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Abstract— In recent years patents have become increasingly
important for businesses to protect their intellectual capital and
as a valuable source of information. Patent information is, how-
ever, not employed to its full potential and the interpretation of
structured and unstructured patent information in large volumes
remains a challenge. We address this by proposing an integrated
interdisciplinary approach that uses natural language processing
and machine learning techniques to formalize multilingual patent
information in an ontology. The ontology further contains patent
and domain specific knowledge, which allows for aligning patents
with technological fields of interest and other business-related
artifacts. Our empirical evaluation shows that for categorizing
patents according to well-known technological fields of interest,
the approach achieves high accuracy with selected feature sets
compared to related work focussing on monolingual patents. We
further show that combining OWL RL reasoning with SPARQL
querying over the patent knowledge base allows for answering
complex business queries and illustrate this with real-world use
cases from the automotive domain.

I. INTRODUCTION

Knowledge workers and decision makers are confronted
with a massive load of data from numerous heterogeneous
sources, making it difficult for them to identify the relevant
information for performing their tasks [1]. One particular
challenge is the identification, analysis and monitoring of
patents with regard to a firm’s strategic orientation, i.e.,
matching and utilizing them with respect to the firm’s internal
technological fields of interest or existing product portfolios.
Specifically challenging is the abstruse language style with
complex syntactic structure and legal terminology, the rich-
ness and novelty of technical terms, the lack of meaningful
keywords (see e.g., [2], [3], [4], [5]) as well as patents being
written in foreign languages. Moreover, considering the sheer
amount of patent information, the scope of analysis as well
as the richness of information uncovered and, therefore, the
business value, can be limited [6]. The typically required
manual patent analysis can be considered as time-consuming
and requires a degree of technical and legal knowledge. Hence,
the scientific and technological knowledge, which can be
gathered from patents, is often not used to its full potential [3],
[7], [8]. In contrast, patent information can provide essential
technological information to define business strategies [6] and
support decision making, e.g., in the context of a firm’s
innovative processes [9], [10]. More precisely, patents can
be used in state-of-the-art and infringement analyses, prior
art search, technology planning, R&D portfolio management,
human resource management (e.g., to identify internal and
external experts in a specific technological field), external
knowledge generation, competitor and technology assess-
ments, exploitation of emerging markets as well as forecasting

future trends and business opportunities (see e.g., [9], [11],
[12], [6]). Hence, the outcome of patent-related activities can
certainly affect a firms value and performance [13]. Therefore,
searching, analyzing, and monitoring patent information to
gain commercial intelligence has become crucial from legal,
R&D, and managerial viewpoints. The retrieval, analysis and
evaluation of patents must be institutionalized to ensure the
continuous and systematic use of patent information in a
firm’s R&D and decision-making processes [12]. An important
aspect of institutionalizing the patent process is the alignment
of patent information to the prevalent, usually domain- or
firm-specific paradigms of its consumers to achieve enhanced
accessibility and comprehensibility for non-experts. Consider
knowledge workers and decision makers, who usually have
limited legal expertise. They are mostly not or only partially
familiar with the patent-specific terminology, phraseology, or
existing patent classification systems. Consequently, (1) the
alignment and integration of patent information to well-known
cognitive patterns (e.g., domain- or firm-specific conceptual
systems) and (2) computational intelligence, i.e., utilizing
patent information seamlessly in daily business, is desirable.

Conventional patent analysis, while helpful for gaining tech-
nological information and identifying the present condition of
technology assets, does not attempt to integrate technological
and commercial perspectives by identifying promising new
business opportunities [6] and does not release knowledge
workers from laborious tasks such as searching, evaluating
or monitoring patents. However, machines can assist in au-
tomating analysis processes and utilizing patents by extracting
valuable information. Particularly, implicit information has
to be extracted from higher level associations among patent
documents, their textual content as well as between other
business-related artifacts. Picking up this challenge, we present
an integrated framework, which allows for deep analysis
of patents, i.e., being capable of analyzing structured and
unstructured patent information and exploiting it in various
dimensions. Specifically, we combine techniques from several
fields of computer science, namely natural language processing
(NLP), information extraction (IE), machine learning (ML),
information retrieval (IR) and enhance traditional text process-
ing components with Semantic Web (SW) technologies, which
allow for identifying interdependencies between entities and
inferring knowledge from extracted and normalized informa-
tion. With the alignment of patent information to well-known
paradigms, such as technological fields of interest, which
usually already have references to ongoing projects, persons
or products (among others), new business opportunities can be
generated (e.g., for proactive patent management or decision
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making), and, therefore, economic value. Further, the increased
accessibility, understandability and utilizability achieved by
the alignment of patents with well-known conceptual systems
enables non-experts, such as research engineers, business ana-
lysts, HR managers, or executives, to utilize patent information
in their daily business. Hence, the traditional, mostly isolated
patent analysis is shifted towards an integrated, business-
focused viewpoint.

The paper is organized as follows. Section II presents an
integrated analysis framework to exploit patent information
and shows how to map it to a domain of interest, i.e., existing
business artifacts. Section III demonstrates the applicability of
the approach and presents our findings along with examples
from the automotive domain. Finally, Section IV discusses
related work and Section V concludes with a summary and
an outlook.

II. ANALYSIS FRAMEWORK

The analysis and monitoring of patent-related information
requires the integration of complementary data as well as
the discovery of hidden facts and relationships by means of
natural language processing and semantic exploitation [11].
Therefore, in this section, a framework based on three major
components is presented: A preprocessing component, which
is responsible for integrating and unifying available business
artifacts, a semantic pipeline (SP) for analyzing patent content,
and a knowledge base (KB) which is represented as an RDF
dataset.

A. Integration and Processing of Patent Information

In order to integrate and thoroughly exploit patent informa-
tion, patent analysis is formalized with an SP (cf. Figure 1),
which allows for merging various analysis components in
a structured and extensible way, i.e., the SP is capable of
conducting several processing steps to structure, normalize,
and link patent information.

Definition 1: Let C be a set of processing components such
that each c ∈ C provides a processing function f that can be
affected by a set of input parameters P . A semantic pipeline

SP w.r.t. C consists of an input I , an output O, and a sequence
c1, . . . , cn, n ≥ 2, of processing components from C such that
each ci ∈ C, 1 ≤ i ≤ n, is parameterized by a set of input

parameters Pi. Each component ci, 1 ≤ i ≤ n, processes an
input Ii and produces an output Oi that may serve as the input
for the following components, i.e., Ii = {I,O1, ..., Oi−1},
Oi = Ii+1, 1 ≤ i < n, or acts as an input parameter Pi+1,
1 ≤ i < n.

An SP therefore constitutes the symbiosis of components,
which usually perform syntactic, linguistic, semantic or sta-
tistical analyses on business artifacts, such as patents or
project fact sheets, and their existing relations. Available
components are compliant with a specified interface agreement
and therefore can be arranged consecutively and adjusted by
the plug-in – plug-out principle. In particular, components

which implement NLP-algorithms or machine learning tech-
niques can take care of extracting hidden facts and aligning
patents with technological fields of interest. Furthermore, SW
technologies are capable of bridging the gap between patents
and other business-related artifacts and allow for inferring

new knowledge (e.g., unknown facts) from existing relations
to well-known structures as well as from processed and nor-
malized content, to uncover implicit information (e.g., latent
interdependencies). As example, consider extracted facts, such
as spatial information, which can be reused as input by a
reasoning component or a detected language, which can be the
input parameter for a lemmatizing or a categorization compo-

nent. Consequently, the output of an SP can be new artifacts,
relations between them as well as new, updated, or enriched
object or relation properties, which we call annotations.
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Fig. 1. Semantic pipeline

In the following, we illustrate the composition of the SP
used in our scenario. Note that the adjustment and the correct
arrangement of components is an important step when setting
up an SP. In a first step, if divergent, possibly heteroge-
neous data representations (possibly from different sources)
of business artifacts (e.g., patents with meta information like
the owning company) are gathered in their original format,
transformed to homogeneous objects [1], and provided to the
SP. The SP, orchestrated as shown in Figure 2, takes over each
artifact and starts with several preprocessing steps. The first
component, the Language Detector, identifies the language of
an object and serves as input parameter in further processing
steps. The second component, the Tokenizer, splits raw text
into smallest processible units, i.e., tokens. The tokens are then
normalized with the help of a Lemmatizer, such that higher
accuracy is ensured in further processing steps. With these
general components, the scope of analysis and the richness of
information uncovered can be limited, making it difficult to
locate significant patents which might be of relevance for a
firm’s business [6]. Therefore, the SP is enriched with further
annotators. A natural language processing (NLP) component

allows for deep linguistic analysis, such as part of speech
tagging (POS), noun phrase chunking (NPC), and named entity
recognition (NER). As example, noun phrases are distilled by
their frequencies, since they are often used to describe an
invention, regularly represent novel terms, and can provide
indications to identify the actual claim or topical information
[2], [5]. Additionally, the resultant noun phrases are filtered
by general language-specific and patent-specific stop words.

Custom annotators, which usually serve domain- or firm-
specific purposes, complete the processing of patent content.
Overall, linguistic, syntactic and semantic components are
used for these tasks. For example, competitors are extracted
from full text in order to be contextualized, i.e. linked with
the corresponding entities in succeeding processing steps.
Other patent-specific components parse and process metadata
fields (also known as “bibliographic metadata”) which oc-
cur in structured (e.g., application date, prioritization date)
and semi-structured (e.g., inventors, assignees, citations, or
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classifications) formats. Consequently, explicit, i.e., directly
extracted information (e.g., person and organization names,
cited patents) and corresponding relations (e.g., associations
to patent classification systems, patent families, locations,
persons, or organizations) can be created. One classification
system, for example, is the International Patent Classification
System (IPC) provided by the World Intellectual Property
Organization (WIPO). However, IP classes, which are ex-
tracted from patent metadata fields, follow a specific syntax
and usually cannot directly be matched with the WIPO IP class
symbols. Thus, in order to allow assignments of patents to their
corresponding IP classes, a respective component normalizes
the extracted IPC symbols to match the WIPO standard.

Next, after processing the textual content and metadata
of an artifact, the Categorizer annotates each artifact with
topical information. In a final processing step, the above men-
tioned linking component integrates explicit (e.g., IP classes,
locations) and implicit (e.g., competitors, similar patents)
assertions between business artifacts, which are derived from
preceding processing steps, in the KB.

The KB itself is a directed, labeled and weighted multi-
edge graph represented as an RDF dataset, which allows for
persisting and querying all underlying data, i.e., conceptual
systems (e.g., the WIPO IP Classification System or a location
taxonomy), which are represented as hierarchically organized
entities, as well as business artifacts (e.g., patents, persons)
and all (semantic) relationships among them.

Definition 2: RDF is based on the set I of all International-

ized Resource Identifiers (IRIs), the set L of all RDF literals,
and the set B of all blank nodes. The set T of RDF terms

is I ∪ L ∪ B. We generally abbreviate IRIs using prefixes
rdf, rdfs, owl, and xsd to refer to the RDF, RDFS, OWL, and
XML Schema Datatypes namespaces, respectively. We use the
empty prefix for our domain-specific IRIs. An RDF graph G is
a set of RDF triples of the form (subject, predicate, object) ∈
(I∪B)×I×T . An RDF dataset is a collection of RDF graphs
{Gd, 〈i1, G1〉, ..., 〈in, Gn〉}, and comprises exactly one RDF
graph Gd, called the default graph, which is unnamed and may
be empty, as well as zero or more named graphs, consisting
of a pairwise disjoint set of one i ∈ I or one b ∈ B, which
represents the unique graph name, and one RDF graph Gn.

RDF graphs can be interpreted in a number of ways based
on various W3C recommendations. The simple semantics of
RDF specifies the graph structure, whereas more elaborated
semantics, such as RDFS or OWL, provide a special meaning
to certain terms and allow additional RDF statements to be
inferred from explicitly given assertions. Hence, the abstract
specifications allow for describing business artifacts (enti-
ties) and their interdependencies (relations) in an ontology.
However, in order to answer business-related questions, the
general RDF definitions must be enriched and formalized with
additional semantics.

Entities are identified by an IRI and comprise a set of
properties such that all types of entities, e.g., patents, profiles
or technological fields of interest, share a common set of
properties (e.g., “title”, “abstract”, “creationDate”). Thus, each
entity can be described by assertions of the form (resource,
predicate, literal), where the resource represents an entity
instance, the predicate a property and the literal denotes the
actual value. Analogously, distinct types of semantic relations
(e.g., “isAuthorOf”, “isSimilarTo”) are defined as properties,
such that each entity can be linked to another one by triples
of the form (resource, predicate, resource), where the resource
represents an entity instance and the predicate denotes a
specific type of relation.
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Fig. 3. Exemplary conceptual systems utilized for evaluation

In order to gain additional value from the KB, the general
ontology must be refined with domain-specific details. There-
fore, patent-related properties, such as “applicationDate”, “de-
scription” or “claim” are defined. Moreover, appropriate types
of relations, such as “hasInventor”, “sameFamilyAs”, “cites”,
“hasTopic”, or “assignedToIPC” link patents with each other
or other types of entities, such as profiles, technological
fields of interest, locations or IP classes. We further catego-
rize the above described relations into hierarchical, associa-
tive, and equivalent ones. For this purpose three properties
:hierarchical, :associative, and :equivalent are in-
troduced and appropriate subproperty statements are added.
Moreover, we declare properties as symmetric, transitive, or
reflexive, respectively, e.g., subproperties of :hierarchical
are declared as transitive. The following exemplary statements
illustrate such declarations:

:hasInventor rdfs:subPropertyOf :hasRole .

:hasRole rdfs:subPropertyOf :associative .

:isPartOf rdfs:subPropertyOf :hierarchical,

owl:TransitiveProperty .

:hierarchical rdfs:subPropertyOf

owl:TransitiveProperty .

:sameFamilyAs rdfs:subPropertyOf :equivalent .

:equivalent rdfs:subPropertyOf

owl:TransitiveProperty, owl:SymmetricProperty,

owl:ReflexiveProperty .

Transitivity and the corresponding transitive closure of
the relations allows for traversing conceptual systems like
rooted tree graphs, such as technological fields of interest (cf.
Figure 3) within the KB and resolving all related business



entities (e.g., patents, profiles, or products) including their
properties. Consequently, once patents are aligned with such
conceptual systems, the reasoner is capable of contextualizing
them with other business artifacts in various ways. In gen-
eral, network analyses (e.g., network structure and evolution
analyses like cluster identification or resolving paths based on
specific semantic relations) are enabled, i.e., the identification
of unknown correlations and dependencies. Explicit semantic
relations between business entities and conceptual systems
bridge the gap between patents and other business artifacts.
Consider a patent and a technology message from a scout
which are both associated with the same technological field of
interest or one of its parents or children of the corresponding
conceptual system. They can be implicitly associated with
each other, e.g., for the purpose of an infringement analysis
or to be brought in context for a specific engineering problem.
Corresponding (SPARQL) queries can be narrowed down from
network structure (entities and their relations) to property
level.

Moreover, the illustrated abstraction level for relations (i.e.,
associative, hierarchical, and equivalent) allows for deducting
implicit information on a higher level for each instance.
For example, all persons who have a role for all patents
in the field of electro mobility, where each role can be
associated with its subordinate role definitions like inventor
or assignee and electro mobility covers associations with its
child entities such as storage systems. In consequence, further
implicit information and interdependencies can be deducted on
conceptual level based on the output of the SP (e.g., processed
IPCs, extracted competitors, associated profiles, or topical and
similarity analyses). Figure 4 demonstrates a simplified KB
with such exemplary inferences.
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Fig. 4. Exemplary business network with possible inferences

An important aspect for real-life applications is, however,
not yet covered. Consider a patent which was identified
by the SP as being similar to another one. Basically, this
assertion can be expressed in a single statement: :patentA
:isSimilarTo :patentB. However, the assertion does not
provide any information to which degree :patentA is similar
to :patentB. Therefore, querying for similar patents may
result in an unordered (and possibly large) list of patents,
which makes it difficult for patent analysts to identify the
relevant patents when performing their tasks. Weights, which
define the strength of a semantic relationship between two
entities, address this aspect. A weight is expressed as a
numeric range between 0 and 1, with 1 indicating the strongest
possible semantic relation. The assignment of weights to RDF
statements is, however, not directly possible, but the concept
of reification can be used to further describe each relation
with meta statements (i.e., statements about RDF statements),

such as “hasWeight”, “creationDate” or “expirationDate”. The
following example illustrates the concept of reification for the
purpose of assigning weights:

[] rdf:subject :patentA ;

rdf:predicate :isSimilarTo ;

rdf:object :patentB ;

:hasWeight "0.75"ˆˆxsd:decimal .

By adding additional semantics to relations a patent analyst
is not only capable of identifying related business artifacts,
but the most relevant ones (e.g., identifying similar patents is
important for infringement analyses).

Summing up, the SP constitutes the symbiosis of process-
ing components, which usually perform syntactic, linguistic,
semantic or statistical analyses on business artifacts, such as
patents or project fact sheets, and their existing relations.
Available components can be arranged consecutively and or-
chestrated by the plug-in – plug-out principle, such that the SP,
which is constituted by the composition of several components,
serves an intended purpose (e.g., metadata enrichment, detec-
tion of implicit relations between entities). Each component

can be affected by a set of input parameters and generates an
output which can be reused by succeeding components. The
SP is capable of analyzing structured and unstructured (patent)
content, creates annotations, and establishes relationships be-
tween business artifacts. Moreover, new (implicit) knowledge
can be inferred by a reasoning component. In particular, the
KB is used by the SP to (1) align processed business artifacts
with existing ones and to (2) store the business artifacts along
with the resulting annotations and relationships persistently.
The KB is modeled according to the above-mentioned prin-
ciples and is compliant with the latest W3C standards. Data
from the KB is accessible and processible by all implemented
components, new information can be added at runtime, and the
underlying model can be adapted to any domain of interest.
Further note that the underlying model allows for integrating
conceptual systems like rooted tree graphs, which are capable
of representing general, domain- or firm-specific structures
(e.g., locations, product-related structures, or organizational
structures) and interconnect business entities with high se-
mantic expressiveness. In addition, the uniform representation
of business artifacts allows for answering complex business
questions on multiple levels by providing a SPARQL endpoint
on top of the KB, i.e., the reasoner can be used to deduct
implicit relations. Examples include deriving additional IPC
assignments by inferring the children of aligned IP classes,
detecting spatial patterns, topical analyses, or identifying com-
petences by analyzing roles of profiles based on underlying
semantic associations.

B. Aligning Patents with Domain-Specific Systems

An important step while analyzing patents is to extract the-
matic information, which allows for aligning patent informa-
tion with other business-related artifacts. Although each patent
has pre-assigned technological fields, such as IPC symbols,
many of these assignments are either too general or too specific
to fit the intended knowledge structures for topic interpretation
[4], [5] and are difficult to understand to its full extend
by non-experts. Therefore, restricting analyses on such given
classifications does not meet the requirement of making patent



information more accessible to non-experts. However, domain-
or firm-specific paradigms, such as organizational, spatial,
product-related, or technological structures (e.g., departments,
sales regions, product range, technological fields), which can
usually be represented as conceptual systems, can be excellent
connectors to detect and create relations between business-
related artifacts (e.g., patents and project fact sheets associated
with the same technological field). In particular, most of such
structures can be formalized (and mostly already are) and
represented as hierarchical conceptual systems. Consequently,
aligning patents with such existing conceptual systems allows
for the integration to existing business environments and,
therefore, making them comfortably accessible for knowledge
workers and decision makers. Following this, we select tech-
nological fields of interest as connectors for the experimental
validation (cf. Section III), since they are usually defined with
a firm’s strategy.

III. VALIDATION

In this section we present experimental results conducted
with a dataset from the automotive domain.

A. Research Design

The presented analysis framework builds upon several com-
ponents, namely an SP which incorporates an integration
component, which is responsible for providing and prepro-
cessing (business) entities in their raw formats, and a KB.
The backbone of the system is constituted by a general top-
level ontology, which defines (business) entities and their
possible relationships, extended by a lightweight patent on-
tology (a domain-specific ontology). The resulting enhanced
ontology belongs to the OWL 2 RL profile and comprises
10 classes, 28 object, and 54 data properties. Among the
properties there are 5 transitive and 3 symmetric properties
and among the 78 logical axioms, there are 9 object and
13 data property domain axioms, 23 object property range
axioms, 24 subproperty axioms, and 1 inverse object property
axiom. The ontology is stored in the KB along with several
conceptual systems and the processing results from the SP.
Consequently, the KB is the basis for answering complex
business queries. The software itself is written in Java and
all elementary components are publicly available: for data
integration, several interfaces to access various data formats
are provided, namely Apache Tika1 and Apache POI2 (e.g.,
to access PDF documents or spreadsheets) as well as several
database connectors (e.g., MySQL JDBC). Connectors to ad-
ditional sources can be integrated with reasonable effort. The
SP is orchestrated as illustrated in Figure 2 and realized with
Apache UIMA,3 a de facto standard used in industry, which
provides a robust infrastructure to integrate components in a
modular manner. In order to extract facts, create noun phrase
vectors or further enrich patent documents, UIMA is extended
with a Language Detector, several NLP components (e.g.,
Tokenizer, Lemmatizer, POS tagger) as well as several custom
annotators (e.g., a competitor annotator or a named entity
annotator to extract person, organization or location names).

1http://tika.apache.org/
2http://poi.apache.org/
3http://uima.apache.org/

The alignment of patents with predefined technological fields
is done with the OpenNLP Document Categorizer,4 which is
based on the Maximum Entropy framework. The KB, which is
storing the processed data persistently, compromises a triple
store (TDB), which is built for large datasets, and Apache
Jena5 for manipulating and querying data.

B. Dataset

Before analyzing patents, several conceptual systems, which
act as connectors in the overall business network, have to
be added to the knowledge base. In particular, two exem-
plary rooted tree graphs, i.e., hierarchically organized entities,
which are publicly available, are used to contextualize patents:
the WIPO IP Classification System6 (≈72.000 entities) and
locations7 (≈43.000 entities). Further, domain-specific tech-
nological fields of interest (≈200 entities), organized in the
same manner, are added (cf. Figure 3). In order to analyze
patents and align them to technological fields of interest, we
used a multi-lingual patent corpus which origins from several
exports of a commercial patent database.8 The patents, almost
10,000 in total, were selected by a patent expert with regard to
two emerging technological fields of interest in the automotive
domain: electro mobility and hydrogen mobility (cf. Figure 3).
Each given category from the sample data, i.e., a technological
field of interest, which was assigned by a patent expert to
each patent for training purposes, denotes the most specific
category within the hierarchy. Consequently, the respective
technological fields represent the leaves of the corresponding
rooted tree graph to which patents can be aligned.

C. Experimental Setup

In order to validate the alignment of patents to technological
fields of interest, we conducted a controlled experiment. We
analyzed patents in English, German, Chinese and Japanese,
which are among the most important languages in the patent
domain. The distribution of patents across the studied lan-
guages for the training set was 58.28% English, 27.40%
Japanese, 8.04% German, and 6.28% Chinese. The patent
sections title (t), abstract (a), description (d), and claim (c)
were selected as features and the training and categorization
task was performed using four different combinations of these
features for each language: 1) t, a 2) t, a, d 3) t, a, c and 4)
t, a, d, c. The resulting training subsets may contain only a
small amount of sample patents for each technological field
when selecting them by language and availability of content
within the mentioned patent sections (e.g., some old patents
are physically available, but the full text is not available
in a digital format). The nature of patents allows, however,
for minimizing this effect to some extend with the help of
patent families: Since family members belong to the same
invention, almost identical content can be found in patents
belonging to the same family. Therefore, a family member, if
available and preferably containing sample content in English,
was selected for categorization. The motivation behind the

4http://opennlp.apache.org/
5http://jena.apache.org/
6http://www.wipo.int/classifications/ipc/en/ITsupport/
7http://www.geonames.org/
8http://www.minesoft.com/patbase.php



method is to increase the recall for tasks where high recall
is preferred (e.g., searching patents for a technological field
of interest or analyzing patent strategies of competitors in
different countries). Note that this method can also be em-
ployed as an alternative for machine translation tasks. Since
given categories for training are provided as the leaves of a
conceptual system, i.e., a taxonomy of technological fields, the
choice for sample content is further reduced. Consequently, the
repeated random sub-sampling method is selected for valida-
tion. The idea behind this method is to randomly split the set
of sample patents into unique training and validation sets. For
each split, the categorizer is trained with the training set and
validated with the validation set (which contains only unseen
patents). Following this, the experiment was conducted over
five runs (cross-validation) and the means and standard devi-
ations of the results were calculated respectively. Specifically,
the categorizer was trained and validated by changing exactly
one parameter for each run, i.e., content language, a unique
combination of patent sections (features), and a threshold.
The threshold is based on the assumption that the higher the
probability of the best class, the more accurate a patent is
categorized. If the best class confidence exceeds the threshold,
the categorization task was successful. In order to meet this
requirement, we added further indicators to the categorization
task. Every assigned technological field, equipped with a
probability value, is reweighted by (1) IPC match and (2) noun
phrase vector similarity. Expert interviews revealed that some
IP classes can directly be assigned to technological fields and
that noun phrases describe a patent more accurately than single
keywords. Therefore, the IPC match indicator has influence on
the probability if one of the (normalized) IP classes found in
patent metadata matches with a set of predefined IP classes
for a (leaf) sample. Further, we created a noun phrase vector,
cleared from stop words, from each patent document and
calculate the similarity with a given noun phrase vector for
each (leaf) sample. Note that further indicators can be added
to the reweighting function on demand (e.g., CP classes,
citations, patent families, similarity to other patents in the same
category). Accuracy, defined as the percentage of correctly
categorized patents, was used as performance measure for our
results. Consequently, the average accuracy denotes the mean
of all runs. After completion of the categorization task, each
patent was added to the KB by populating the integrated on-
tology. Further, semantic relations to existing conceptual sys-
tems (e.g., technological fields of interest) and other business
artifacts (including other patents) were created by the SP, i.e.,
each patent was contextualized with its corresponding entities
in the KB. Overall, the RDF dataset resulted in more than 10.6
million statements for the roughly 10,000 patents. Most patent
searches, e.g., regarding patentability or validity, are highly
business-sensitive and missing relevant documents would be
unacceptable [11]. Therefore, the reasoner can further be used
for deriving the actual parents of the categorized technological
fields. Remember, that the sample categories are provided
as the leaves of the hierarchy, and, consequently, are very
specific. Therefore, overlapping of similar samples can occur.
Consider, for example, valves and pressure regulators, which
serve more ore less the same purpose. Since their descriptions
might be quite similar, the prediction probabilities for the

best classes converge. However, a patent expert searching for
patents is primarily interested in high recall and is usually
not evaluating very specific technological fields. Therefore,
it is sufficient to satisfy higher level queries (e.g., patents
for storage systems cryogenics). The reasoner can resolve
such queries and categorizes all children as correct results of
their parent category. The advantage of the approach is that
not all members of a hierarchy have to be trained, but all
are resolved on demand with help of the reasoner. Further,
false positives derived from the categorization component can
turn correct when queried over their parent (e.g., both, valves
and pressure regulators, in their context, belong to storage
systems cryogenics). This bottom-up approach is based on the
assumption that the higher the level of a queried hierarchically
organized entity, the higher the precision and recall of the
results. Following this, we achieved an extra (averaged) 3–
8% accuracy in terms of correctly categorized documents with
respect to all mentioned parameters when querying for the first
parent level. Next, to support categorization tasks, the reasoner
enables the detection of implicit knowledge and supports
answering business-related questions. In particular, queries
over hierarchically organized conceptual systems and their
associations with business-related objects are empowered. For
example, consider firms, which protected an invention in the
European market for electric storage systems since 2010. The
reasoner resolves all patent applications in European countries
(including European patent applications, i.e., directly filed at
the European Patent Office EPO), selects the patents which
are assigned to the technological field of interest (including
its children) and returns a list of organizations (e.g., derived
from assignees or extracted firms in patent content) according
to the given time range.

D. Findings

The most important aspect of aligning patent information
with business-related artifacts constitutes the correct cate-
gorization according to well-known technological fields of
interest, since they act as connectors to other business en-
tities in the KB, such as project or technology fact sheets.
Table I illustrates the average categorization accuracy over
five runs with different combinations of patent sections and
the standard deviation enclosed in parentheses. In general, the
categorization task was completed with notably high accuracy
over all languages. Therefore, we can confirm that language
independent alignment to a given set of technological fields
is feasible for patent information. However, we observed
that some parameters are influencing the results more than
others. As example, the categorization of Japanese patents
did not return adequate results when training only specific
features (i.e., patent sections) and a threshold enforced a high
categorization probability (cf. Table I, indicated in bold). This
effect can be explained, as a patent expert approved, with
divergent requirements of content within the actual sections
in patent applications from the Japanese Patent Office (JPO)
as well as the common attitude to protect inventions on
micro-level. In turn, all other languages performed very well
and mostly achieved an accuracy beyond 80% with minimal
features (t, a) as well as for the combination of all sections.
Surprisingly, the categorization tasks which incorporated the



TABLE I
AVERAGE CATEGORIZATION ACCURACY FROM FIVE REPLICATIONS

φ 10 20 30

β lang t/a t/a/d t/a/c all t/a t/a/d t/a/c all t/a t/a/d t/a/c all
0.3 en 0.94 (0.089) 0.72 (0.130) 0.56 (0.134) 0.74 (0.195) 0.86 (0.096) 0.68 (0.148) 0.59 (0.108) 0.78 (0.045) 0.85 (0.056) 0.77 (0.078) 0.64 (0.080) 0.81 (0.064)
0.3 de 0.80 (0.000) 0.80 (0.200) 0.76 (0.167) 0.88 (0.084) 0.82 (0.091) 0.77 (0.130) 0.74 (0.074) 0.87 (0.076) 0.78 (0.077) 0.85 (0.073) 0.67 (0.062) 0.86 (0.083)
0.3 cn 0.90 (0.100) 0.96 (0.055) 0.68 (0.130) 0.96 (0.089) 0.92 (0.076) 0.95 (0.050) 0.72 (0.115) 0.97 (0.045) 0.89 (0.061) 0.96 (0.028) 0.63 (0.131) 0.95 (0.038)
0.3 ja 0.88 (0.110) 0.92 (0.084) 0.76 (0.134) 0.94 (0.089) 0.87 (0.084) 0.95 (0.050) 0.59 (0.114) 0.92 (0.045) 0.93 (0.043) 0.92 (0.030) 0.58 (0.141) 0.93 (0.078)
0.5 en 0.90 (0.100) 0.64 (0.167) 0.54 (0.182) 0.70 (0.100) 0.79 (0.139) 0.63 (0.097) 0.51 (0.108) 0.59 (0.082) 0.79 (0.072) 0.64 (0.055) 0.50 (0.122) 0.65 (0.090)
0.5 de 0.74 (0.114) 0.60 (0.071) 0.68 (0.084) 0.84 (0.055) 0.76 (0.055) 0.76 (0.147) 0.66 (0.065) 0.79 (0.119) 0.73 (0.078) 0.71 (0.109) 0.65 (0.077) 0.79 (0.045)
0.5 cn 0.90 (0.122) 0.98 (0.045) 0.56 (0.152) 0.96 (0.055) 0.98 (0.027) 0.95 (0.035) 0.71 (0.082) 0.95 (0.050) 0.90 (0.053) 0.95 (0.018) 0.63 (0.082) 0.95 (0.038)
0.5 ja 0.36 (0.207) 0.96 (0.089) 0.16 (0.114) 0.98 (0.045) 0.19 (0.065) 0.96 (0.042) 0.18 (0.110) 0.95 (0.035) 0.25 (0.102) 0.92 (0.030) 0.24 (0.134) 0.95 (0.056)
0.7 en 0.76 (0.152) 0.58 (0.130) 0.18 (0.084) 0.64 (0.114) 0.71 (0.096) 0.56 (0.147) 0.32 (0.076) 0.55 (0.100) 0.70 (0.085) 0.51 (0.092) 0.24 (0.109) 0.48 (0.104)
0.7 de 0.72 (0.110) 0.70 (0.141) 0.44 (0.195) 0.76 (0.134) 0.71 (0.096) 0.67 (0.160) 0.49 (0.114) 0.67 (0.115) 0.73 (0.097) 0.72 (0.061) 0.35 (0.107) 0.67 (0.092)
0.7 cn 0.88 (0.130) 1,00 (0.000) 0.62 (0.130) 0.94 (0.089) 0.89 (0.022) 0.97 (0.045) 0.58 (0.045) 0.96 (0.042) 0.85 (0.077) 0.95 (0.038) 0.65 (0.087) 0.95 (0.018)
0.7 ja 0.10 (0.071) 0.92 (0.084) 0.14 (0.089) 0.92 (0.084) 0.11 (0.082) 0.89 (0.055) 0.10 (0.100) 0.95 (0.035) 0.12 (0.056) 0.94 (0.043) 0.09 (0.037) 0.93 (0.043)

β = threshold, lang = trained language, φ = # trained patents, features: t = title, a = abstract, d = description, c = claim, all = all sections

claim section generally resulted in poor accuracy. In contrast,
Japanese patents performed well for (t, a, c). Thus, we can
deduct, that paying attention to actual patent sections during
the training task can have a strong effect on the categorization
accuracy. Nevertheless, if patents with unstudied languages are
processed with the framework, some evaluation on that point
is recommended, even if training all sections always resulted
in adequate results. Further, not surprisingly, the more patents
in the training set and the more thoroughly the training set is
prepared, the more accurate one can expect the results to be.
Despite the fact that many authors proposed improvements for
categorizing patents, the achieved accuracy seems to be limited
at a certain level. To the best of our knowledge no related work
can reduce incorrect categorizations less than 10-15% (e.g.,
see [14], [15] for overviews). Following this, we define an
accuracy of 85% as baseline for our experiments. Overall, with
the identified optimal settings, our approach can compete and
even outperform similar related work with an accuracy ranging
between 75% and 95%. Note that our results are based on
multilingual patents, a comparably small training set and the
training task was performed on the lowest hierarchical level.
Therefore, it is more difficult to achieve high accuracy with
our general approach in contrast to fine-tuned solutions for a
specific (monolingual) problem. Moreover, the query accuracy
(e.g., for search and infringement tasks) generally increases
for higher level queries using the reasoner. In addition, the
proposed methodology is complementary with conventional
approaches, adds new analytical capabilities, and the overall
framework with its graph-based knowledge representation is
designed in a generic way, i.e., it is not tailored to any specific
technological fields of interest or use cases.

In consequence, the presented framework enables a wide
range of business applications. We will briefly illustrate some
exemplary real-world use cases which were realized. For
example, we conducted a competitor analysis based on organi-
zations, which were derived from patent metadata or extracted
from patent content, for the technological field of storage
systems electro. We found that suppliers hold more patents
in this field than the manufacturers themselves and Japanese
companies, in general, hold comparably more patents than
others. Surprisingly, Tesla is not strong in this area with regard
to their patent applications. A patent expert explained this
outcome with many patent applications directly assigned to
the company’s founder compared to applications which are

associated with the company itself. Moreover, we analyzed
competences for a specific company, i.e., persons which were
mentioned in patent applications since 2010. The results were
used, in combination with other business-related informa-
tion (e.g., persons working on R&D projects in a specific
technological field), to identify gaps between technological
fields of interest and experts with a focus on future products,
i.e., whether the company has enough expertise to realize its
planned projects. Furthermore, the proposed framework allows
for creating several visualizations to support decision makers.
Examples include citation networks, technology (road)maps
or other patent-product-related questions (e.g., which patents
exist for a specific part).

IV. RELATED WORK

Patent analysis has challenged researchers for more than a
decade. General approaches and the state-of-the-art of patent
analysis have already been summarized in several studies (see
e.g., [9], [16], [11], [14], [5]). Evolutions are ranging from the
adoption of natural language processing (NLP) and semantics
for automatic processing of information to the design of
innovative and efficient user interfaces, from the integration of
information coming from less traditional sources (such as the
World Wide Web) to the exploitation of hidden information
[11]. In general, we distinguish between quantitative (i.e.,
statistical) and qualitative (i.e., declarative) approaches.

Numerous studies have attempted to create patent networks
with a focus on technology planning or technology roadmaps
based on quantitative analyses (see e.g., [4], [8]). The majority
of authors use text mining or similar techniques (e.g., to extract
keywords or process patent metadata such as citations) as
a basis for their analyses (e.g., for creating networks) and
use statistical methods for evaluation. Some authors provide
visualizations for their results which can be beneficial for
decision makers. Another aspect of patent analysis, with
respect to knowledge workers and decision makers, is to
determine the quality of patents [12], [13], [17]. Some authors
explicitly relate their work to business- and decision-making
processes in this context (e.g., see [12], [18], [6], [15]).
Declarative approaches are, in general, semantic solutions
using formal representations such as taxonomies or ontologies
and primarily focus on integrating and representing patent
information from heterogeneous sources to support patent
retrieval (see e.g., [10], [3], [7], [19], [20]). Other related



approaches have attempted to categorize patents according
to existing classification systems, such as IPC, CPC, EPO,
or USPTO, or cluster them to derive topical information
(see e.g., [18], [21], [15]). However, these methodologies
are mainly keyword-based and therefore language-dependent
to some extent. None have, however, fully exploited multi-
lingual patent information in its structured, semi-structured
or unstructured formats, aligned it with well-known business
artifacts, which can be represented as conceptual systems, as
well as reusing extracted facts to derive implicit information
from higher level associations to address concrete business-
related requirements. Moreover, the presented approach is not
limited to a certain use case, and thus, allows for performing
further statistical, semantic and graph-based analyses, e.g.,
to determine a patent’s value, discover similarities between
(other) business artifacts, support patent retrieval, or allow
dependency analyses or technology forecasting (e.g., citation-
based, temporal) as illustrated in related work. In conclusion,
the proposed framework is capable of supporting most aspects
of a firm’s innovation- and patent-related processes.

V. SUMMARY AND OUTLOOK

This paper presents an integrated framework for analyzing
patents and aligning them with business-related artifacts. A
controlled experiment with multi-lingual patents originating
from a real-world case in the automotive domain demon-
strates how to align multilingual patents with technological
fields of interest and other business-related artifacts with
high accuracy. In contrast to related work, the illustrated
solution meets the general requirements of a holistic tool,
i.e., integrating complementary data, the ability to process
large sets of multilingual patents, discovering hidden facts and
relationships, eliciting topical information as well as empow-
ering statistical and semantic exploitation [16], [11] to create
additional business value with computational intelligence. The
combination of methods from different fields of computer
science, an adaptable and standard-compliant graph-based
uniform representation as well as the capability to process
structured, unstructured and interconnected information allows
various types of analyses (linguistic, syntactical, statistical,
semantic, or network-based exploitation), and ensures the
interoperability for various types of business artifacts and their
relationships. Moreover, implicit information from higher level
associations can be derived with a reasoning component. With
the achieved analysis opportunities and the ability to integrate
patent intelligence into supplementary business processes, the
pro-active management of patents can be institutionalized
and new business cases are enabled. Furthermore, users with
different roles, such as technical engineers or decision makers,
can explore and utilize patent information in their daily tasks
with less manual effort and expertise. New functionality or
domain-specific requirements can easily be incorporated due
to the plug-in – plug-out principle. Examples include adding,
removing or reconfiguring components of the SP, the inte-
gration of further background knowledge in the ontology or
further conceptual systems (e.g., organizational units and their
roles, products and their components). Based on the proposed
framework, further linguistic, semantic, graph-based and time-
based analyses (e.g., technology roadmapping and forecasting,

pattern analysis over citations, deep analysis of patent claims,
competitor and activity analyses) will be integrated in future
work. Moreover, by shifting our attention to the evaluation of
patent determinants with regard to their quality and impact,
i.e., examining their additional value for a business, will
enhance the benefits of the proposed framework and enable
further business cases. In addition, the general applicability of
the proposed framework, i.e., for other domains and datasets,
will be evaluated.
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