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Abstract. There are several formalizations for hierarchical plan-
ning. Many of them allow to specify preconditions and effects for
compound tasks. They can be used, e.g., to assist during the model-
ing process by ensuring that the decomposition methods’ plans “im-
plement” the compound tasks’ intended meaning. This is done based
on so-called legality criteria that relate these preconditions and ef-
fects to the method’s plans and pose further restrictions. Despite the
variety of expressive hierarchical planning formalisms, most theoret-
ical investigations are only known for standard HTN planning, where
compound tasks are just names, i.e., no preconditions or effects can
be specified. Thus, up to now, a direct comparison to other hierar-
chical planning formalisms is hardly possible and fundamental the-
oretical properties are yet unknown. To enable a better comparison
between such formalisms (in particular with respect to their com-
putational expressivity), we first provide a survey on the different
legality criteria known from the literature. Then, we investigate the
theoretical impact of these criteria for two fundamental problems to
planning: plan verification and plan existence. We prove that the plan
verification problem is at most NP-complete, while the plan ex-
istence problem is in the general case both semi-decidable and
undecidable, independent of the demanded criteria. Finally, we
discuss our theoretical findings and practical implications.

1 Introduction
Hierarchical planning approaches are often chosen when it comes
to practical real-world planning applications [33]. Examples include
composition of web services [29], real-time strategy games [23, 35],
robotics [15, 28], or user assistance [11, 10]. While there are sev-
eral different formalizations for hierarchical planning, it is apparent
that most of the theoretical investigations are done for a standard for-
malization (called hierarchical task network (HTN) planning), where
compound (or abstract) tasks are just names or symbols [16, 19] –
they thus neither show preconditions nor effects. Those investiga-
tions include the complexity of the plan existence problem (“Is the
problem solvable?”) [16, 19, 5, 2, 3], plan verification (“Is the given
plan a solution to the problem?”) [9], changes to plans (“Is the plan
still a solution if I change X?”) [8], and expressivity analysis (“What
plan structures can be expressed using different language features?”)
[21, 22]. The answers to such questions, besides being of theoreti-
cal interest, are highly relevant to come up with tractable problem
relaxations for heuristics [5] or for problem compilations [4, 1].

For mainly practically motivated reasons, such as providing mod-
eling assistance or generating abstract solutions, several researchers
developed hierarchical planning formalizations in which compound
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Figure 1. Example for a compound task (move) with preconditions and
effects and one of its methods. The method’s plan consists of two primitive

tasks (pick and place) and a causal link protecting the condition holding. The
dotted green lines indicate how the preconditions and effects of the tasks in

the plan’s method are related to their more abstract representation.

tasks are allowed to have preconditions and effects [40, 25, 37, 41,
18, 26, 12, 14, 30, 11, 7, 15] (cf. example given in Fig. 1). However,
the only theoretical investigations for such a formalization that we
are aware of are about the upward and downward refinement prop-
erties [40, 6, 30]. So, up to now, for many of such formalisms it is
not even clear how hard the respective problems are (given the typi-
cal HTN solution criteria), since the plan existence problem was not
studied for such a formalization. To close this gap, we investigate the
plan existence and the plan verification problems for our formaliza-
tion that allows to specify preconditions and effects for compound
tasks. We survey several legality criteria that define which decom-
position methods may be specified for which compound task, de-
pending on its preconditions and effects and take these criteria into
account in our complexity analysis. We conclude the paper by dis-
cussing our findings and its implications.

2 Problem Formalization

We introduce a hierarchical planning formalism that allows to spec-
ify preconditions and effects for compound tasks. In our complexity
analysis, we take into account several restrictions on the relation-
ship between compound tasks and the plans that are associated with
them via their decomposition methods. The investigated restrictions,
called legality criteria, are taken from the literature. To formally
study their impact on the complexity results, the formalism needs
to be rich enough to be capable of expressing these criteria. Most of
the formalisms that define them [40, 41, 37, 12] fuse standard HTN
planning [16, 20, 19] with Partial-Order Causal-Link (POCL) plan-
ning [31, 36, 20]. We assume this is because the concept of causal
links makes it easy to express the desired criteria. Thus, we also use
such an hybridization for our investigations. A variety of formalisms
fuse HTN with POCL planning [40, 25, 37, 41, 18, 14, 7, 15, 11].



However, none of these formalizations is both rich enough to allow
expressing all legality criteria while being simple enough to easily
serve as a basis for proofs. Since all HTN complexity results that
are relevant for the sake of this paper have been shown or repro-
duced in the simplistic (propositional) HTN formalism by Geier and
Bercher [19], extending it allows an easy comparison. We therefore
extend it by the necessary POCL concepts. In accordance to the liter-
ature [26, 11], we refer to the resulting formalism as hybrid planning.

Let V be a finite set of state variables (or proposition symbols). In
POCL planning, actions are typically 2-tuples consisting of a precon-
dition and effect, both being conjunctions of literals. Here, we use
an equivalent set-based formalization: Actions (or primitive tasks)
are 4-tuples (prec+, prec−, eff +, eff −), where prec+ and prec−

denote the positive and negative preconditions and eff + and eff −

denote the positive and negative effects. They describe single state
transitions as usual. The compound (or abstract) tasks have a dif-
ferent underlying meaning, as they need to be decomposed into pre-
defined plans by relying on so-called decomposition methods. De-
spite that fact, we allow compound tasks to use preconditions and
effects as well (cf. Fig. 1 for an example). Every task has a task
name. The set of names for the primitive tasks is given by Np and
those of the compound ones by Nc. We define N := Np∪̇Nc. The
mapping between task names and their actual tasks (i.e., 4-tuples) is
established using the function δ : N → (2V )4. For convenience,
we also write prec+(n), prec−(n), eff +(n), and eff −(n) to refer
to n’s positive and negative preconditions and effects, respectively†.
We call a sequence of tasks δ(n1), . . . , δ(nk) executable in a state
s0 ∈ 2V if and only if there is a corresponding sequence of states
s0, . . . , sk, such that for all 1 ≤ i ≤ k holds prec+(ni) ⊆ si−1 and
prec−(ni)∩si−1 = ∅ as well as si = (si−1\eff −(ni))∪eff +(ni).
The state sk is called the state generated by δ(n1), . . . , δ(nk).

In non-linear planning approaches, plans are only partially or-
dered. For a set of ordering constraints ≺, we denote its transitive
closure by≺∗. To differentiate multiple occurrences of the same task
within a plan, the partial order is defined over a set of so-called plan
steps PS, which then map to the actual task name, α : PS → N .
When we mention a linearization of the plan steps of a plan, we
refer to a total order of PS that does not violate the partial or-
der ≺. Plans may also contain so-called causal links. A causal link
(ps, v, ps′) ∈ PS×V ×PS indicates that the precondition v of the
consumer plan step ps′ is supported by the producer plan step ps.
The condition v is also said to be protected by the causal link. This
means, if v is a positive (resp. negative) precondition of ps′, then no
task with v as negative (resp. positive) effect is allowed to be ordered
between ps and ps′.

Definition 1 (Plan). A plan P over a set of task namesN is a 4-tuple
(PS,CL,≺, α), where:

• PS is a finite (possibly empty) set of plan steps,
• CL ⊆ PS×V ×PS is a set of causal links. If (ps, v, ps′) ∈ CL,

then v ∈ prec+(ps′) and v ∈ eff +(ps) or v ∈ prec−(ps′) and
v ∈ eff −(ps). We also require that every precondition variable
of all plan steps is protected by at most one causal link,

• ≺ ⊆ PS×PS is a strict partial order. If (ps, v, ps′) ∈ CL with
α(ps) and α(ps′) being primitive, then (ps, ps′) ∈ ≺‡,

†To simplify upcoming definitions, we require that for all primitive tasks
np, prec+(np) ∩ prec−(np) = eff +(np) ∩ eff−(np) = ∅.
‡As usual in POCL planning, any causal link between primitive tasks

implies an ordering. If one of these tasks was compound, this would not be
reasonable: Consider the example depicted in Fig. 1 and assume there is a
causal link from move’s effect ¬at to another task’s precondition. If that link

• α : PS → N labels every plan step with its task name.

PN denotes the set of all plans over the task namesN . Two plans are
called isomorphic if they are identical except for plan step renaming.

Based on the concept of plans, we define decomposition methods.
The set of all decomposition methods M ⊆ Nc×PN is given in the
planning domain and defines how compound tasks can be decom-
posed. That is, a method (nc, P ) ∈ M indicates that the compound
task (name) nc can be decomposed into the plan P .

Definition 2 (Hybrid Planning Problem). A hybrid planning problem
is a 6-tuple π = (V,Nc, Np, δ,M, P i), where:

• V is a finite set of state variables,
• we require Nc ∩Np = ∅ and define N := Nc ∪Np, where:

– Nc is a finite set of compound task names,

– Np is a finite set of primitive task names,

– {init , goal} ⊆ Np denote two special primitive task names,

• δ : N → (2V )4 is a function mapping the task names to their
preconditions and effects†§,

• M ⊆ Nc×PN\{init,goal} is a finite set of (decomposition) meth-
ods, and

• P i = (PSi , CLi ,≺i , αi) ∈ PN , is the initial plan. We require
that there are plan steps ps, ps′ ∈ PSi such that:

– αi(ps) = init and αi(ps′) = goal , and

– ps ≺ ps′ and for all ps′′ ∈ PSi with {ps′′} ∩ {ps, ps′} = ∅
holds ps ≺ ps′′ ≺ ps′.

The actual problem that one would like to have solved is given in
terms of the initial plan P i . As done in POCL planning, this plan
contains two artificial actions that encode the initial state and the
goal description, respectively§. Since hybrid planning is a hierarchi-
cal setting, P i usually contains a set of compound tasks for which
one needs to find an executable refinement. We added the specifica-
tion of a goal description for practical reasons: It is especially inter-
esting if one allows the arbitrary insertion of tasks into the plan apart
from decomposing compound tasks [19] (not considered in this pa-
per), since hybrid planning then directly captures both classical and
POCL planning. Independent of whether task insertion is allowed or
not, adding a goal description is not required from a purely theoreti-
cal point of view, since one can easily simulate it [19, Sec. 2].

In HTN planning, only those plans are regarded solutions that can
be obtained from the initial plan by successively applying decom-
position methods to compound tasks. We thus need to define how
applying a method transforms one plan into another. Since the de-
composed task might serve as a producer or consumer of causal links,
we have to decide how such links will be passed down to sub tasks
and whether this is mandatory or not (i. e., we could even allow that
such links may be deleted upon decomposition). Adding a causal link
to a compound task means to commit that the state variable of that
link is protected for the complete sequence of states over which this
link spans. Allowing to remove that link upon decomposition would
remove this constraint and violate the refinement principle [24]. If

would imply an ordering, then after move was decomposed, the consumer
task had to be ordered behind place, which is overly restrictive.
§The initial state and goal description are specified in terms of the task

names init and goal and their tuple representation using δ. As usual in POCL
planning, the action for init does not show a precondition and uses the initial
state as effect and, analogously, the action for goal has no effects and uses
the goal description as precondition.



causal links do have to be passed down to sub tasks, then the respec-
tive formalism satisfies the so-called monotonic property [27]. If this
property does not hold, hierarchical planning systems cannot exploit
such causal links to prune plans from the search space, as the con-
straint imposed by these links could disappear upon decomposition
[14]. We hence require that causal links are not allowed to disappear
upon decomposition. How causal links are passed down has yet to be
decided – and different conventions exist [25, p. 204]. We follow the
canonical approach by Yang [40] and pass down every causal link to
each “compatible” sub task. In other words, if there is a link to a com-
pound task’s precondition/effect v, then for each precondition/effect
v in its sub tasks, one successor plan is generated in which the link
is passed down to the respective task. In case there is more than one
matching sub task, it is not required that the causal link is duplicated
to support all these tasks (or a sub set thereof), since the respective
plan can be obtained via link insertions from the other plans.

The following definitions formally capture the decomposition of
compound tasks and the inheritance of causal links. We first define
two functions inP , outP : PS → 2CL that return the set of incom-
ing, respectively outcoming, causal links of a plan step ps ∈ PS in
a plan P = (PS,CL,≺, α) as inP : ps 7→ {(ps′, v, ps) ∈ CL |
ps′ ∈ PS} and outP : ps 7→ {(ps, v, ps′) ∈ CL | ps′ ∈ PS}.

Definition 3 (Decomposition). A method m = (nc, P ) ∈ M de-
composes a plan P ′ = (PS′, CL′,≺′, α′) into another plan P ′′ by
replacing plan step ps ∈ PS′ with α′(ps) = nc if and only if:

• there is a plan P̃ = (P̃S, C̃L, ≺̃, α̃) that is isomorphic to P , such
that P̃S ∩ PS′ = ∅,

• for each causal link (ps′, v, ps) ∈ inP′(ps) there is a plan step
p̃s(ps′,v,ps) ∈ P̃S, such that:

– v ∈ prec+(α̃(p̃s(ps′,v,ps))) in case v ∈ prec+(α′(ps)), or

– v ∈ prec−(α̃(p̃s(ps′,v,ps))) in case v ∈ prec−(α′(ps)),

• for each causal link (ps, v, ps′) ∈ outP′(ps) there is a plan step
p̃s(ps,v,ps′) ∈ P̃S, such that:

– v ∈ eff +(α̃(p̃s(ps,v,ps′))) in case v ∈ eff +(α′(ps)), or

– v ∈ eff −(α̃(p̃s(ps,v,ps′))) in case v ∈ eff −(α′(ps)),

• P ′′ = (PS′′, CL′′,≺′′, α′′) is given as follows:

PS′′ := (PS′ \ {ps}) ∪ P̃S

CL′′ := (CL′ \ (inP ′(ps) ∪ outP ′(ps))) ∪ C̃L
∪ {(ps′, v, p̃s(ps′,v,ps)) | (ps

′, v, ps) ∈ inP ′(ps)}

∪ {(p̃s(ps,v,ps′), v, ps
′) | (ps, v, ps′) ∈ outP ′(ps)}

≺′′ := (≺1 ∪ ≺̃ ∪ ≺2 ∪ ≺3)∗, with

≺1 := (≺′ \ {(ps′, ps′′) ∈ ≺′ | {ps} ∩ {ps′, ps′′} 6= ∅})

≺2 := {(ps′, ps′′) ∈ PS′ × P̃S | (ps′, ps) ∈ ≺′} ∪

{(ps′, ps′′) ∈ P̃S × PS′ | (ps, ps′′) ∈ ≺′}
≺3 := {(ps′, p̃s(ps′,v,ps)) | (ps

′, v, p̃s(ps′,v,ps)) ∈ CL
′′

and {α(ps′), α(p̃s(ps′,v,ps))} ⊆ Np} ∪

{(p̃s(ps,v,ps′), ps
′) | (p̃s(ps,v,ps′), v, ps

′) ∈ CL′′

and {α(p̃s(ps,v,ps′)), α(ps′)} ⊆ Np}

α′′ := (α′ \ {(ps, nc)}) ∪ α̃

As noted, we require that causal links involving the decomposed
plan step ps (i.e., inP ′(ps) and outP ′(ps)) are passed down upon

decomposition (cf. CL′′). For this, any compatible precondition that
is not yet protected by a causal link inside the method’s plan P̃ can
be used. The definition of the ordering constraints of the new plan
P ′′, ≺′′ comprises all ordering constraints of the original plan P ′

except the ones involving the decomposed plan step ps,≺1. It further
contains all ordering constraints of the method’s plan P̃ , ≺̃, as well
as those that are inherited from the orderings involving ps, ≺2. All
new causal links only involving primitive tasks are responsible for
adding further orderings, ≺3. Apart from the necessary extensions
to handle causal links, our definition of decomposition is identical to
the one from HTN planning [19, Def. 3].

In HTN planning, any solution to a planning problem (1) needs to
be obtainable from the initial task network via the application of a
sequence of decompositions and (2) needs to contain an executable
sequence of its actions [19, Def. 5, 6]. We consider the second cri-
terion as impractical: One is usually interested in executable action
sequences, but finding one from a “solution” task network is still
NP-hard [34, Thm. 15], [16, Thm. 8]. Further, such a sequence it-
self is in general not regarded a solution (but just the task network
in which this sequence occurs), which we regard contra-intuitive. In-
stead, we require that all linearizations are executable and that each
executable linearization is considered a solution as well. To support
this stronger notion of solutions, we also allow the insertion of causal
links and ordering constraints.

Definition 4 (Causal Link Insertion). Let P = (PS,CL,≺, α) and
P ′ = (PS,CL′,≺′, α) be plans. P ′ can be obtained from P by
insertion of a causal link (ps, v, ps′) /∈ CL with ps, ps′ ∈ PS if
and only if:

• v ∈ eff +(α(ps)) and v ∈ prec+(α(ps′)) or
v ∈ eff −(α(ps)) and v ∈ prec−(α(ps′)),

• CL′ = CL ∪ {(ps, v, ps′)}, and
• ≺′ = (≺ ∪ {(ps, ps′) | {α(ps), α(ps′)} ⊆ Np})∗

Definition 5 (Ordering Insertion). Let P = (PS,CL,≺, α) and
P ′ = (PS,CL,≺′, α) be plans. P ′ can be obtained from P by
insertion of an ordering constraint (ps, ps′) /∈ ≺, ps, ps′ ∈ PS if
and only if ≺′ = (≺ ∪ {(ps, ps′)})∗.

Definition 6 (Solution). A plan P = (PS,CL,≺, α) is a solution
to a planning problem π, if and only if:

1. P is a refinement of P i. That is, there is a sequence of decompo-
sitions (cf. Def. 3), causal link insertions (cf. Def. 4), and ordering
constraint insertions (cf. Def. 5) transforming P i into P ,

2. P is primitive, i.e., {α(ps) | ps ∈ PS} ⊆ Np, and
3. P is executable in the standard POCL sense:

• There are no unprotected preconditions. A precondition v ∈
prec+(α(ps)) (resp. v ∈ prec−(α(ps))) of a plan step ps ∈
PS is called unprotected, if and only if there is no plan step
ps′ ∈ PS with a causal link (ps′, v, ps) for v ∈ eff +(α(ps))
(resp. v ∈ eff −(α(ps))).

• There are no causal threats. A plan contains a causal threat
if and only if there is a causal link (ps, v, ps′) ∈ CL with
v ∈ prec+(α(ps′)) (resp. v ∈ prec−(α(ps′))) and a plan step
ps′′ ∈ PS with v ∈ eff −(α(ps′′)) (resp. v ∈ eff +(α(ps′′))),
such that neither (ps′′, ps) ∈ ≺ nor (ps′, ps′′) ∈ ≺ holds.

The first solution criterion corresponds to the standard HTN cri-
terion that requires every solution to be in the refinement space of
the initial plan. The second solution criterion demands the respective



plan to be primitive, as only primitive plans are typically regarded
executable. The third criterion requires executability as it is done in
POCL planning; these criteria ensure that every linearization of the
plan steps corresponds to a sequence of tasks that is executable in the
initial state and generates a state satisfying the goal description.

3 Legality Criteria – A Survey and Discussion
Provided the planning domain allows to specify preconditions and ef-
fects for compound tasks, there should be a clearly-defined criterion
stating which decomposition methods are allowed to be specified for
such compound tasks [17, 14]. When considering a compound task as
an abstraction of a certain plan, it does not seem to make much sense
to specify a precondition or effect of that task if it does not occur
anywhere in the plan. So, if the domain modeler decides to specify
preconditions and effects for a compound task, he or she has a cer-
tain idea on how the plans of the respective decomposition methods
should look like. Thus, several researchers have formalized possible
relations between a compound task’s preconditions and effects and
its methods’ plans. We call these criteria legality criteria and plans
that respect them implementations of their compound task. For each
criterion, we give a small example illustrating it. Further, we want to
note that the example depicted in Fig. 1 satisfies all of the legality
criteria discussed in this section¶.

The first and weakest criterion that we investigate is closely related
to the criteria that ensure that a compound task can be decomposed
(cf. Def. 3). We restrict to models where the plan of a compound
task’s method makes use of the task’s preconditions and effects.

Definition 7 (Downward Compatible). A method (nc, P ) ∈M with
P = (PS,CL,≺, α) is called downward compatible if and only if:

• for each v ∈ prec+(nc) (resp. v ∈ prec−(nc)) there
is a plan step ps ∈ PS with an unprotected precondition
v ∈ prec+(α(ps)) (resp. v ∈ prec−(α(ps))).

• for each v ∈ eff +(nc) (resp. v ∈ eff −(nc)) there is a plan
step ps ∈ PS with the same effect v ∈ eff +(α(ps)) (resp. v ∈
eff −(α(ps))).

Downward compatible methods (nc, P ) are always applicable to
a plan as long as it contains nc – a property shared with standard
HTN planning (without method preconditions). If the method was
not downward compatible, causal links involving nc influence its ap-
plicability, which also causes unintended “strange” behavior during
search: Let us assume a plan P ′ contains a plan step pswith the name
nc that has an unprotected effect v ∈ V . Now, assume that (nc, P )
does violate the legality criterion. Whether this method can be used
to generate a successor plan now depends on the planner’s choice
whether it first decomposes ps (this would work since all causal links
can be correctly passed down to sub tasks in P ′) or first adds a causal
link from ps ∈ PS protecting v (then, ps can not be decomposed be-
cause the newly inserted link cannot be passed down, which violates
the decomposition criteria given in Def. 3).

While this criterion clearly ensures that the “most obvious” mod-
eling errors are prevented, it is not yet clear whether the user’s intent
about the relationship between the compound task and its methods’
plans is actually satisfied. This is due to the fact that there are various
possibilities what the preconditions and effects of the compound task
are meant to entail. For example, if a primitive action np is within a
plan, we know that – assuming that plan is executable – there are also

¶For the sake of readability, the example is given with variables, whereas
our formalization assumes a ground (i.e., propositional) representation.

states s and s′, such that s satisfies np’s precondition and s′ satisfies
np’s effects. For compound tasks, this is not necessarily the case. In
particular for the downward compatibility, it is clear that the com-
pound task’s effects do not need to be true in one single state, but its
state variables might only hold in different states.

Several more restrictive criteria have been proposed in the liter-
ature. They can be categorized into two classes: one enforces that
compound tasks have non-empty preconditions/effects under certain
circumstances, and one where the specification thereof is optional.

We are only aware of one legality criterion that falls into the first
class: It was proposed by Russell and Norvig for their fusion of HTN
with POCL planning [37]. For each method (nc, P ) and every effect
of nc, they require that “it [is] asserted by at least one step of P and
is not denied by some other, later step”. Further, they require that
“every precondition of the steps in P must be achieved by a step in
P or be one of the preconditions of nc”. This implies that every open
precondition in P needs to be a precondition of the compound task.
This, in turn, has further consequences: Consider the case where the
task nc has two decomposition methods (nc, P ) and (nc, P

′). Ac-
cording to this criterion, nc must use all open preconditions of both
P and P ′. As a consequence, both the downward compatibility and
hence the monotonic property [27] may be violated. As argued in
Sect. 2 (motivation for Def. 3), in this paper, we do not allow that
commitments on an abstract level may be removed upon decomposi-
tion. We are thus not investigating this criterion in more detail.

The next criterion that we discuss was proposed by Biundo and
Schattenberg [12]. As their planning formalism shows substantial
differences to the one in this paper, we do not capture every detail, but
only the main ideas. Their formalism is based upon a many-sorted
first-order logic that features abstract state variables and so-called
decomposition axioms defining them. They enable abstract tasks to
make use of abstract state variables thereby fusing action abstraction
with state abstraction. Further, their definition of methods only fea-
tured totally ordered plans: there, a method contains a set of task se-
quences, each of which is an implementation of the compound task.
So, each method containing n sequences is a compact representation
of n methods with totally ordered plans. Allowing for methods with
partially ordered plans strictly increases expressivity (with respect to
the plan existence problem [16, 2] and the generated solutions [21]),
so legality should also be defined for such methods. We hence adapt
their definition to partially ordered plans.

They require that if a method’s task sequence is executable in a
state satisfying the compound task’s precondition, then it generates
a state that satisfies the compound task’s effects. They further re-
quire the compound task’s precondition to be an abstraction of the
task sequence’s first task’s precondition. Our generalization to par-
tial orders states that this property must hold for every lineariza-
tion that is induced by the given plan. However, we further demand
that there also needs to be a state in which all linearizations are
executable. As discussed earlier, causal links involving compound
tasks do not (directly) induce ordering constraints (cf. Def. 1). How-
ever, since we consider a plan legal if all its linearizations are le-
gal (which in turn need to respect the causal links), we here inter-
pret causal links as additional ordering constraints. We thus define
≺+ = (≺ ∪ {(psi, psj) | (psi, v, psj) ∈ CL})∗ and only consider
linearizations with respect to ≺+. Then, a plan step linearization is
said to respect a set of causal links CL if none of the protected con-
ditions is violated by the induced state sequence.

Definition 8 (along Biundo and Schattenberg [12]). A method
(nc, P )∈M , P = (PS,CL,≺, α), is called legal if and only if:



• (nc, P ) is downward compatible,
• let Nfirst := {α(ps) | ps ∈ PS and there is no ps′ ∈ PS

with (ps′, ps) ∈ ≺+}. Then, prec+(nc) ⊆
⋂

n∈Nfirst
prec+(n)

and prec−(nc) ⊆
⋂

n∈Nfirst
prec−(n),

• for all states s ∈ 2V holds: if (a) s ⊇ prec+(nc) and s ∩
prec−(nc) = ∅, (b) every task sequence t corresponding to a
plan step linearization ps1, . . . , ps|PS| with respect to ≺+ is ex-
ecutable in s, and (c) respects CL, then (d) t generates a state s′,
such that eff +(nc) ⊆ s′ and eff −(nc) ∩ s′ = ∅. Further, there
needs to be a state s ∈ 2V , such that (a) to (d) hold.

Concerning the intention behind the compound task’s precondi-
tions and effects, this criterion is already much stronger than the sim-
ple downward compatibility criterion. As opposed to that criterion,
we here get the property that in any solution plan that is obtained
from decomposing a compound task nc, there is a single state in
which nc’s preconditions hold. This trivially follows from the fact
that the preconditions of nc are abstractions of any first task and any
compound task needs to be decomposed into a primitive plan. How-
ever, the criteria do not imply that there is a single state in which the
compound task’s effects hold – despite the restrictions imposed on
the relationship between nc’s effects and its methods’ plans. The rea-
son for this is that the criterion does not take into account additional
effects of the compound tasks that are in the method’s plan, other
than those explicitly specified in their preconditions and effects. This
issue is addressed by Marthi et al.’s possible effects [30]. They are,
however, restricting to totally ordered methods.

nA
ba nB

¬c

¬d
a nC

b
c

¬d

decomposes to

Figure 2. Illustration of a method that is supposed to implement the
compound task nA. The tasks nB and nC are primitive.

Concerning executability, Def. 8 requires that there is at least one
state in which the respective plan’s linearizations are executable,
which might be considered too restrictive. The example given in
Fig. 2 is not legal with respect to Def. 8, since – due to the variable c
– there cannot be a state in which nA’s method’s plan is executable.
Since other tasks could be ordered in between nB and nC to support
nC ’s precondition c, one could also relax this criterion. This is done
by the next legality criterion (for which the example is legal), as it al-
lows that open preconditions of a method’s plan may be supported by
tasks at an arbitrary “position” within a plan (i.e., it does not require
that a single state enables the execution of the plan’s tasks).

The criterion was proposed by Yang [40, p. 14] and consists of
three sub criteria. The first two imply downward compatibility, but
require more. Criterion 1 demands, similar to Def. 8, that none of the
tasks in the plan invalidates the compound task’s effects. Criterion 2
requires that every precondition variable of the compound task has to
occur in the plan in such a way that none of its sub tasks can be used
to establish it. Criterion 3 is closely related to the concept of causal
threats. Each precondition within the plan might not be violated by
a converse effect of another task. Note that this is neither equivalent
to stating that the respective plan must be free of causal threats (as
the criterion must also hold in the absence of any causal links) nor
that the plan is executable in any way (as none of the criteria ensures
preconditions to be supported).

Definition 9 (Yang [40]). A method (nc, P ) ∈ M with P =
(PS,CL,≺, α) is called legal if and only if:

1. for all v ∈ eff +(nc) (resp. v ∈ eff −(nc)) there exists a ps ∈
PS with v ∈ eff +(α(ps)) (resp. v ∈ eff −(α(ps))), such that
for all ps′ ∈ PS, ps′ 6= ps holds: if v ∈ eff −(α(ps′)) (resp.
v ∈ eff +(α(ps′))), then (ps′, ps) ∈ ≺.

2. for all v ∈ prec+(nc) (resp. v ∈ prec−(nc)) there exists a ps ∈
PS with v ∈ prec+(α(ps)) (resp. v ∈ prec−(α(ps))), such that
for all ps′ ∈ PS, ps′ 6= ps holds: if v ∈ eff +(α(ps′)) (resp.
v ∈ eff −(α(ps′))), then (ps, ps′) ∈ ≺.

3. for all ps ∈ PS, for all v ∈ prec+(α(ps)) (resp. v ∈
prec−(α(ps))), and for all ps′ ∈ PS with ps′ 6= ps and
(ps, ps′) /∈ ≺ it holds: if v ∈ eff −(α(ps′)) (resp. v ∈
eff +(α(ps′))), then there exists a ps′′ ∈ PS, such that
{(ps′, ps′′), (ps′′, ps)} ⊆ ≺ and v ∈ eff +(α(ps′′)) (resp.
v ∈ eff −(α(ps′′))).

The next legality criterion is by Young et al. [41]. They argue that
Yang’s criterion of threat-free plans was too strong. Instead, their
only requirement is that any of the compound task’s preconditions
“contributes” to at least one of its effects (and vice versa), which they
ensure by requiring the existence of a chain of causal links within
the plans connecting them with each other [41, p. 191]. Thus, our
example illustrated in Fig. 2 also satisfies this criterion, but it would
not do so if both the variable d and the respective causal link were
not present (while assuming that nC is still ordered behind nB).

They model their criterion by including artificial start and end ac-
tions, which use the compound task’s precondition and effect as ef-
fect and precondition, respectively, and require the causal link chains
between them. Upon decomposition, those actions disappear, but the
causal links involving them are reused to be linked to the plan steps
that share causal links with the compound task. Those actions thus
do not imply that there are states, in which the compound task’s pre-
conditions and effects hold. In the following definition, we therefor
did not include the artificial start and end tasks.

Definition 10 (Young et al. [41]). A method (nc, P ) ∈M with P =
(PS,CL,≺, α) is called legal if and only if:

• (nc, P ) is downward compatible and
• for each v ∈ eff +(nc) (resp. v ∈ eff −(nc)), there is a se-

quence of plan steps ps1, . . . , psk with psi ∈ PS for 1 ≤
i ≤ k, v ∈ eff +(α(psk)) (resp. v ∈ eff −(α(psk))), v′ ∈
(prec+(α(ps1))∪ prec−(α(ps1)))∩ (prec+(nc)∪ prec−(nc)),
and a chain of causal links connecting them.

• for each v ∈ prec+(nc) (resp. v ∈ prec−(nc)), there is a se-
quence of plan steps ps1, . . . , psk′ with psi ∈ PS for 1 ≤
i ≤ k′, v ∈ prec+(α(ps1)) (resp. v ∈ prec−(α(ps1))),
v′ ∈ (eff +(α(psk′))∪eff −(α(psk′)))∩(eff +(nc)∪eff −(nc)),
and a chain of causal links connecting them.

Due to space restrictions, we cannot include all the work related
to formalisms that allow to specify preconditions and effects for
compound tasks. Concerning the surveyed legality criteria, we re-
stricted the presentation to approaches which explicitly mention the
demanded criteria. We further want to mention the work by Castillo
et al. [14], which also fuses HTN planning with POCL planning.
Since they infer the methods automatically, their plans also fulfill
certain criteria, which seem to be closely related to Def. 8. Further
attention deserves the angelic semantics by Marthi et al. [30]. Their
conditions (“high-level action descriptions”) take all states into ac-
count that are generated by any primitive plan that is reachable by



decomposing the respective compound task. In contrast, the legality
criteria surveyed before relate a compound task’s preconditions and
effects directly to its methods’ plans (in particular to the precondi-
tions and effects of its tasks).

4 Complexity Results
In this section we investigate the complexity of the plan verification
and the plan existence problem for the hybrid planning formalism.

For some of our hardness results, we reduce a certain set of HTN
planning problems to hybrid problems. Since all required results are
proved or reproduced in the HTN planning framework by Geier and
Bercher [19] (or based upon it), we first state a proposition that ev-
ery HTN planning problem can be expressed as a hybrid planning
problem with the same set of solutions and without violating any of
the legality criteria for decomposition methods. Concerning notation,
note that a task network (T,≺, α) [19, Def. 1] in HTN planning is
a special case of plans (cf. Def. 1), as task networks do not contain
causal links. What we call plan steps is referred to as tasks T in HTN
planning. We use both notations, depending on the context.

Theorem 1. Let P be an HTN planning problem according to Def. 2
by Geier and Bercher [19]. Then,P can be transformed into a hybrid
planning problem π according to Def. 2 that satisfies the legality
criteria in Defs. 7, 8, 9, and 10, such that:

1. Refinement Correspondence. Let tn be a (not necessarily prim-
itive) task network that can be obtained via decomposition in P .
Then, the plan P that is isomorphic to tn can be obtained via de-
composition in π. Conversely, let P be a primitive plan that can be
obtained via decomposition in π. Then, the task network tn that is
isomorphic to P can be obtained via decomposition in P .

2. Solution Correspondence. Let tn be a solution task network for
P . Then, for each executable task sequence t1, . . . , tn thereof
there is a solution plan P to π containing exactly this task se-
quence. Conversely, let P be a solution plan for π. Then, for all
linearizations ps of the plan steps of P there is a task network tn
that is a solution for P , such that ps is an executable linearization
of the tasks in tn.

Proof. Let P = (L,C,O,M, cI , sI) with L being a finite set
of proposition symbols and C and O finite sets of compound and
primitive task name symbols, respectively. Each primitive task name
o ∈ O has a unique operator (prec(o), add(o), del(o)) ∈ (2L)3 cor-
responding to an action without negative preconditions. M is a finite
set of methods mapping compound tasks to task networks. cI ∈ C is
the initial compound task name and sI ∈ 2L the initial state.

Transformation. We transform the HTN planning problem P
into a hybrid planning problem π = (V,Nc, Np, δ,M

′, P i).
We define V := L. The initial compound task cI and the
initial state sI of P are encoded in π by the initial plan
P i = (PSi , CLi ,≺i , αi). That is, PSi = {psinit , ps, psgoal},
CLi = ∅, ≺i = {(psinit , ps), (ps, psgoal)}∗, and αi =
{(psinit , init), (ps, cI), (psgoal , goal)}. The actions of init and
goal are given by δ(init) = (∅, ∅, sI , V \ sI) and δ(goal) =
(∅, ∅, ∅, ∅). We are now defining the tasks and methods of π in such a
way that all methods in M ′ satisfy all legality criteria. We construct
a model in which no compound task has preconditions or effects and
all methods contain only compound tasks or at most one task. We
do this by introducing an additional compound task oclone for ev-
ery primitive task o ∈ O and replace all primitive tasks in every
decomposition method’s plan by the respective compound task. To

ensure that this does not change the set of solutions, each of these
compound tasks oclone has exactly one decomposition method with
a plan containing exactly o: Let Nc := C ∪ {oclone | o ∈ O}
and for all nc ∈ Nc, let δ(nc) := (∅, ∅, ∅, ∅). For the primi-
tive tasks, let Np := O ∪ {init , goal} and for all o ∈ O, let
δ(o) = (prec(o), ∅, add(o), del(o)). The methods M ′ are given by

M ′ := {(c, (T, ∅,≺, α′)) | (c, (T,≺, α)) ∈M, with

α′ := {(t, c) | (t, c) ∈ α, c ∈ C} ∪
{(t, oclone) | (t, o) ∈ α, o ∈ O}}

∪ {(oclone , ({ps}, ∅, ∅, {(ps, o)})) | o ∈ O}

Legality. The downward compatibility (Def. 7) and legality criterion
that requires chains of causal links (Def. 10) trivially hold for all
methods, since none of the compound tasks have preconditions or
effects (so, the methods’ plans are not further restricted). The other
legality criteria (Defs. 8 and 9) require further restrictions on the
plans even if the (parent) compound task does not have precondi-
tions or effects. It is easy to see that all these restrictions hold, since
– by construction – plans only contain compound tasks or at most one
task. In the first case, there are no preconditions and effects, hence all
criteria hold. In the second, the preconditions or effects of the single
task do not violate any of the criteria as well.

Refinement Correspondence. Let tn1, . . . , tnk be a sequence of
task networks, such that tn1 = ({t}, ∅, {(t, cI)}), tnk = tn, and
any task network tnj can be obtained from tnj−1, 1 < j ≤ k,
via decomposition. Let the corresponding sequence of decomposed
task names be c1, . . . , ck−1. Since no compound task c ∈ C was re-
moved from any of the decomposition methods’ task networks, and
since none of them contains causal links, there is also a sequence of
plans P1, . . . Pk, such that P1 = P i and the plan Pj results from
decomposing cj−1 in Pj−1, 1 < j ≤ k. The resulting plan Pk is
isomorphic to the task network tnk except that Pk contains a com-
pound task oclone ∈ Nc \ C for any primitive task o ∈ O in tnk.
Thus, using the methods for those oclone ∈ Nc \ C, there is a se-
quence of decompositions that transform Pk into P ′k with P ′k being
isomorphic to tnk. For the other direction, let P be a primitive plan
that can be obtained via decomposition in π. Because the decom-
position of a compound task oclone ∈ Nc \ C does not introduce
further compound tasks, we can assume that first tasks c1, . . . , ck−1,
ci ∈ C, 1 ≤ i < k are decomposed leading to a plan Pk and then
only tasks in oclone ∈ Nc \ C leading to a primitive plan P ′k. When
decomposing c1, . . . , ck−1 in P , we obtain a task network tnk that
is isomorphic to P ′k.

Solution Correspondence. Let tn be a solution to P . It is thus
reachable via decomposition in P . Due to the refinement correspon-
dence, P being isomorphic to tn can be obtained via decomposition
in π. Thus, for any executable linearization of the tasks of tn, P can
be turned into a totally ordered solution plan P ′ containing exactly
that sequence via ordering and causal link insertions. For the other
direction, let P be a solution for π. Without loss of generality we can
assume that P can be generated by first decomposing, then inserting
causal links, then ordering constraints. Let P ′ be the last primitive
plan before any ordering or causal link insertion. Due to the refine-
ment correspondence, tn being isomorphic to P ′ is reachable via
decomposition in P . Then, tn contains all linearizations of the plan
steps of P ′ (in particular the executable ones).

Plan Verification. We now investigate how hard it is to ver-
ify whether a given plan is a solution to a hybrid planning prob-
lem. While in classical, non-hierarchical planning, this question can



be answered in linear time w.r.t. the size of the input plan [16,
Thm. 8], the corresponding problem is much harder in the HTN set-
ting. Behnke et al. [9] proved that the HTN plan verification problem
is NP-complete even under several restrictions.

We first investigate the special case where there is no hierarchy.
In HTN planning, this means to decide whether a primitive plan has
an executable linearization, which is already NP-complete [34,
Thm. 15], [16, Thm. 8]. In hybrid planning, all linearizations need to
be executable. The respective problem is hence equivalent to verify-
ing whether a POCL plan is a solution to a POCL planning problem,
which is commonly known to be tractable.

Theorem 2. Let P be a plan and π = (V,Nc, Np, δ,M, P i) a hy-
brid planning problem without hierarchy, i.e., Nc = M = ∅. Decid-
ing whether P is a solution to π is in P.

Proof. Checking that every precondition is supported by exactly one
causal link can be done in linear time w.r.t. the number of all pre-
conditions and causal links. Checking the absence of causal threats
can be done in quadratic time. Let P = (PS,CL,≺, α). For each
causal link (ps, v, ps′) ∈ CL iterate over all plan steps ps′′ ∈ PS,
ps′′ /∈ {ps, ps′}. If none of these ps′′ has an effect conflicting with v
and can be ordered between ps and ps′ without violating≺, continue
to the next causal link, otherwise fail.

Please note that the reason why this verification problem is eas-
ier than in HTN planning cannot be attributed to the fact that com-
pound tasks show preconditions and effects, but to the fact that in hy-
brid (and POCL) planning, all linearizations need to be executable,
whereas HTN planning only requires that there exists one.

Next we consider the general case, in which there are no restric-
tions on the hierarchy. We start by showing NP membership.

Lemma 1. Let P be a plan and π a hybrid planning problem. In-
dependently of the demanded legality criteria (Def. 7 to 10), it is in
NP to decide whether P is a solution to π.

Proof sketch: For HTN planning, we showed that the correspond-
ing verification problem is in NP [9, Thm. 1]. We show that the two
main proof steps (not emphasizing some special cases due to lack
of space) remain applicable despite the extension of the formalism to
hybrid planning: First, we show that any plan that can be obtained via
decomposition can be obtained by a polynomial number of methods.
Second, we give a guess-and-verify algorithm that runs in NP.

The first main step consists of five sub steps. First, we construct a
so-called ε-extended planning problem π′ from π that has the same
set of solutions as π, but allows for shorter decomposition sequences.
We call methods that contain an empty plan ε-methods. Now, for any
compound task name that can be transformed into an empty plan by
an arbitrary number of decomposition methods (due to ε-methods
already present in M ), we introduce an additional ε-method in M ′

of π′. For HTN planning, this can be done in P [9, after Def. 1].
Since causal links are not allowed to disappear upon decomposition,
the same result applies to hybrid planning. Second, given a sequence
m1 of methods in M ′ leading from the initial plan to a plan P ′, the
methods are reordered as follows: all ε-methods immediately fol-
low the method that inserted the plan step they erase into the plan,
resulting in the sequence m2. Note that reordering these decompo-
sition methods is possible, since all legality criteria satisfy Def. 7,
downward compatibility (cf. footnote on page 4). Third, if for any
non-ε-method in m2, all plan steps of its plan are thereafter erased,
all those methods are replaced by one singe ε-method resulting in
a shorter sequence m3. Let P = P1, . . . , Pn with P1 = P i and

Pn = P ′ be the corresponding sequence of plans. Its subsequence
P
′

that consists of the plans to which non-ε-methods are applied
and P ′ forms a sequence with non-decreasing plan step size. Due
to plateaus (which can be caused, e. g., by so-called unit-methods,
which decompose a compound task into a single other task), P

′
can

still be arbitrary long. Step four is a preparation to obtain a bound
on their lengths: We reorder methods between the plateaus such that
in every plateau only methods remain that decompose the plan step
that is decomposed last in the respective plateau (as this step ends the
plateau) resulting into m4. As argued before, reordering is also pos-
sible in the hybrid planning setting. In step five we can now shorten
the new sequence of plans corresponding tom4. Every plateau in the
new plan sequence can now be limited to at most |Nc| plans, as other-
wise cycles must occur. Because there are at most k plateaus (k being
|PS| of P ′), we can state that the final sequence of methods m5 has
at most 2k(|Nc|+1) non-ε-methods‖ and thus 2k(|Nc|+1)∆ meth-
ods in total, ∆ being the maximal number of plan steps of the plans
in the methods and P i. We thereby conclude that if a plan P ′ can be
obtained via decomposition in π, it can be obtained by a polynomial
number of methods in π′.

For the second main step, we guess a polynomially bounded se-
quence of methods in π′ and calculate the resulting plan P ′. We then
guess additional ordering constraints (bounded by k2) and causal
links (bounded by k|V |), insert them into P ′ resulting in P ′′, guess
a bijection between the plan steps in P ′′ and P and verify isomor-
phism. We then verify executability of P in P (Thm. 2). �

We now show that the plan verification problem is also NP-hard.

Theorem 3. Let P be a plan and π a hybrid planning problem. In-
dependently of the demanded legality criteria (Def. 7 to 10), it is
NP-complete to decide whether P is a solution to π.

Proof. Membership is stated in Lem. 1. For hardness, we use a corol-
lary of HTN plan verification [9, Cor. 5]. According to this, it is
NP-complete to verify, given a sequence of tasks t̄ and a totally
unordered precondition- and effect-free HTN problem P , whether
there is a solution task network tn, such that t̄ is an (executable) lin-
earization of tn’s tasks. (Note that the complexity of the problem
does not stem from finding an executable linearization, as there are
no preconditions and effects, but from finding the right decomposi-
tions leading to the desired plan. The original proof reduces vertex
cover to HTN plan verification.)

Let π be a hybrid planning problem that is constructed from P
with the properties stated in Thm. 1. Further, let P be a totally or-
dered plan containing t̄ as plan step sequence. If there is a solution
tn of P , such that t̄ is an executable linearization of tn, then we can
conclude that P is a solution to π (Thm. 1). Conversely, if P is a
solution to π, then there exists a solution tn to P , such that P ’s plan
step linearization is an executable linearization of tn (Thm. 1).

Plan Existence. In general, HTN planning is undecidable [16,
19]. We now show that this also holds for hybrid planning.

Theorem 4. Hybrid planning is undecidable. That is, it is unde-
cidable to determine whether a hybrid planning problem has a solu-
tion – no matter, which of the legality criteria of Def. 7 to 10 hold.

Proof. Since we can encode any HTN planning problem into a
solution-conserving hybrid planning problem that satisfies all legal-
ity criteria (Thm. 1), we can reduce the undecidable plan existence
problem for HTN planning [19, Thm. 1] to hybrid planning.

‖We previously stated a bound of only |k|(|Nc| + 1) [9, Lem. 1], as we
handled a special case wrong (details omitted due to space restrictions).



From this theorem we can conclude that hybrid planning is as
expressive as HTN planning, since it allows to encode undecid-
able problems. However, HTN planning is also known to be semi-
decidable (or recursively enumerable, RE) [16, Thm. 1], which im-
plies that for any HTN planning problem, a solution can be eventu-
ally found if one exists (while the undecidability prevents one from
proving – in general – that there is no solution in case there actually
is none). We now show that this is also true for hybrid planning.

Theorem 5. Hybrid planning is semi-decidable. That is, the set
of all hybrid planning problems that possess a solution is in RE.

Proof. We give a partial recursive function f that, given a hybrid
planning problem π, returns true if π has a solution and that may
not halt, otherwise. We define f as the algorithm that enumerates all
plans and verifies whether they solve π. It may run infinitely long,
but as soon as it finds a solution, f returns true. Although there are
infinitely many plans, enumeration is possible by starting with all
plans of length two (the only tasks of which are the artificial init and
goal actions) and then successively incrementing plan length. For
each plan, verify in NP whether it is a solution (Thm. 3).

As a further corollary from Thm. 1, it also follows that many
sub classes of hybrid planning are as hard as the respective problem
classes in HTN planning. Such restrictions include syntactical ones
(such as totally ordered task networks [2] or delete-relaxed actions
[5]) and structural restrictions on the hierarchy (such as tail-recursive
or acyclic problems [2]). To formally prove this, we would have to
show that the respective restrictions still hold in the hybrid planning
problem after the translation process done in the proof of Thm. 1.

5 Discussion
As a corollary from the last section’s results, we can observe that
for the studied legality criteria, allowing preconditions and effects
for compound tasks does neither increase nor decrease the expres-
sivity of the formalism with regard to the plan existence problem in
the general case. We want to emphasize that this is caused by the
fact that none of the studied criteria (Def. 7 to 10) enforces to spec-
ify preconditions or effects for compound tasks (such as the one by
Russell and Norvig [37]). Legality criteria that enforce to specify
such preconditions or effects might influence the respective results
and therefore also reduce expressivity, as they might prevent to spec-
ify computationally hard problems. Having the option to model such
preconditions and effects still serves several practically relevant pur-
poses, however. We shortly discuss some of them in this section and
give pointers to the literature for further details.

As argued by Fox [17, p. 196], “one of the strongest motivations
for using some form of abstraction in planning is the observation
that people use it to great effect in their problem-solving”, which
is also backed up by psychological studies [13]. Consequently, peo-
ple should already be supported during the process of constructing
(hierarchical) planning domains. Modeling support has attracted in-
creased interest during the last years, which is one of the reasons that
lead to the establishment of the International Competition on Knowl-
edge Engineering for Planning and Scheduling (ICKEPS)∗∗. Never-
theless, there is still only very little research to automatically support
the modeling process, which is particularly true for hierarchical mod-
els. The tool by McCluskey and Kitchin [32] as well as GIPO [39]
for hierarchical models expressed in the modeling language OCLh

∗∗http://www.icaps-conference.org/index.php/Main/Competitions

checks certain properties and reports violations. In analogy to the re-
spective properties that these tools verify, the legality criteria allow
to automatically verify the relationship between compound tasks and
their methods’ plans. As Fox points out, “abstract plans have inten-
tional meaning” – and so do compound tasks. Thus, adhering some
desired legality criterion is a possible way to automatically verify
whether the model complies with the user’s intent.

Apart from providing modeling assistance, another main purpose
of being able to specify preconditions and effects for compound tasks
is to exploit them during search. Reasoning about these preconditions
and effects may result in a smaller search space, as irresolvable flaws,
such as open preconditions, can be detected earlier, i.e., before the re-
spective compound task is decomposed. This further allows to gen-
erate “solution” plans on different levels of abstraction. Such plans
look like ordinary (primitive) solutions with the difference that some
tasks are still compound. When the model fulfills further prerequi-
sites, it is guaranteed that such abstract solutions can be refined into
a primitive one [40, 30]. Then, the model is said to fulfill the down-
ward refinement property [6].

Preconditions and effects of compound tasks can also improve
plan explanations. Plan explanations as developed by Seegebarth et
al. [38] give a justification about the purpose of a primitive action
questioned by the user. It is based upon a sequence of arguments,
each being of the form (a) “action a is required as it supports a pre-
condition variable of another action a′ by a causal link” or (b) “action
a is required as it was introduced via decomposition of a compound
task c”. Necessity of the other task a′ (resp. c) is proved similarly.
Preconditions and effects of compound tasks now allow to combine
these two argument types [38]. Then, the causal chain argument (a)
can be extended from just primitive actions to compound tasks, as
they show preconditions and effects as well, which allows for much
shorter and more abstract explanations.

6 Conclusion
To finally answer the question whether compound tasks with precon-
ditions and effects are more than just names: We can state no in the
sense that for the criteria we studied in more detail, we were able
to show that in the general case, the formalism is equally expressive
(with respect to the plan existence problem) than the HTN formal-
ism, in which compound tasks are just names. For many sub classes,
however, we only showed lower bounds – upper bounds still need to
be proved. It might also be that other, more restrictive, legality crite-
ria influence the hardness of the problem, in which case we also had
to state yes. We can already answer the question with yes with regard
to practical considerations, such as modeling assistance: The precon-
ditions and effects, when combined with a desired legality criterion,
can be exploited to provide assistance to ensure that the methods
comply with the user’s intent – or at least to rule out some of the
modeling flaws.
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