatibility). Let P 1 = (V 1
p ,L1

d,L1
n, M

1
c , V

1
o), . . . , Pn =

(V n
p ,Lnd ,Lnn, Mn

c , V
n
o) be saturation patches for a saturation graph S w.r.t. a knowledge base

K, where V i
p = {vi1, . . . , vimi} for 1 ≤ i ≤ n. We say that P 1, . . . , Pn are compatible if

a fully expanded and clash-free completion graph G = (V,E,L, ˙6=) can be built for K such
that it contains the nodes w1

1, . . . w
1
m1 , . . . , w

n
1 , . . . w

n
mn with L(wi

j) = Lid(vij) ∪ Lin(vij) for

1 ≤ j ≤ mi and 1 ≤ i ≤ n.

In principle, we are not limited to the root and nominal nodes for the extraction of
patches, but a more detailed analysis of the completion graph is required for other nodes.
For example, the tableau algorithm does not apply the ∃-rule for a concept ∃r.C in the

567

Steigmiller & Glimm

label of a node v if v already has an r−-predecessor v′ with C in its label. Hence, if the
predecessor v′ directly or indirectly uses nominals, then also v has to be considered as
nominal dependent. Moreover, for other nodes in the completion graph, it is often not
clear which concepts have to be considered as non-deterministically derived consequences.
For instance, if we create, for the concepts ∃r.C and ∀r.D in the label of a node v, the
r-successor v′ and we extract a patch for vC from v′, then D has to be identified as a
non-deterministically derived concept. For this, it is in principle necessary to track and
analyse the dependencies between facts and their causes in the completion graph. If this
is efficiently supported by a reasoning system, then the extraction of patches can also be
extended to other nodes in the completion graph. Otherwise, the patch creation can simply
be restricted as appropriate.

The saturation patches are applied to a saturation graph as follows:

Definition 18 (Saturation Patch Application). Let S = (V,E,L) be a saturation graph and
P = (Vp,Ld,Ln, Mc, Vo) a saturation patch for S. The deterministic (non-deterministic)
application of P to S yields a deterministically (non-deterministically) extended saturation
graph Sd (Sn) of S that is obtained by saturating the saturation graph (V,E,L′), where
L′ = {v 7→ L(v) | v ∈ V \ Vp} ∪ {v 7→ Ld(v) | v ∈ Vp} (L′ = {v 7→ L(v) | v ∈ V \ Vp} ∪ {v 7→
Ld(v) ∪ Ln(v) | v ∈ Vp}).

Since we are interested in a deterministic and in a non-deterministic saturation graph, we
create a copy of the saturation graph as soon as we have a patch with non-deterministically
derived concepts and, then, we use the non-deterministic application of patches only for the
copy. Although we can also fully saturate the non-deterministic saturation graph by simply
using the presented saturate function, this potentially derives unwanted consequences since
the application of all saturation rules for all nodes possibly propagates new consequences
to patched nodes. This can be unfavourable if patched consequences are derived from the
processing of different non-deterministic alternatives. In particular, if a node v and an
ancestor of v are patched, then the saturation rules might propagate new consequences
obtained from the patching of v up to the ancestors. If an ancestor is, however, patched
with concepts from another completion graph, where different non-deterministic alternatives
are processed, then we possibly mix consequences of different alternatives in the saturation
graph, which easily limits the effectiveness of our approach. For example, if v contains the
disjunction ∀r.A t ∀r.¬A, and we patch v with the non-deterministic extension ∀r.A, then
the patching of the r−-predecessor v′ of v with the non-deterministic extension ¬A allows
the application of the ∀-rule for the concept ∀r.A in the label of the node v such that the
concept A is propagated to v′. As a consequence, we would infer with the saturation that
v′ is (possibly) clashed since A and ¬A are in its label. Since all (new) consequences in the
non-deterministic saturation graph are considered to be non-deterministic, this does not
produce incorrect results. In order to, nevertheless, avoid the derivation of such unwanted
consequences, we can saturate the non-deterministic saturation graph that contains the
patched nodes V with a modified saturate\V (S) function, where only the ∀-rule is applied
to the nodes in V and the ∀-rule is modified such that it does not propagate concepts to a
node v ∈ V . For this (and for a more precise detection of the saturation status), we gather
all patches in one combined patch and keep this patch in addition to the deterministic

568

Pay-As-You-Go Description Logic Reasoning

and non-deterministic saturation graph. The patches can straightforwardly be combined
by using the ◦-operator defined as follows:

Definition 19 (Saturation Patch Composition). Given two saturation patches P and P ′

with P = (Vp,Ld,Ln,Mc, Vo) and P ′ = (V ′p ,Ld′,Ln′, M ′c, V ′o), the saturation patch P ◦P ′ is
defined as the tuple consisting of

• Vp ∪ V ′p ,

• Ld ∪ {v 7→ C | v 7→ C ∈ Ld′ and v /∈ Vp},

• Ln ∪ {v 7→ C | v 7→ C ∈ Ln′ and v /∈ Vp},

• Mc ∪ {〈v, s, C〉 7→ n | 〈v, s, C〉 7→ n ∈M ′c and v /∈ Vp}, and

• Vo ∪ (V ′o \ Vp).

Note that if both patches contain information about the same node, then we keep the
information for this node only from one (the new) patch instead of mixing the information.
Thus, the information from the other patch gets lost for all common nodes, which is,
however, not problematic since both patches describe valid extensions.

In addition to the modified saturation function, we should reprocess the ancestors for
patched nodes in the non-deterministic saturation graph if the patching removes previously
added non-deterministic consequences in order to avoid the mixing of consequences from
different non-deterministic alternatives. For example, if a non-deterministically derived
concept such as ∀r.C was added or propagated to a node label and is removed by patching
this node, then the r−-predecessor should also be rebuilt from the deterministic saturation
graph such that unnecessary non-deterministic consequences (e.g., C) can also be removed.
For practical implementations, we can obviously limit the number of ancestor nodes that
are updated or processed for new non-deterministic consequences in the non-deterministic
saturation graph in order to limit the overhead of the patch application. If the limit is
reached, then the remaining ancestors can simply be marked as critical. Also note that we
can reuse all the data of the deterministic saturation graph in the non-deterministic one for
nodes that are not influenced by a patch with non-deterministic consequences.

In order to be able to use patched saturation graphs for the support of the tableau
algorithm, e.g., for the transfer of results into completion graphs, we have to update the
saturation statuses after the application of the patches. Similarly to the rule application of
the non-deterministic saturation graph, we do not want to propagate a status to a patched
node from the successors. Therefore, we analogously use a modified status\V function
instead of status, where the rules of Table 3 and 4 are only applied to nodes that are not
in V . This also requires that we use a modified]mcands′ function in status\V since, for
the patched nodes, we have to use the correct information as given by the patch. To be
more precise, when Mc denotes the mapping to the number of merging candidates in the
considered patch, then]mcands′(v, s,D) has to return Mc(〈v, s,D〉) if v is a patched node,
and]mcands(v, s,D) otherwise. In addition, we have to correctly initialise the sets S≮,
So, and S! for the patched nodes with the information from the applied patches. For the
non-deterministic saturation graph, all patched nodes are obviously non-critical since their
labels have been extracted from fully expanded and clash-free completion graphs. Hence,

569

Steigmiller & Glimm

we only have to initialise S≮ and So for a (combined) patch P = (Vp,Ld,Ln, Mc, Vo), which
can be realised by setting So = {v | v ∈ Vo}, and

S≮ = {v | v ∈ Vp and 6mr.C ∈ (Ld(v) ∪ Ln(v)) such that Mc(〈v, r, C〉) = m}.

For the deterministic saturation graph, we additionally have to set S! to {v | Ln(v) 6= ∅} in
order to mark all patched nodes directly as critical if they could depend on non-deterministic
consequences. After the initialisation, we can call the function status\Vp to obtain a full
status for the corresponding saturation graph, which can then be used to further improve
the support of the tableau algorithm.

Analogously to the deterministic and non-deterministic saturation graphs, every new
saturation status can incrementally be updated from the last generated status for the last
saturation graphs by sequentially updating the ancestors for the newly patched nodes.
Hence, also the generation of new saturation statuses is not causing a significant overhead
in practice.

The patching of saturation graphs enables a more sophisticated support of tableau algo-
rithms. On the one hand, the patching reduces the number of critical nodes and, therefore,
the optimisations described in Section 4, such as blocking the expansion of successors nodes
in the completion graph or the extraction of subsumers, are better applicable. On the
other hand, we can now also use the non-deterministic saturation graph for the support,
e.g., in the classification process. If a node vA in the non-deterministic saturation graph
is not critical, then the label of vA in the non-deterministic saturation graph describes all
possible subsumers of A. Thus, if vA is not critical in the non-deterministic saturation
graph, then its label can be used to prune possible subsumers. Moreover, we can use the
non-deterministic saturation graph to find identical labels that can be used for blocking
the processing/expansion of successors nodes in the completion graph. Of course, we still
require that the corresponding nodes in the (non-deterministic) saturation graph are not
critical. In contrast, the restriction that the nodes in the saturation graph are not allowed
to be nominal dependent for the blocking can be relaxed such that it works sufficiently well
for many real world ontologies. Basically, we patch all nodes that represent individuals
in the saturation graph after the consistency check with the corresponding nodes in the
obtained fully expanded and clash-free completion graph. Furthermore, we ensure, on the
one hand, that each subsequent saturation patch is compatible to this initial patch, i.e.,
we only create patches for nominal dependent nodes if all the labels of the nodes for the
individuals in a completion graph are identical or subsets of the corresponding labels of the
initial completion graph from the consistency check. On the other hand, we do not create
patches for nodes if they depend on new nominals, i.e., on nominals that are introduced by
the NN-rule. This ensures that the nodes in the saturation graphs can be used for blocking
as long as we expand the nodes for the individuals in the same way as in the initial comple-
tion graph. Thus, if nominal dependent nodes are used for blocking, we collect the blocked
nodes in a queue and we reactive these nodes if it becomes necessary to expand the nodes
for the individuals in another way as in the completion graph for the initial consistency
check. Of course, with a more exact tracking of the dependent nominals, e.g., by exactly
saving on which nominals a node possibly depends, we can refine and improve this tech-
nique significantly. Obviously, if we use a node for blocking for which it is exactly known on
which nominals it depends, then we only have to reactivate the processing of this node if the

570

Pay-As-You-Go Description Logic Reasoning

nodes for the corresponding individuals are expanded differently. Although this approach
keeps the patching of the saturation graphs consistent, i.e., the compatibility of the patches
is automatically ensured, it is more restrictive than required in Definition 17. However,
it allows for identifying potential incompatibilities with other techniques of tableau-based
reasoning systems, e.g., with variants of completion graph caching techniques (Steigmiller,
Glimm, & Liebig, 2015).

Due to the non-deterministic decisions of the tableau algorithm, a critical node in the
saturation graph can be patched in several ways. Moreover, we can patch an already
patched node to (hopefully) improve the non-deterministic saturation graph, i.e., we try
to reduce the number of nodes that are influenced by the non-deterministic consequences
and/or marked as critical. Thus, we need a strategy that decides for which nodes we have
to extract patches from a fully expanded and clash-free completion graph such that the
non-deterministic saturation graph can be improved. As already described, we can only
extract patches from nodes for which all information can be safely extracted and they do
not make the non-deterministic saturation graph inconsistent. In addition, the strategy
has to keep the number of patches as small as possible since we have to update the data
structures for every patch.

A simple example for such a strategy is to create only patches when they reduce the
number of non-deterministic propagation concepts for the patched nodes. With this strategy
we would prefer a patch that adds the non-deterministic set of concepts {∀r.C,A1, A2}
in comparison with a patch that has the non-deterministic extension {∀s.D,∀t.D}. This
strategy ensures, at least, that we do not create arbitrary patches, which avoids an oscillation
between different possibilities, and we clearly favour the creation of patches that do not
influence other nodes. However, we cannot guarantee that the non-deterministic saturation
graph is actually improved. For example, the concept ∀r.C could propagate C to several
predecessors and also the processing of C could further influence many ancestors, whereas
the patch with {∀s.D,∀t.D} might only influence few predecessors. Therefore, if the node is
already patched with {∀s.D,∀t.D} and we create a new patch with {∀r.C,A1, A2} due to the
fewer propagation concepts, then we even worsen the non-deterministic saturation graph.
In order to counteract this, we should also extract patches from the saturation graph if we
detect that a critical node in the deterministic saturation graph is labelled with the same
concepts as in the non-deterministic saturation graph and the node in the non-deterministic
saturation graph is not critical. With this kind of “internal patch” we can ensure that if the
saturation has identified a node that is neither critical nor influenced by non-deterministic
consequences, then we remember this “solved” state of the node and we do not overwrite
its state by integrating other patches in the non-deterministic saturation graph. Of course,
the strategy for the creation and extraction of patches optimally also considers the nominal
dependency and tight at-most restrictions by trying to reduce the number of such nodes.

Example 6. As mentioned, all nodes in the saturation graph of Figure 2, which is generated
for testing the satisfiability of the concept A1 w.r.t. TBox T3 (p. 564), are critical. As a
consequence, we have to check the satisfiability of A1 with the tableau algorithm in detail.
For this, we first check the consistency of the individuals a, b, and c, which results in a simple
completion graph, where the nodes for a and c are merged. From this completion graph, we
extract an initial saturation patch P 1 for the individuals, i.e., P 1 = (V 1

p ,Ld1,Ln1,M1
c , V

1
o)

571

Steigmiller & Glimm

with V 1
p = {v{a}, v{b}, v{c}}, Ld1 = {v{a} 7→ {>, {a}, {c}, B,∀s−.B}, v{c} 7→ {>, {a}, {c}, B,

∀s−.B}, v{b} 7→ {>, {b}, ∃r.{a},∃r.{c},6 1 r.>}}, Ln1 = ∅, M1
c = {〈v{b}, r,>〉 7→ 1}, and

V 1
o = {v{a}, v{b}, v{c}}. Note, although the nodes for the individuals a and c are merged in

the completion graph, we have to patch v{a} and v{c} separately since the saturation does
not support the merging of nodes. Also note that the completion graph for the consistency
check is deterministic and, therefore, the mapping of nodes to non-deterministically derived
concepts is not required, i.e., each node has to be mapped to ∅ for Ln1. However, for ease
of presentation, we omit uninteresting patch data and we simply use ∅ for Ln1.

By deterministically applying P 1 to our initial saturation graph, we obtain a new deter-
ministic saturation graph, where the nodes are extended by the data from the applied patch.
In particular, v{c} is extended by the concepts {a}, B, and ∀s−.B in this deterministic sat-
uration graph, whereby the concept B is also propagated to vA3 and, as a consequence, the
label of vA3 is extended to the set {>, A3,∃s.{c}, B,∀s−.B}. The saturation status for the
new deterministic saturation graph reveals that the nodes v{a}, v{b}, v{c}, and vA3 are not
critical. Thus, we have, in principle, already shown the satisfiability of the concept A3. In
contrast, vA1 is still indirectly critical due to the incompletely handled disjunction A1 t A3

in the label of vA2.

In order to test the satisfiability of A1 now with the tableau algorithm, we initialise
a new completion graph with a node v for which the concept A1 is asserted. Since the
disjunction A1 t A3 will be added to this completion graph for the s-successor v′ of v,
the tableau algorithm has to choose between the disjuncts A1 and A3. Independently from
the decision, we can obtain a fully expanded and clash-free completion graph that shows
the satisfiability of A1, but the non-deterministic decision influences the patching of the
saturation graph. For example, by non-deterministically adding A3 to v′, the tableau al-
gorithm has to add an s-edge to the node representing c due to A3 v ∃s.{c} ∈ T3 and
then B is propagated to the label of v′ and, subsequently, also to the label of v due to
B v ∀s−.B ∈ T3 and since the node for c has B in its label. Thus, we can extract a
patch P 2 = ({vA1}, {vA1 7→ {>, A1, ∃s.A2}}, {vA1 7→ {B, ∀s−.B}}, ∅, {vA1}). Since P 2 con-
tains non-deterministically derived consequences, we apply the patch deterministically and
non-deterministically. Although the node vA1 can be considered as fully handled in the non-
deterministic saturation graph, it remains critical in the deterministic saturation graph and,
therefore, its usage for supporting (e.g., blocking the expansion of successor nodes in new
completion graphs, identification of (possible) subsumers) the tableau algorithm is limited.
In contrast, if the disjunct A1 were non-deterministically added to v′, then we could extract
a saturation patch P 3 = ({vA1}, {vA1 7→ {>, A1,∃s.A2}}, ∅, ∅, {vA1}) and by applying P 3,
we could also consider the node vA1 as non-critical in the deterministic saturation graph.
Hence, we prefer the saturation patch P 3 and we would also extract and apply P 3, even if
we extracted and applied P 2 from an earlier constructed completion graph.

As of now, we only considered patching from fully expanded and clash-free completion
graphs. Of course, it is also possible to integrate unsatisfiability results from completion
graphs into the saturation graphs. In particular, if the tableau algorithm cannot find a
fully expanded and clash-free completion graph for a concept C, then we can create a patch
where we deterministically extend vC by the concept ⊥. Such a management of unsatisfiable

572

Pay-As-You-Go Description Logic Reasoning

concepts with the saturation graph has the benefit that ⊥ is also propagated to other nodes
and we can immediately identify many other unsatisfiable concepts.

It is also worth pointing out that, especially with the extraction and application of
patches, the support of the tableau algorithm with the information provided through the
saturation graphs can be seen as an intelligent caching technique. Although this only corre-
sponds to a limited caching for certain nodes that are not further influenced by predecessors,
it also works, to some extent, with nominals and inverse roles. Moreover, it is very fast and
can automatically propagate unsatisfiability and satisfiability statuses to other concepts.

6. Related Work

There are already some approaches that combine the reasoning techniques of fully-fledged
DL reasoners with specialised procedures for specific fragments. For instance, the reasoning
system MORe (Armas Romero et al., 2012) uses module extraction to identify a part of
an ontology that can be completely handled by a more efficient reasoning system and the
fully-fledged reasoner is then only used for the remaining parts of the ontology. Note, our
approach works more from the opposite direction: we apply the saturation and simply
ignore (or partially process) unsupported features and, then, we detect which parts are not
completely handled. Since MORe uses other reasoners as black-boxes, it is, in principle,
possible to combine arbitrary reasoning procedures by adapting the module extraction.
However, as of now, all fully-fledged OWL 2 reasoners are based on variants of tableau
calculi and the efficient reasoning systems for interesting fragments are usually using variants
of saturation procedures (e.g., completion- and consequence-based reasoning), whereby the
combination of tableau and saturation algorithms currently seems to be the only interesting
one.

Due to the black-box approach, the technique realised in MORe is very flexible. For
example, it is easily possible to exchange the fully-fledged reasoner with a reasoning system
for which it is known that it works best for certain kinds of ontologies. Our approach, on
the other hand, has to be implemented into one single reasoning system and requires the
support of certain techniques, such as binary absorption, to work well. Moreover, compatible
data structures have to be used for both kinds of procedures, which usually means that an
appropriate saturation algorithm has to be integrated into a tableau-based reasoning system.
Our approach, however, has also various advantages. For example, our saturation uses the
same representation of ontologies as tableau algorithms and, therefore, the ontology has to
be loaded only once. In contrast, the reasoners used by MORe have to separately load the
ontology (or parts thereof) since they are used as black-boxes and, usually, they also do not
have compatible data structures. Furthermore, our approach is much more tolerant for the
usage of features outside the efficiently supported fragment. Some of our optimisations can
also be used when all saturated nodes are critical, which could, for example, be the case if
the ontology contains non-absorbable GCIs. In addition, we have presented an extension
that allows for fixing critical parts in the saturation, whereby unsupported features are
not problematic if they are only rarely used in the ontology. In contrast, MORe has to
reduce the module for the efficient reasoner as long as the module contains unsupported
features. Thus, our approach promises a better pay-as-you-go behaviour. Moreover, we can
use intermediate results from the saturation, whereas the technique in MORe relies on the

573

Steigmiller & Glimm

externally provided interfaces of the reasoners, which usually only provides basic information
such as the satisfiability of concepts and the subsumers of classes. Therefore, our integration
of the saturation procedure obviously allows for more sophisticated optimisation techniques
such as the transfer of inferred consequences and the blocking of the processing with the
tableau algorithm.

Although both approaches are in principle applicable to different reasoning tasks, our
technique automatically improves reasoning as long as the reasoning task is reduced to
consistency checking with the tableau algorithm. For example, in order to support the
satisfiability testing of complex concepts, our approach does not need any adaptations. For
MORe, however, it would be necessary to check whether the complex concept is in the
module that can be handled by the efficient reasoner in order to achieve an improvement.
Last but not least, we do not need the module extraction technique in our approach, which
can also take a significant amount of time. This is especially an advantage for ontologies
that are almost completely in the efficiently supported fragment since our approach does
not have a similar overhead as the module extraction for such ontologies.

Another reasoning system that combines different reasoning techniques is WSReasoner
(Song et al., 2012), which uses a weakening and strengthening approach for the classifica-
tion of ontologies. To be more precise, the ontology is first rewritten into a simpler one
(the weakening of the ontology), where not supported language features are (partially) ex-
pressed in the fragment that can be handled by the efficient reasoner. Then, a strengthened
version of the weakened ontology is created, where axioms are added such that at least
also the consequences of the original ontology are implied. The weakened and the strength-
ened ontologies are then classified by the specialised reasoner and possible differences in
the obtained subsumtion relations are verified with a fully-fledged reasoner. Also for WS-
Reasoner, the fragment specific reasoner (usually based on a saturation procedure) and the
fully-fledged reasoner (usually based on a tableau calculus) are used as black-boxes, which
makes them, in principle, exchangeable. However, the weakening and strengthening also
has to be adapted to the language fragment of the efficient reasoner.

Although the technique of WSReasoner is different to the one of MORe, the advantages
and disadvantages in comparison with our approach are in principle the same. However,
the approach of WSReasoner is not as easily extendible to more language features and,
as of now, it is only presented for the DL ALCHIO (with the elimination/encoding of
transitive roles also for SHIO). Moreover, since the nominals are simplified to fresh atomic
concepts, the approach cannot straightforwardly be used for all reasoning tasks. If such a
simplification is, however, applicable, then it often improves the reasoning performance for
corresponding ontologies.

Similarly to WSReasoner, PAGOdA (Zhou et al., 2014, 2015) also uses the weakening
and strengthening approach, however, for different reasoning tasks and by delegating a
different fragment of the ontology to a specialised reasoner. In particular, PAGOdA is
designed for ABox reasoning (e.g., conjunctive query answering) and delegates the majority
of the computational workload to an efficient datalog reasoner. If the lower bound from
the datalog reasoner does not match with the upper bound, then PAGOdA delegates the
query with the relevant parts of the ABox to a fully-fledged reasoner. In order to keep the
relevant parts as small as possible, PAGOdA uses additional optimisations such as relevant
subset extraction, summarisation, and dependency analysis. However, these additional

574

Pay-As-You-Go Description Logic Reasoning

optimisations also carry the risk that every use of the fully-fledged reasoner introduces
additional overhead, which could be problematic for ontologies where a lot of work has still to
be done by the fully-fledged reasoner. Moreover, maintaining several naive representations
of the entire ABox can easily multiply memory requirements.

7. Implementation and Evaluation

We extended Konclude3 (Steigmiller, Liebig, & Glimm, 2014) with the saturation procedure
shown in Section 3 and with the optimisations presented in Section 4 and 5. Konclude is
a tableau-based reasoner for SROIQ (Horrocks et al., 2006) with extensions for handling
nominal schemas (Steigmiller et al., 2013). Konclude integrates many state-of-the-art opti-
misations such as lazy unfolding, dependency directed backtracking, caching, etc. Moreover,
Konclude uses partial absorption (Steigmiller et al., 2014b) in order to significantly reduce
the non-determinism in ontologies and, therefore, Konclude is well-suited for the proposed
coupling with saturation procedures.

Our integration of the saturation in Konclude completely covers the language features
of the DL Horn-SHIF by using the saturation extensions described in Section 5.1, where
universal restrictions that propagate concepts to successors and the merging of succes-
sors/predecessors due to functional at-most restrictions are handled. The number of nodes
that are additionally processed for the handling of these saturation extensions is mainly
limited by the number of concepts occurring in the knowledge base. However, Konclude’s
saturation procedure only supports a very limited handling of ABox data. This is due to
a design decision with which we try to avoid several representations of individuals (and
derived consequences for these) in the reasoning system. Since the saturation could easily
be incomplete for the ABox (e.g., since disjunctions are asserted to few individuals or due
to datatypes), the ABox has often also be handled by the tableau algorithm and several
representations of the ABox can multiply memory requirements. Hence, Konclude primar-
ily handles ABox individuals with the tableau algorithm and uses patches from completion
graphs (as presented in Section 5.2) to improve those parts in the saturation graph that
depend on nominals.

In addition, Konclude saturates the concepts that might be required for a certain reason-
ing task upfront in a batch processing mode, whereby the switches between the tableau and
the saturation algorithm can be reduced significantly. Moreover, we sort the concepts that
occur in the knowledge base and saturate them in a specific order to maximise the amount
of data that can be shared between the saturated nodes. For example, if the knowledge base
contains the axiom A v B, then we first saturate B and we use the data from vB to initiate
vA. In particular, by copying the node labels, many rule applications can be skipped, which
significantly improves the performance of the saturation procedure. Furthermore, this also
reduces the effort for the saturation status detection. For instance, if vB does not satisfy
an at-most restriction, then this at-most restriction is also not satisfied for vA.

In the following, we present a detailed evaluation that shows the effects of Konclude’s
integrated saturation procedure and the presented optimisations for the support of the fully-
fledged tableau algorithm. In addition, we compare the reasoning times of Konclude with the
ones of other state-of-the-art reasoners that support TBox reasoning for (almost) all features

3. Konclude is freely available at http://www.konclude.com/

575

http://www.konclude.com/

Steigmiller & Glimm

Repository # Axioms Classes Properties Individuals
Ontologies Ø Q0.5 Ø Q0.5 Ø Q0.5 Ø Q0.5

Gardiner 292 5, 842 96 1, 788 14 44 7 85 2
NCBO BioPortal 403 27, 180 1, 116 7, 518 339 48 13 1, 766 0
NCIt 185 178, 818 167, 667 69, 720 68, 862 116 123 0 0
OBO Foundry 502 37, 349 1, 292 6, 753 509 24 4 20, 905 6
Oxford 394 73, 921 3, 433 8, 543 500 53 11 18, 273 5
TONES 203 7, 707 352 2, 864 96 40 5 65 0
Google crawl 414 6, 869 255 1, 127 39 102 44 824 1
OntoCrawler 548 2, 574 136 124 17 93 20 633 0
OntoJCrawl 1, 696 6, 281 311 1, 772 50 62 9 838 0
Swoogle crawl 1, 638 2, 778 132 416 21 36 10 879 0
ORE2014 dataset 16, 555 16, 017 594 3, 846 87 101 53 1, 801 50
ALL 22, 830 16, 647 594 4, 020 74 97 50 2, 271 29

Table 5: Statistics of ontology metrics for the evaluated ontology repositories (Ø stands for
average and Q0.5 for median)

of the DLs SROIQ, namely FaCT++ 1.6.3 (Tsarkov & Horrocks, 2006), HermiT 1.3.8
(Glimm, Horrocks, Motik, Stoilos, & Wang, 2014), MORe 0.1.6 (Armas Romero et al., 2012),
and Pellet 2.3.1 (Sirin, Parsia, Cuenca Grau, Kalyanpur, & Katz, 2007). The evaluation uses
a large test corpus of ontologies,4 which has been obtained by collecting all downloadable
and parsable ontologies from

• the Gardiner ontology suite (Gardiner, Horrocks, & Tsarkov, 2006),

• the NCBO BioPortal (Whetzel et al., 2011),

• the National Cancer Institute thesaurus (NCIt) archive (National Cancer Institute,
2003),

• the Open Biological Ontologies (OBO) Foundry (Smith et al., 2007),

• the Oxford ontology library (Information Systems Group, 2012),5

• the TONES repository (Information Management Group, 2008),

• the subsets of the OWLCorpus (Matentzoglu, Bail, & Parsia, 2013) that were gathered
by the crawlers Google, OntoCrawler, OntoJCrawl, and Swoogle,6 and

• the ORE2014 dataset (Matentzoglu & Parsia, 2014).

4. The test corpus and the evaluated version(s) of Konclude v0.6.1 can be found online at http://www.

derivo.de/en/products/konclude/paper-support-pages/tableau-saturation-coupling.html

5. Note that the Oxford ontology library also contains other repositories (e.g., the Gardiner ontology suite),
which we ignored in order to avoid too much redundancy.

6. In order to avoid too many redundant ontologies, we only used those subsets of the OWLCorpus which
were gathered with the crawlers OntoCrawler, OntoJCrawl, Swoogle, and Google.

576

http://www.derivo.de/en/products/konclude/paper-support-pages/tableau-saturation-coupling.html
http://www.derivo.de/en/products/konclude/paper-support-pages/tableau-saturation-coupling.html

Pay-As-You-Go Description Logic Reasoning

Ontology Expressiveness Axioms Classes Properties Individuals

Gazetteer ALE+ 1, 170, 573 518, 196 16 1
EL-GALEN ALEH+ 60, 633 23, 136 950 0
Full-GALEN ALEHIF+ 61, 782 23, 136 950 0
Biomodels SRIF 847, 794 187, 520 70 220, 948
Cell Cycle v2.01 SRI 731, 482 106, 398 469 0
NCI v06.12d ALCH 141, 957 58, 771 124 0
NCI v12.11d SH 229, 713 95, 701 110 0
SCT-SEP SH 109, 959 54, 974 9 0
FMA v2.0-CNS ALCOIF 165, 000 41, 648 148 85
OBI SHOIN 32, 157 3, 533 84 160

Table 6: Ontology metrics for selected benchmark ontologies

Note that the ORE2014 dataset is a collection of ontologies from several sources and it
redundantly contains many of the ontologies that are also contained by the other reposito-
ries. However, many ontologies of the ORE2014 dataset have been adapted and approxi-
mated to fit the requirements of certain OWL 2 profiles (e.g., by removing datatypes that
are not in the OWL 2 datatype map, by enforcing a regular role hierarchy, and by adding
declarations for undeclared entities). We used the OWL API for parsing and we converted
all ontologies to self-contained OWL/XML files, where we created, for each of the 1,380
ontologies with imports, a version with resolved imports and another version, where the
import directives are simply removed (which allows for testing the reasoning performance
on the main ontology content without imports, which are frequently shared by many ontolo-
gies). Table 5 shows an overview of our obtained test corpus with overall 22,830 ontologies
including statistics of ontology metrics for the source repositories.

In addition to our test corpus, we present results for explicitly selected ontologies (shown
in Table 6) which are frequently used in many evaluations. This allows for directly showing
the effects of our approach for well-known benchmark ontologies and enables a more concrete
comparison. Note that Table 6 is separated into EL (upper part) and non-EL ontolgies
(lower part). As EL ontologies, we chose the well-known Gazetteer and EL-GALEN, where
the latter one is obtained by removing functionality and inverses from the Full-GALEN
ontology, which we also selected for benchmarking. In addition, we evaluated Biomodels
and Cell Cycle v2.01, which are large but mainly deterministic ontologies from the NCBO
BioPortal, NCI v06.12d and NCI v12.11d, which are different versions of the NCI-Thesaurus
ontology from the NCIt archive, SCT-SEP, which denotes the SNOMED CT anatomical
model ontology (Kazakov, 2010), FMA v2.0-CNS, which is a version of the Foundational
Model of Anatomy (Golbreich, Zhang, & Bodenreider, 2006), and OBI, which represents a
recent version of the Ontology for Biomedical Investigations (Brinkman et al., 2010).

The evaluation was carried out on a Dell PowerEdge R420 server running with two Intel
Xeon E5-2440 hexa core processors at 2.4 GHz with Hyper-Threading and 144 GB RAM
under a 64bit Ubuntu 12.04.2 LTS. Our evaluation focuses on classification, which is a cen-
tral reasoning task supported by many reasoners and, thus, it is ideal for comparing results.
In principle, we only measured the classification time, i.e., the time spent for parsing and
loading ontologies as well as writing classification output to files is not included for the pre-

577

Steigmiller & Glimm

sented results. This is an advantage for reasoners that already perform some preprocessing
while loading, which is, however, not the case for Konclude since Konclude uses a lazy pro-
cessing approach where also the preprocessing is triggered with the classification request.
This also seems to be confirmed by the accumulated loading times over all ontologies in
the evaluated repositories, which are 6, 304 s for Konclude, 10, 877 s for MORe, 13, 210 s
for FaCT++, 22, 458 s for Pellet, and 61, 293 s for HermiT. Note that HermiT directly
clausifies the ontologies while loading (i.e., it converts the axioms into HermiT’s internal
representation based on DL-clauses), which can easily take a lot of time if ontologies inten-
sively use cardinality restrictions. We also ignored all errors that were reported by (other)
reasoners, i.e., if a reasoner stopped the processing of an ontology (e.g., due to unsupported
axioms or program crashes), then we only measured the actual processing time. This is also
a disadvantage for Konclude since Konclude processed all ontologies (however, Konclude
also ignored parts of role inclusion axioms if they were not regular as specified by OWL 2
DL). In contrast, MORe reported errors for 803, FaCT++ for 944, Pellet for 1, 285, and
HermiT for 1, 483 ontologies in our corpus. The reasoners often cancelled the processing
due to unsupported or malformed datatypes. Another frequently reported error consisted
of different individual axioms for which only one individual was specified. In addition, Her-
miT completely refused processing ontologies with irregular role inclusion axioms (which
are, however, only rarely present in our test corpus).

For the evaluation of the ontology repositories, we used the time limit of 5 minutes.
For the selected benchmark ontologies, we cancelled the classification task after 15 minutes
since these ontologies are relatively large. Moreover, we averaged the results for the selected
benchmark ontologies over 3 separate runs, which was not necessary for the evaluated repos-
itories since the large amount of ontologies automatically compensates the non-deterministic
behaviours of the reasoners, i.e., the accumulated (classification) times for separate runs over
many ontologies are almost identical. Although some reasoners support parallelisation, we
configured all reasoners to use only one worker thread, which allows for a comparison inde-
pendently of the number of CPU cores and facilitates the presentation of the improvements
through saturation.

7.1 Evaluation of Saturation Optimisations

The presented optimisations are integrated in Konclude in such a way that they can sepa-
rately be activated and deactivated. Hence, we can evaluate and compare the performance
improvements for the different optimisations. Please note that deactivating optimisations
in Konclude can cause disproportionate performance losses since appropriate replacement
optimisations, which could compensate the deactivated techniques to some extent, are of-
ten not integrated in Konclude. For example, many reasoning systems use the completely
defined concepts optimisation (Tsarkov & Horrocks, 2005) to identify those classes of an
ontology for which all subsumption relations can directly be extracted from the ontology
axioms and, thus, satisfiability and subsumption tests are not necessary to correctly insert
these classes into the class hierarchy. Clearly, such an optimisation is not necessary for Kon-
clude, because we can extract all subsumers of a class from the saturation if the saturated
representative node is not critical. Hence, the performance with deactivated optimisations

578

Pay-As-You-Go Description Logic Reasoning

might be worse than it has to be. Nevertheless, we evaluated the versions of Konclude,
where

• all saturation optimisations are activated (denoted by ALL), and

• none of the saturation optimisations are activated (denoted by NONE),

in combination with the activation/deactivation (denoted by +/−) of the following modifi-
cations:

• RT (standing for result transfer), where the transfer of (possibly intermediate) re-
sults from the saturation into completion graphs (as presented in Section 4.1) is ac-
tivated/deactivated. More precisely, we initialise new nodes in a completion graph
with the consequences available in the saturation graph and we block the processing
of (successor) nodes as long as they are identically labelled as the non-critical nodes in
the (deterministic or non-deterministic) saturation graph. As described in Section 5.2,
nominal dependent nodes are handled by reactivating the processing if the nodes for
the dependent nominals become modified in the completion graph. For this, we im-
plemented an exact tracking of nominal dependent nodes in the completion graph as
well as in the saturation graph.

• SE (standing for subsumer extraction), where the extraction of subsumers from the
saturation (as presented in Section 4.2) is activated/deactivated. If the representa-
tive nodes for atomic concepts are not critical, then Konclude use them to extract all
subsumers (besides completely defined concepts) and, otherwise, the derived atomic
concepts are only used as told subsumers. Note that, if completely defined concepts
are not in a node label, then the candidate concepts are interpreted as if the corre-
sponding completely defined concepts are non-deterministically derived, i.e., as pos-
sible subsumers. If the SE optimisation is deactivated, then Konclude extracts some
simple told subsumers from the axioms of the knowledge base in order to initialise the
classification algorithm, which is also in Konclude based on the known and possible
sets classification (Glimm et al., 2012).

• MM (standing for model merging), where the model merging with the saturation
graph (as presented in Section 4.3) is activated/deactivated. The candidate concepts
are obtained in Konclude with the partial absorption technique (Steigmiller et al.,
2014b) and the model merging is only applied for the first initialisation of the known
and possible subsumers of an atomic concept. In particular, we avoid a repeated
model merging for the same possible subsumption relation on different nodes (in
possibly different completion graphs) since this could result in a significant overhead
while possibly only few new non-subsumptions are identified.

• ES (standing for extended saturation), where the handling of universal restrictions
and of functional at-most restrictions for successors in the saturation (as presented in
Section 5.1) is activated/deactivated. Note that the integrated saturation procedure
becomes complete for Horn-SHIF knowledge bases if this optimisation is activated,
whereas completeness is only guaranteed for ELH knowledge bases if it is deactivated.

579

Steigmiller & Glimm

• PS (standing for patched saturation), where the patching of the saturation graph with
data from completion graphs (as presented in Section 5.2) is activated/deactivated.
To ensure patch compatibility for nominal dependent nodes, we use the completion
graph caching technique integrated in Konclude (Steigmiller et al., 2015) such that
only those nominal nodes are identified for which possibly different consequences are
derived as in the initial completion graph. Since Konclude supports an exact tracking
of nominal dependency in the completion graph, we save the dependent nominals in
patches and propagate them in the saturation graphs such that the processing of a
node only has to be reactivated if a node for a dependent nominal becomes modified.
Konclude further incorporates an exact tracking of which facts are the causes of which
derived facts (Steigmiller, Liebig, & Glimm, 2012) and this is used to also extract
patches from non-root nodes (as also sketched in Section 5.2). Moreover, if it can be
discovered that a satisfiability test for a concept does not result in a fully expanded and
clash-free completion graph, i.e., the concept is unsatisfiable, then Konclude patches
the saturation graphs with the ⊥-concept such that other unsatisfiable concepts are
also revealed.

For example, NONE+MM denotes the version of Konclude, where all saturation optimisa-
tions except the model merging with the saturation graph are deactivated.

Based on the version NONE, Table 7 shows the performance improvements for the ac-
tivation of the saturation optimisations RT, SE, and MM. In addition, the results for ALL
are shown, where all optimisations are activated simultaneously. Please note that ES and
PS are optimisations to further improve the saturation procedure and, therefore, their eval-
uation only makes sense in combination with other saturation optimisations. The most
significant improvements are achieved by the transfer of saturation results into completion
graphs (RT), which often reduces the effort for the tableau algorithm significantly. The
model merging optimisation (MM) primarily improves the classification performance for
the NCI-Thesaurus ontologies in the NCIt archive, but does not have a similar significant
impact for the other repositories. Since many NCI-Thesaurus ontologies contain complete
definitions of the form A ≡ ∃r.B1 u ∀s.B2, the model merging with the candidate concepts
(as demonstrated in Section 4.3) allows for pruning many subsumptions while performing
satisfiability tests for the atomic concepts. There are also improvements through the extrac-
tion of subsumers from the saturation (SE), but, compared to the improvements of the other
optimisations, they are only significantly better for the NCBO BioPortal. In particular, the
NCBO BioPortal contains many large but relatively simple ontologies that can almost be
completely handled by the saturation and, therefore, it is not necessary to perform satisfia-
bility tests for every class with the tableau algorithm if the SE optimisation is activated in
order to determine the (possible) subsumers. Nevertheless, if all saturation optimisations
are activated, then we are often able to achieve much larger performance improvements for
almost all repositories. On the one hand, this is caused by the additionally activated ES and
PS optimisations, but on the other hand, the reasoning system can utilise several synergy
effects from the saturation (obviously, the concepts have to be saturated only once for all
optimisations).

Table 8 analogously shows the performance improvements by activating the saturation
optimisations RT, SE, and MM for the selected benchmark ontologies. The saturation op-
timisations can significantly improve the classification performance for several ontologies.

580

Pay-As-You-Go Description Logic Reasoning

Repository NONE NONE+RT NONE+SE NONE+MM ALL

Gardiner 526 508 414 490 108
NCBO BioPortal 2, 259 2, 039 580 2, 326 260
NCIt 28, 603 28, 434 27, 940 3, 163 1, 942
OBO Foundry 3, 020 812 877 2, 829 748
Oxford 7, 976 4, 639 5, 866 8, 013 2, 484
TONES 1, 734 1, 481 1, 568 756 250
Google crawl 798 463 670 794 112
OntoCrawler 27 29 30 31 27
OntoJCrawl 3, 405 1, 166 2, 232 2, 504 715
Swoogle crawl 3, 477 2, 670 2, 820 2, 283 1, 187
ORE2014 dataset 115, 494 80, 673 98, 630 115, 232 29, 841
ALL 167, 320 122, 914 141, 628 138, 421 37, 674

Table 7: Accumulated classification times (in seconds) with separately activated saturation
optimisations for the evaluated ontology repositories

Ontology NONE NONE+RT NONE+SE NONE+MM ALL

Gazetteer 34.8 30.1 14.0 37.9 13.3
EL-GALEN 761.0 5.5 1.6 762.6 1.4
Full-GALEN ≥ 900.0 ≥ 900.0 ≥ 900.0 ≥ 900.0 12.0
Biomodels 241.5 50.6 18.2 148.7 16.2
Cell Cycle v2.01 ≥ 900.0 ≥ 900.0 7.6 ≥ 900.0 7.2
NCI v06.12d ≥ 900.0 ≥ 900.0 ≥ 900.0 17.9 13.9
NCI v12.11d 17.7 14.6 8.8 16.0 8.2
SCT-SEP ≥ 900.0 339.8 279.4 383.1 173.1
FMA v2.0-CNS ≥ 900.0 ≥ 900.0 ≥ 900.0 ≥ 900.0 72.7
OBI 1.3 0.8 0.7 2.1 0.6

Table 8: Classification times (in seconds) with separately activated saturation optimisations
for the evaluated benchmark ontologies

In particular, with the optimisations, Konclude can handle all ontologies in a reasonable
amount of time, whereas Konclude timed out for five of these ontologies if the saturation op-
timisations were not used. Very difficult ontologies such as Full-GALEN and FMA v2.0-CNS
can only be handled if more sophisticated saturation optimisations are used (e.g., SE, PS).
It can also be observed that, for many ontologies, only specific optimisations are crucial,
which is, however, also not very surprising. For example, it is clear that the MM optimi-
sation cannot improve the performance for deterministic ontologies since they do not have
possible subsumers for which the model merging could be applied.

Table 9 shows the performance changes for the separate deactivation of saturation op-
timisations based on the ALL configuration. The evaluation of optimisations is also very
interesting from this perspective, because the saturation of many concepts can easily require
a significant amount of reasoning time and, by separately deactivating single optimisations,
the overhead of the saturation is not only associated with a separately activated optimisa-

581

Steigmiller & Glimm

Repository ALL ALL−RT ALL−SE ALL−MM ALL−ES ALL−PS

Gardiner 108 134 201 90 396 106
NCBO BioPortal 260 624 1, 980 618 582 709
NCIt 1, 942 2, 041 2, 580 27, 952 2, 000 1, 960
OBO Foundry 748 1, 052 453 473 774 453
Oxford 2, 484 3, 987 3, 701 2, 398 3, 658 2, 537
TONES 250 143 366 1, 377 226 633
Google crawl 112 790 731 706 412 733
OntoCrawler 27 30 62 30 30 35
OntoJCrawl 715 2, 017 1, 445 702 764 879
Swoogle crawl 1, 187 1, 427 1, 209 2, 456 1, 348 1, 201
ORE2014 dataset 29, 841 56, 128 56, 469 37, 760 51, 400 61, 036
ALL 37, 674 68, 374 69, 286 71, 562 61, 590 70, 281

Table 9: Accumulated classification times (in seconds) with separately deactivated satura-
tion optimisations for the evaluated ontology repositories

Ontology ALL ALL−RT ALL−SE ALL−MM ALL−ES ALL−PS

Gazetteer 13.3 13.6 27.9 13.2 13.7 13.5
EL-GALEN 1.4 1.5 4.8 1.4 1.5 1.5
Full-GALEN 12.0 12.7 25.1 11.8 ≥ 900.0 12.7
Biomodels 16.2 17.2 47.1 15.6 16.2 16.6
Cell Cycle v2.01 7.2 7.5 ≥ 900.0 7.1 7.3 6.9
NCI v06.12d 13.9 15.0 15.7 ≥ 900.0 13.8 13.2
NCI v12.11d 8.2 8.7 13.0 7.6 7.4 7.7
SCT-SEP 173.1 280.4 337.1 161.9 167.5 168.7
FMA v2.0-CNS 72.7 60.3 28.2 180.3 66.6 ≥ 900.0
OBI 0.6 0.8 0.8 0.7 0.7 0.7

Table 10: Classification times (in seconds) with separately deactivated saturation optimi-
sations for selected benchmark ontologies

tion. Furthermore, this allows for evaluating whether some optimisations are superfluous
and which effects are caused by the saturation improvements ES and PS, which are only use-
ful in combination with other saturation optimisations. Table 9 reveals that some saturation
optimisations are completely irrelevant for some repositories. Moreover, the deactivation of
optimisations can also improve the performance for several repositories, e.g., the deactiva-
tion of RT results in better reasoning times for the ontologies in the TONES repository and
the deactivation of MM causes some minor performance improvements for the OntoJCrawl
ontologies. However, by considering all repositories, each optimisation is indeed justified.
In particular, if any of the presented saturation optimisations is deactivated, then the rea-
soning times increase by at least 55 %. This is also caused by several difficult ontologies in
the ORE2014 dataset, such as variants of the KB Bio 101 ontology (Chaudhri, Wessel, &
Heymans, 2013), which can only be handled by Konclude if almost all saturation optimi-
sations are used. The patching of the saturation graph (PS) with the data from the initial

582

Pay-As-You-Go Description Logic Reasoning

consistency test is often required for the complete/sufficient handling of nominals within
the saturation procedure, the saturation extensions (ES) enable a primitive handling of
(qualified) cardinality restrictions even for very big cardinalities (due to the reuse of nodes
in the saturation graph), and the result transfer (RT) as well as the subsumer extraction
(SE) reduce or avoid the work for the tableau algorithm, which is particularly useful for
very big and highly cyclic ontologies. Although the MM optimisation is similar important
for the ORE2014 dataset, it is the only optimisation that significantly reduces the effort of
Konclude for the NCI-Thesaurus ontologies from the NCIt archive.

The performance changes for the separate deactivation of saturation optimisations for
the evaluated benchmark ontologies are depicted in Table 10. Again, it can be observed
that often only specific optimisations are important for the ontologies. For example, only
the deactivation of the SE optimisations significantly decreases the performances for the
Biomodels and Cell Cycle v2.01 ontologies. Since Full-GALEN is highly cyclic and has
many consequences that are caused by functional cardinality restrictions as well as inverse
roles, the tableau algorithm has difficulties to find appropriate blocker nodes in the com-
pletion graph and, therefore, it can only be handled if the saturation is extended to these
language features (as realised by the ES optimisation). In contrast, FMA v2.0-CNS has
many unsatisfiable classes and, as soon as the tableau algorithm can find such an unsatisfi-
able class, the saturation graph can be patched (realised with the PS optimisation) and the
⊥-concept can directly be propagated to many other classes, whereby many satisfiability
tests with the tableau algorithm become unnecessary.

7.2 Evaluation of the Saturation Effort

Table 11 shows the distribution of the processing times w.r.t. Konclude’s processing stages
for the classification of the evaluated repositories with the version ALL. Unsurprisingly, the
majority of the processing time (61.5 %) is spent for the classification process itself. In con-
trast, the saturation of all those concepts that are potentially required for the classification
requires only 12.1 % together with the detection of the saturation status. The latter one
can, however, usually be neglected in terms of processing time since our implementation is
very efficient. For example, if a node is detected as critical, then the criticality status is
immediately propagated to all dependent nodes and, as a consequence, they do not have
to be tested. Moreover, we use a criticality testing queue that is filled during saturation if
concepts are added to node labels that potentially influence the criticality status. Hence,
the status detection does not have to iterate through all node labels. Although it is in
principle possible to design ontologies where the saturation can be relatively inefficient (in
particular w.r.t. the memory requirements), such ontologies hardly occur in practice. In
particular, with the data sharing for node labels that is realised in Konclude, the saturation
does not cause significant problems for the evaluated repositories, which is also reflected
by the short processing time for the saturation stage. Consistency checking can usually
also be performed efficiently, but several evaluated repositories (e.g., the Swoogle crawl)
also contain very difficult ontologies for which the tableau algorithm cannot find a fully
expanded and clash-free completion graph within the time limit. Building the internal rep-
resentation as well as preprocessing are also realised very efficiently in Konclude and do not
cause problems for the evaluated repositories.

583

Steigmiller & Glimm

Repository Building Preprocessing Saturation Consistency Classification

Gardiner 10.8 30.6 32.5 1.8 24.3
NCBO BioPortal 27.4 17.1 23.6 3.1 28.8
NCIt 7.5 11.0 11.2 1.9 68.4
OBO Foundry 16.3 5.0 6.7 46.6 25.4
Oxford 5.6 10.6 12.2 20.3 51.3
TONES 2.6 3.3 5.6 0.6 87.9
Google crawl 11.6 7.9 19.4 8.3 52.9
OntoCrawler 38.3 10.7 17.5 21.1 12.5
OntoJCrawl 8.2 4.6 4.4 48.1 34.7
Swoogle crawl 2.2 1.0 1.8 26.7 68.2
ORE2014 dataset 4.8 5.8 12.5 13.4 63.4
ALL 5.4 6.3 12.1 14.6 61.5

Table 11: Distribution of processing time w.r.t. different processing stages (in %)

7.3 Comparison with other Approaches

As mentioned in Section 6, there exist other approaches that also use saturation-based
reasoning techniques to improve fully-fledged tableau algorithms. For example, MORe
uses module extraction to delegate as much work as possible to an efficient reasoner that is
specialised for a specific fragment in order to classify ontologies. Since an early development
version of MORe is available, we evaluated MORe with our test corpus and we compare the
results to our approach in the following. We used MORe in combination with ELK 0.4.1
(Kazakov, Krötzsch, & Simanč́ık, 2014) and HermiT 1.3.8, but other combinations are also
possible since these reasoners are used as black-boxes.

The left-hand side of Table 12 shows the accumulated classification times (in seconds) for
the versions of Konclude where all saturation optimisations are deactivated (version NONE
in Column 2) and all saturation optimisations are activated (version ALL in Column 3)
for the different repositories. Furthermore, the improvement from the version NONE to the
version ALL is given in percent (Column 4 of Table 12). For example, by using all saturation
optimisations presented here, the accumulated reasoning time for all repositories is reduced
by 77.5 % for Konclude. On the right-hand side of Table 12, we have analogously depicted
the accumulated reasoning times for HermiT (Column 5) and MORe (Column 6), and also
the percentage of HermiT’s reasoning time that can be reduced by MORe (Column 7).

Note, the accumulated loading times for all repositories are 61, 293 s for HermiT and
10, 877 s for MORe, where the difference of 50, 416 s can be explained by the additional
preprocessing that is directly performed in HermiT’s loading stage, whereas MORe starts
the processing of the ontologies not before the classification request. Of course, MORe also
uses HermiT internally to process parts of ontologies that cannot be handled by the OWL
2 EL reasoner ELK, but the required time for loading these parts with HermiT is then
counted as reasoning/classification time for MORe. Hence, we made the comparison fair
by adding the additional preprocessing time in the loading stage to HermiT’s classification
time, i.e., the shown classification times for HermiT are extended by the difference between
the loading times of HermiT and MORe.

584

Pay-As-You-Go Description Logic Reasoning

Repository NONE [s] ALL [s] ↓ [%] HermiT [s] MORe [s] ↓ [%]

Gardiner 526 108 79.5 1, 773 1, 537 13.3
NCBO BioPortal 2, 259 260 88.5 5, 901 4, 187 29.0
NCIt 28, 603 1, 942 93.2 26, 435 26, 600 −0.6
OBO Foundry 3, 020 748 75.2 6, 654 4, 474 32.8
Oxford 7, 976 2, 484 68.9 12, 865 8, 083 37.2
TONES 1, 734 250 85.6 2, 342 2, 184 6.7
Google crawl 798 112 86.0 1, 917 1, 629 15.0
OntoCrawler 27 27 0.0 1, 863 893 52.1
OntoJCrawl 3, 405 715 79.0 8, 555 4, 546 46.9
Swoogle crawl 3, 477 1, 187 65.9 4, 857 4, 270 12.1
ORE2014 dataset 115, 494 29, 841 74.2 294, 124 166, 589 43.9
ALL 167, 320 37, 674 77.5 367, 283 224, 982 38.7

Table 12: Comparison of improvements through saturation between the approaches realised
in Konclude and MORe for the accumulated classification times of the evaluated
ontology repositories (in seconds and %)

Ontology NONE [s] ALL [s] ↓ [%] HermiT [s] MORe [s] ↓ [%]

Gazetteer 34.8 13.3 51.2 ≥ 900.0 18.2 ≥ 98.0
EL-GALEN 761.0 1.4 98.0 ≥ 900.0 2.6 ≥ 99.7
Full-GALEN ≥ 900.0 12.0 ≥ 98.7 ≥ 900.0 ≥ 900.0 −
Biomodels 241.5 16.2 93.3 788.8 648.8 17.7
Cell Cycle v2.01 ≥ 900.0 7.2 ≥ 99.2 ≥ 900.0 ≥ 900.0 −
NCI v06.12d ≥ 900.0 13.9 ≥ 98.5 211.9 208.0 1.9
NCI v12.11d 17.7 8.2 53.8 92.7 83.3 10.1
SCT-SEP ≥ 900.0 173.1 ≥ 80.1 ≥ 900.0 ≥ 900.0 −
FMA v2.0-CNS ≥ 900.0 72.7 ≥ 75.9 ≥ 900.0 ≥ 900.0 −
OBI 1.3 0.6 53.8 32.5 2.37 93.0

Table 13: Improvements through saturation between the approaches in Konclude and
MORe for the classification times of selected benchmark ontologies (in seconds
and %)

Table 12 reveals that MORe can significantly improve the reasoning time of HermiT for
almost all repositories. In particular, MORe saves 52.1 % of HermiT’s classification time
for the ontologies from OntoCrawler. Nevertheless, there are still many ontologies in these
repositories, where MORe is not able to reduce the effort of HermiT such that they can be
classified within the time limit (HermiT timed out for 786 and MORe for 590 ontologies,
respectively). In contrast, Konclude integrates a more sophisticated interaction between
the tableau algorithm and the saturation procedure and, therefore, the improvements by
the saturation optimisations are significantly better for many repositories. As a result, the

7. The class hierarchy computed by MORe for OBI does not coincide with the results of HermiT and
Konclude.

585

Steigmiller & Glimm

ALL version of Konclude reached the time limit only for 69 ontologies. Note, already the
version NONE of Konclude, where all saturation optimisations are deactivated, outperforms
HermiT and MORe for many ontologies, which is probably due to the difference in the in-
tegrated optimisations. For example, Konclude uses several caching techniques to save and
reuse intermediate results, which usually improves the reasoning performance a lot. More-
over, the partial absorption (Steigmiller et al., 2014b) integrated in Konclude significantly
reduces non-determinism also for very expressive ontologies. Also note that MORe does
not yet completely support all language features of SROIQ and, therefore, it does not al-
ways output the correct class hierarchy (for the evaluated ontology repositories, 1, 441 class
hierarchies computed by MORe do not coincide with the results of HermiT and Konclude).

Table 13 analogously shows the performance improvements for the selected benchmark
ontologies. Again, it can be observed that the improvements through the saturation are
often better for Konclude than for MORe, especially if ontologies are considered for which
the version NONE of Konclude still requires a lot of reasoning time.

7.4 Comparison with State-of-the-Art Reasoners

We also evaluated the classification times for the state-of-the-art reasoners FaCT++ and
Pellet, which are compared with the other reasoners HermiT, Konclude, and MORe in
Table 14. Note, Table 14 only shows the accumulated classification times that are actually
reported by the reasoners, i.e., we did not compensate differences in the loading times.

It can be observed that Konclude outperforms all other reasoners for all evaluated
repositories, which is mainly due to the integrated saturation optimisations. FaCT++ is the
only reasoner that can efficiently handle the majority of all NCI-Thesaurus ontologies in the
NCIt archive also without saturation optimisations. Nevertheless, the model merging with
the saturation graph allows for pruning many possible subsumers in Konclude, whereby
the classification performance can further be improved and, therefore, Konclude is able
to outperform FaCT++ also for the NCIt archive. Considering all repositories, Konclude
produced the fewest timeouts (69), followed by MORe (590), HermiT (786), FaCT++ (822),
and Pellet (1, 470).

Nevertheless, there are a few ontologies for which Konclude’s performance is not optimal
and for which other reasoners are sometimes able to outperform Konclude. For example,
Konclude requires 54.6 s for the classification of the atom-complex-proton-2.0 ontology from
the TONES repository, whereas Pellet only requires 11.4 s (FaCT++ and HermiT timed
out). In particular, the handling of (large) cardinalities can easily cause problems since,
in the worst-case, the tableau algorithm is used to create and merge the corresponding
numbers of successor nodes. Although our saturation has a limited handling of at-least car-
dinality restrictions by using only one representative node as successor, this easily becomes
incomplete if also at-most cardinality restrictions are used in ontologies. As a remedy, one
could try to extend the saturation procedure to better handle cardinality restrictions or
to combine the tableau algorithm with algebraic methods, where cardinality restrictions
are handled as a system of linear (in)equations (Haarslev, Sebastiani, & Vescovi, 2011).
Moreover, too much non-determinism, e.g., caused by non-absorbable GCIs, can still cause
serious issues for tableau-based systems. Examples of such ontologies are variants of enzyo
from the Swoogle crawl, which cannot be classified by any of the evaluated reasoners except

586

Pay-As-You-Go Description Logic Reasoning

Repository FaCT++ HermiT Konclude MORe Pellet

Gardiner 1, 108 1, 688 108 1, 537 4, 006
NCBO BioPortal 5, 413 5, 570 260 4, 187 9, 877
NCIt 4, 393 25, 203 1, 942 26, 600 17, 647
OBO Foundry 7, 225 6, 258 748 4, 474 12, 031
Oxford 20, 761 12, 255 2, 484 8, 083 27, 461
TONES 1, 684 1, 943 250 2, 184 1, 755
Google crawl 2, 178 1, 761 112 1, 629 7, 496
OntoCrawler 964 1, 723 27 893 9, 999
OntoJCrawl 11, 580 6, 757 715 4, 546 31, 776
Swoogle crawl 2, 864 4, 073 1, 187 4, 270 9, 212
ORE2014 dataset 241, 402 249, 637 29, 841 166, 589 397, 794
ALL 299, 573 316, 867 37, 674 224, 982 528, 891

Table 14: Comparison of accumulated classification times between state-of-the-art reasoners
(in seconds) for the evaluated ontology repositories

Ontology FaCT++ HermiT Konclude MORe Pellet

Gazetteer ≥ 900.0 ≥ 900.0 13.3 18.2 480.2
EL-GALEN ≥ 900.0 ≥ 900.0 1.4 2.6 135.1
Full-GALEN ≥ 900.0 ≥ 900.0 12.0 ≥ 900.0 ≥ 900.0
Biomodels 2.78 788.8 16.2 648.8 ≥ 900.0
Cell Cycle v2.01 ≥ 900.0 ≥ 900.0 7.2 ≥ 900.0 ≥ 900.0
NCI v06.12d 13.9 206.1 13.9 208.0 69.6
NCI v12.11d 57.8 78.8 8.2 83.3 306.9
SCT-SEP ≥ 900.0 ≥ 900.0 173.1 ≥ 900.0 ≥ 900.0
FMA v2.0-CNS ≥ 900.0 ≥ 900.0 28.3 ≥ 900.0 ≥ 900.0
OBI ≥ 900.0 31.5 0.6 2.39 ≥ 900.0

Table 15: Comparison of classification times between state-of-the-art reasoners (in seconds)
for selected benchmark ontologies

for FaCT++ (but also FaCT++ needs a significant amount of time and even reaches the
time limit of 5 minutes for some variants) although they have less than 20, 000 axioms and
only an expressiveness that is ranging from ALIN to ALCOIN . Also very large SROIQ
ontologies from the Oxford ontology library, such as Mus musculus consisting of 221, 484
axioms, seem currently to be out of reach for existing reasoning systems. Due to their
size and complexity, it is even difficult to analyse in which kinds of problems the reasoners
are running, but an intensive use of nominals often limits the applicability of optimisation
techniques and, hence, often results in poor performance.

Analogously, Table 15 shows the comparison of the classification times between all eval-
uated reasoners for the selected benchmark ontologies in seconds. Again, with the activated

8. FaCT++ 1.6.3 crashed for the classification of Biomodels after 2.7 seconds.
9. The class hierarchy that is computed by MORe for OBI does not coincide with the results of the other

reasoners.

587

Steigmiller & Glimm

saturation optimisations, Konclude can outperform the other reasoners for almost all ontolo-
gies and is able to classify all these benchmark ontologies within the time limit. Compared
to the other reasoners, MORe can also achieve good results for several of these ontologies.
In particular, MORe only timed out for 4 ontologies, whereas HermiT and Pellet could
not classify 6 ontologies in time, and FaCT++ failed for the classification of 7 ontologies.
Hence, a support through saturation seems to pay off.

8. Conclusions

In this paper, we have presented a technique for tightly coupling saturation- and tableau-
based procedures. Unlike standard completion- and consequence-based saturation proce-
dures, the approach is applicable for arbitrary OWL 2 DL ontologies. Furthermore, it has
a very good pay-as-you-go behaviour, i.e., if only few axioms use features that are problem-
atic for saturation-based procedures (e.g., disjunction), then the tableau procedure can still
benefit significantly from the saturation.

The very good pay-as-you-go behaviour seems to be confirmed by our evaluation over
several thousand ontologies, where the integration of the presented saturation optimisations
into the reasoning system Konclude significantly improves the classification performance.
In particular, with these optimisations, Konclude is able to outperform many other state-of-
the-art reasoners for a wide range of ontologies often by more than one order of magnitude.

Acknowledgments

The first author acknowledges the support of the doctoral scholarship under the Postgradu-
ate Scholarships Act of the Land of Baden-Wuerttemberg (LGFG). This work was done
within the Transregional Collaborative Research Centre SFB/TRR 62 “A Companion-
Technology for Cognitive Technical Systems” funded by the German Research Founda-
tion (DFG).

References

Armas Romero, A., Cuenca Grau, B., & Horrocks, I. (2012). MORe: Modular combination
of OWL reasoners for ontology classification. In Proc. 11th Int. Semantic Web Conf.
(ISWC’12), Vol. 7649 of LNCS, pp. 1–16. Springer.

Baader, F., Brandt, S., & Lutz, C. (2005). Pushing the EL envelope. In Proc. 19th Int. Joint
Conf. on Artificial Intelligence (IJCAI’05), pp. 364–369. Professional Book Center.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P. (Eds.). (2007).
The Description Logic Handbook: Theory, Implementation, and Applications (Second
edition). Cambridge University Press.

Baader, F., Hollunder, B., Nebel, B., Profitlich, H.-J., & Franconi, E. (1994). An empirical
analysis of optimization techniques for terminological representation systems. J. of
Applied Intelligence, 4 (2), 109–132.

588

Pay-As-You-Go Description Logic Reasoning

Bate, A., Motik, B., Cuenca Grau, B., Simanč́ık, F., & Horrocks, I. (2015). Extending
consequence-based reasoning to SHIQ. In Proc. 28th Int. Workshop on Description
Logics (DL’15).

Brinkman, R. R., Courtot, M., Derom, D., Fostel, J., He, Y., Lord, P. W., Malone, J.,
Parkinson, H. E., Peters, B., Rocca-Serra, P., Ruttenberg, A., Sansone, S., Soldatova,
L. N., Jr., C. J. S., Turner, J. A., Zheng, J., & OBI consortium (2010). Modeling
biomedical experimental processes with OBI. J. Biomedical Semantics, 1 (S-1), S7.

Chaudhri, V. K., Wessel, M. A., & Heymans, S. (2013). KB Bio 101: A challenge for OWL
reasoners. In Proc. 2nd Int. Workshop on OWL Reasoner Evaluation (ORE’13).
CEUR.

Gardiner, T., Horrocks, I., & Tsarkov, D. (2006). Automated benchmarking of description
logic reasoners. In Proc. 19th Int. Workshop on Description Logics (DL’06), Vol. 198.
CEUR.

Glimm, B., Horrocks, I., Motik, B., Shearer, R., & Stoilos, G. (2012). A novel approach to
ontology classification. J. of Web Semantics, 14, 84–101.

Glimm, B., Horrocks, I., Motik, B., Stoilos, G., & Wang, Z. (2014). HermiT: An OWL 2
reasoner. J. of Automated Reasoning, 53 (3), 1–25.

Golbreich, C., Zhang, S., & Bodenreider, O. (2006). The foundational model of anatomy in
OWL: Experience and perspectives. J. of Web Semantics, 4 (3), 181–195.

Haarslev, V., Möller, R., & Turhan, A.-Y. (2001). Exploiting pseudo models for TBox
and ABox reasoning in expressive description logics. In Proc. 1st Int. Joint Conf. on
Automated Reasoning (IJCAR’01), Vol. 2083 of LNCS, pp. 61–75. Springer.

Haarslev, V., Sebastiani, R., & Vescovi, M. (2011). Automated reasoning in ALCQ via
SMT. In Proc. 23rd Int. Conf. on Automated Deduction (CADE’11), pp. 283–298.
Springer.

Horrocks, I., Kutz, O., & Sattler, U. (2006). The even more irresistible SROIQ. In Proc.
10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’06),
pp. 57–67. AAAI Press.

Horrocks, I., & Sattler, U. (1999). A description logic with transitive and inverse roles and
role hierarchies. J. of Logic and Computation, 9 (3), 385–410.

Horrocks, I., & Sattler, U. (2001). Optimised reasoning for SHIQ. In Proc. 15th European
Conf. on Artificial Intelligence (ECAI’02), pp. 277–281. IOS Press.

Horrocks, I., & Sattler, U. (2004). Decidability of SHIQ with complex role inclusion axioms.
Artificial Intelligence, 160 (1), 79–104.

Horrocks, I., & Sattler, U. (2007). A tableau decision procedure for SHOIQ. J. of Auto-
mated Resoning, 39 (3), 249–276.

Horrocks, I., Sattler, U., & Tobies, S. (1999). Practical reasoning for expressive descrip-
tion logics. In Proc. 6th Int. Conf. on Logic Programming and Automated Reasoning
(LPAR’99), Vol. 1705 of LNCS, pp. 161–180. Springer.

589

Steigmiller & Glimm

Horrocks, I., Sattler, U., & Tobies, S. (2000). Reasoning with individuals for the description
logic SHIQ. In Proc. 17th Int. Conf. on Automated Deduction (CADE’00), Vol. 1831
of LNCS, pp. 482–496. Springer.

Horrocks, I., & Tobies, S. (2000). Reasoning with axioms: Theory and practice.. In Proc.
7th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’00),
pp. 285–296. Morgan Kaufmann.

Hudek, A. K., & Weddell, G. E. (2006). Binary absorption in tableaux-based reasoning for
description logics. In Proc. 19th Int. Workshop on Description Logics (DL’06), Vol.
189. CEUR.

Information Management Group (2008). TONES ontology repository. University of Manch-
ester. Available at http://owl.cs.manchester.ac.uk/repository/. Accessed: July
2012; Mirrored at http://ontohub.org/repositories/tones.

Information Systems Group (2012). Oxford ontology library. University of Oxford. Available
at http://www.cs.ox.ac.uk/isg/ontologies/. Accessed: August 2012;.

Kazakov, Y. (2008). RIQ and SROIQ are harder than SHOIQ. In Proc. 11th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR’08), pp. 274–
284. AAAI Press.

Kazakov, Y. (2009). Consequence-driven reasoning for Horn-SHIQ ontologies. In Proc.
21st Int. Conf. on Artificial Intelligence (IJCAI’09), pp. 2040–2045. IJCAI.

Kazakov, Y. (2010). ConDOR project site. https://code.google.com/p/

condor-reasoner/. Accessed: July 2013;.

Kazakov, Y., Krötzsch, M., & Simanč́ık, F. (2012). Practical reasoning with nominals in the
EL family of description logics. In Proc. 13th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’12). AAAI Press.

Kazakov, Y., Krötzsch, M., & Simanč́ık, F. (2014). The incredible ELK - from polynomial
procedures to efficient reasoning with EL ontologies. J. of Automated Reasoning, 53,
1–61.

Matentzoglu, N., Bail, S., & Parsia, B. (2013). A corpus of OWL DL ontologies. In Proc.
26th Int. Workshop on Description Logics (DL’13), Vol. 1014. CEUR.

Matentzoglu, N., & Parsia, B. (2014). ORE 2014 reasoner competition dataset. Zenodo.
Available at http://dx.doi.org/10.5281/zenodo.10791.

National Cancer Institute (2003). Nci thesaurus archive. Available at http://ncit.nci.

nih.gov/. Accessed: December 2012;.

Ortiz, M., Rudolph, S., & Simkus, M. (2010). Worst-case optimal reasoning for the Horn-
DL fragments of OWL 1 and 2. In Proc. 12th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’10), pp. 269–279. AAAI Press.

Simanč́ık, F. (2012). Elimination of complex RIAs without automata. In Proc. 25th Int.
Workshop on Description Logics (DL’12), Vol. 846. CEUR.

Simanč́ık, F., Kazakov, Y., & Horrocks, I. (2011). Consequence-based reasoning beyond
horn ontologies. In Proc. 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI’11),
pp. 1093–1098. IJCAI/AAAI.

590

http://owl.cs.manchester.ac.uk/repository/
http://ontohub.org/repositories/tones
http://www.cs.ox.ac.uk/isg/ontologies/
https://code.google.com/p/condor-reasoner/
https://code.google.com/p/condor-reasoner/
http://dx.doi.org/10.5281/zenodo.10791
http://ncit.nci.nih.gov/
http://ncit.nci.nih.gov/

Pay-As-You-Go Description Logic Reasoning

Simanč́ık, F., Motik, B., & Horrocks, I. (2014). Consequence-based and fixed-parameter
tractable reasoning in description logics. J. of Artificial Intelligence, 209, 29–77.

Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical
OWL-DL reasoner. J. of Web Semantics, 5 (2), 51–53.

Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L. J.,
Eilbeck, K., Ireland, A., Mungall, C. J., Consortium, T. O., Leontis, N., Rocca-Serra,
P., Ruttenberg, A., Sansone, S.-A., Scheuermann, R. H., Shah, N., Whetzeland, P. L.,
& Lewis, S. (2007). The OBO Foundry: coordinated evolution of ontologies to support
biomedical data integration. J. of Nature Biotechnology, 25, 1251–1255.

Song, W., Spencer, B., & Du, W. (2012). WSReasoner: A prototype hybrid reasoner for
ALCHOI ontology classification using a weakening and strengthening approach. In
Proc. 1st Int. Workshop on OWL Reasoner Evaluation (ORE’12), Vol. 858. CEUR.

Steigmiller, A., Glimm, B., & Liebig, T. (2013). Nominal schema absorption. In Proc. 23rd
Int. Joint Conf. on Artificial Intelligence (IJCAI’13), pp. 1104–1110. AAAI Press.

Steigmiller, A., Glimm, B., & Liebig, T. (2014a). Coupling tableau algorithms for expressive
description logics with completion-based saturation procedures. In Proc. 7th Int.
Joint Conf. on Automated Reasoning (IJCAR’14), Vol. 8562 of LNCS, pp. 449–463.
Springer.

Steigmiller, A., Glimm, B., & Liebig, T. (2014b). Optimised absorption for expressive
description logics. In Proc. 27th Int. Workshop on Description Logics (DL’14), Vol.
1193. CEUR.

Steigmiller, A., Glimm, B., & Liebig, T. (2015). Completion graph caching for expressive
description logics. In Proc. 28th Int. Workshop on Description Logics (DL’15).

Steigmiller, A., Liebig, T., & Glimm, B. (2012). Extended caching, backjumping and merg-
ing for expressive description logics. In Proc. 6th Int. Joint Conf. on Automated
Reasoning (IJCAR’12), Vol. 7364 of LNCS, pp. 514–529. Springer.

Steigmiller, A., Liebig, T., & Glimm, B. (2014). Konclude: system description. J. of Web
Semantics, 27 (1).

Tsarkov, D., & Horrocks, I. (2004). Efficient reasoning with range and domain constraints.
In Proc. 17th Int. Workshop on Description Logics (DL’04), Vol. 104. CEUR.

Tsarkov, D., & Horrocks, I. (2005). Optimised classification for taxonomic knowledge bases.
In Proc. 18th Int. Workshop on Description Logics (DL’05), Vol. 147. CEUR.

Tsarkov, D., & Horrocks, I. (2006). FaCT++ description logic reasoner: System description.
In Proc. 3rd Int. Joint Conf. on Automated Reasoning (IJCAR’06), Vol. 4130 of
LNCS, pp. 292–297. Springer.

Tsarkov, D., Horrocks, I., & Patel-Schneider, P. F. (2007). Optimizing terminological rea-
soning for expressive description logics. J. of Automated Reasoning, 39, 277–316.

W3C OWL Working Group (27 October 2009). OWL 2 Web Ontology Language: Doc-
ument Overview. W3C Recommendation. Available at http://www.w3.org/TR/

owl2-overview/.

591

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/

Steigmiller & Glimm

Whetzel, P. L., Noy, N. F., Shah, N. H., Alexander, P. R., Nyulas, C., Tudorache, T., &
Musen, M. A. (2011). BioPortal: enhanced functionality via new web services from
the national center for biomedical ontology to access and use ontologies in software
applications. Nucleic Acids Research, 39 (Web-Server-Issue), 541–545.

Zhou, Y., Cuenca Grau, B., Nenov, Y., Kaminski, M., & Horrocks, I. (2015). PAGOdA:
Pay-as-you-go ontology query answering using a datalog reasoner. J. of Artificial
Intelligence Research, 54, 309–367.

Zhou, Y., Nenov, Y., Cuenca Grau, B., & Horrocks, I. (2014). Pay-as-you-go OWL query
answering using a triple store. In Proc. 28th AAAI Conf. on Artificial Intelligence
(AAAI’14), pp. 1142–1148.

592

	Introduction
	Preliminaries
	The Description Logic SROIQ
	Normalisation and Preprocessing
	Tableau Algorithm for SROIQ

	Saturation Compatible with Tableau Algorithms
	Saturation Based on Tableau Rules
	Saturation Status Detection
	Correctness

	Supporting Tableau Algorithms
	Transfer of Saturation Results to Completion Graphs
	Subsumer Extraction
	Model Merging

	Saturation Improvements
	Supporting More Expressive Language Features
	Improving Saturation with Results from Completion Graphs

	Related Work
	Implementation and Evaluation
	Evaluation of Saturation Optimisations
	Evaluation of the Saturation Effort
	Comparison with other Approaches
	Comparison with State-of-the-Art Reasoners

	Conclusions
	References

