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Abstract Mixed-initiative assistants are systems that support humans in their
decision-making and problem-solving capabilities in a collaborative manner. Such
systems have to integrate various artificial intelligence capabilities, such as knowl-
edge representation, problem solving and planning, learning, discourse and dialog,
and human-computer interaction. These systems aim at solving a given problem
autonomously for the user, yet involve the user into the planning process for a col-
laborative decision-making, to respect e. g. user preferences. However, how the user
is involved into the planning can be framed in various ways, using different involve-
ment strategies, varying e. g. in their degree of user freedom. Hence, here we present
results of a study examining the effects of different user involvement strategies on
the user experience in a mixed-initiative system.

1 Introduction

Most contemporary dialog systems (DS) manage the interaction between human
and machine in a uni-directional dependency. Most common, users interact with a
DS to solve domain-dependent tasks. However, this is usually limited to informa-
tion retrieval or exchange tasks, such as searching for bus connections or restau-
rants, where usually the user is exclusively in charge. Contrary to that, future DS
will evolve towards being companions [25] for the user (i.e. intelligent personal
assistants) that help the user not only in simple but also in complex tasks. These
companions solve complex problems collaboratively with the user, if either the user
or the DS is not able to solve the problem on its own, to the liking of the other, or
simply if the user’s load should be reduced. Companions may, for example, provide
assistance in form of artificial intelligence problem solving skills (i.e. planning),
that are intrinsically different from human problem solving skills. Al planning may
solve combinatorial problems that are too complex for humans, due to the need of
mathematical computations or fast information storage and retrieval of large data.
In addition, such systems may have knowledge and problem solving skills for a
domain, the user is not an expert in.
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However, the automatic and autonomous generation of a solution (i.e., a plan)
to a user-provided problem by such artificial skills potentially does not respect the
user’s individual needs and preferences, and is per se not always the best solution
to the problem. The generated plan is usually only a solution, and not one which is
best-suited for the user. Integrating preferences into planning [22] is a solution, yet
requires the user to specify his preferences a priori in an expressible (e.g. action or
method costs) way, which is likely to result in user frustration or even interaction
stop. In addition, the planning process is done autonomously and exclusively by
the planning system. However, this exclusion of the user from the decision-making
process will lead to a couple of problems, we described in previous work [16]. For
example, if humans are not involved into a decision-making process, they are less
likely to follow or execute a proposed plan or solution. In addition, in decisions that
involve grave risks, e. g. in military settings [15] or spaceflight [1], humans must
have the final decision on which actions are to be contained in the plan.

Therefore, we proposed a collaborative decision-making assistant, in Nothdurft
et al. [16], that combines Al planning and human problem-solving skills into a col-
laborative decision-making process. This results in a mixed-initiative planning sys-
tem (MIP) [15, 1, 6], or more general a mixed-initiative assistant (MIA) [23] that
supports users in problem solving and finding appropriate solutions. A collabora-
tive decision-making process has the intent of solving a problem the user is not
able to solve at all or only with great effort. It aims at relieving the user’s cognitive
load and simplifying the problem at hand. In general, the intertwining of human
and Al decision-making skills should lead to an increased user-experience by more
preferable and individual solutions for the user. In addition, MIP also facilitates the
adaptation of a companion to its owner. The companion may learn from past inter-
action episodes and direct the future decision-making processes to the user’s liking.
Since not only the companion may adapt to the user over time, but the user to the
decision-making capabilities of the system as well, this process may be described
as a co-adaptation of two parties.

However, intertwining user and Al planning systems into a MIP system, does
not only facilitate more intelligent and competent systems, but does also raise new
questions. In previous work we described the potentials, challenges, and risks in-
volved in such MIP systems, along a prototypical MIP system architecture. Some of
these challenges, for example, how to maintain coherent models for the participat-
ing components [4], or how to deal with occuring phenomena, such as backtracking
in a collaborative MIP process [16], were already tackled.

2 Mixed-Initiative Planning

In general, the interaction between Al planning and user has to begin with a dialog
to define the statement of an objective. This first dialog has the goal of defining the
task in a way understandable for the planner. Once the problem is passed to the plan-
ner the interactive planning itself may start. Using a selected search strategy (here:
depth-first search) the plan is refined by selecting appropriate modifications for open
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decisions. In order to decide whether to involve the user or not during this process,
an elaborate decision model, integrating various information sources, is used. Rel-
evant information sources are, e. g. the dialog history (e. g. was the user’s decision
the same for all past similar episodes?), the kind of open plan decision (e. g. is this
decision relevant for the user?), the user profile (e. g. does the user have the compe-
tencies for this decision?), or the current situation (e. g. is the current cognitive load
of the user low enough for interaction?). These information sources are used in a
superordinate component, the decision model, to decide whether to involve the user.
The decision model can either initiate a user interaction or determine by itself that
the planner should make the decision. This is equivalent with the user signaling no
explicit preference in the decision-making. Furthermore, it is important whether the
additional interaction is critical and required, to successfully continue the dialog.
Additional dialogs may contribute to achieving short-term goals, but risk the user’s
cooperativeness, in the long run, e. g. by overstraining his cognitive capabilities or
boring him.

In case of user involvement the information on the current plan decision has to be
communicated to the user. This means that the open decision and the corresponding
choice between available modifications have to be represented in a dialog suitable
for the user. Hence, the corresponding plan actions or methods (i. e. the set of possi-
ble actions for a upcoming decision) needs to be mapped to human-understandable
dialog information. As this mapping is potentially required for every plan action or
method, and vice versa for every dialog information, coherent models between plan-
ner and DS become crucial for MIP systems. The thorough matching of both models
would be an intricate and strenuous process, requiring constant maintenance, espe-
cially when models need to be updated. Thus, a more appropriate approach is the
automatic generation or respectively extension of the respective models using one
mutual model as source, the mutual knowledge model (cf. [4]). From this model —
in this case an OWL ontology [24] — the dialogs and their hierarchy can be derived,
using the topmost elements as entry points for the dialog between user and machine.
This is, for example, needed for the user to specify the objective for the planner, or
to present the available plan modifications (i. e. the options in the decision-making),
that have to be translated to a format understandable to the user (cf. [16]). The model
is also used to extend the planning domain: hierarchical structures (i. e. decomposi-
tion methods) are derived using declarative background knowledge modeled in the
ontology (cf. [4]). Using a mutual model addresses one of the challenges of MIP
(cf. [16]), since translation problems between dialog and planner semantics can be
prevented, even when updating the domain (e. g. by acquiring new knowledge, such
as new workouts or rehabilitation methods). Another challenge related to the spe-
cific interaction between man and machine is if, how, and at what specific point in
the dialog user-involvement is necessary or useful. This is one of the most essential
challenges, as the integration process, and how the shift of initiative towards one of
the parties is framed, affects how effective and user-friendly the MIP will be.

Our multimodal MIP system was implemented using a knowledge-based cogni-
tive architecture. The multimodal interface uses mainly speech, and graphical user
interfaces as input and output. In addition, gestures, and sensory information such
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Fig. 1 Essential components of a MIP system (cf. [16]).

as the user location can be used as input. The use of multiple modalities enables us
to vary the means of collaboration from uni- to multimodal interaction. The Dialog
Management uses a modality-independent representation, communicating with the
user via the Fission [10], User Interface [11], Sensors [7], and Fusion [21] modules.

3 Related Work

Initial work on combing dialog and planning in a mixed-initiative fashion has been
done by George Ferguson and James Allen in their TRAINS [2] and TRIPS [5] sys-
tems. Their systems include the collaborative capabilities of reasoning, planning,
execution, and communication and are based on the belief-desire-intention (BDI)
model of agency [18]. Important work, approaching the problem from a different
perspective, has been done by Rich et al. in COLLAGEN [19], aiming at apply-
ing collaborative discourse theory to human-computer interaction. Their work is
based on the SharedPlans theory [8], and models the dialog state of the agents (i. e.
user and system) as they interact and perform activities. More recent work involv-
ing mixed-initiative interaction has been done in various application domains (e. g.
[15, 14, 1, 3]). One of the most well known is MAPGEN [1], applying a mixed-
initiative planning and scheduling approach for the ground operations system for
the Mars Exploration Rover of NASA. Abstract goals were planned by the user, yet
the planner assured that all constraints, which is very complex in such a setting,
are satisfied. Another example is DiamondHelp [20], a generic collaborative task-
guidance system, which may also integrate the COLLAGEN system. DiamondHelp
can be used for a multitude of tasks (e. g. help the user in programming a washing
machine or thermostat).

What these work is missing is to investigate how the user’s involvement should
be framed. If the user is to be involved, the question arises how this should be ren-
dered, i. e. what kind of integration is the most beneficial. In addition, if the user is
not involved in the decision-making, it has to be decided if and how the user may
be informed about the decisions the planner has made. The decision whether and
how to involve the user into the planning process is not only controlled by a degree
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of necessity dependent on the current task and situation, but should also take into
consideration the effects on the user’s system experience. Usually, the user involve-
ment is done by presenting a list of possible options for upcoming decisions to the
user. If this form of user involvement is always necessary or simply best for the user
experience is rather questionable. User involvement strategies may actually range
from almost unrestricted decision-making (i. e. set of options), limited only by valid
solution constraints, over explicit confirmations of system-preselected decisions, to
only informing the user of made decisions. Hence, we designed the study examining
the effects of different strategies of user involvement on the user experience.

4 User Study about User Involvement Strategies

For this study, we used our prototypical MIP system [16] and implemented several
strategies to involve the user into the decision-making. This means that we eval-
uated different degrees of user involvement into a planning process, ranging from
only informing the user of system-made decisions to explicitly requesting a user
confirmation for the proposed system decision. In this scenario the users task was
to create individual strength training workouts. In each strength training workout
at least three different muscle groups had to be trained and exercises chosen ac-
cordingly. The user was guided through the process by the system, which provided
a selection of exercises for training each specific muscle group necessary for the
workout. For example, when planning a strength training for the upper body, the
user had to select exercises to train the chest. This selection is an involvement of
the user into the MIP process. The decision how to refine the task of training the
chest is not made by the system, but left to the user. The system decision was based
on previously made selections by the user. This means that when in a previous in-
teraction the same decision (i. e. the same situation with the exact same options)
had do be done, this user-selected option was remembered for future interactions,
and selected accordingly by the system. Of course, in a more complex scenario this
decision would depend not only on the interaction history, but also on additional
information (e. g. affective user states like overextension, interest, or engagement)
stored in the user state. The system-made selection was presented in various ways,
which were the following:

Explicit confirmation (EC) based on previous selections the choice was already
made by the system and presented to the user, who had to explicitly confirm the
choice by clicking “okay”.

Implicit confirmation (IC) the system-made decision (i.e. the selection) was
presented to the user, but the user could intervene, in a certain time frame, by
clicking “Let me decide”. Therefore, this is a form of implicit confirmation.

Information (INF) the system-made decision was presented to the user without
the need of confirmation. Hence, the user was only informed of the system’s
decision-making, without the option to intervene.

Unsorted (US) the baseline was the usual unsorted selection task. No proactive
behavior by the system was present, meaning that users had to select from a list.
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Fig. 2 The different degrees of user involvement: on the top left the proactive decision by the
system has to be confirmed explicitly by the user (EC). On the top right, the decision is presented
and the user may intervene in a given time frame, else it is confirmed (IC). On the bottom left the
user is only informed of the system’s decision-making (INF), and on the bottom right the usual
selection is presented as baseline condition (US).

In all conditions the system-made selection was explained by the system using a
phrase similar to “For training this muscle group, you previously selected this exer-
cise. Therefore, it was already selected for you.” The participants were distributed by
a random-function to the variants, resulting in 23 participants receiving the known
unsorted selection, 25 asked for explicit confirmation, 30 with implicit confirma-
tions, and 26 receiving only an information by the system.

4.1 Used Questionnaires

For the assessment of the study we chose two questionnaires. The AttrakDiff 2 ques-
tionnaire [9], which extends the assessment of technical systems or software in gen-
eral from the limited view of usability, which represents mostly pragmatic qualities,
to the integration of scales measuring hedonic qualities. It consists of four basic
scales: perceived pragmatic quality, which measures the product’s ability to achieve
the user’s goals efficiently and effectively without inducing a high mental load; he-
donic quality - stimulation, which measures whether novel, interesting and inspiring
qualities are present to increase the user’s attention and foster the user’s abilities and
skills; hedonic quality - identity, which assesses the user’s perceived identity of the
subject at evaluation; and perceived attractiveness, which is a global rating based
on the perceived qualities.
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The other used questionnaire measured the cognitive load. Cognitive load, which
consists of the three different types, should not exceed the working memory capac-
ity [12]. One of the basic ideas of cognitive load theory is that a low extraneous
load, resulting from a good instructional design, enhances the potential that users
engage in cognitive processes (i.e. germane load) related to learning [17]. Hence,
the better the instructional design, the greater potential for germane cognitive load
and learning. We used an experimental questionnaire developed by [13] which mea-
sures all three types of cognitive load separately. The questionnaire consisted of 12
items, with four items each for every type of cognitive load: intrinsic cognitive load,
which can be described as the inherent load induced by the content itself. This type
of load can not be changed by the design of the learning material and is caused
mainly by the difficulty of the task. In other words it results e. g. from the number of
elements that must be simultaneously processed in the working memory; extrane-
ous cognitive load, which is caused by the presentation form of the learning material
and is considered to be manipulable by the design of the learning material; germane
cognitive load, which is considered the load inflicted by the learning process. Ger-
mane cognitive load is “good” cognitive load, which helps in fostering the processes
inherent in the construction and automation of schemas.

4.2 Hypotheses

Our hypotheses were that in general the various conditions will perform differently,
especially regarding perceived cognitive load, pragmatic qualities and attractive-
ness of the system. We expected no significantly different influences on the human-
computer trust relationship between human and machine for the conditions. The
exclusion of the user from the decision making (i. e. only informing the user) was
expected to reduce the hedonic quality compared to the use of explicit and implicit
confirmations. The baseline was expected to perform worst for the perceived prag-
matic system quality, and the explicit confirmation best. In terms of cognitive load
we expected that when the system takes over the decision making (i. e. implicit con-
firmation or user information), the cognitive load for the user is reduced compared
to the other conditions.

4.3 Results

The results were collected using the AttrakDiff, cognitive load, and human-computer
trust questionnaire. In addition, we used an open questions form for user feedback.
As the conditions would not affect objective measures like task completion or effi-
ciency rate, they were neglected in this paper.

AttrakDiff

Assessing the results of the AttrakDiff questionnaire, using a one-way ANOVA, we
found marginal differences between the conditions for the dimensions (see Table 1)
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of perceived hedonic quality - identity (F(3,96) = 2.172,p = .096) and the per-
ceived overall attractiveness (F(3,96) = 2.420, p = .071) of the system. Post-hoc
comparisons using the Fisher Least significant difference (LSD) test indicated that
the mean score of hedonic quality - identity for the US condition (M = 3.71,SD =
.705) was significantly different, at the p = .015 level, than the INF condition
(M =4.37,8SD = .86). For attractiveness the US condition (M = 3.88,5SD = .77) was
also significantly different (p = .009) than the INF condition (M = 4.62,SD = .93).
Looking further into the data and analyzing the single word pairs of the AttrakDiff

PQ HQ-IHQ-S ATT

Us M 427 371 377 388
SD 091 0.71 1.02 0.77
gc M 447 4137 395 417
SD1.12 129 1.17 124
1c M 431 397 397 419
SD 1.12 0.68 0.77 0.84
Np M 481 437 410 462

SD 0.99 0.87 0.96 0.93

Table 1 This table shows the mean values of the AttrakDiff questionnaire dimensions

questionnaire (see Fig. 3), to find the origin of the differences, we could find more
detailed results. Using one-way ANOVA tests we found significant differences in the
word pair impractical - practical and marginal significance for unruly - manageable,
which both belong to the dimension of pragmatic quality. Post hoc comparisons
using Fishers LSD showed that for impractical - practical the INF condition per-
formed significantly better (p = .002) than the US condition and also significantly
better (p = .024) than the IC condition. For unruly - manageable the INF condition
performed significantly better (p = 0.14) than the IC condition.

For the dimension of hedonic quality - identity we found a marginal significant
differences for the word pairs unprofessional - professional and unpresentable -
presentable. Fishers LSD post hoc test revealed that INF performed significantly
better (p = .018) than US for unprofessional - professional. For unpresentable -
presentable the IC condition was significantly better (p = .020) than US, which was
also significantly worse (p = .040) than the INF condition.

For attractiveness a marginal significant difference, using also a one-way ANOVA,
was found in unpleasant - pleasant (F(3,96) = 2.211,p = .092), bad - good
(F(3,96) =2.397, p = .073), and discouraging - motivating (F (3,96) =2.314,P =
.081). Post hoc tests revealed that the significant differences for unpleasant - pleas-
ant were between INF and US at (p = .012). For bad - good the average mean of
the INF condition was significantly better at (p = .014) than US, and also better at
(p = .043) than the EC condition The third word pair showing significant results
(p = .037) was discouraging - motivating with INF performing better than US. In
addition, we found also that the user information condition was significantly per-
forming better for ugly - attractive with US and INF at (p = .037), for rejecting -
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inviting with US and INF at (p = .039), and also for repelling - appealing with US
(M =3.91,5D = 1.08) and INF at (p = .046).

Pragmatic Quality Hedonic Quality — Identity ¥ Hedonic Quality — Stimulation Attractiveness ¥

—+-US =-EC —=+|C —-<INF

Fig. 3 This shows the average means of the AttrakDiff comparing the confirmation conditions on a
7-point Likert scale. US is a unsorted list of options, EC and IC explicit and implicit confirmations,
and INF only informs the user of the system decision. The ’ indicates inverted, for the sake of
readability, scales. The * indicates significance.

Cognitive Load

Analyzing the cognitive load items (see Figure 4) we found significant differences,
using a one-way ANOVA, for fun with (F(3,96) = 3.488, p = .019). Fishers LSD
showed that the user information condition (M = 4.00,5SD = .91) was significantly
better than the rest. Compared to US (M = 3.00,SD = 1.53) at (p = .009), to EC
(M =3.00,SD = 1.25) at (p = .008), and to IC (M = 3.07,SD = 1.43) it was sig-
nificant at (p = .012).

Open Questions

The following comments were entered by the participants: ‘carrying over previous
made decisions should be confirmed by the user’, and ‘If the system selects an ex-
ercise, the system should notify why this exercise was thought to be the most fitting

s

one .
4.4 Discussion

Surprisingly it showed that only informing the user of the system-made selection,
without any possibility to intervene, was performing best in almost any category.
The pragmatic quality, the identification with the system (hedonic quality) and the
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Fig. 4 This shows the average means of the cognitive load comparing the confirmation conditions
on a 7-point Likert scale. Intrinsic, extraneous and germane load originate from the experimental
questionnaire.

overall attractiveness were best for the INF condition. The automatic selection of the
system was perceived as very practical and increased the perception that the system
is predictable and manageable. This goes along with the fact that the system behav-
ior was explained to the user, considering earlier results on explanations and system
acceptance. Additionally, the INF condition was experienced as the most enjoyable
of all, along with reducing the extraneous load (cf. Fig. 4) of the task at hand. Even
though the baseline condition of selecting from an unsorted list as before, was expe-
rienced before, and thus would require no additional cognitive load, the automatic
selection and informing the user of this decision tends to be less demanding on the
extraneous load. Also the technical competence of the system was perceived better
than for the baseline condition.

The integration of the user into the decision making using explicit confirmations
seem to perform second best for most dimensions and items. Though it seems to
increase the extraneous load of the task, by requiring additional user input, the iden-
tification of the user with the system, measured by the hedonic quality - identity
seems to be greater. The fact that the implicit confirmation condition performed that
much worse than the user information actually seems odd to us. It appears to us that
the combination of informing the user and presenting, for a defined time frame, the
explicit interaction possibility to deny the automated selection, was confusing for
the user. Maybe the button labeled ‘Let me decide’, or the definition of a restricted
time frame was not clearly understandable, thus leading to a worse user-experience.
These results show that the decision on how to frame the interaction dialog between
user and system will affect the user experience and potentially the cognitive load of
the user. As future DS will become more complex and evolve to collaborative intel-
ligent assistants rather than simple problem solvers, the way of interaction between
those two parties will be crucial.
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5 Conclusion

Overall, it seems, that for decisions which are understandable and reasonable, in-
forming the user of system-made decisions may contribute to a more practical, at-
tractive, fun and less demanding dialog system. However, one must be careful to
transfer these findings to other domains or more complex tasks. The positive expe-
rience of the user information condition might be due to the task at hand. Usually,
workouts are planned, at least for inexperienced users, by experts (e. g. coaches).
Addressing competences to a workout planner system, and therefore trusting its de-
cisions, seems like a logical conclusion. For future evaluations it will be interesting
to compare these results to automated system behavior for tasks, where usually the
user is in charge and dictates the decision-making process. This might lead to a
decrease of acceptance for user information conditions and to an increase for con-
ditions, where the user has more control. Nevertheless, this work shows that it is
important to investigate in the collaboration dialog (e. g. user involvement strate-
gies) between user and system, which will be important for future more intelligent
and assistive dialog systems.
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