
Exploring Parallel Tractability of
Ontology Materialization

Zhangquan Zhou1 and Guilin Qi1 and Birte Glimm2

Abstract. Materialization is an important reasoning service for ap-
plications built on the Web Ontology Language (OWL). To make ma-
terialization efficient in practice, current research focuses on decid-
ing tractability of an ontology language and designing parallel rea-
soning algorithms. However, some well-known large-scale ontolo-
gies, such as YAGO, have been shown to have good performance for
parallel reasoning, but they are expressed in ontology languages that
are not parallelly tractable, i.e., the reasoning is inherently sequential
in the worst case. This motivates us to study the problem of parallel
tractability of ontology materialization from a theoretical perspec-
tive. That is, we aim to identify the ontologies for which material-
ization is parallelly tractable, i.e., in NC complexity. In this work, we
focus on datalog rewritable ontology languages. We identify several
classes of datalog rewritable ontologies (called parallelly tractable
classes) such that materialization over them is parallelly tractable.
We further investigate the parallel tractability of materialization of
a datalog rewritable OWL fragment DHL (Description Horn Logic)
and an extension of DHL that allows complex role inclusion axioms.
Based on the above results, we analyze real-world datasets and show
that many ontologies expressed in DHL or its extension belong to the
parallelly tractable classes.

1 Introduction
The Web Ontology Language OWL3 is an important standard for on-
tology languages in the Semantic Web and other application areas.
Materialization is a basic reasoning service for computing all im-
plicit facts that follow from a given OWL ontology. Since there is an
exponential growth of semantic data [18], it is challenging to perform
materialization on such large-scale ontologies efficiently.

To make materialization sufficiently efficient and scalable in prac-
tice, many works employ parallel reasoning systems. For example,
RDFox [19] is a parallel implementation for materialization of data-
log rewritable ontology languages. Parallel reasoning is also studied
for the ontology language RDFS [22, 26]. There are also parallel im-
plementations for scalable reasoning of highly expressive ontology
languages [25, 33]. However, according to [5], even for RDFS and
datalog rewritable ontology languages, which have PTime-complete
or higher complexity4 of reasoning in the worst case, they are not
parallelly tractable, i.e., reasoning may be inherently sequential even
on a parallel implementation. On the other hand, some well-known
large-scale ontologies, such as YAGO, have been shown to have good

1 School of Computer Science and Engineering, Southeast University, email:
{qzz, gqi}@seu.edu.cn

2 Institution of Artificial Intelligence, University of Ulm, email:
birte.glimm@uni-ulm.de

3 The latest version is OWL 2: http://www.w3.org/TR/owl2-overview/
4 We consider the data complexity for materialization here.

performance for parallel reasoning [14], but they are expressed in
ontology languages that are not parallelly tractable. The theoretical
results on the complexity of ontology languages can hardly explain
this. While one can try out different parallel implementations to see
whether an ontology can be handled by (one of) them efficiently, the
aim of our study is to identify properties that make an ontology paral-
lelly tractable and that can also guide ontology engineers in creating
ontologies for which parallel tractability can be guaranteed theoreti-
cally. According to [19], many real large-scale ontologies are essen-
tially expressed in the ontology languages that can be rewritten into
datalog rules. Thus, we focus on such datalog rewritable ontology
languages in this paper. Our aim is to identify the classes of datalog
rewritable ontologies such that materialization over these ontologies
is parallelly tractable, i.e., in the parallel complexity class NC [5].
This complexity class consists of problems that can be solved effi-
ciently in parallel.

To show that a problem is in the NC class, one can give an NC algo-
rithm that handles this problem in parallel computation [5]. However,
current materialization algorithms (e.g., the algorithm used in RDFox
[19]) are not NC algorithms, since their computational complexity is
PTime-complete. Thus, we study the parallel tractability of materi-
alization by first giving several NC algorithms that perform materi-
alization, and then identifying the corresponding classes of datalog
rewritable ontologies (called parallelly tractable classes) that can be
handled by these NC algorithms. We next study the specific ontol-
ogy language Description Horn Logic (DHL) [6], which is a datalog
rewritable fragment of OWL, and investigate what kinds of ontolo-
gies expressed in DHL are in the parallelly tractable classes. We give
a case of a DHL ontology where materialization can hardly be par-
allelized. Based on the analysis of this case, we propose to restrict
the usage of DHL such that materialization over the restricted on-
tologies can be handled by the proposed NC algorithms. We further
extend the results to an extension of DHL that also allows complex
role inclusion axioms. Finally, we analyze well-known benchmarks
and real-world datasets and show that many ontologies following the
proposed restrictions belong to the parallelly tractable classes.

The rest of the paper is organized as follows. In Section 2, we
introduce some basic notions. We then give some NC algorithms in
Section 3 and Section 4. We study the parallelly tractable materializa-
tion of DHL and its extension in Section 5 and Section 6 respectively.
In Section 7, we analyze real-world datasets. We then discuss related
work in Section 8 and conclude in Section 9. The technical report
can be found at “https://github.com/quanzz/ECAI2016”.

2 Preliminaries

In this section, we introduce some notions that are used in this paper.

Datalog. We discuss the main issues in this paper using standard
datalog notions. In datalog [1], a term is a variable or a constant.
An atom A is defined by A ≡ p(t1, ..., tn) where p is a predicate
(or relational) name, t1, ..., tn are terms, and n is the arity of p. If
all the terms in an atom A are constants, then A is called a ground
atom. A datalog rule is of the form: ‘B1, ..., Bn → H’,5 where H
is referred to as the head atom and B1, ..., Bn the body atoms. Each
variable in the head atom of a rule must occur in at least one body
atom of the same rule. A fact is a rule of the form ‘→ H’, i.e., a rule
with an empty body and the head H being a ground atom. A datalog
program P consists of rules and facts. A substitution θ is a partial
mapping of variables to constants. For an atom A, Aθ is the result
of replacing each variable x in A with θ(x) if the latter is defined.
We call θ a ground substitution if each defined Aθ is a ground atom.
A ground instantiation of a rule is obtained by applying a ground
substitution on all the terms in this rule with respect to a finite set
of constants occurring in P . Furthermore the ground instantiation of
P , denoted by P ∗, consists of all ground instantiations of rules in P .
The predicates occurring only in the body of some rules are called
EDB predicates, while the predicates that may occur as head atoms
are called IDB predicates.

DHL. DHL (short for description horn logic) [6] is introduced
as an intersection of description logic (DL) and datalog in terms
of expressivity. In what follows, CN, RN and IN denote three dis-
joint countably infinite sets of concept names, role names, and in-
dividual names respectively. The set of roles is defined as R :=
RN ∪ {R−|R ∈ RN} where R− is the inverse role of R.

For ease of discussion, we focus on the simple forms of axioms
shown in the left column of Table 1. These simple forms can be
obtained by using well-known structure transformation techniques
[12]. We define a DHL ontology O as a triple: O = ⟨T ,R,A⟩,
where T denotes the TBox containing axioms of the forms (T1) and
(T2); R is the RBox that is a set of axioms of the forms (R1-R3); A
is the ABox containing assertions of the forms (A1) and (A2). In an
axiom of either of the forms (T1-T2 and R1-R3), concepts A(i) and
B are either concept names, top concept (⊤) or bottom concept (⊥);
R and S(i) are roles in R. An axiom of the form A ⊑ B is a special
case of (T1) where only one concept appears on the left-hand side.
For an axiom of the form A ⊑ ∀R.B that is also allowed in DHL,
we only consider its equivalent form ∃R−.A ⊑ B.

Table 1: Axioms and corresponding datalog rules
Axioms Datalog Rules

(T1) A1 ⊓A2 ⊑ B A1(x), A2(x) → B(x)
(T2) ∃R.A ⊑ B R(x, y), A(y) → B(x)
(R1) S ⊑ R S(x, y) → R(x, y)
(R2) S ⊑ R− S(x, y) → R(y, x)
(R3) R ◦R ⊑ R R(x, y), R(y, z) → R(x, z)
(R4) R1 ◦R2 ⊑ R R1(x, y), R2(y, z) → R(x, z)
(A1) A(a) A(a)
(A2) R(a, b) R(a, b)

In the initial work of DHL [6], complex role inclusion axioms
(complex RIAs) of the form R1 ◦ ... ◦ Rn ⊑ R are not considered,
although they can be naturally transformed to datalog rules. In this
paper, we also consider an extension of DHL (denoted by DHL(◦))
that allows complex RIAs. Since a complex RIA can be transformed
to several axioms of the form (R4), we then require that an RBox
R of a DHL(◦) ontology can contain axioms of the forms (R1-R4).
Note that (R3) is actually a special case of (R4).

5 In datalog rules, a comma represents a Boolean conjunction ‘∧’.

A DHL (or DHL(◦)) ontology can be transformed to a datalog
program (see the corresponding rules in the right column of Table 1).
In what follows, for an ontology O = ⟨T ,R,A⟩, we also use P =
⟨R, I⟩ to represent the corresponding datalog program where R is
the set of rules transformed from the axioms in T and R, I is the
set of facts that are directly copied from the assertions in A. Further,
we use R1 ⊑∗ R2 to denote the smallest transitive reflexive relation
between roles such that R1 ⊑ R2 ∈ R implies R1 ⊑∗ R2 and
R−

1 ⊑∗ R−
2 . In this paper, we also use the notion of simple role,

which is initially proposed to restrict the usage of highly expressive
ontology languages [10]. Specifically, a role S ∈ R is simple if, (1)
it has no subrole (including S) occurring on the right-hand side of
axioms of the forms (R3) and (R4); (2) S− is simple.

DHL is related with other ontology languages. First, DHL is es-
sentially a fragment of the description logic Horn-SHOIQ with
disallowing nominal, number restriction and right-hand existential
restriction (A ⊑ ∃R.B). Second, the expressivity of DHL covers
that of RDFS to some extent [6]. Reasoning with RDFS ontologies is
NP-complete [29] and, thus, is not parallelly tractable. However, by
applying some simplifications and restrictions, RDFS statements can
be expressed in DHL axioms [6].

Ontology Materialization. Based on the above representations,
ontology materialization corresponds to the evaluation of datalog
programs. Specifically, given a datalog program ⟨R, I⟩, let TR(I) =
{Hθ|∀B1, ..., Bn → H ∈ R,Biθ ∈ I(1 ≤ i ≤ n)}, where θ is
some substitution; further let T 0

R(I) = I and T iR(I) = T i−1
R (I) ∪

TR(T
i−1
R (I)) for each i > 0. The smallest integer n such that

TnR(I) = Tn+1
R (I) is called stage, and materialization refers to the

computation of TnR(I) with respect to R and I. TnR(I) is also called
the fixpoint and denoted by TωR (I). In this paper, we consider the data
complexity of materialization, i.e., we assume that the rule set R is
fixed.
NC. The parallel complexity class NC, known as Nick′s Class [5],

is studied by theorists as a parallel complexity class where each de-
cision problem can be efficiently solved in parallel. Specifically, a
decision problem in the NC class can be solved in poly-logarithmic
time on a parallel machine with a polynomial number of proces-
sors. We also say that an NC problem can be solved in parallel poly-
logarithmic time. Although the NC complexity is a theoretical anal-
ysis tool, it has been shown that many NC problems can be solved
efficiently in practice [5].

From the perspective of implementations, the NC problems are
also highly parallel feasible for other parallel models like BSP [31]
and MapReduce [11]. The NC complexity is originally defined as a
class of decision problems. Since we study the problem of materi-
alization, we do not require in this work that a problem should be a
decision problem in NC. In addition, since many parallel reasoning
systems (see related work in Section 8) are implemented on shared-
memory platforms, we study all the issues in this work by assuming
that the running machines are in shared-memory configurations.

3 Parallelly Tractable Class

Parallelly Tractable Class. Our target is to find for which kinds
of ontologies (not ontology languages) materialization is parallelly
tractable. Since we assume that for any datalog program ⟨R, I⟩ the
rule set R is fixed, the materialization problem is thus in data com-
plexity PTime-complete, which is considered to be inherently se-
quential in the worst case [5]. In other words, the materialization
problem on general datalog programs cannot be solved in parallel
poly-logarithmic time unless P=NC. Thus, we say that materializa-

tion on a class of datalog programs is parallelly tractable if there
exists an algorithm that handles this class of datalog programs and
runs in parallel poly-logarithmic time (this algorithm is also called
an NC algorithm). Formally, we give the following definition to iden-
tify such a class of datalog programs.

Definition 1. (Parallelly Tractable Class) Given a class D of data-
log programs, we say that D is a parallelly tractable datalog pro-
gram (PTD) class if there exists an NC algorithm that performs mate-
rialization for each datalog program in D. The corresponding class
of ontologies of D is called a parallelly tractable ontology (PTO)
class.

According to the above definition, if we find an NC algorithm A
for datalog materialization, then we can identify a PTD class DA,
which is the class of all datalog programs that can be handled by A.
However, current materialization algorithms are not NC algorithms,
since their computational complexity is PTime-complete. Thus we
give our NC algorithms. In the following, we first give a parallel ma-
terialization algorithm that works for general datalog programs. We
then restrict this algorithm to an NC version and identify the target
PTD class.

Materialization Graph. In order to give a parallel materialization
algorithm, we introduce the notion of materialization graph. It makes
the analysis of the given algorithm convenient.

Definition 2. (Materialization Graph) A materialization graph, with
respect to a datalog program P = ⟨R, I⟩, is a directed acyclic graph
denoted by G = ⟨V,E⟩ where,

• V is the node set and V ⊆ TωR (I);
• E is the edge set and E ⊆ TωR (I)× TωR (I);

G satisfies the following condition:

• ∀H,B1, ..., Bn ∈ V such that e(B1,H), ..., e(Bn, H) ∈ E and
B1, ..., Bn are all. the parents of H , we have that B1, ..., Bn →
H ∈ P ∗.

For some derived atom H , there may exist several rule instan-
tiations where H occurs as a head atom. This also means that H
can be derived in different ways. The condition in the definition
above results in only one way of deriving H being described by
a materialization graph. Suppose G is a materialization graph, the
nodes whose in-degree is 0 are the original facts in I. We call such
a node an explicit node. We call the other nodes in G the implicit
nodes. We say that a node v is a single-way derivable (SWD) node
if v has at most one implicit parent node; nodes with more than one
implicit parent nodes are called multi-way derivable (MWD) nodes.
The size of G, denoted by |G|, is the number of nodes in G. The
depth of G, denoted by depth(G), is the maximal length of a path
in G. We next give an example of a materialization graph.

Example 1. Consider a DHL(◦) ontology Oex1 where the TBox
is {∃R.A ⊑ A}, the RBox is {S ◦ R ⊑ R} and the ABox is
{A(b), R(a1, b), S(ai, ai−1)} for 2 ≤ i ≤ k and k is an integer
greater than 2. The corresponding datalog program of this ontol-
ogy is Pex1 = ⟨R, I⟩ where I contains all the assertions in the
ABox and R contains the two rules ‘R(x, y), A(y) → A(x)’ and
‘S(x, y), R(y, z) → R(x, z)’. The graph in Figure 1 is a materi-
alization graph with respect to Pex1 , denoted by Gex1 . The explicit
nodes whose in-degree is 0 are the original facts in I. Each of the
implicit nodes corresponds to a ground instantiation of some rule.

For example, the node A(ak) corresponds to the ground rule instan-
tiation ‘R(ak, b), A(b) → A(ak)’. The size of this materialization
graph is the number of nodes, that is 3k. The depth of Gex1 is k.

�(a2,a1) �(ak,ak-1) (b)

!(ak,b)

…… ……

…
…

1

2

k

K+1

R(a1,b)

!(a2,b) (a1)

 (a2)

 (ak)

Figure 1. An example of a materialization graph.

We say that a materialization graph G is a complete materialization
graph when G contains all ground atoms in TωR (I). The set of nodes
in a complete materialization graph is actually the result of materi-
alization. Thus, the procedure of materialization can be transformed
to the construction of a complete materialization graph. We pay our
attention to complete materialization graphs and do not distinguish
it to the notion ‘materialization graph’. It should also be noted that
there may exist several materialization graphs for a datalog program.

A Parallel Algorithm. In this part, we propose a parallel algo-
rithm (Algorithm 1) that constructs a materialization graph for a
given datalog program.

Algorithm 1. Given a datalog program P = ⟨R, I⟩, the algo-
rithm returns a materialization graph G of P . Recall that P ∗ denotes
the ground instantiation of P , which consists of all possible ground
instantiations of rules in R. Suppose we have |P ∗| processors, and
each rule instantiation in P ∗ is assigned to one processor.6 Initially
G is empty. The following three steps are then performed:

(Step 1) Add all facts in I to G.
(Step 2) For each rule instantiation B1, ..., Bn → H , if the body

atoms are all in G while H is not in G,7 the correspond-
ing processor adds H to G and creates edges pointing from
B1, ..., Bn to H .

(Step 3) If no processor can add more nodes and edges to G, termi-
nate, otherwise iterate Step 2. �

Example 2. We consider the datalog program Pex1 in Exam-
ple 1 again, and perform Algorithm 1 on it. Initially, all the facts
(A(b), R(a1, b), S(a2, a1), ..., S(ak, ak−1)) are added to the result
Gex1 (Step 1). Then in different iterations of Step 2, the remaining
nodes are added to Gex1 by different processors. For example a pro-
cessor p is allocated a rule instantiation ‘R(a2, b), A(b) → A(a2)’.
Then, processor p adds A(a2) to Gex1 after it checks that A(b) and

6 This might not be practically feasible, but we focus on a theoretical anal-
ysis here. In practice, one can map several rule instantiations to a single
processor.

7 Suppose that each processor can use O(1) time units to access the state of
ground atoms, i.e., whether this ground atom has been added to the ma-
terialization graph. This can be implemented by maintaining an index of
polynomial size.

R(a2, b) are in Gex1 . Algorithm 1 halts when A(ak) has been added
to Gex1 (Step 3).

Lemma 1 shows the correctness of Algorithm 1 and that, for any
datalog program P , Algorithm 1 always constructs a materialization
graph with the minimum depth among all the materialization graphs
of P . The proofs of Lemma 1 and other lemmas and theorems can be
found in the technical report.

Lemma 1. Given a datalog program P = ⟨R, I⟩, we have

1. Algorithm 1 halts and returns a materialization graph G of P ;
2. G has the the minimum depth among all the materialization

graphs of P .

Proof sketch. This lemma can be proved by performing an induction
on TωR (I). The stage (see the related contents in Section 2) of P is the
lower-bound of the depth of the materialization graphs. Based on the
previous induction, one can further check that, for the materialization
graph G constructed by Algorithm 1, its depth equals the depth of the
stage.

We now discuss how Algorithm 1 can be restricted to an NC ver-
sion. (I) Since Algorithm 1 does not introduce new constants and
each predicate has a constant arity, one can check that |P ∗| is poly-
nomial in the size of P . This also means that the number of pro-
cessors is polynomially bounded. (II) The computing time of Step 1
and Step 3 occupies constant time units because of parallelism. (III)
The main computation part in Algorithm 1 is the iteration of Step 2.
In each iteration of Step 2, all processors work independently from
each other. Thus, in theory, Step 2 costs one time unit. The whole
computing time turns out to be bounded by the number of iterations
of Step 2. (IV) We use the symbol ψ to denote a poly-logarithmically
bounded function. The input of ψ is the size of P and the output is
an non-negative integer. Based on (I, II, III, IV), for any datalog pro-
gram P , if we useψ(|P |) to bound the number of iterations of Step 2,
then Algorithm 1 is an NC algorithm, denoted by Aψ1 .

Based on Aψ1 , we can identify a class of datalog programs D
A
ψ
1

where all the datalog programs can be handled by Aψ1 . It is obvious
that D

A
ψ
1

is a PTD class.
We further show that D

A
ψ
1

can be captured in terms of material-
ization graph properties based on the following theorem.

Theorem 1. For any datalog program P , P ∈ D
A
ψ
1

iff P has a

materialization graph whose depth is upper-bounded by ψ(|P |).

Proof sketch. We can first prove that the number of iterations of
Step 2 is actually the depth of the constructed materialization graph.
This theorem then follows by considering Lemma 1.

The algorithm Aψ1 is restricted in the sense that it cannot even work
on the rather simple datalog program Pex1 in Example 1. The graph
Gex1 in Figure 1 is the unique materialization graph of Pex1 . One
can also check that depth(Gex1)= k. This means that the depth
of Gex1 is linearly bounded by k. On the other hand, the size of
Pex1 is a polynomial of the integer k. Thus, for any ψ that is poly-
logarithmically bounded, we can always find a k large enough such
that Aψ1 terminates without constructing a materialization graph of
Pex1 . However there indeed exists an NC algorithm that can handle
Pex1 . We discuss this in the next section.

4 Two Optimized NC Algorithms
In this section, we discuss how to optimize Algorithm 1 such that
Pex1 can be handled. Based on the optimized variants of Algo-
rithm 1, we can identify other PTD classes.

An Optimization Strategy. We discuss our optimization based on
a general case in Example 3. We find that, in this kind of case, the
construction of a materialization graph can be accelerated.

Example 3. Consider a snapshot of Algorithm 1 in Figure 2. A ma-
terialization graph G is being constructed for some datalog program
⟨R, I⟩. The bottom nodes in the dashed box are the original facts in
I. In this snapshot, v0 has been newly added to G in the lth (l ≥ 1)
iteration. Each of the nodes vi (1 ≤ i ≤ k) is an SWD (single-
way derivable) node. The node v′ is an MWD (multi-way derivable)
node. All of the nodes vi (1 ≤ i ≤ k) and v′ would be added to G
afterwards.

v�

v

v!

v"

… …

l

l+1

l+k

l+k+1

…

…

…

Figure 2. A partial materialization graph.

In Example 3, vk would be added to G after at least k iterations
by performing Algorithm 1. Observe that vk is reachable from v0
through the path (v0, v1, ..., vk). On the one hand, each node vi (1 ≤
i ≤ k) can be added to G whenever its parent vi−1 is in G, since
vi is an SWD node, i.e., vi−1 is the unique implicit parent node of
vi. Since v0 has been added to G, one can add all the nodes vi (1 ≤
i ≤ k) to G right after v0. Based on this observation, we optimize
Algorithm 1 using the following strategy:

(Strategy) In every iteration of Step 2, for each SWD node v, we
add v to G immediately if v is reachable from some node that has
been in G through a path containing only SWD nodes.

For an SWD node v in some materialization graph G, we say that
a path τ is a derivable path of v if τ starts from some node that has
been in G and ends in v and only contains SWD nodes. To describe
the reachability between two nodes, we use a binary transitive re-
lation rch ⊆ TωR (I) × TωR (I), e.g., rch(v1, v2) means that v2 is
reachable from v1. In each iteration of Step 2, we compute a rch
relation (denoted by Srch) by performing the following process:

(†) For each rule instantiation of the form B1, .., Bi, .., Bn → H
where H is not in G:

1. if the body atoms B1, ..., Bn are all in G, add
rch(B1,H), ...,rch(Bn, H) to Srch;

2. if Bi is the unique implicit node in the body and not yet in G,
add rch(Bi,H) to Srch. �

We then compute the transitive closure of rch with respect to Srch.
From the transitive closure, we can identify such SWD nodes that

can be added to G in advance. The following algorithm applies this
optimization strategy.

Algorithm 2. The algorithm requires two inputs: a datalog pro-
gram P = ⟨R, I⟩ and a (partial) materialization graph G that is con-
structed from P . The following steps are performed:

(i) Compute a rch relation Srch by following the above process
(see (†)).

(ii) Compute the transitive closure S∗
rch of Srch.

(iii) Update G as follows: for any rch(Bi,H) ∈ Srch that corre-
sponds to ‘B1, .., Bi, .., Bn → H’ such that rch(B′,H),
rch(B′′, Bi) ∈ S∗

rch where B′, B′′ are in G; If H is not
in G or H is in G but has no parent pointing to it, add
H and Bi (if Bi is not in G) to G, and create the edges
e(B1, H), ..., e(Bn, H) in G. Do nothing for other statements
rch(Bj , H) ∈ Srch. �

It is well known that there is an NC algorithm for computing
the transitive closure [2]. Based on this result and Algorithm 2, we
propose a variant of Algorithm 1:

Algorithm 3. Given a datalog program P = ⟨R, I⟩, the algo-
rithm returns a materialization graph G of P . Initially G is empty.
The following steps are then performed:

(Step 1) Add all facts in I to G.
(Step 2) Compute Srch by performing (i) in Algorithm 2; use an NC

algorithm to compute the transitive closure S∗
rch (see (ii) in

Algorithm 2); update G by performing (iii) in Algorithm 2.
(Step 3) If no node has been added to G (in Step 2), terminate, oth-

erwise iterate Step 2. �

The following lemma shows the correctness of Algorithm 3.

Lemma 2. Given a datalog program P = ⟨R, I⟩, Algorithm 3 halts
and outputs a materialization graph G of P .

Proof sketch. This lemma is proved in two stages: (1) the graph G re-
turned by Algorithm 3 is a materialization graph; (2) G is a complete
materialization graph. We prove (1) by an induction on the iterations
of Step 2 in Algorithm 3. To prove (2), we use the same method as
in the proof for Lemma 1 to show that all atoms in TωR (I) have to be
added to G.

Example 4. We perform Algorithm 3 on the datalog program
Pex1 in Example 1. Initially, R(a1, b) is in the materializa-
tion graph Gex1 . In the first iteration of Step 2, all the rule
instantiations are in two kinds of forms: ‘R(ai, b), A(b) →
A(ai)’ and ‘S(ai, ai−1), R(ai−1, b) → R(ai, b)’ (2 ≤ i ≤
k), Srch is the set {rch(R(ai−1, b), R(ai, b))|2 ≤ i ≤
k} ∪ {rch(R(ai, b), A(ai))|1 ≤ i ≤ k}. In the transi-
tive closure of Srch, one can check that rch(R(a1, b), R(ai, b)),
rch(R(a1, b), A(ai)) ∈ S∗

rch(2 ≤ i ≤ k). Thus,R(ai, b) andA(ai)
(2 ≤ i ≤ k) can all be added to Gex1 in the first iteration of Step 2.

We obtain an NC variant of Algorithm 3 analogously to the pro-
cess for Algorithm 1. It can be checked that an iteration of Step 2
in Algorithm 3 costs poly-logarithmic time, since the main part is
computing S∗

rch by an NC algorithm. Thus, if the number of iterations
of Step 2 is upper-bounded by a poly-logarithmical function, Algo-
rithm 3 is an NC algorithm. Analogously to Aψ1 , we use Aψ3 to denote
an NC variant. Specifically, for any datalog program P , the number

of iterations of Step 2 in Algorithm 3 is bounded by ψ(|P |), where
ψ is a poly-logarithmically bounded function.

Based on Aψ3 , we can identify a PTD class D
A
ψ
3

. The following
theorem shows that D

Aψ3
can also be captured by the properties of a

materialization graph.

Theorem 2. For any datalog program P , P ∈ D
A
ψ
3

iff P has a
materialization graph G such that the number of MWD nodes in each
path of G is upper-bounded by ψ(|P |).

Proof sketch. (⇒) Suppose each materialization graph of P has a
path where the number of MWD nodes is not upper-bounded by
ψ(|P |). This also means the number of iterations of Step 2 is not
upper-bounded by ψ(|P |) when constructing a materialization graph
of P . Thus Aψ3 cannot handle P .

(⇐) SupposeP has a materialization graph G such that the number
of MWD nodes in each path is upper-bounded by ψ(|P |). It is not
hard to check that Aψ3 returns either of G or the other materialization
graph G′ that has fewer MWD nodes in each path than that of G.

Further Optimizing Algorithm 3. Algorithm 3 can be further
optimized. In step (i) of Algorithm 2, when computing Srch, for the
rule instantiations of the form ‘B1, .., Bi, .., Bn → H’, B1, ..., Bn
(except Bi) are restricted to be explicit nodes (see (†)). We now
extend Srch by allowing that B1, ..., Bn (except Bi) could also be
implicit nodes which have been added to the constructed material-
ization graph. Consider Example 3 again. If all the other implicit
parents (except vk) of v′ have been added to the materialization
graph, rch(vk, v′) can also be put in Srch. This allows some MWD
nodes being added to the materialization graph in advance. In this
way, a derivable path represents such a path where the starting node
is in the constructed materialization graph and each of the other
nodes (whether or not it is an SWD node) has only one parent that
is not in the constructed materialization graph. Algorithm 4 is given
based on this optimization.

Algorithm 4. This algorithm is almost the same as Algorithm 3
except Step 2. Thus we only give the new step here.

(Step 2) For all rule instantiations of the formB1, .., Bi, .., Bn → H
where H is not yet in G, compute Srch as follows:

(1) if all of B1, ..., Bn are in G, add rch(B1, H),...,rch(Bn, H)
to Srch;

(2) if B1, ..., Bn (except Bi) are already in G, put rch(Bi, H) in
Srch.

Compute S∗
rch; update G based on S∗

rch. �

It is easy to prove the correctness of Algorithm 4 by referring to
Lemma 2. Similarly, we use Aψ4 to denote the NC variant of Algo-
rithm 4, and D

A
ψ
4

is the corresponding PTD class. Further, we have
the following corollary. This corollary also implies that Algorithm 4
performs better than Algorithm 1 and Algorithm 3 in terms of com-
puting time.

Corollary 1. For any poly-logarithmically bounded function ψ, we
have that D

Aψ1
⊆ D

Aψ3
⊆ D

Aψ4
.

Proof sketch. Suppose P ∈ D
Aψ1

. According to Theorem 1, the

depth of the materialization graph G constructed by Aψ1 is upper-
bounded by ψ(|P |). It is obvious that the number of MWD nodes in
each path of G is also upper-bounded by ψ(|P |). Similarly we can
prove that D

A
ψ
3
⊆ D

A
ψ
4

.

5 Parallelly Tractable Materialization of DHL
In this section, we study whether Aψ4 can handle DHL ontologies.
Unfortunately there exist DHL ontologies such that Aψ4 does not
work. In the following, we first give such an ontology to illustrate
the reason why Aψ4 cannot work. Based on the analysis of this case,
we propose to restrict the usage of DHL in order to achieve parallel
tractability of materialization.

Path Twisting. We find that, an unlimited usage of axioms of the
form B1 ⊓ B2 ⊑ A may make it impossible for Algorithm 4 to
construct a materialization graph in a poly-logarithmical number of
iterations of Step 2. We use the following example to illustrate it.

�(ak)

…
…

�(ak-1)

�(a2)

�(a1)

�(ak-2)

 1(a2) 2(a2)

 1(ak-1) 2(ak-1)

 1(ak) 2(ak)

Figure 3. A partial graph of
Gex2 .

�(ak)
…
…

�(ak-1)

�(a2)

�(a1)

�(ak-2)

 1(a2)

 2(a2)

 1(ak-1)
 2(ak-1)

 1(ak)
 2(ak)

 3(a2)

 3(ak-1)

 3(ak)

…
…

Figure 4. A partial materialization graph
Gex3 .

Example 5. Given a DHL ontology Oex2 where its TBox contains
three axioms: B1 ⊓ B2 ⊑ A, ∃S.A ⊑ B1 and ∃R.A ⊑ B2; the
ABox is {S(ai, ai−1), R(ai, ai−1), A(a1)} for 2 ≤ i ≤ k and
k is an integer greater than 2. We denote the corresponding data-
log program of Oex2 by Pex2 = ⟨R, I⟩, where R contains three
rules: ‘B1(x), B2(x) → A(x)’,‘S(x, y), A(y) → B1(x)’ and
‘R(x, y), A(y) → B2(x)’. The materialization graph of Pex2 con-
structed by Algorithm 4 is denoted by Gex2 . Figure 3 shows a partial
graph of Gex2 . Note that all binary predicates in Pex2 (S and R) are
EDB predicates. We include only unary atoms in Figure 3 for clarity.
Further, all MWD nodes are filled with black color.

One can check that Gex2 is the unique materialization graph of
Pex2 . We focus on the partial materialization graph in Figure 3. Ob-
serve that there exists a path (e.g.,A(a1), B1(a2), A(a2), ..., A(ak))
involving k − 1 MWD nodes. Obviously there is not a poly-
logarithmical function ψ such that Aψ3 handles Pex2 . Further, when
performing Algorithm 4, it can be checked that all the k − 1 MWD
nodes (A(a2), ..., A(ak−1)) have to be added to Gex2 in at least
k − 1 iterations. Thus Algorithm 4 cannot handle Pex2 in a poly-
logarithmical number of iterations either. The intuitive reason is that,
at least two paths exist starting from A(a1) to A(ak). These paths
‘twist’ mutually and share the same MWD nodes. It makes the op-
timization of acceleration used in Algorithm 3 and Algorithm 4 in-
valid. That is, for each node A(ai) (2 ≤ i ≤ k), until its parents
(B1(ai) and B2(ai)) are added to Gex2 , there would not exist an
available derivable path for A(ai). We use ‘path twisting’ to repre-
sent such cases.

Note that, applying the rules corresponding to either of (T2) or
(R3) can also generate MWD nodes. However, we find that these

rules do not lead to the situations of ‘path twisting’. We show this in
the proof of Theorem 3, which can be found in our technical report.

Simple Concept. In order to make Algorithm 4 terminate in a
poly-logarithmical number of iterations, we consider restricting the
usage of axioms of the form B1 ⊓ B2 ⊑ A to avoid ‘path twisting’.
An intuitive idea is to ensure that there is only one path between each
two MWD nodes generated from the rules corresponding to (T1). We
explain it using the following example where the ontology is modi-
fied from that in Example 5.

Example 6. Consider an ontology where the TBox contains three
axioms: B1 ⊓ B2 ⊑ A, ∃S.A ⊑ B1 and B3 ⊑ B2; the
ABox is {S(ai, ai−1), B3(ai), A(a1)} for 2 ≤ i ≤ k and k is
an integer greater than 2. We denote the corresponding datalog
program by Pex3 where the rule set contains: ‘B1(x), B2(x) →
A(x)’,‘S(x, y), A(y) → B1(x)’ and ‘B3(x) → B2(x)’. Pex3 has
a unique materialization graph denoted by Gex3 . Figure 4 shows a
partial graph of Gex3 where only unary atoms are involved, and all
MWD nodes are filled with black color.

In the above example, for the axiom B1 ⊓ B2 ⊑ A, all derived
atoms of the form B2(x) are SWD nodes. This ensures that only one
path exists between each two MWD nodes among A(a2), ..., A(ak).
Further, when constructing Gex3 , Algorithm 4 can terminate after
two iterations of Step 2. Specifically, Algorithm 4 adds all SWD
nodes (B3(ai) and B2(ai), 2 ≤ i ≤ k) to Gex3 in the first iteration;
after that, all the other nodes (including MWD nodes) are added to
Gex3 in the second iteration (because each MWD node has a deriv-
able path). Motivated by this example, we consider restricting the
usage of the axioms B1 ⊓ B2 ⊑ A such that all atoms of the form
B1(x) or B2(x) are SWD nodes. To this end, we first define simple
concepts as follows:

Definition 3. Given an ontology O = ⟨T ,R,A⟩, a concept A ∈
CN is simple, if (1) A does not occur on the right-hand side of some
axiom; or (2) A satisfies the following conditions:

1. for each B ⊑ A ∈ T , B is simple;
2. for each ∃R.B ⊑ A ∈ T , B is simple;
3. there is no axiom of the form B1 ⊓B2 ⊑ A in T .

Based on simple concepts, we restrict DHL ontologies such that, in
all axioms of the form B1 ⊓B2 ⊑ A, at least one concept of B1 and
B2 should be a simple concept (we call it simple-concept restriction).
Intuitively, for the restricted DHL ontologies, the situation of ‘path
twisting’ would not happen. This is because, if in each axiom of the
form B1 ⊓ B2 ⊑ A, w.l.o.g., B1 is a simple concept, then none of
MWD ancestors of B1(x) for some x is generated from the rules
corresponding to (T1).

Example 7. In the ontology of Example 5, all of A, B1 and B2 are
non-simple concepts. In the ontology of Example 6, A and B1 are
non-simple concepts, while B3 and B2 are simple concepts. Fur-
ther, it can be checked that, the ontology of Example 6 follows the
simple-concept restriction and can be handled by Aψ4 for some poly-
logarithmical function ψ.

We define the following class of DHL ontologies based on the
above restriction and give Theorem 3 to show that any DHL ontology
that satisfies the simple-concept restriction can be handled by Aψ4 for
some poly-logarithmical function ψ.

Definition 4. Let Ddhl be a class of datalog programs where each
program is rewritten from a DHL ontology that follows the condition

that, for all axioms of the form A1 ⊓ A2 ⊑ B, at least one concept
of A1 and A2 should be a simple concept.

Theorem 3. There exists a poly-logarithmically bounded function ψ
s.t. Ddhl ⊆ D

A
ψ
4

.

Proof sketch. Suppose G is a materialization graph of a datalog pro-
gram P in Ddhl. In G, the nodes of the form R(x, y) can only be
derived by applying the rules corresponding to (R1-R3). All ground
atoms derived from (R1) and (R2) correspond to the SWD nodes
in G. Thus, MWD nodes of the form R(x, y) are only derived
by applying (R3), which is to compute transitive closures. It can
be checked that all binary atoms would be added to G in poly-
logarithmically many iterations of Step 2 by performing Algorithm 4.
The unary atoms of the form A(x) can also be added to G in poly-
logarithmically many iterations of Step 2 due to the simple-concept
restriction.

6 Parallelly Tractable Materialization of DHL(◦)

In this section, we study parallelly tractable materialization of
DHL(◦) ontologies. In addition to the rules in DHL, we also have
to consider complex RIAs (R4). In the following, we first show
that complex RIAs may also cause the situation of ‘path twisting’.
Inspired by the simple-concept restriction, we then propose to re-
strict the usage of complex RIAs such that Aψ4 works for some poly-
logarithmical function ψ.

Restricting Usage of Complex RIAs. With complex RIAs, ‘path
twisting’ may also happen when constructing a materialization graph
by Algorithm 4. Consider the following example.

Example 8. Given a DHL(◦) ontology Oex4 where its TBox
is empty; the RBox R contains three axioms: R1 ◦ R2 ⊑
R, R3 ◦ R ⊑ R1 and R ◦ R4 ⊑ R2; the ABox A is
{R(a1, a1), R3(ai, ai−1), R4(ai−1, ai)} for 2 ≤ i ≤ k and
k is an integer greater than 2. The corresponding datalog pro-
gram Pex4 contains three rules: ‘R1(x, y), R2(y, z) → R(x, z)’,
‘R3(x, y), R(y, z) → R1(x, z)’ and ‘R(x, y), R4(y, z) →
R2(x, z)’. The materialization graph of Pex4 constructed by Algo-
rithm 4 is denoted by Gex4 .

One can check that the materialization graph Gex4 has the same
shape as that of Gex2 in Figure 3. A twisted path exists in Gex4 in-
volving R(ai, ai)(2 ≤ i ≤ k) as MWD nodes. Further, all the roles
R1, R2, R3, R4 and R in this example are non-transitive roles.

Inspired by what we do for axiomsB1⊓B2 ⊑ A, we require that,
for all axioms of the form R1 ◦R2 ⊑ R, if R is not a transitive role,
at least one of R1 and R2 is a simple role.8 Consider such an axiom
R1 ◦ R2 ⊑ R (denoted by α1) where R is a transitive role. That is
we also have R ◦ R ⊑ R (denoted by α2). By replacing R on the
left-hand of α2 using R1 and R2, we can get a complex RIA in the
form of R1 ◦ R2 ◦ R1 ◦ R2 ⊑ R (denoted by α3). If one of R1 and
R2 is not a simple role, the corresponding rule of α3 may also lead
to ‘path twisting’.9 The reason can be explained as follows. Without
loss of the generality, R2 is a simple role while R1 is not. For some
atom R(x, y), it may depend on two different MWD nodes of the
predicate R1 through the corresponding rule of α3. To tackle this
issue, we require both ofR1 andR2 in α1 to be simple roles (we call

8 See the definition of a simple role in Section 2.
9 Obviously, applying the rules of α1 and α2 separately has the same effect

to that of only applying the rule of α3.

the above restriction for transitive and non-transitive roles simple-
role restriction). Combined with the simple-concept restriction, we
define a class of DHL(◦) ontologies as follows:

Definition 5. Ddhl(◦) is a class of datalog programs where each pro-
gram is rewritten from a DHL(◦) ontology and the following condi-
tions are satisfied:

1. for all axioms of the form A1 ⊓A2 ⊑ B, at least one concept of
A1 and A2 should be a simple concept;

2. for all axioms of the form R1 ◦ R2 ⊑ R, if R is not a transitive
role, at least one of R1 and R2 is a simple role; otherwise, both
of R1 and R2 are simple roles.

Example 9. For the ontology Oex4 in Example 8, all of the roles
R1, R2 and R are non-simple roles. Thus, Oex4 does not follow the
simple-role restriction because of R1 ◦R2 ⊑ R. Consider the ontol-
ogy Oex1 in Example 1 again. The role R is a non-simple role, while
S is a simple role. Thus Oex1 follows the simple-role restriction. All
the implicit nodes in Gex1 are SWD nodes. Thus, ‘path twisting’ can-
not happen when materializing Oex1 by Algorithm 4.

We further give Theorem 4 to show that Aψ4 can handle all the
datalog programs in Ddhl(◦) for some poly-logarithmical function ψ.

Theorem 4. There exists a poly-logarithmically bounded function ψ
s.t. Ddhl(◦) ⊆ D

A
ψ
4

.

Proof sketch. The proof idea of this theorem is similar to that of The-
orem 3. Specifically, we can separate the materialization of DHL(◦)
ontologies into two parts: in the first part (Part 1), all the rules of the
forms (R1-R4) are exhaustively applied; in the second part (Part 2),
the rules of the forms (T1) and (T2) are then applied while the results
of Part 1 serve as facts. In Part 1, since the rules of the form (R4)
follow the simple-role restriction, it can be checked that all binary
atoms would be added to the target materialization graph in a poly-
logarithmical number of iterations of Step 2 by performing Algo-
rithm 4. Part 2 can also be handled by Aψ4 due to the simple-concept
restriction.

7 Practical Usability of the Theoretical Results
In this section, we analyze different kinds of datasets including
benchmarks, real-world ontologies and datasets that can be expressed
in ontology languages. Based on the analysis of these datasets, we
find that, ignoring imports, many of them belong to Ddhl or Ddhl(◦).

Benchmarks. In the Semantic Web community, many bench-
marks are proposed to facilitate the evaluation of ontology-based
systems in a standard and systematic way. We investigate several
popular benchmarks using our results and find that the ontologies
used in some benchmarks have simple structured TBoxes that can be
expressed in RDFS and belong to Ddhl. These benchmarks include
SIB10 (Social Network Intelligence BenchMark), BSBM11 (Berlin
SPARQL Benchmark) and LODIB12 (Linked Open Data Integra-
tion Benchmark). The ontology used in IIMB13 (The ISLab Instance
Matching Benchmark) follows the simple-concept restriction.

In the latest version of LUBM14 (The Lehigh University Bench-
mark), there are 48 classes and 32 properties. Statements about prop-
erties, such as inverse property statements, can be rewritten into data-
log rules allowed in Ddhl. Most of the statements about classes can
10 https://www.w3.org/wiki/Social Network Intelligence BenchMark
11 http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
12 http://wifo5-03.informatik.uni-mannheim.de/bizer/lodib/
13 http://islab.di.unimi.it/iimb/
14 http://swat.cse.lehigh.edu/projects/lubm/

be rewritten into datalog rules that are allowed in Ddhl. Five axioms
have, however, the form A ⊑ ∃R.B, which requires existentially
quantified variables in the rule head when rewriting the axiom into a
logic rule:

A(x) → ∃y(R(x, y) ∧B(y)) (1)

Rule (1) introduces new anonymous constants. This kind of rule is
not considered when using OWL RL reasoners to handle LUBM [30,
32]. On the other hand, in some cases, this kind of rule can also be
eliminated when taking a rewriting approach [4]. In summary, if rules
such as (1) are not considered, the materialization of a LUBM dataset
can be handled by algorithm Aψ4 .

YAGO. The knowledge base YAGO15 is constructed from
Wikipedia and WordNet and the latest version YAGO3 [17] has more
than 10 million entities (e.g., persons, organizations, cities, etc.) and
contains more than 120 million facts about these entities. In order to
balance the expressiveness and computing efficiency, a YAGO-style
language, called YAGO model, is proposed based on a slight exten-
sion of RDFS [27]. In addition to the expressiveness of RDFS, YAGO
model also allows stating the transitivity and acyclicity of a property.
Making full use of RDFS features cannot lead to parallel tractability.
However, in [27], a group of materialization rules is specified, which
is more efficient. All of these rules are allowed in Ddhl. Thus, we have
that a well-constructed YAGO dataset belongs to Ddhl.

Real Ontologies. We investigated 151 ontologies that cover many
domains like biomedicine, geography, etc. These ontologies are col-
lected from the Protege ontology library,16 Swoogle17 and Oxford
ontology lib.18 All ontologies are available online.19 Among these
ontologies, 111 of them belong to Ddhl or Ddhl(◦), and 21 DHL on-
tologies contain conjunctions and follow the simple-concept restric-
tion. The remaining ontologies have simple TBoxes, i.e., no conjunc-
tion (A1⊓A2) appears in these ontologies. We also find two DHL(◦)
ontologies that follow the simple-role restriction.

For ontologies that satisfy the simple-concept and simple-role re-
strictions, users have a guarantee of parallel tractability. On the other
hand, developers and users can also refer to Ddhl and Ddhl(◦) when
building their own ontologies.

8 Discussions and Related Work

Parallel reasoning with ontology languages has been extensively
studied in the past decade.

The parallel reasoner RDFox [19] handles reasoning on datalog
rewritable ontology languages. Algorithm 1 proposed in Section 3
is similar to the main algorithm for RDFox (see [19], Sections 3 and
4). A thread in RDFox handles several rule instantiations with respect
to a fact. Such a thread corresponds to a group of processors in Al-
gorithm 1 that is assigned with the rule instantiations handled by the
thread. Thus the materialization of the datalog program in Example 1
is serial on RDFox. We use Algorithm 3 and Algorithm 4 to show
that the datalog program in Example 1 is also parallelly tractable,
i.e., belonging to D

A
ψ
3

and D
A
ψ
4

.
The authors of [3] propose a parallel approach for RDFS encod-

ing and reasoning and SPARQL query answering on the Cray XMT
supercomputer. In [8] the authors study stream reasoning over RDF

15 http://www.mpi-inf.mpg.de/home/
16 http://protegewiki.stanford.edu/wiki/Protege Ontology Library
17 http://swoogle.umbc.edu/
18 http://www.cs.ox.ac.uk/isg/ontologies/lib/
19 https://github.com/quanzz/ECAI2016

data and SPARQL query answering using Yahoo S4. The authors
in [7] report their work on RDFS reasoning on massively paral-
lel GPU hardware. In [22], the RETE algorithm is used to improve
RDFS reasoning. The authors of [26] propose a more efficient stor-
age technique and optimize the join operations in RDFS reasoning.
The above works study parallel reasoning in RDFS or its fragment
ρdf [20].

Distributed parallel platforms, like MapReduce or Peer-to-Peer
networks, are also used for RDFS reasoning. The representative sys-
tems are WebPIE [30], Marvin [21] and SAOR [9]. Data partitioning
strategies are also studied [24, 32]. To study parallel tractability on
distributed platforms, we have to discuss other issues, e.g., network
structures and communications. This is not considered in this work.
Parallel reasoning is also implemented for other OWL fragments,
e.g., OWL RL [14], OWL EL [13], OWL QL [15], and even highly
expressive languages [25, 16, 23, 33]. Parallelism can also improve
the performance of reasoning in non-monotonic logics [28]. Unlike
the above work, the aim of our work is not to devise an efficient par-
allel reasoning algorithm, but to identify ontologies that are tractable
for parallel materialization.

9 Conclusions and Future Work
In this paper, we studied the problem of finding ontologies such
that the materialization over them is parallelly tractable. To this
end, we proposed several NC algorithms that perform materializa-
tion on datalog rewritable ontology languages. Based on these al-
gorithms, we identified the corresponding parallelly tractable data-
log program (PTD) classes such that materialization on the datalog
programs in these classes is in the complexity class NC. We fur-
ther studied two specific ontology languages, DHL and its extension
DHL(◦), and proposed two restrictions such that materialization is
parallelly tractable. To verify the usefulness of our theoretical re-
sults, we analyzed different kinds of datasets, including well-known
benchmarks, real-world ontologies and a famous dataset YAGO. Our
analysis shows that YAGO and many real ontologies belong to the
parallelly tractable class Ddhl or Ddhl(◦). On the other hand, develop-
ers and users can also refer to Ddhl and Ddhl(◦) to create large-scale
ontologies for which parallel tractability is theoretically guaranteed.

In our future work, we will study in detail how to further apply the
theoretical results in practice. One idea is to study the impact of the
simple-concept and simple-role restrictions by analyzing more real-
world ontologies. We also want to study parallelly tractable material-
ization on distributed systems. This is more challenging since several
factors like network structure and communication should be taken
into account. Finally, we plan to investigate the problem of parallel
tractability of other OWL fragments, e.g., OWL RL and OWL EL.

Acknowledgement
We would like to thank the reviewers for their comments, which
helped improve this paper considerably. Guilin Qi is supported
by NSFC grant 61272378 and the 863 program under Grant
2015AA015406. Birte Glimm acknowledges the support of the Tran-
sregional Collaborative Research Centre SFB/TRR 62 “Companion-
Technology for Cognitive Technical Systems” funded by the German
Research Foundation (DFG).

REFERENCES

[1] Serge Abiteboul, Richard Hull, and Victor Vianu, Foundations of
Databases, Addison-Wesley, 1995.

[2] Eric Allender, ‘Reachability problems: An update’, in Proc. of CiE, pp.
25–27, (2007).

[3] Eric L. Goodman, Edward Jimenez, David Mizell, Sinan Al-Saffar, Bob
Adolf, and David J. Haglin, ‘High-performance computing applied to
semantic databases’, in Proc. of ESWC, pp. 31–45, (2011).

[4] Bernardo Cuenca Grau, Ian Horrocks, Markus Krötzsch, Clemens
Kupke, Despoina Magka, Boris Motik, and Zhe Wang, ‘Acyclicity no-
tions for existential rules and their application to query answering in
ontologies’, J. Artif. Intell., 47, 741–808, (2013).

[5] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo, Limits
to Parallel Computation: P-Completeness Theory, Oxford University
Press, New York, 1995.

[6] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker,
‘Description logic programs: combining logic programs with descrip-
tion logic’, in Proc. of WWW, pp. 48–57, (2003).

[7] Norman Heino and Jeff Z. Pan, ‘RDFS reasoning on massively parallel
hardware’, in Proc. Of ISWC, pp. 133–148, (2012).

[8] Jesper Hoeksema and Spyros Kotoulas, ‘High-performance Distributed
Stream Reasoning using S4’, in Proc. of OOR, (2011).

[9] Aidan Hogan, Andreas Harth, and Axel Polleres, ‘Scalable authoritative
OWL reasoning for the web’, Int. J. Semantic Web Inf. Syst., 5(2), 49–
90, (2009).

[10] Ian Horrocks and Ulrike Sattler, ‘Decidability of SHIQ with complex
role inclusion axioms’, J. Artif. Intell., 160(1-2), 79–104, (2004).

[11] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii, ‘A model of
computation for mapreduce’, in Proc. of SODA, pp. 938–948, (2010).

[12] Yevgeny Kazakov, ‘Consequence-driven reasoning for horn SHIQ on-
tologies’, in IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July
11-17, 2009, pp. 2040–2045, (2009).

[13] Yevgeny Kazakov, Markus Krötzsch, and Frantisek Simancik, ‘The in-
credible ELK - from polynomial procedures to efficient reasoning with
EL ontologies’, J. Autom. Reasoning, 1–61, (2014).

[14] Vladimir Kolovski, Zhe Wu, and George Eadon, ‘Optimizing
enterprise-scale OWL 2 RL reasoning in a relational database system’,
in Proc. of ISWC, pp. 436–452, (2010).

[15] Domenico Lembo, Valerio Santarelli, and Domenico Fabio Savo, ‘A
graph-based approach for classifying OWL 2 QL ontologies’, in Proc.
of DL, pp. 747–759, (2013).

[16] Thorsten Liebig and Felix Müller, ‘Parallelizing tableaux-based de-
scription logic reasoning’, in Proc. of OTM Workshops, pp. 1135–1144,
(2007).

[17] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek,
‘YAGO3: A knowledge base from multilingual wikipedias’, in Proc.
of CIDR, (2015).

[18] Robert Meusel, Christian Bizer, and Heiko Paulheim, ‘A web-scale
study of the adoption and evolution of the schema.org vocabulary over
time’, in Proc. of WIMS, pp. 15:1–15:11, (2015).

[19] Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan
Olteanu, ‘Parallel materialisation of datalog programs in centralised,
main-memory RDF systems’, in Proc. of AAAI, pp. 129–137, (2014).

[20] Sergio Muñoz, Jorge Pérez, and Claudio Gutierrez, ‘Simple and effi-
cient minimal RDFS’, J. Web Sem., 7(3), 220–234, (2009).

[21] Eyal Oren, Kotoulas Spyros, Anadiotis George, Siebes Ronny, ten
Teije Annette, and van Harmelen Frank, ‘Marvin: Distributed reasoning
over large-scale Semantic Web data’, J. Web Sem., 305–316, (2009).

[22] Martin Peters, Sabine Sachweh, and Albert Zündorf, ‘Large scale rule-
based reasoning using a laptop’, in Proc. of ESWC, pp. 104–118,
(2015).

[23] Anne Schlicht and Heiner Stuckenschmidt, ‘Distributed resolution for
ALC’, in Proc. of DL, pp. 326–341, (2008).

[24] Ramakrishna Soma and Viktor K. Prasanna, ‘A data partitioning ap-
proach for parallelizing rule based inferencing for materialized OWL
knowledge bases’, in Proc. of ISCA, pp. 19–25, (2008).

[25] Andreas Steigmiller, Thorsten Liebig, and Birte Glimm, ‘Konclude:
System description’, J. Web Sem., 27, 78–85, (2014).

[26] Julien Subercaze, Christophe Gravier, Jules Chevalier, and Frédérique
Laforest, ‘Inferray: fast in-memory RDF inference’, J. PVLDB, 9(6),
468–479, (2016).

[27] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum, ‘YAGO:

A large ontology from wikipedia and wordnet’, J. Web Sem., 6(3), 203–
217, (2008).

[28] Ilias Tachmazidis, Grigoris Antoniou, Giorgos Flouris, Spyros Ko-
toulas, and Lee McCluskey, ‘Large-scale Parallel Stratified Defeasible
Reasoning’, in Proc. of ECAI, pp. 738–743, (2012).

[29] Herman J. ter Horst, ‘Completeness, decidability and complexity of en-
tailment for RDF schema and a semantic extension involving the OWL
vocabulary’, J. Web Sem., 3(2-3), 79–115, (2005).

[30] Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van Harmelen,
and Henri E. Bal, ‘Webpie: A web-scale parallel inference engine using
mapreduce’, J. Web Sem., 10, 59–75, (2012).

[31] Leslie G. Valiant, ‘A bridging model for parallel computation’, Com-
mun. ACM, 103–111, (1990).

[32] Jesse Weaver and James A. Hendler, ‘Parallel materialization of the
finite RDFS closure for hundreds of millions of triples’, in Proc. of
ISWC, pp. 682–697, (2009).

[33] Kejia Wu and Volker Haarslev, ‘A parallel reasoner for the description
logic ALC’, in Proc. of DL, pp. 675–690, (2012).

