
User-Centered Planning

Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

Abstract User-centered planning capabilities are core elements of Companion-
Technology. They are used to implement the functional behavior of technical sys-
tems in a way that makes those systems Companion-able – able to serve users in-
dividually, to respect their actual requirements and needs, and to flexibly adapt to
changes of the user’s situation and environment. This book chapter presents vari-
ous techniques we have developed and integrated to realize user-centered planning.
They are based on a hybrid planning approach that combines key principles also hu-
mans rely on when making plans: stepwise refining complex tasks into executable
courses of action and considering causal relationships between actions. Since the
generated plans impose only a partial order on actions, they allow for a highly flex-
ible execution order as well. Planning for Companion-Systems may serve different
purposes, depending on the application for which the system is created. Sometimes,
plans are just like control programs and executed automatically in order to elicit the
desired system behavior; but sometimes they are made for humans. In the latter case,
plans have to be adequately presented and the definite execution order of actions has
to coincide with the user’s requirements and expectations. Furthermore, the system
should be able to smoothly cope with execution errors. To this end, the plan genera-
tion capabilities are complemented by mechanisms for plan presentation, execution
monitoring, and plan repair.

1 Introduction

Companion-Systems are able to serve users individually, to respect their actual re-
quirements and needs, to flexibly adapt to changes of the user’s situation and envi-
ronment, and to explain their own behavior (cf. Chap. 1, the survey on Companion-
Technology [19], or the work of the collaborative research centre SFB/TRR 62 [21]).

Pascal Bercher · Daniel Höller · Gregor Behnke · Susanne Biundo
Ulm University, Institute for Artificial Intelligence, e-mail: forename.surname@uni-ulm.de

1



2 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

A core element when realizing such systems is user-centered planning. This chap-
ter presents various techniques we have developed and integrated to realize user-
centered planning [18]. They are based on a hybrid planning approach [20] that
combines key principles also humans rely on when making plans by refining com-
plex tasks stepwise into executable courses of action, assessing the various options
for doing so, and considering causal relationships.

Planning for Companion-Systems may serve different purposes, depending on
the application for which the system is created. Sometimes, plans are just like con-
trol programs and executed automatically in order to elicit the desired system be-
havior; but sometimes they are made for humans. In the latter case, plans have to
be adequately presented to the user. Since the generated plans impose only a partial
order on actions, they allow for a highly flexible execution order. A suitable total
order must be selected for step-wise presentation: it should coincide with the user’s
requirements and expectations. We ensure this by a technique that allows finding
user-friendly linearizations [33].

In particular when planning for humans, a plan execution component must mon-
itor the current state of execution so that the system can detect failures, i.e., devi-
ations from the expected execution outcome. In such a case, the hybrid plan repair
mechanism finds a new plan that incorporates the execution error [17, 9].

Companion-Systems assist users to complete demanding tasks, so the user may
not understand the steps that the system recommends to do. In particular after exe-
cution errors, question might arise due to the presentation of a new plan. To obtain
transparency and to increase the user’s trust in the system, it is essential that it is
able to explain its behavior. Therefor, the purpose of any action within a plan may
be automatically explained to the user in natural language [53].

These user-centered planning capabilities of plan generation, plan execution and
linearization, plan repair, and plan explanation are essential capabilities to provide
intelligent user-assistance in a variety of real-world applications [18]. As an exam-
ple, we integrated all those techniques in a running system that assists a user in the
task of setting up a complex home theater [34, 9, 15]. The respective system and, in
particular, the integration of the user-centered planning capabilities with a knowl-
edge base and components for user interaction is described in Chap. 24. Here, we
focus on the underlying planning capabilities and explain them in detail. We use the
planning domain of that application scenario as a running example.

The hybrid planning framework is explained in Sect. 2. Section 3 is devoted to
plan execution. Plan execution consists of various key capabilities when planning
for or with humans: the monitoring of the executed plans to trigger plan repair in
case of arising execution errors (explained in Sect. 4), the linearization of plans to
decide which plan step to execute next, and the actual execution of the next plan
step, which includes the adequate presentation to the user. Section 5 introduces the
plan explanation technique that allows to generate justifications for any plan step
questioned by the user. Finally, Sect. 6 concludes the chapter.



User-Centered Planning 3

2 Hybrid Planning Framework

Hybrid planning [36, 20] fuses Hierarchical Task Network (HTN) planning [27]
with concepts known from Partial-Order Causal-Link (POCL) planning [41, 50].

The smooth integration of hierarchical problem solving (inherited from HTN
planning) with causal reasoning (inherited from POCL planning) provides us with
many capabilities that are beneficial when planning for or with humans:

HTN Planning. In HTN planning, problems are specified in terms of abstract ac-
tivities one would like to have accomplished. To do so, they have to be refined
step-wise into more specific courses of action that can be executed by the user. This
provides us with certain benefits:

• First of all, a domain expert has more freedom in modeling a domain. Often,
expert knowledge is structured in a hierarchical way. Hence, it is often known to
the expert what actions need to be taken in which order to accomplish some high-
level goal. Such knowledge can easily be modeled by introducing a hierarchy
among the available actions. Many real-world application scenarios are hence
modeled using hierarchical planning approaches such as hybrid planning or the
SHOP approach [44, 39, 18]. Further, a domain modeler can be assisted in the
task of creating a hierarchical domain model by techniques that automatically
infer abstractions for hierarchical planning [7].

• That action hierarchy may then be exploited for generating and improving ex-
planations [53]. When the user wants to know about the purpose of a presented
action during execution, the hierarchy can be used to come up with a justification.

• The hierarchy defined on the actions may also be exploited to come up with
plausible linearizations of plans [33]. The actions in the plans are presented to
a user one-by-one. Some linearization might be more plausible to a user than
others. So, presenting those actions close to each other that “belong to each other”
with respect to the action hierarchy might achieve reasonable results.

• The way in which humans solve tasks is closely related to the way hierarchical
problems are solved by a planning system. That makes it more natural to a user
to be integrated into the planning process [5], as it resembles his or her idea of
problem solving. The integration of the user into this decision making process is
called mixed initiative planning. It is presented in Chap. 7.

POCL Planning. In POCL planning, problems are specified in terms of world
properties that one would like to hold. The problem is solved via analyzing causal
dependencies between actions to decide what action to take in order to fulfill a
required goal. The way in which plans are found and how they are represented can
be exploited in various ways:

• The causal dependencies between actions within a plan are explicitly represented
using so-called causal links. Analogously and complementarily to the exploita-
tion of the hierarchy, these causal relations can be analyzed and exploited to
generate explanations about the purpose of any action within a plan [53].



4 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

• The causal structure of plans may be used to find plausible linearizations of the
actions within a plan. For instance, given there are causal relationships between
two actions, it seems more plausible to present them after each other before pre-
senting another action that has no causal dependencies to either of them [33].

• Finally, the POCL planning approach also seems well-suited for a mixed initia-
tive planning approach, since humans do not only plan in a hierarchical manner,
but also via reasoning about which action to take in order to fulfill a requirement
that has to hold later on.

Hybrid planning combines HTN planning with POCL planning; it hence features
all before-mentioned user-centered planning capabilities.

2.1 Problem Formalization

A hybrid planning problem is given as a pair consisting of a domain model D and
the problem instance I . The domain describes the available actions required for
planning. The problem instance specifies the actual problem to solve, i.e., the avail-
able world objects, the current initial state, the desired goal state properties, and an
initial plan containing the abstract tasks that need to be refined.

More specifically, a domain is a triple D = 〈Tp,Ta,M〉. Tp and Ta describe the
primitive and abstract tasks, respectively. The primitive tasks are also referred to as
actions – those can be executed directly by, and hence communicated to, the user.
Actions are triples 〈a(τ̄),pre(τ̄),eff (τ̄)〉 consisting of a name a that is parametrized
with variables τ̄ , a parametrized precondition pre and the effects eff . As an example,
Eq. (1) depicts the name and parameters of an action of the home assembly task (see
Chap. 24) for plugging the audio end of a SCART cable into the audio port of an
audio/video receiver. In the depicted action, the parameters are bound to constants,
which represent the available objects – in the example domain those are the available
hi-fi devices, cables, and their ports.

plugIn(SCART-CABLE,AUDIO-PORT,AV-RECEIVER,AUDIO-PORT) (1)

The precondition describes the circumstances under which the action can be ex-
ecuted, while the effects describe the changes that an execution has on the re-
spective world state. Formally, preconditions and effects are conjunctions of lit-
erals that are defined over the variables τ̄ . For instance, the (negative) literal
¬used(SCART-CABLE,AUDIO-PORT) is part of the precondition of the action de-
picted in Eq. (1). It describes that the audio port of the SCART cable may only be
plugged into a port if it is currently not in use. The effects of that action mark the
port as blocked. Abstract tasks syntactically look like primitive ones, but they are re-
garded to be not directly executable by the user. Instead, they are abstractions of one
or more primitive tasks. That is, for any abstract task t, a so-called (decomposition)
method m = 〈t,P〉 relates that task to a plan P that “implements” t [20, 13]. The



User-Centered Planning 5

set of all methods is given by M. The implementation (or legality) criteria ensure
that t is a legal abstraction of the plan P, which can be verified by comparing the
preconditions and effects of t with those of the tasks within P. One can also regard
it the other way round: the implementation criteria ensure that only those plans may
be used within a method that are actual implementations for the respective abstract
task. That way, a human user (in that case the domain modeler) can be actively sup-
ported in the domain modeling process – independently of whether he or she uses a
top-down or bottom-up modeling approach.

Plans are generalizations of action sequences in that they are only partially or-
dered. They are knowledge-rich structures, because causality is explicitly repre-
sented using so-called causal links. Formally, a plan P is a tuple 〈PS,V,≺,CL〉 con-
sisting of the following elements: the set PS is referred to as plan steps. Plan steps
are uniquely labeled tasks. Thus, each plan step ps∈ PS is a tuple l : t, with l being a
label symbol unique within P and t being a task taken from Tp∪Ta. Unique labeling
is required to differentiate identical tasks from each other that are all within the same
plan. The set V contains the variable constraints that (non-)codesignate task param-
eters with each other or with constants. Codesignating a variable with a constant
means to assign the respective constant to that variable. Codesignating two vari-
ables means that they have to be assigned to the same constant. Non-codesignating
works analogously. The set ≺ is a strict partial order defined over PS×PS. The
causal links CL represent causal dependencies between tasks: each link cl ∈CL is a
triple 〈ps,ϕ, ps′〉 representing that the literal ϕ is “produced” by (the task referenced
by) ps and “consumed” by ps′. Due to that causal link, the precondition literal ϕ of
ps′ is called protected, since the solution criteria ensure that no other task is allowed
to invalidate that precondition anymore (see Solution Criterion 2c given below).

A problem instance I is a tuple 〈C,sinit,Pinit,g〉 consisting of the following el-
ements: the set C contains all available constants. The conjunction sinit of ground
positive literals describes the initial state. We assume the so-called closed world as-
sumption. That is, exactly the literals in sinit are assumed to hold in the initial state,
while all others are regarded false. The conjunction of (positive and negative) lit-
erals g describes the goal condition. All these goal state properties must hold after
the execution of a solution plan. Hence, g implicitly represents a set of world states
that satisfy g. In particular when planning for humans, not all goals are necessar-
ily mandatory. Instead, some of them might only be preferred by the user. That is,
while some goals might be declared as non-optional (those specified by g), a user
might also want so specify so-called soft goals that he or she would like to see satis-
fied, but that are regarded optional. A planner would then try to achieve those goals
to increase plan quality, but in case a soft-goal cannot be satisfied, the planning
process does not fail altogether. Some work has been done in incorporating such
soft-goals into hierarchical planning in general [39, 55] and in hybrid planning in
particular [8]. For the sake of simplicity, we focus on the non-optional goals in this
book chapter. Note that this is not a restriction, since any planning problem with
soft goals can be translated into an equivalent problem without soft goals [23, 37].
The initial plan Pinit complements the desired goal state properties by the tasks that
the user would like to have achieved. This plan may contain primitive tasks, abstract



6 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

tasks, or both. In addition, it contains two special actions ainit and agoal that encode
the initial state and goal description, respectively. The respective encoding is done
as usual in POCL planning: ainit is always the very first action in every refinement
of Pinit, while agoal is always the very last. The action ainit has no precondition and
uses sinit as effect1, while agoal uses g as precondition and has no effect.

Solution Criteria. Informally, a solution is any plan that is executable in the initial
state and satisfies the planning goals and tasks, i.e., after the execution of a solution
plan Psol, g holds, and Psol is a refinement of Pinit thereby ensuring that the abstract
activities the user should accomplish (specified in Pinit) have actually been achieved.
More formally, a plan Psol is a solution if and only if two criteria hold:

1. Psol is a refinement of Pinit. That is, one must be able to obtain Psol from Pinit by
means of the application of the following refinement operators:

a. Decomposition. Given a plan P = 〈PS,V,≺,CL〉 with an abstract plan step
l : t ∈ PS, the decomposition of the abstract task t using a decomposition
method m = 〈t,P′〉 results in a new plan P′′, in which l : t is removed and
replaced by P′. Ordering and variable constraints, as well as causal links
pointing to or from l : t, are inherited by the tasks within P′ [13]. This is a
generalization of Def. 3 by Geier and Bercher [29] for standard HTN plan-
ning without causal links. This decomposition criterion ensures that the ab-
stract tasks specified in Pinit are accomplished by any solution. That criterion
is the reason why HTN or hybrid planning is undecidable in the general case
[27, 29, 1, 13]. It also makes the verification of plans (i.e., answering “is the
given plan a valid solution to the given problem?”) hard (NP-complete) even
under severe restrictions [6, 13].

b. Task Insertion. In hybrid planning, both primitive and abstract tasks may be
inserted into a plan. Note that it is optional whether this feature is allowed or
not. Allowing or disallowing task insertion might influence both the complex-
ity of solving the planning problem [29, 2] and of the solutions themselves
[31, 32]. Allowing task insertion allows for more flexibility for the domain
modeler, as it allows to define partial hierarchical models [36, 2]. That is, the
domain modeler does not need to specify decomposition methods that ensure
that any decomposition is an executable solution, as the planner might in-
sert tasks to ensure executability. Thus, allowing task insertion moves some
of the planning complexity from the modeling process (which is done by a
user/domain expert) to the planning process (which is done automatically).

c. Causal Link Insertion and Ordering Insertion. Given two plan steps ps and
ps′, within a plan, a causal link can be inserted from any literal in ps’s effect
to any (identical) literal in the precondition of ps′. The parameters of the two
literals become pairwise codesignated. Also an ordering constraint may be

1 More technically, it uses not just sinit as effect, but – because sinit consists only of positive literals
due to the closed world assumption – also all negative ground literals that unify with any negative
precondition that are not contradicting sinit. Otherwise, there might be a negative task precondition
literal that could not be protected by a causal link rooting in the initial state.



User-Centered Planning 7

inserted between ps and ps′. Both these refinement options are inherited from
standard POCL planning. They are a means to ensure the executability of
plans [41, 50].

2. Psol is executable in the initial state sinit and, after execution of that plan, the goal
condition g is satisfied. Since sinit and g are encoded within Pinit by means of
the two special actions ainit and agoal, respectively, and because Psol is a refine-
ment of Pinit due to Solution Criterion 1, both planning goals can be achieved
by using standard POCL solution criteria. Thus, Psol = 〈PSsol,Vsol,≺sol,CLsol〉 is
executable in sinit and satisfies g if and only if:

a. All tasks are primitive and ground. Only primitive actions are regarded exe-
cutable. Grounding is required to ensure unique preconditions and effects.

b. There are no open preconditions. That is, for each precondition literal ϕ
of any plan step ps ∈ PSsol there is a causal link 〈ps′,ϕ, ps〉 ∈ CLsol with
ps′ ∈ PSsol thereby protecting ϕ .

c. There are no causal threats. We need to ensure that the literals used by the
causal links are actually “protected”. This is the case if there are no so-called
causal threats. Within a primitive ground plan P = 〈PS,V,≺,CL〉, a plan step
ps is threatening a causal link 〈ps′,ϕ, ps′′〉 ∈ CL if and only if the set of
ordering constraints allows ps to be ordered between ps′ and ps′′ (that is,
≺ ∪{(ps′, ps),(ps, ps′′)} is a strict partial order) and ps has an effect ¬ϕ .

2.2 Finding a Solution

Hierarchical planning problems may be solved in many different ways [4], hence
various hierarchical planning systems and techniques exist, such as SHOP/SHOP2
[43], UMCP [26], or HD-POP [52, edition 1, p. 374–375], to name just a few.

We follow the approach of the HD-POP technique. The resulting planning sys-
tem, PANDA [14, Alg. 1], performs heuristic search in the space of plans via re-
fining the initial plan Pinit until a primitive executable plan has been obtained. The
algorithm basically mimics the allowed refinement options: it decomposes abstract
tasks (thereby introducing new ones into the successor plan), inserts new tasks from
the domain (if allowed; cf. Solution Criterion 1b), and inserts ordering constraints
and causal links to ensure executability. Hierarchical planning is quite difficult. In
the general case, it is undecidable, but even for some quite restricted special cases,
it is still at least PSPACE-hard [27, 29, 1, 2, 13]. During search, that hardness cor-
responds to the choice of which task to insert and which decomposition method to
pick when decomposing an abstract task. In the approach taken by PANDA, these
questions are answered by heuristics: each candidate plan is estimated in terms of
the number of required modifications to refine it into a solution, or by means of the
number of actions that need to be inserted for the same purpose [14].

For standard POCL planning, i.e., in case the initial plan Pinit does not contain
abstract tasks, there are basically two different kinds of heuristics. The first kind



8 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

bases on delete-relaxation2, as this reduces the complexity of deciding the plan ex-
istence problem from PSPACE to P or NP, depending on the presence of negative
preconditions [22] and whether the actions in the domain and the given plan be-
come delete-relaxed or just those in the domain [11]. The respective heuristics are
the Add Heuristic for POCL planning [57], the Relax Heuristic [46], and a variant
of the latter based on partial delete-relaxation, called SampleFF [11]. The second
kind of heuristics is not just one single POCL heuristic, but a technique that allows
to directly use heuristics known from state-based planning in the POCL planning
setting [10]. The technique encodes a plan into a classical (i.e., non-hierarchical)
planning problem, where the POCL plan is encoded within the domain.

The idea of delete-relaxation has also been transferred to hierarchical planning.
Here, the complexity of the plan existence problem is reduced from undecidable
to NP or P, depending on various relaxations [3]. There is not yet an implementa-
tion of that idea, however. Instead, we developed the so-called task decomposition
graph that is a relaxed representation of how the abstract tasks may be decomposed
[25, 24]. That graph may both be used for pruning infeasible plans from the search
space (i.e., plans that cannot be refined into a solution) [25] and for designing well-
informed heuristics for hierarchical and hybrid planning [24, 14].

3 Plan Execution

In most real-world application domains, the effect of actions is not fully determinis-
tic, though there is often an outcome that can be regarded as the intended or standard
effect. Since Companion-Systems flexibly adapt to any changes in the user’s situa-
tion and environment, they must be able to detect and deal with unforeseen effects.
The sub system that monitors the environment and detects state changes that conflict
with the current plan is called execution monitor and described in Sect. 3.1. When
a state deviation is detected that may cause the current plan to fail, the plan repair
component is started. The plan repair mechanism is introduced later on in Sect. 4.
Solution plans are not totally ordered: they include only ordering constraints that
are necessary to guarantee executability. Thus it is likely that there is more than one
linearization of the solution. The plan linearization component is responsible to de-
cide which one is most appropriate to be presented to a user. This functionality is
described in Sect. 3.2. What it means to execute a single plan step, and how it may
be done, is described in Sect. 3.3.

2 Delete-relaxation means to ignore negative literals in the effects and, optionally, in the precondi-
tions of any action.



User-Centered Planning 9

3.1 Monitoring

As given above, the monitoring compares changes that have been detected in the
environment with the intended effect of a started action. When differences are de-
tected, it must not necessarily be a problem for the execution of the current plan,
so the monitoring has to decide whether repair (see Sect. 4) is initiated or not. The
decision may be based on the set of active causal links. A causal link is active if and
only if its producer has been executed while the consumer has not. When there is an
active link on a literal that has changed, repair is started (see Fig. 1).

Fig. 1 The figure shows how
an unexpected state deviation
influences the execution of
the remaining actions. The
horizontal line indicates the
execution horizon. An exe-
cution error flipped the truth
value of the literal protected
by the right-most causal
link. Because that causal link
crosses the execution horizon,
the causal link’s consumer
(Action-D) might not be exe-
cutable anymore.

Action-A

already executed

not yet executed

↑
↓ �

Action-B

Action-C

Action-D

Intuitively, this means that (a part of) the precondition of the consumer should
have been fulfilled by the producer, but this has not been successful. Now there is
no guarantee that the precondition of the consumer is fulfilled (i.e., a causal link that
supports it) and plan execution may fail. There are special cases, however, where the
currently executed sequence of actions is still executable although there is a causal
link that is violated (a valid POCL plan could hence be found by simply choosing a
new producer for the invalidated causal link within that plan). Although in that case
the user could proceed executing that action sequence, plan repair must be initiated,
since the respective causal link may be mandatory: in case it has not been inserted
by the planner as a means to ensure executability, but if it comes from the domain
(specified within a plan referenced by a decomposition method) or from the initial
plan, it may not be changed. Such links may be intended by the modeler to protect
certain properties during execution (referred to as prevail conditions) and are thus
not allowed to be removed.

So, when ever a condition of an active causal link is violated, the plan monitoring
initiates plan repair. It creates an altered plan (if there is one) that is able to deal with
unexpected changes and fulfills the constraints given in the model.

The approach given above is able to deal with unforeseen changes of the en-
vironment and minimizes the computational effort that is necessary. Plan repair is
only started if active causal links are violated. However, there are situations where
it would be beneficial to start the repair mechanism even in cases where no active



10 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

causal links are violated and, hence, the plan is still executable. Consider, e.g., the
case where the unforeseen change does not result in any violated causal link, but at
the same time causes the original goal condition to become true. In that setting, the
planning problem would be solved when no further actions are executed3. Without
starting repair, the user had to proceed executing the plan. Though this is a good
reason to start plan repair as often as there is enough time to wait for the new plan,
there are also reasons to continue the execution of the original plan: in case there is
no notable problem with the plan currently executed it might confuse the user when
its execution is canceled to proceed another plan. The question when to repair could
be answered by an empirical evaluation.

3.2 Plan Linearization

As given in the introduction of this section, plans generated by the planning system
are only partially ordered. They include only the ordering constraints that are in-
cluded in the model and those that have to be included to guarantee that a goal state
is reached after execution. This makes the execution most flexible, since it com-
mits only on necessary constraints. In many situations, it is necessary to choose a
linearization of that partial order for plan execution. When plans are executed by a
machine, like a smartphone or robot, it may not matter which of its linearizations
is executed. However, whenever humans are involved in plan execution, the low
commitment of the ordering given in the plan can be exploited to choose the lin-
earization that is most suitable for the specific user in the current situation. Consider
a user who has to achieve two tasks that are not related in any sense. This scenario
is likely to result in a plan with two lines of action that are not interrelated. It is no
problem to execute the first step of the first line, then the first step of the second line,
and so on. However, it might be much more intuitive for the user to finish the first
line before starting the second one (or vice versa). The overall process, committing
on some ordering constraints during planning and determining the other ordering
relations during post processing, can be seen as a model that consists of two parts.

There are several objectives for the linearization that may be competing. This
could be the convenience of the user during execution, to optimize a metric that can
be measured (e.g., execution time) or to imitate human behavior. Since Companion-
Systems need to adapt to the specific user and its current situation, finding a user-
friendly and maybe user- and situation-specific linearization is another point where
adaptivity may come to light. As a starting point for situation- and user-specific
strategies, we identified three domain-independent strategies to linearize plans [33].

All of them exploit knowledge that is included in the plan or the domain defini-
tion to linearize plans:

3 Assuming there are no not yet executed actions that are inserted due to the underlying action
hierarchy, cf. Solution Criterion 1a.



User-Centered Planning 11

1. Parameter Similarity. In the home theater domain (see Chap. 24) it seems rea-
sonable to complete all actions involving a specific device before starting on
another. It is a feasible design decision of the modeler to pass on the devices as
parameters to an action (though there are other ways to model the domain), as it
is the case for the example action in Eq. (1). A parameter-based strategy would
exploit this: it orders plan steps in a way that maximizes successive actions that
share constants in their parameter set [33, Section 4.1].

2. Causal Link Structure. The causal link structure of a plan represents which ef-
fect of a plan step fulfills a certain precondition of another. The planning proce-
dure is problem driven, i.e., there is no needless causal link in the plan. Therefore
this is also a valuable source of linearization information, because the user may
keep track of the causality behind steps that are executed. A strategy based on this
structure orders the steps in a way that minimizes the distance between producer
and consumer of a causal link. Besides the decisions of the domain modeler, this
strategy also depends on the planning process [33, Section 4.2].

3. Decomposition Structure. Since the planning domain is commonly modeled by
a human domain designer, it is reasonable to assume that tasks that are introduced
by a single method are also semantically related. Generalizing this assumption,
tasks that have a short distance in the tree of decompositions that spans from
the initial task network to the actual plan steps are supposed to be semantically
closer related than tasks that have a long distance. This property can be used for
plan linearization. In this form, it depends on both the domain and the planning
process. When using the task decomposition graph instead, it only depends on
domain properties [33, Section 4.3].

As given above, all strategies depend on the planning domain, the planning system,
or both. Thus it is possible to model the same application domain in such a way that
they work well or poorly. Consider, e.g., the strategy based on parameter similarity
in a propositional domain – there is no information included that could be used for
linearization.

The given strategies can be used to pick the next plan step from a set of possi-
ble next actions (those where all predecessors in the ordering relation have already
been finished), i.e., for a local optimization. Another possibility is to optimize them
globally over the linearization of the whole plan. They can also be used as starting
point for a domain-specific strategy.

3.3 Plan Step Execution

There are several possibilities on how to proceed when a single plan step has been
selected for execution. In some cases, the action is just present due to technical
reasons and nothing has to be done for its execution. Consider, e.g., the actions ainit
and agoal. Their purpose is to cause a certain change during the planning process
and it is likely that they can be ignored by the execution system, although reaching
action agoal could trigger a notification that states the successful plan completion.



12 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

A second possibility is that actions control some part of the system. These are
executed internally, but are not necessarily required to be communicated to the user.
They may cause, for example, a light to be switched on/off, or a door to open/close,
or adding a new entry to be added in a calendar.

Besides these possibilities, there are actions that have to be communicated to the
user, as he or she is the one that carries them out or because the presentation itself
is the desired purpose. Such actions can be easily communicated to the user by
relying on additional system components taken from dialog management (Chap. 9)
and user interaction (Chap. 10), as explained in Chap. 24. For that purpose, each
action has an associated dialog model that specifies how it may be presented to a
user [47, 16]. The dialog model may itself be structured in a hierarchical manner
to enable the presentation of an action with a level of detail that is specific to the
individual user. So, depending on the user’s background knowledge, the action may
be presented with more or less details [48]. The resulting information is sent to the
fission component [35] that is responsible for selecting the adequate output modality
(Chap. 10). For this, each action may have a standard text template associated with
it, which can be used for visualization. Further, each constant used by an action
parameter can be associated with respective graphics or videos. In Fig. 2 we see
how the action given in Eq. (1) may be presented to a user.

Fig. 2: Here, we see how a single planning action can be presented to a human user.

4 Repairing Failed Plans

Companion-Systems have to adapt to changes in the current situation [19]. This
is especially necessary when the execution of a plan fails. If the plan monitoring



User-Centered Planning 13

component (see Sect. 3.1) decides that – due to an execution failure – a new plan
has to be found, there are two possibilities how this can be done:

• Re-planning. The plan at hand is discarded and the planning process is done
from scratch. The changed environment is used as initial state and a new plan is
found that transfers it into a state that fulfills the goal criteria.

• Plan Repair. The original plan is re-used and adapted to the needs of the changed
situation. Thereby the unexpected changes of the environment have to be consid-
ered and to be integrated into the new plan.

Both approaches have several advantages and disadvantages. Re-planning enables
the use of sophisticated planning heuristics. For some cases in classical planning,
Nebel and Koehler showed that plan repair might be computationally more expen-
sive than planning from scratch [45]. The system could come up with a completely
new solution that has nothing in common with the original one, albeit a minor
change would have resulted in a valid solution. Presenting a very different solution
to a human user might cause confusion and reduce the user’s trust in the system.

When a plan is repaired, the new plan might be more similar to the original solu-
tion. However, this strategy might increase computational complexity [45], prevents
the planning system to find shorter/more cost-effective solutions; and an altered
algorithm with effective heuristics that are able to deal with the altered planning
problem has to be realized.

In HTN planning there is another aspect to consider: While in classical planning
the already executed prefix of the original solution, followed by a completely new
plan that reaches a goal state is a proper solution to the original problem, the com-
bination may not be in the decomposition hierarchy of an HTN problem and thus
violate Solution Criterion 1. There are circumstances that can be encoded into the
decomposition hierarchy of an HTN planning problem that can not be ensured by
preconditions and effects (see the expressivity analysis by Höller et al. [31, 32]). So
it has to be assured that a repaired plan also fulfills the constraints that are introduced
by the hierarchy.

We now introduce our approach for re-planning [9]. Although, from a theoretical
point of view, it is classified as re-planning (because we do not try to repair the plan
already found), it still combines aspects of both re-planning and plan repair. Aspects
of repair are required to ensure that the plan prefix already executed is also part of
any new solution that can cope with the execution error.

When the execution of a plan fails, a plan repair problem is created. Its domain
definition is identical to that of the original problem, while the problem instance is
adapted. It includes an additional set of obligations O, i.e., I = 〈C,sinit ,Pinit ,O,g〉.
Obligations define which commitments that were made in the original plan have to
be present in the new one. To ensure that they are fulfilled, we extend the solution
criteria in such a way that all obligations need to be satisfied. There are obligations
of the following kind:

• Task Obligations. These obligations ensure that a certain plan step (i.e., action)
is present in the new solution. A task obligation is included into the problem for
every step of the original plan that has already been executed. To overcome the



14 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

unexpected environment change, a special task obligation is added to the repair
problem. It makes sure that a new action is added that realizes the unforeseen
changes of the environment. Therefore it has the detected change as its effect.
This action is called process [17] and is introduced after the executed prefix of
the original plan.

• Ordering Obligations. Ordering obligations define ordering constraints between
the obligated task steps.

Obligations from the given classes are combined in a way ensuring that the executed
prefix of the original plan is also a prefix of any new plan. The process is placed
exactly behind this prefix to realize the detected change of the world. So the new
plan can cope with the unforeseen changes of the environment.

The additional constraints (i.e., the obligations) require some small alterations
of the planning procedure. Given an unsatisfied obligation, the algorithm needs to
provide possible refinements therefor: unsatisfied task obligations can be addressed
via task insertion or decomposition and marking a task within a plan as one of those
already executed. Ordering obligations are straight-forward.

We have also developed a repair approach for hybrid planning [17, 18]. It starts
with the original planning problem and the set of refinements applied to find the
original solution. As it is the case for our re-planning approach, the obligations are
part of the planning problem as well to ensure that the execution error is reflected
and the actions already executed are part of the repaired solution. In contrast to
standard repair, the algorithm tries to re-apply all previously applied refinements. It
only chooses different refinements where the particular choice leads to a part of the
plan that cannot be executed anymore due to the execution failure.

5 Plan Explanation

Plans generated via automated planning are usually fairly complex and can contain
a large amount of plan steps and causal links between them. If the decisions of a
Companion-System are based upon such plans, its user may not immediately under-
stand the behavior of the system completely. In the worst case, he or she might even
reject the system’s suggestions outright and stop using it altogether. In general, un-
expected or non-understandable behavior of a cognitive system may have a negative
impact on the trust in human-computer relationship [42], which in turn is known to
have adverse effects on the interaction with the user [49]. To avert this problem, a
system should be able to explain its decisions and internal behavior [40, 12]. If a
planner is the central cognitive component of the system, it has to be able to explain
its decisions (i.e., the plan it has produced) to the user.

A first step towards user-friendly interaction and eliminating questions of the
users even before they come up is an intelligent plan linearization component (see
Sect. 3.2), which presents the whole plan in an easy to grasp step-by-step fashion.
Obviously, this capability is not sufficient for complete transparency. Although the
order in which actions are presented is chosen in such a way that it is intuitive for



User-Centered Planning 15

the user, he or she might still wonder about it or propose a rearrangement. The user
might also be confused about the actual purpose of a presented action and ask why
it is part of the solution in the first place. The hybrid plan explanation [53] technique
is designed to convey such information to the user.

5.1 Generating Formal Plan Explanations

Usually, plan explanations are generated upon user request. Currently, the hybrid
plan explanation technique supports two types of requests. The first inquires for the
necessity of a plan step, i.e., “Why is action A in the plan?” or “Why should I do
A?”. The second requests information on an ordering of plan steps, i.e., “Why must
action A be executed before B?” or “Why can’t I do B after A?”. In both cases the
explanation is based upon a proof in an axiomatic system Σ , which encodes the
plan, the way it was created, and general rules how facts about the plan can be jus-
tified [53]. The request of the user is transformed into a fact F and an automated
reasoner is applied to compute a proof for Σ ` F . This proof is regarded as the ac-
tual formal explanation of the fact the user has inquired and is – subsequently –
transformed into natural language by a dialogue management component and pre-
sented to the user [53, 9]. Obtaining such a proof in a general first order axiomatic
system is undecidable. In our case it is decidable, since all necessary axioms are
horn-formulas, i.e., disjunctions of literals with at most one being positive. This
allows for the application of the well-known SLD-resolution [38] to find proofs.

We now describe which axioms are contained in Σ and how the inference, i.e.,
obtaining the formal proof, can be done. The plan itself is encoded in Σ by several
axioms, using two ternary predicates cr and dr, which describe the causal and hier-
archical relations, respectively. For every causal link 〈ps,ϕ, ps′〉 in the plan, the ax-
iom cr(ps,ϕ, ps′) is added to Σ . As described in Sect. 2, the plan to be explained has
been obtained by applying a sequence of modifications, i.e., by adding causal links,
ordering constraints, tasks, or by decomposing abstract tasks. Each used method m
was applied to decompose some abstract plan step ps′. It adds a set of new plan
steps PS (and ordering constraints and causal links) to the plan. For every such plan
step ps ∈ PS the axiom dr(ps,m, ps′) is added to Σ .

Explaining the Necessity of Plan Steps. To answer the first kind of question,
axioms proving the necessity of a plan step must be defined. That necessity is de-
scribed using the unary predicate n. Note that by “necessity” we do not refer to an
absolute or global necessity of a plan step. We do not answer the question whether
the respective action has to be part of any solution (such actions are called action
landmarks [51, 58]). Answering this question is in general as hard as planning it-
self. Instead, we explain the purpose of the action: we give a chain of arguments
explaining for which purpose that action is used within the presented plan.

All plan steps of the initial plan Pinit (which includes the action agoal that encodes
the goal condition) are necessary by definition, since Pinit describes the problem it-



16 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

self. Thus, n(ps) is included as an axiom for every plan step ps of Pinit. If a plan step
ps is contained in the plan in order to provide a causal link for another necessary
plan step, ps is also regarded necessary, as it establishes a precondition of a required
action. A simple example application of this rule is the necessity of any action es-
tablishing one (or more) of the goal conditions. The information that a plan step
establishes the precondition of another plan step is explicitly given in hybrid plans
by causal links. Using the given encoding of causal links in Σ , we can formulate an
axiom to infer necessity as follows:

∀ps,ϕ, ps′ : cr(ps,ϕ, ps′)∧n(ps′)→ n(ps) (2)

A similar argument can be applied if a plan step ps has been obtained via decom-
position. If a necessary abstract plan step ps′ is decomposed into ps, then ps serves
the purpose of refining ps′. Converted into an axiom this reads:

∀ps,m, ps′ : dr(ps,m, ps′)∧n(ps′)→ n(ps) (3)

One can use both Axiom (2) and (3) to show the purpose of any plan step: it is either
used to ensure the executability of another plan step (in this case, the first rule may
be applied), or it is part of the plan because of decomposition (then, the second rule
applies). Any chain of arguments (i.e., rule applications) will subsequently root in a
plan step of the initial plan, i.e., the number of proof steps is always finite.

So far, the explanations based on causal dependencies (cf. Axiom (2)) do only
rely on primitive plan steps. However, even these causality-based explanations could
be improved when taking into account abstract tasks. E.g., the presence of the plan
step plugIn(SCART-CABLE, AUDIO-PORT, AV-RECEIVER, AUDIO-PORT) should
be explained as follows: it is necessary, as it is part of the abstract task con-
nect(BLUERAY-PLAYER, AV-RECEIVER), which provides signalAt(AUDIO, AV-
RECEIVER), which in turn is needed by the action connect(AV-RECEIVER, TV) to
achieve the goal signalAt(AUDIO, TV). To obtain such explanations, cr predicates
(i.e., causal links) involving abstract tasks must be inferred. Here, the idea is that if
a plan step ps has an effect (or precondition) linked to some other plan step ps′ that
has been introduced into the plan by decomposing ps′′, then ps′′ is also linked to ps′

as one of its primitive tasks generated the condition necessary for ps′. The axiomatic
system Σ contains two further axioms, inferring these cr relations. Figure 3 contains
a visual representation of both axioms.

∀ps,m, ps′′, ps′ : dr(ps,m, ps′′)∧ cr(ps′,ϕ, ps)→ cr(ps′,ϕ, ps′′) (4)
∀ps,m, ps′′, ps′ : dr(ps,m, ps′′)∧ cr(ps,ϕ, ps′)→ cr(ps′′,ϕ, ps′) (5)

Explaining the Order of Plan Steps. The second question a user might pose, i.e.,
why a plan step ps is arranged before some other plan step ps′, has two possible
answers. Either the order is contained in the plan presented to the user or it was
chosen as part of the plan linearization process. In the latter case the system’s answer
could state that the order was chosen to obtain a plausible linearization and can be
changed if the user wishes to. In the former case, again a proof for a fact is generated



User-Centered Planning 17

ps′

ps′′

ps

m

ϕ

ϕ

(a) Visualization of Axiom (4)

ps′′

ps′ps

m

ϕ

ϕ

(b) Visualization of Axiom (5)

Fig. 3: The rectangular boxes depict primitive plan steps, the ones with rounded
corners depict abstract plan steps. The arrows labeled with m indicate a performed
decomposition using the method m. The arrows labeled with the literal ϕ indicate
causal links, whereas the dotted ones are inferred by one of the Axioms (4) or (5).

and conveyed to the user. Necessary order between plan steps is encoded using the
binary relation <. If the user poses the said question, the fact ps< ps′ is to be proven
in Σ and its proof constitutes the formal explanation for the order’s necessity. A
necessary order can be caused by several reasons, each of which is described by an
axiom. For the sake of brevity, we will only provide an intuition on these axioms,
while the interested reader is referred to the work of Seegebarth et al. [53] for further
details.

Orderings can be contained in the plans referenced by decomposition methods,
thus they are necessary if the respective abstract task is. Further, an ordering con-
straint may be added to a plan if a causal threat is to be dissolved. Here, the necessity
is based on the threatening plan step of the threat (cf. Solution Criterion 2c). Order
is also implicitly implied by every causal link in the plan, and its necessity is based
on the necessity of the consuming plan step of the link.

5.2 Verbalizing Plan Explanations

After having obtained a formal plan explanation, expressed by a proof in first-order
logic, it has to be conveyed to the user in a suitable way. As a default-approach the
explanation is transformed into text, which can be read to the user or displayed on a
screen (see Fig. 2). To generate a natural language text, we use a pattern-based ap-
proach, an approach commonly used by automated theorem provers to present their
proofs to humans [54, 30, 28]. Additionally one could use techniques similar to the
Interactive Derivation Viewer [56], which uses both verbal and visual explanations.

Consider the example mentioned earlier in this section. The formal explanation
in this case consists of one application of Axiom (3), two applications of the Ax-
iom (2), one of Axiom (4), and two of Axiom (5). Resulting from this proof the
following natural language text is generated:

Plug the audio end of the SCART-to-Cinch cable into the AV Receiver to connect the Blu-
ray Player with the AV Receiver. This provides that the AV Receiver has an audio signal,



18 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

needed to connect the AV Receiver with the TV. This provides that the TV has an audio
signal, needed to achieve the goal.

We chose not to verbalize Axioms (4) and (5), as their application should be intu-
itively clear to the user. The remaining applications of Axiom (2) and (3) form a
linear list. Each occurrence of Axiom (2) is translated into the text “This provides
that 〈ϕ〉, needed to 〈ps′〉”, where 〈x〉 denotes a domain-dependent verbalization of
x. Likewise, each instance of Axiom (3) is translated into “Do this to 〈ps′〉” For the
very first axiom in the explanation the begin of the sentences “This” and “Do this”
are replaced with the verbalization of the action to be explained.

6 Conclusion

Flexible system behavior is essential when realizing Companion-Systems [19]. We
summarized how different system capabilities supporting this design goal can be
implemented using the hybrid planning approach, starting by the generation pro-
cess that might integrate the user, the execution and communication of generated
solutions, as well as discussing how to cope with unforeseen situations.

Though the current abilities of user-centered planning contributes valuable capa-
bilities to the overall system, there are several promising lines of research for further
improvements. Especially the problem of how plans are linearized [33] may offer
further benefits for a convenient system. Another direction is a deeper explanation of
system behavior [53, 9]. Here questions like “Why can’t I use this action/method?”
or an explanation on why a problem at hand has no solution may help the user. The
overall explanation quality might also be improved by further integrating ontology-
as well as plan-based explanations [7]. Another important matter in real-world ap-
plications is the presentation of different alternatives to reach a goal [12].

Acknowledgements This work was done within the Transregional Collaborative Research Centre
SFB/TRR 62 “Companion-Technology for Cognitive Technical Systems” funded by the German
Research Foundation (DFG).

References

1. Alford, R., Bercher, P., Aha, D.: Tight bounds for HTN planning. In: Proc. of the 25th Int.
Conf. on Automated Planning and Scheduling (ICAPS), pp. 7–15. AAAI Press (2015)

2. Alford, R., Bercher, P., Aha, D.: Tight bounds for HTN planning with task insertion. In: Proc.
of the 25th Int. Joint Conf. on AI (IJCAI), pp. 1502–1508. AAAI Press (2015)

3. Alford, R., Shivashankar, V., Kuter, U., Nau, D.: On the feasibility of planning graph style
heuristics for htn planning. In: Proc. of the 24th Int. Conf. on Automated Planning and
Scheduling (ICAPS), pp. 2–10. AAAI Press (2014)

4. Alford, R., Shivashankar, V., Kuter, U., Nau, D.S.: HTN problem spaces: Structure, algo-
rithms, termination. In: Proc. of the 5th Annual Symposium on Combinatorial Search (SoCS),
pp. 2–9. AAAI Press (2012)



User-Centered Planning 19

5. Behnke, G., Höller, D., Bercher, P., Biundo, S.: Change the plan - how hard can that be?
In: Proc. of the 26th Int. Conf. on Automated Planning and Scheduling (ICAPS), pp. 38–46.
AAAI Press (2016)

6. Behnke, G., Höller, D., Biundo, S.: On the complexity of HTN plan verification and its im-
plications for plan recognition. In: Proc. of the 25th Int. Conf. on Automated Planning and
Scheduling (ICAPS), pp. 25–33. AAAI Press (2015)

7. Behnke, G., Ponomaryov, D., Schiller, M., Bercher, P., Nothdurft, F., Glimm, B., Biundo, S.:
Coherence across components in cognitive systems – one ontology to rule them all. In: Proc.
of the 25th Int. Joint Conf. on AI (IJCAI), pp. 1442–1449. AAAI Press (2015)

8. Bercher, P., Biundo, S.: A heuristic for hybrid planning with preferences. In: Proc. of the 25th
Int. Florida AI Research Society Conf. (FLAIRS), pp. 120–123. AAAI Press (2012)

9. Bercher, P., Biundo, S., Geier, T., Hörnle, T., Nothdurft, F., Richter, F., Schattenberg, B.: Plan,
repair, execute, explain - how planning helps to assemble your home theater. In: Proc. of the
24th Int. Conf. on Automated Planning and Scheduling (ICAPS), pp. 386–394. AAAI Press
(2014)

10. Bercher, P., Geier, T., Biundo, S.: Using state-based planning heuristics for partial-order
causal-link planning. In: Advances in AI, Proc. of the 36th German Conf. on AI (KI), pp.
1–12. Springer (2013)

11. Bercher, P., Geier, T., Richter, F., Biundo, S.: On delete relaxation in partial-order causal-
link planning. In: Proc. of the 25th Int. Conf. on Tools with AI (ICTAI), pp. 674–681. IEEE
Computer Society (2013)

12. Bercher, P., Höller, D.: Interview with David E. Smith. Künstliche Intelligenz (2016). DOI
10.1007/s13218-015-0403-y

13. Bercher, P., Hller, D., Behnke, G., Biundo, S.: More than a name? on implications of precon-
ditions and effects of compound htn planning tasks. In: Proceedings of the 22nd European
Conference on Artificial Intelligence (ECAI 2016), pp. 225–233. IOS Press (2016)

14. Bercher, P., Keen, S., Biundo, S.: Hybrid planning heuristics based on task decomposition
graphs. In: Proc. of the 7th Annual Symposium on Combinatorial Search (SoCS), pp. 35–43.
AAAI Press (2014)

15. Bercher, P., Richter, F., Hörnle, T., Geier, T., Höller, D., Behnke, G., Nothdurft, F., Honold, F.,
Minker, W., Weber, M., Biundo, S.: A planning-based assistance system for setting up a home
theater. In: Proc. of the 29th Nat. Conf. on AI (AAAI), pp. 4264–4265. AAAI Press (2015)

16. Bertrand, G., Nothdurft, F., Honold, F., Schüssel, F.: CALIGRAPHI-creation of adaptive di-
alogues using a graphical interface. In: 35th Annual Computer Software and Applications
Conf. (COMPSAC), pp. 393–400. IEEE (2011)

17. Bidot, J., Schattenberg, B., Biundo, S.: Plan repair in hybrid planning. In: Advances in AI,
Proc. of the 31st German Conf. on AI (KI), pp. 169–176. Springer (2008)

18. Biundo, S., Bercher, P., Geier, T., Müller, F., Schattenberg, B.: Advanced user assistance based
on AI planning. Cognitive Systems Research 12(3-4), 219–236 (2011). Special Issue on
Complex Cognition

19. Biundo, S., Höller, D., Schattenberg, B., Bercher, P.: Companion-technology: An overview.
Künstliche Intelligenz (2016). DOI 10.1007/s13218-015-0419-3

20. Biundo, S., Schattenberg, B.: From abstract crisis to concrete relief (a preliminary report on
combining state abstraction and HTN planning). In: Proc. of the 6th European Conf. on
Planning (ECP), pp. 157–168. AAAI Press (2001)

21. Biundo, S., Wendemuth, A.: Companion-technology for cognitive technical systems.
Künstliche Intelligenz (2016). DOI 10.1007/s13218-015-0414-8

22. Bylander, T.: The computational complexity of propositional STRIPS planning. AI 94(1-2),
165–204 (1994)

23. Edelkamp, S.: On the compilation of plan constraints and preferences. In: Proc. of the 16th
Int. Conf. on Automated Planning and Scheduling (ICAPS), pp. 374–377. AAAI Press (2006)

24. Elkawkagy, M., Bercher, P., Schattenberg, B., Biundo, S.: Improving hierarchical planning
performance by the use of landmarks. In: Proc. of the 26th Nat. Conf. on AI (AAAI), pp.
1763–1769. AAAI Press (2012)



20 Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo

25. Elkawkagy, M., Schattenberg, B., Biundo, S.: Landmarks in hierarchical planning. In: Proc.
of the 20th European Conf. on AI (ECAI), pp. 229–234. IOS Press (2010)

26. Erol, K., Hendler, J.A., Nau, D.S.: UMCP: A sound and complete procedure for hierarchical
task-network planning. In: Proc. of the 2nd Int. Conf. on AI Planning Systems (AIPS), pp.
249–254. AAAI Press (1994)

27. Erol, K., Hendler, J.A., Nau, D.S.: Complexity results for HTN planning. Annals of Mathe-
matics and AI 18(1), 69–93 (1996)

28. Fiedler, A.: P.rex: An interactive proof explainer. In: Proc. of the 1st Int. Joint Conf. on
Automated Reasoning (IJCAR), pp. 416–420. Springer (2001)

29. Geier, T., Bercher, P.: On the decidability of HTN planning with task insertion. In: Proc. of
the 22nd Int. Joint Conf. on AI (IJCAI), pp. 1955–1961. AAAI Press (2011)

30. Holland-Minkley, A.M., Barzilay, R., Constable, R.L.: Verbalization of high-level formal
proofs. In: Proc. of the 16th Nat. Conf. on AI and the 11th Innovative Applications of AI
Conf. (AAAI/IAAI), pp. 277–284. AAAI Press (1999)

31. Höller, D., Behnke, G., Bercher, P., Biundo, S.: Language classification of hierarchical plan-
ning problems. In: Proc. of the 21st European Conf. on AI (ECAI), pp. 447–452. IOS Press
(2014)

32. Höller, D., Behnke, G., Bercher, P., Biundo, S.: Assessing the expressivity of planning for-
malisms through the comparison to formal languages. In: Proc. of the 26th Int. Conf. on
Automated Planning and Scheduling (ICAPS), pp. 158–165. AAAI Press (2016)

33. Höller, D., Bercher, P., Richter, F., Schiller, M., Geier, T., Biundo, S.: Finding user-friendly
linearizations of partially ordered plans. In: 28th PuK Workshop ”Planen, Scheduling und
Konfigurieren, Entwerfen” (PuK) (2014)

34. Honold, F., Bercher, P., Richter, F., Nothdurft, F., Geier, T., Barth, R., Hörnle, T., Schüssel, F.,
Reuter, S., Rau, M., Bertrand, G., Seegebarth, B., Kurzok, P., Schattenberg, B., Minker, W.,
Weber, M., Biundo, S.: Companion-technology: Towards user- and situation-adaptive func-
tionality of technical systems. In: Int. Conf. on Intelligent Environments (IE), pp. 378–381.
IEEE (2014). URL http://companion.informatik.uni-ulm.de/ie2014/companion-system.mp4

35. Honold, F., Schüssel, F., Weber, M.: Adaptive probabilistic fission for multimodal systems.
In: Proc. of the 24th Australian Computer-Human Interaction Conf. (OzCHI), pp. 222–231.
ACM (2012)

36. Kambhampati, S., Mali, A., Srivastava, B.: Hybrid planning for partially hierarchical domains.
In: Proc. of the 15th Nat. Conf. on AI (AAAI), pp. 882–888. AAAI Press (1998)

37. Keyder, E., Geffner, H.: Soft goals can be compiled away. Journal of AI Research (JAIR) 36,
547–556 (2009)

38. Kowalski, R.A.: Predicate logic as programming language. In: IFIP Congress, pp. 569–574
(1974)

39. Lin, N., Kuter, U., Sirin, E.: Web service composition with user preferences. In: Proc. of the
5th European Semantic Web Conf. (ESWC), pp. 629–643. Springer (2008)

40. Lyons, J.B., Koltai, K.S., Ho, N.T., Johnson, W.B., Smith, D.E., Shively, R.J.: Engineering
trust in complex automated systems. Ergonomics in Design 24(1), 13–17 (2016). DOI
10.1177/1064804615611272

41. McAllester, D., Rosenblitt, D.: Systematic nonlinear planning. In: Proc. of the 9th Nat. Conf.
on AI (AAAI), pp. 634–639. AAAI Press (1991)

42. Muir, B.M.: Trust in automation: Part I. theoretical issues in the study of trust and human
intervention in automated systems. Ergonomics 37(11), 1905–1922 (1994)

43. Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.: SHOP2: An
HTN planning system. Journal of AI Research (JAIR) 20, 379–404 (2003)

44. Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Wu, D., Yaman, F., Muñoz-Avila, H., Murdock,
J.W.: Applications of SHOP and SHOP2. Intelligent Systems, IEEE 20, 34–41 (2005)

45. Nebel, B., Koehler, J.: Plan reuse versus plan generation: A theoretical and empirical analysis.
Artificial Intelligence 76(1-2), 427–454 (1995)

46. Nguyen, X., Kambhampati, S.: Reviving partial order planning. In: Proc. of the 17th Int. Joint
Conf. on Artificial Intelligence (IJCAI), pp. 459–466. Morgan Kaufmann (2001)



User-Centered Planning 21

47. Nothdurft, F., Bertrand, G., Heinroth, T., Minker, W.: GEEDI - guards for emotional and ex-
planatory dialogues. In: 6th Int. Conf. on Intelligent Environments (IE), pp. 90–95. IEEE
(2010)

48. Nothdurft, F., Honold, F., Zablotskaya, K., Diab, A., Minker, W.: Application of verbal in-
telligence in dialog systems for multimodal interaction. In: 10th Int. Conf. on Intelligent
Environments (IE), pp. 361–364. IEEE (2014)

49. Parasuraman, R., Riley, V.: Humans and automation: Use, misuse, disuse, abuse. Human
Factors: The Journal of the Human Factors and Ergonomics Society 39(2), 230–253 (1997)

50. Penberthy, J.S., Weld, D.S.: UCPOP: A sound, complete, partial order planner for ADL. In:
Proc. of the 3rd Int. Conf. on Principles of Knowledge Representation and Reasoning (KR),
pp. 103–114. Morgan Kaufmann (1992)

51. Porteous, J., Sebastia, L., Hoffmann, J.: On the extraction, ordering, and usage of landmarks
in planning. In: Proc. of the 6th European Conf. on Planning (ECP), pp. 37–48. AAAI Press
(2001)

52. Russell, S., Norvig, P.: Artificial Intelligence – A Modern Approach, 1 edn. Prentice-Hall
(1994)

53. Seegebarth, B., Müller, F., Schattenberg, B., Biundo, S.: Making hybrid plans more clear to
human users – a formal approach for generating sound explanations. In: Proc. of the 22nd Int.
Conf. on Automated Planning and Scheduling (ICAPS), pp. 225–233. AAAI Press (2012)

54. Simons, M.: Proof presentation for isabelle. In: Proc. of the 10th Int. Conf. on Theorem
Proving in Higher Order Logics (TPHOLs), pp. 259–274. Springer (1997)

55. Sohrabi, S., Baier, J.A., McIlraith, S.A.: HTN planning with preferences. In: Proc. of the 21st
Int. Joint Conf. on AI (IJCAI), pp. 1790–1797. AAAI Press (2009)

56. Trac, S., Puzis, Y., Sutcliffe, G.: An interactive derivation viewer. Electronic Notes Theoretical
Computer Science 174(2), 109–123 (2007)

57. Younes, H.L.S., Simmons, R.G.: VHPOP: Versatile heuristic partial order planner. Journal of
AI Research (JAIR) 20, 405–430 (2003)

58. Zhu, L., Givan, R.: Heuristic planning via roadmap deduction. In: IPC-4 Booklet, pp. 64–66
(2004)


