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Abstract. Partially observable Markov decision processes (POMDP)
are well-suited for realizing sequential decision making capabilities that
respect uncertainty in Companion systems that are to naturally interact
with and assist human users. Unfortunately, their complexity prohibits
modeling the entire Companion system as a POMDP. We therefore pro-
pose an approach that makes use of abstraction to enable employing
POMDPs in Companion systems and discuss challenges for applying it.

1 Introduction

Companion systems are cognitive technical systems that live and act in a real-
world environment. As they must adapt themselves to their human users, they
have to be aware of human-specific states such as emotions and dispositions
to support their decisions. They are fitted with a set of sensors that provide
them with a multi-modal set of observation channels like speech, video, or even
biophysiological signals. Despite their rich sensory fitting, the variables of interest
are usually concealed from the Companion system, and they can be accessed
only indirectly through noisy channels [5,6]. Based on this imperfect perception,
decisions have to be taken in a way that maximizes the utility of the system as
a whole.

Partially observable Markov decision processes (POMDP) constitute a class
of models of sequential decision making under uncertainty that is capable of cap-
turing the described observation processes. POMDPs are an extension of Markov
Decision Processes (MDP) that hides the state of the environment from the act-
ing agent, and formalizes an observation model that captures how information
can be perceived through incomplete and noisy channels. Extending MDPs by
partial observability has the following two consequences: First, the policy fol-
lowed cannot be a simple mapping of observations to suitable actions, as it is
the case for the purely reactive MDP agents. Receiving only partial informa-
tion about the current state makes past observations informative for estimating
the true current state of the environment. The second consequence is that a
POMDP agent is aware of the value of information, and it has an incentive to
execute actions that improve its knowledge/estimate, even if these actions have
no influence on the future evolution of the environment. This makes POMDPs
particularly suited for applications that involve dialogue [21], as asking is an act
with the sole purpose of acquiring information.
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Fig. 1. Illustration of a filter-based controller architecture.

While it is adequate to model a complete Companion system as a POMDP,
it appears impractical. Despite recent progress in the field [15,14], it is still out
of scope for contemporary POMDP solvers to both operate over long time-scales
and process high-dimensional video observations, due to the curse of history [12]:
the number of possible sequences of action-observation pairs grows exponentially
in the number of steps considered.

For this reason, it is plausible to preprocess sensory data, such as video, with
the goal of producing a more abstract state description. This can be achieved
using techniques of machine learning to map low-level, high-dimensional input
to high-level, low-dimensional representations via supervised- or unsupervised
learning [2,9]. For time-series data it useful to not only map the current observa-
tions, but to also take into account previous input. Such prediction of a current
hidden variable using all past observations is called filtering. Some techniques
to perform this task are Hidden Markov Models, Kalman-filters, or particle fil-
ters [9, Section 6.2]. If a Bayesian approach to filtering is taken, then the result
is a probability distribution over the current state of the abstract state variables
(belief state), e.g., a distribution over user dispositions. Although this abstraction
appears to be omnipresent in practical fields, such as robotics [13], it is unclear
what it truly means to attach a POMDP planner to the output of a Bayesian
filtering stage. In the sequel we will discuss the challenges of this approach and
sketch some solution options.

2 Problem Statement

Interaction of the technical system with the environment at a physical level is
captured by a POMDP PE = (SE , AE , TE , OE , ZE , rE)—which exists, but is
unknown. Here, SE is the set of physical world states, AE is the set of actions
available to the technical system, and T (s, a, s′) = P (s′|s, a) denotes the world
transition dynamics when the system executes action a ∈ AE in world state
s ∈ SE . The resulting world state s′ is not visible to the system, it can only see
an observation o ∈ OE with probability Z(s′, a, o) = P (o|a, s′) determined by its
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sensors. The system’s goals are given in terms of rewards rE(s) for being in s. PE

can be accessed by simulation (by running the system in real), or its parameters
can be elicited through experimentation (not observation); both is expensive.
The observations of the system are processed by a cascade of filters that extract
estimates of abstract state features denoted as SA. The result of this process at
time t is a current belief P t(St

A | Z0:t). Characterization of the filtering process
is possible either through simulation, or by quality estimates of the used machine
learning algorithms (confusion tables, error rates). The described architecture is
depicted in Figure 1.

Our goal is to construct a controller that takes the output of the filter as its
input. For this sake, we assume that a useful abstraction TA of the transition
process TE of PE can be elicited from a human expert. We also assume that an
abstraction rA : SA → R can be elicited.

To achieve this, we want to either formulate an MDP or POMDP problem
PA over the abstract state space SA, and describe how it fits into the sketched
architecture. A policy for PA should yield good expected rewards when used as
controller for PE as described in Figure 1.

3 Solution Approaches

There are two major possibilities for representing POMDP polices: as a mapping
from histories to actions, i.e., by considering the equivalent history-based MDP of
a POMDP [15], or as a mapping from belief states to actions, i.e., by considering
the equivalent belief MDP [16].

3.1 History-based Control

Histories are sequences of action-observation pairs corresponding to cycles of ex-
ecuted actions and received observations. Therefore, using a history-based policy
necessitates the definition of observations on the abstract level, which introduces
apparently arbitrary choices: while it is simple to see what observations are on a
primitive level, the case is less clear with abstract observations. It is somewhat
reasonable to assume that abstract observation variables OA and corresponding
observation probabilities can be elicited from a human expert. The bigger issue,
however, is the integration between the sensor filter cascade and the policy: in
each time step, the filter cascade produces a probability distribution over the
abstract state space given by SA. The history-based policy, on the other hand,
requires a history, which is a discrete object. What is therefore required in this
setting is a method for finding the most likely history for a given distribution
over the variables in SA.

3.2 Belief-MDP-based Control

When the policy of the controller is represented as a mapping from belief states to
actions, policy execution is straight-forward: the distribution over the variables
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in SA is a belief state, and the policy can be used directly. This approach is taken
by, e.g., Hoey et al. [8] and results in the filtering task being fully separated from
the planning task.

There are two possibilities for constructing a belief MDP on the abstract
level. The first is specifying an ordinary POMDP as for the history-based ap-
proach, and converting it into its belief MDP. This again requires specifying an
abstract observation model over variables OA. The second possibility is mod-
eling transitions between system beliefs directly. This makes the definition of
observations on the abstract level obsolete but requires discretization of the set
of belief states, since there are uncountably many belief states. E.g., one can
model “state” variables that represent qualitative probability estimates of real
state variables of interest [3]. This, in turn, can distort optimal policies.

3.3 Related Work

Although the scenario described above deals with abstractions in the context of
POMDPs, it seems that existing approaches to POMDP abstraction are applica-
ble to a limited extent only. One category of approaches employ action abstrac-
tion. These approaches do not plan on the abstract level but rather use hierar-
chical action knowledge to ease planning on the primitive level [10,19,18,11,17].
In particular, all mentioned approaches require a model of the primitive level.
In most cases, this means a fully declarative model, except for the MCTS ap-
proach of Müller et al. [10], where a generative model suffices. Some authors also
consider learning an action hierarchy [4], which also requires access to the prim-
itive model. In any case, generating a policy with these approaches can become
prohibitively expensive in our setting where the primitive model corresponds to
the true environment.

A further line of research aims at abstracting the observation space of a
POMDP [20,1,7]. This seems important in our scenario as well, yet the existing
approaches also require access to the primitive POMDP model. A further com-
plication is that the mentioned observation abstraction approaches do not deal
with factored observations spaces, so that structure that is certainly present in
our multi-sensor environment cannot be leveraged.

Closest in spirit to the setting we deal with is an approach for a multi-modal
service robot [13]. Here, a so-called filterPOMDP is constructed, which corre-
sponds to what we call Belief-MDP-based control, i.e., a pre-specified POMDP
is used for planning, while separate filters are used for maintaining a probability
distribution over the world state during execution.

4 Conclusion

We proposed an approach that allows using POMDPs for decision making in
Companion systems without resorting to modeling the entire Companion system
as a POMDP. We discussed challenges to overcome for applying the approach
as well as options for solving them.
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