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Abstract Companion-Systems are composed of different modules that have to share
a single, sound estimate of the current situation. While the long-term decision-
making of automated planning requires knowledge about the user’s goals, short-
term decisions, like choosing among modes of user-interaction, depend on proper-
ties such as lighting conditions. In addition to the diverse scopes of the involved
models, a large portion of the information required within such a system cannot be
directly observed, but has to be inferred from background knowledge and sensory
data—sometimes via a cascade of abstraction layers, and often resulting in uncer-
tain predictions. In this contribution, we interpret an existing cognitive technical
system under the assumption that it solves a factored, partially observable Markov
decision process. Our interpretation heavily draws from the concepts of probabilis-
tic graphical models and hierarchical reinforcement learning, and fosters a view that
cleanly separates between inference and decision making. The results are discussed
and compared to existing approaches from other application domains.

1 Introduction

Early computers were separated from the physical world they resided in by nearly
impervious barriers—punch cards, light bulbs, and later monochrome low resolution
screens and keyboards. Experts were required to communicate with those machines
using now obsolete (and possibly obscure) machine languages.
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But technology evolves, and today’s technical systems have become complex;
very distinguished from their ancestors. A current smart phone, easily fitting into
a pocket, is connected to its environment through a multitude of sensors and out-
put devices—high-resolution touch screens, video cameras, gyroscopes, heartbeat
detectors, permanent connection to the internet, and much more. The technology
that is used to process this plethora of information has also advanced significantly.
Automatic speech recognition has become viable, and development of touch screen
text input has reached a point where organic swipes yield the intended words with
high accuracy.

Current technical systems are thus embedded much deeper in their physical en-
vironment, and using these devices has become possible for laypersons; it is not
requiring any exceptional skills anymore. Still there appears to be a gap between the
complexity the average user is able to handle, and the functionality that could be
provided by a modern technical device.

To bridge this gap we have the vision that modern technical systems shall be cog-
nitive. This means that they possess abilities such as attention, memory, reasoning,
decision making and comprehension, that let them exploit their deep embedding
into the physical world to offer their functionality in a more accessible way to hu-
man users.

In this chapter we attempt to shed some light on a subset of the processes that
appear to be required to realize these cognitive abilities. Starting from an abstract
definition of what resembles a cognitive technical system (CTS), and which task it
must achieve, we analyze an exemplary implementation and try to identify a modu-
larized architecture that encompasses abstraction and separation between inference
and decision making. We draw parallels between our interpretation of a general
CTS and the architectures that have been used in already matured fields, such as au-
tomatic speech recognition, robotics and dialogue systems. We discuss implications,
and possible challenges.

2 The Home Theater Setup Task

Throughout this chapter we will use the example application of an intelligent system
whose function is to assist a human user with the setup of the devices of a home
theater system. We have been involved in the implementation of such a system [4,
5], and its technical aspects are described in Chapter 24. We begin by describing
the task the user tries to solve, and go on to describe the required properties of a
technical system that provides assistance.

In the home cinema setup task (HCST), a person is faced with the problem of
correctly connecting cables between various audio/video devices, such as TV, AV-
amplifier, satellite receiver or DVD-player, using a multitude of available cables
(Figure 1). The goal is to enable certain functionality, such as being able to watch
DVDs on the TV, and to watch satellite TV. This goal can be achieved by correctly
connecting the cables.
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(a) Picture of two real devices.
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(b) Instance with four devices and three ca-
bles.

Fig. 1: A picture of two typical devices, and a symbolic representation of an instance
of the Home Theater Setup Task.

The HCST contains various difficulties for the involved human:

• It is necessary to have a mental model of the devices to predict what a specific
cable configuration achieves.

• There exists a combinatorial problem when the number of available cables is
limited, or when the number of connectors of the devices is low.

• Different solutions can potentially result in different trade-offs, like being able
to turn off the DVD-player while watching satellite TV in one configuration, but
not in another one.

• If the final setup is not working, the source of the error has to be diagnosed.

By providing aide to a human user during the HCST, some of these problems can
be mitigated. We assume that an assistive CTS provides its functionality merely by
communicating with the user. In order to solve the HCST efficiently and satisfacto-
rily, the system requires at least the following abilities:

• knowledge about the problem domain, ports and functionality of the devices,
connectors of cables, etc.

• a means to solve the combinatorial problem of identifying a connection scheme
• the ability to communicate with the user to provide directions and acquire feed-

back about the current state of the devices and cables

In addition the following can provide an enhanced experience to the user:

• knowledge about the user: Which commands can he be trusted with executing
correctly? How to shape the communication, and how to choose a good granu-
larity for the provided instructions.

• sensors to detect the current state of the environment automatically: this com-
prises the available devices, cables, and the desired goal

The implemented prototype was also able to handle a scenario with multiple per-
sons. This included identifying the dedicated user who has to be communicated the
instructions, and who is supposed to connect the devices. In the examined scenario,
the system was able to localize persons using a laser range finder. Since output of
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Fig. 2: A very abstract view of a CTS. The environment is perceived through a
set of sensors and can be influenced via a set of effectors. This view leads to the
interpretation as a POMDP with factored observation and action spaces.

the system could be routed through multiple display devices, the system must try to
leverage output close to the dedicated user to minimize cost of communication. The
same also holds for input devices in the case of touch screens.

3 Problem Statement

At a very abstract level, the function of a CTS can be reduced to the operation of a set
of effectors, while observing data obtained through a set of sensors. The following
formalization is closely related to Partially Observable Markov Decision Processs
(POMDPs) with factored observations and actions. That relation is formalized in
Section 3.2.

We are going to assume that the whole system is time-discrete with a shared,
synchronized heart-beat. When ignoring the computational problem of acting intel-
ligently, the possibilities of a CTS are limited by its hardware realization: a set of
sensors S , and a set of effectors E . From this point of view, the system is sup-
posed to interact with its environment by triggering the effectors depending on the
information that it acquires through its sensors (Figure 2).

Each sensor S ∈ S is associated with a (not necessarily finite) set of possi-
ble observations ZS. It produces a time-indexed sequence of observations zS

t . The
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observation-sequence is not determined in advance, but depends on the stochastic
evolution of, and the interaction with the system’s environment. Classical sensors of
computer systems are keyboard and mouse. Modern smart phones have access to a
much larger array of sensors, including but not limited to touch displays, accelerom-
eters, cameras, and GPS. Access to the internet can also be treated as a sensor of
some kind, as a computer is able to query various online information sources such
as e-mail servers, postings of friends at social networks, or the weather forecast for
next week.

An effector A ∈ E is associated with a (not necessarily finite) set of possible
actions OA. It has to be supplied with an action oA

t for every time step t. Examples of
possible effectors of an assistive CTS can be displays or speakers, as can be found
with ordinary computer systems and smart phones. The role of these effectors is
usually communication with the user. But the triggering of events external to the
technical system can also be modelled as effectors. These can include posting an
e-mail, issuing a job to a printer, or even initiating a purchase at some online market
platform.

The task of a CTS at time t is to find actions oA
t for every effector A∈ E , based on

the past observations zS
1;t−1 it has obtained through its sensors. The effectors shall

be operated in an intelligent manner, maximizing the system’s positive properties.
In the context of Companion technology, these properties could be the Companion
properties of individuality, adaptability, availability, co-operativeness and trustwor-
thiness (cf. Chapter 1, [6]). Finding an operationalization for the “positive proper-
ties” of an assistive CTS is a difficult problem that is not to be discussed in this
chapter. Independent of the concrete nature of these desirable properties, we can de-
mand that the system acts in a way to optimize the expected value of a single given
utility (or reward) function R that depends on the inaccessible state of the system’s
environment, and the action taken.

3.1 Markov Decision Processes

A Markov Decision Process (MDP) is a model for time-discrete, sequential decision
problems within a fully observable, stochastic environment [3]. This means that
actions can have an uncertain, probabilistic outcome. An agent that acts according
to a MDP takes into account the possible failure of actions, and act in anticipation,
possibly avoiding such actions on purpose. As such, solutions to MDPs deal with
risk in a way that can be considered rational, by maximizing the attained expected
utility [48].

For simplicity we restrict our attention to finite state and action spaces. Then an
MDP is a tuple 〈S,A,T,R〉, where S is a finite set of states, A is a finite set of actions,
and T : S×A→P(S) maps state-action pairs to distributions over the following
state1. In case the state space is continuous instead of finite, we talk of continu-

1 P(X) is the set of all probability mass functions (or density functions) over the set X .
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ous MDPs and the transition function is a probability density function. The reward
R : S×A→ R defines the immediate reward obtained from applying an action in
some state.

A candidate solution for an MDP is called a policy π : S→ A and maps states
to actions. There exist different ways of defining the value of a policy. We present
the traditional and most simple one—the discounted reward over an infinite horizon
with discount factor γ . In this case, the expected discounted reward obtained under
policy π when starting in state s is given by

Jπ(s) = E
[
R(s,π(s),s′)+ γ · Jπ(s′)

]
, (1)

where, the expectation is over the successor state s′ according to the transition dis-
tribution T (s | s′,π(s)). Alternatives are the average reward over an infinite hori-
zon [17], or the accumulated reward over a finite horizon [20]. The goal is to find a
policy π that maximizes Jπ(s) for some initial state s ∈ S.

3.2 Partially Observable Markov Decision Processes

The model of POMDPs [20] further extends the MDP model by concealing the state
of the environment from the acting agent. On each step, the agent is only provided
with a limited observation that depends stochastically on the current state, but not
with the state itself. Acting successfully within a POMDP can require to perform
actions whose sole purpose is the acquisition of more information about the true
state of the world.

Formally, a POMDP is a tuple 〈S,A,T,O,Z,R〉, where 〈S,A,T,R〉 is a MDP.
Additionally, O is a finite set of observations, where the acting agent is given an
observation o ∈O with probability Z(o | s,a) after executing action a in (concealed)
state s.

Since the agent does not have access to the true state, it has to base its de-
cision on knowledge about past observations and applied actions. Thus a pol-
icy π for a POMDP is a mapping from a history of actions and observations
a0,o0,a1,o1, · · · ,at−1,at−1 to the next action at . It can be shown, that policies for
POMDPs can also be defined by mapping a probability distribution b ∈P(S) over
the state to actions [20]. Such a distribution is then called a belief state. A belief
state can be updated to reflect the information gained after acting and obtaining a
certain observation. A belief update on b when observing o after applying action a,
is defined by the following formula:

b′(s) ∝ Z(o | s,a)∑
s′

b(s′) ·T (s | s′,a) (2)

Using this update, one can define a belief MDP that is equivalent to a given
POMDP [20]. The belief MDP has the space of distributions over states P(S) as
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its state space; it is thus a continuous state MDP. Thus, a policy for the belief MDP
maps belief states to actions, and the value can be defined analogous to Equation 1.

A popular example of a POMDP is the tiger domain, where the agent faces two
doors, behind one of which a dangerous tiger is waiting to devour the unwary (or
unaware) agent. Solving the problem successfully involves listening closely to one
of the doors; an action that does not influence the state, but yields an observation
possibly revealing the true location of the beast. With full access to the world state,
the listening action is pointless as the agent always knows which door is safe to
enter.

While MDPs allow a planning agent to respond to stochastic/unexpected changes
of the environment by using information gained from (perfectly) observing its state,
solving a POMDP requires a two-way communication between the agent and the en-
vironment, which includes taking actions that elicit useful observations. It is thus not
very surprising that dialogue systems [50, 49] and human-computer interaction [30]
are one of the applications of POMDPs.

When looking at our initial formalization of CTSs by a set of senors S and a
set of effectors E , we can identify the sensors as the mean to obtaining observations
within the POMDP framework. Joint assignments to the effectors form the space
of possible actions. The POMDP framework fills the remaining gaps of our initial
formalization—defining the system dynamics, the observation dynamics and the
objective via a reward function.

The main difference lies within the fact that both observations and actions appear
factored in our CTS formalization, e.g. O = ZS1 ×ZS2 ×·· ·×ZSk with Si ∈S and
A = OA1 ×OA2 ×·· ·×OAl Ai ∈ E . Factoring observation, state and action spaces is
common for complex MDPs and POMDPs models [8, 41, 49].

4 A System Architecture—Divide and Conquer

When designing complex things like cars, robots or large software artifacts, we
strive to conquer complexity by dividing the task into smaller, more manageable,
parts. By defining what happens on the boundaries of those parts we create concep-
tual independence and enable working on one local problem at a time. By fixing
the boundary conditions between modules we limit ourself to those solutions of
the problem satisfying the boundary conditions. Usually the constraints will rule
out the optimal solution, but they reduce the cognitive cost of designing the system
and enable us to construct the system at all [9]. This form of modularization is one
ingredient of this section.

Another one is constituted by the observation that every way of solving a
problem—no matter how pragmatic it is—also solves an instance of the idealized
problem. For us the idealized problem will be a complex POMDP, or a CTS prob-
lem, exemplarily capturing the HCST. We have “solved” this problem by building
a working prototype [5] (see also Chapter 24). The prototype solves the combinato-
rial aspect of the HCST using a deterministic hybrid planning approach (Chapter 5).
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Actions decided on by the planner are passed on to a dialogue manager that im-
plements them by means of issuing instructions to the user. The dialogue manager
passes on communication directives to a fission component that distributes them
over available output channels.

While our system solves a task whose complete formalization requires the ex-
pressiveness of POMDPs, we have never formulated a joint problem, as this would
be difficult. Somehow we shy away from modelling the environment, including a hu-
man user, as a single, hand-crafted Markov process, because of the many unknowns.
But we have implicitly encoded a lot of assumptions about human communication
behaviour within a dialogue manager [29] (and Chapter 9) and a multi-modal fusion
and fission approach (Chapter 10). We formalized the technical aspects of the HCST
as a planning problem (see Chapters 5 and 6). So we have solved many subprob-
lems, but the solution to the idealized joint problem lies hidden between pragmatic
decisions and implementations.

LRF Mic T1 T2

SRMOB

FusLoc DS PS

Fis DM Pl

more abstract

S1 S2Sp

sensing

inference/
filtering

decision

acting

Fig. 3: Data-flow within a prototype implementation of a Cognitive Technical Sys-
tem

Figure 3 gives a model-based view on the internal workings of the prototype im-
plementation (Chapter 24). On the lowest layer we have the sensors (from left to
right: laser range finder (LRF), microphone (Mic), touch screens (T1, T2)). On the
next layer components are shown that have the purpose of tracking the current state
of the environment. The data from the LRF is processed by a multi-object bayes fil-
ter (MOB). Object localization data together with information from the input fusion
(Fus) is used to locate the user (Loc). Audio is processed by a stock speech rec-
ognizer (SR), whose output is then processed by the multi-modal input fusion. The
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current dialogue state (DS) uses the output of the input fusion, and provides infor-
mation required to track the state of plan execution (PS). The belief state produced
by the filtering stage is used to achieve decisions on how to control the effectors.
The dedicated planner (Pl), the dialogue manager (DM), and the multi-modal out-
put fission stage (Fis) are decision modules deciding upon actions. The decisions of
the planner and the dialogue manager are only used to control the policy of other de-
cision component, with only the fission being in direct control of effectors (speakers
(Sp) and screens (S1, S2)). The type of data that flows between parts/components
of the model is completely determined by the region boundaries crossed by the ar-
rows. Observations flow from sensors to the filtering stage ( ). Nodes within the
filtering stage produce marginal distributions over the complete belief state ( ).
The actions taken by the decision components get fed into the filtering stage as ob-
servations for the next time step ( ). Outputs of decision components are either
abstract, internal actions when used by another decision component ( ), or prim-
itive actions that control effector ( ).

The rest of this chapter is dedicated to the interpretation and generalization of the
described prototype implementation.

5 Inference/Filtering

The observations that are produced by the sensors are consumed by model parts
that incorporate this data into their probabilistic prediction of the current world
state. This process of estimating the current world state based on past observation
is sometimes called filtering, and algorithms implementing this process are called
filters. This process is equivalent to the belief update for belief MDPs given in Equa-
tion 2. The nature of the components found within the filtering stage of Figure 3
requires some explanation. First, we can identify components that are true prob-
abilistic filters. The laser-range-finder data is processed by a multi-object Bayes
filter (see Chapter 15, [39]) to track objects near the system. Input from the speakers
is processed by a stock automatic speech recognizer (SR). Speech recognition can
be performed using hidden Markov models, which are themselves temporal proba-
bilistic models with latent variables [12]. Fusion of input events (Fus) is performed
using an approach based on the transferable belief model [43] (Chapter 10, [42]),
and is thus able to treat uncertainty. Information about user interaction is fused with
the tracking results obtained from (MOB) to identify a possible user among tracked
objects (Loc) [15]. This is achieved using a high-level temporal, probabilistic model
formulated in Markov logic [40, 14]. All the model parts of the filtering stage men-
tioned so far are either truly probabilistic filters, or at least use a different form of
uncertainty management, as in the case of input fusion.

The planner (Pl) and the dialogue manager (DM) work with models that assume
full observability, equivalent to solving MDP problems. The planner even follows
a deterministic modelling approach without stochastic change of the environment,
although it is able to handle unforeseen events by performing replanning [4]. Both
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Fig. 4: Belief update for a POMDP interpreted as a dynamic Bayesian network [8],
or a hidden Markov model. The prior distribution over the initial state S0 is given by
the initial belief state b0.

modules have in common that they can be thought of tracking the current state using
a deterministic finite automaton (DFA) (represented by DS, PS in Figure 3). In the
prototype, changes to the planning model, which captures which cables have been
connected to which devices, are tracked by observing the acknowledgement by the
user of having executed a given instruction. Since a DFA can be considered a special
case of a probabilistic temporal filter (one for a totally deterministic model and no
uncertainty about the initial state), tracking of dialogue and planner state can be
realized via Equation 2, too, and thus fits our interpretation.

The product of a filter component consists of a probability distribution for the
current state. Models of different components cover different variables, and the
overlap between those variables is represented by arrows in Figure 3. This prob-
abilistic knowledge is passed along the black arrows, which can be thought of as
marginalizations of the distributions represented by their source. These marginal
distributions are relevant either for other filters or for the decision modules within
the next layer.

5.1 Factorizing the Belief State Using Graphical Models

As we have argued, the task that has to be performed jointly by the filtering modules
in Figure 3 is to calculate the current belief. If we expand Equation 2 recursively to
compute the belief bt at time t, and define the initial belief state as b0, we obtain

bt(st | o1, . . . ,ot) = ∑
s0,...,st−1

b0(s0)
t

∏
i=1

T (si | si−1,ai−1)Z(oi | si,ai−1). (3)

We can observe that the filtering stage needs to perform a marginalization over the
past states s0, . . . ,st−1 for a probability distribution that is given in factored form by
the conditional probabilities T and Z (see Figure 4). This factorization corresponds
to a hidden Markov model, or more generally a dynamic Bayesian network [28, 21].
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Fig. 5: Different flavors of graphical models. The Bayesian network shows the di-
rected graph for distributions expressible through the factorization P(X1, . . . ,X4) =
P(X1) · P(X2 | X1) · P(X3 | X2) · P(X4 | X2,X3). The Markov network and the fac-
tor graph are two different undirected graphical representations of the distribu-
tion defined by the factorization P(X1, . . . ,X4) ∝ φ1(X1,X2) ·φ2(X2,X3) ·φ3(x3,x4) ·
φ4(x4,x2).

Multivariate probability distributions that are defined in a factored form are com-
monly known under the name of probabilistic graphical models (PGMs) [21]. The
factorization of the distribution implies a set of stochastic (conditional) independen-
cies that both reduce the required number of parameters to specify a distribution, and
simplify probabilistic inference. PGMs come in two major flavors, namely Bayesian
networks (BNs) and Markov random fields (MRFs). They differ in the type of used
graphical representation (directed vs. undirected) and the type of factors they consist
of. BNs consist of conditional probability tables while MRFs can consist of arbitrary
non-negative multivariate functions.

BNs have been proposed for use in the area of Artificial Intelligence by Judea
Pearl in the 1980s [34], although their roots range further back. A distribution P over
variables X = {X1, . . . ,Xn} represented by a BN is defined as the product of condi-
tional probabilities (called conditional probability tables). A conditional probability
table P(Xi | Par(Xi)) encodes the distribution over variable Xi given the ancestor
variables Par(Xi) in a directed acyclic graph that defines the dependency structure
of the BN (see Figure 5a). The joint distribution is given by

P(X1, . . . ,Xn) = ∏
i

P(Xi | Par(Xi)). (4)

The undirected version of PGMs is called MRF or Markov network (MN) [21].
MRFs can be seen as a generalization of BNs where the conditional probabilities
are replaced by arbitrary functions. The dependency structure of MRFs can be rep-
resented graphically either by an undirected graph (Markov network) or a factor
graph ([22]; see Figure 5). A MRF over a set of variables X = {X1, . . . ,Xn} is de-
fined by a set of factors φa with index set A 3 a. A factor maps an assignment to a
subset of variables Xa ⊂ X to the positive reals, and the distribution is defined by
the product over all factors:
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P(X1, . . . ,Xn) =
1
Z ∏

a∈A
φa(Xa) (5)

As MRFs are not normalized, turning them into a proper distribution requires scaling
by a normalizing constant Z called partition function with

Z = ∑
X1,...,Xn

∏
a∈A

φa(Xa). (6)

We have already observed that the joint filtering task consists of a marginaliza-
tion in a BN whose conditional probability tables are given by the transition and
observation probabilities (cf. Equation 3). These CPTs can be further broken down
by assuming that the state S is factorized, just like observations and actions are
factorized for the CTS task (cf. Section 3). This inner factorization enables the dis-
tributed filtering as can be seen in Figure 3. The factorization can be either of a
directed or undirected nature, and we shall discuss the of the trade-offs between the
two approaches now.

5.2 Markov Networks vs. Bayesian Networks

The conditional independence structures that can be represented by BNs and MNs
are slightly different [34, pp. 126], although both models are able to represent any
probability distribution over a finite set of discrete-valued random variables.

Causal models are more faithfully represented by BNs, as the independence
structure expressible by directed edges allows for a causal interpretation [35]. Under
the assumption that every dependence between random variables is due to a causal
mechanism [37, p. 156], it is reasonable to assume that a POMDP (in particular T
and Z) can be expressed in a factorized form using only directed edges. But since
the marginal abstraction over variables in a BN can lead to undirected dependen-
cies, i.e., spurious correlations that are caused by latent confounding variables, it
is reasonable to assume that high-level models abstract over enough variables such
that some dependencies cannot be considered causal anymore.

Since dependencies along the progression of time are usually of a causal nature,
it is reasonable to represent transition probabilities T as directed dependency. In-
deed it has been argued that undirected graphical models are not suited to describe
temporal data [33, 18], although there are successful applications of temporal MRFs
for labeling and segmentation of time series data [45].

An advantage of MRFs is their relatively unproblematic composability. Two
MRFs over the same variables can easily be combined by multiplying them. The
combination of BNs is not as painless, because one has to make sure that the re-
sulting directed graph must be free of cycles. In addition MRFs can be regarded as
a generalization of constraint satisfaction problems and boolean formulas in con-
junctive normal form. This makes the use of existing deterministic formalizations
trivial.
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There exist numerous flavours of graphical models for the representation of time
series data, such as maximum entropy Markov models [26], conditional random
fields [23], or slice-normaliced dynamic Markov logic networks [33]. All models
are addressing various shortcoming of the others. Chain graphs [24, 21] are a hybrid
between BNs and MRFs, as they pose as a directed model on the high level, but
allow conditional probability tables to be factorized in an undirected fashion. This
allows to model the temporal progression between time steps as causal, while the
interaction between variables of the same time step can be undirected. Thus, chain
graphs pose as a potentially useful modelling paradigm in the context of CTSs.

6 Decision

The filtered estimates of the current state are used by the decision components to
determine the behavior of the system, namely control of the effectors. In our inter-
pretation of the prototype, there exist three distinguishable decision components.

At the lowest level we have the multi-modal fission (Fis). Fis is given abstract
descriptions of dialogues and turns these into a concrete visual or audio output. For
each information item that is to be conveyed to the user, Fis has to determine a
modality (text, speech, image, video, etc.) and concrete output devices. For selec-
tion of a most suited device, Fis uses probabilistic information about the location
of the target user (Loc) with the intent of choosing devices close to the user. Fis
makes its decision according to the principle of maximizing expected utility [48].
The chosen output realization must be published to the multi-modal fusion (Fus), as
e.g., pointing gestures can only be interpreted with knowledge about the on-screen
location of involved entities. This is in accordance with our observation that the past
action is necessary to update the current belief (Equation 2). Fis receives its control
input (abstract dialogue descriptions) from the dialogue manager (DM).

The DM realizes communicative acts that may result in several dialogue turns
each. An exemplary communicative act could be about issuing instructions to the
user on connecting two devices with an available video-capable cable. The commu-
nicative act could start with querying the user about the availability of some suitable
cables, and then instructing the user to plug in a user-chosen cable correctly. The
implementation of the DM can be thought of as a POMDP policy that is predefined
by an expert, instead of being obtained by planning/optimization. It follows that the
DM component consumes user input to update its internal state, and it issues dia-
logue actions. For Figure 3 we have divided the dialogue manager into the policy
(DM) and the state tracker (DS), though this separation was not manifest in the real
implementation.

At the highest decision instance we employed a deterministic planner (Pl, see
Chapter 5). The deterministic planning component uses replanning to handle the
case when the observed state deviates from the expected state trajectory. This con-
struction turns the planner into a MDP planner/policy, although it cannot anticipate
risky situations. To close the gap between MDP and POMDP expressiveness, we
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used the most probable state for detecting plan failures—a construction which only
works in settings where the relevant transitions are nearly deterministic. This ap-
proach corresponds to the belief replanning paradigm in [11]. As for the DM, we
have divided this replanning capable planner into a state tracker PS and the policy
Pl. The state tracker has to maintain merely a most probable current world state,
instead of a more general probabilistic belief state.

Following our architectural interpretation—where we have separated the tracking
of the current state (filtering) into the inference stage—decision modules base their
judgement solely on this belief state. This separation follows from the idea of the
belief MDP for solving POMDP problems. And the equivalence between POMDP
and belief MDP implies that separating filtering from decision making allows us
to still obtain the optimal solution. To calculate the correct belief update, the in-
ference stage requires knowledge of past actions and past sensory observations (cf.
Equation 2). Notably, the separation results in purely functional (as in functional
programming) decision components that do not rely on internal state that changes
over time.

7 Abstraction

Within the prototype the only decision module that was interfacing with the effec-
tors was the multi-modal fission (Chapter 10). It was given abstract decisions from
the dialogue manager, which in turn was given abstract decisions from the planner.
While it is perceivable that DM and/or Pl are also issuing commands to effectors
directly, the configuration we find in the prototype appears to be common in other
CTSs, as we shall see in Section 8. We are now going to discuss the types of ab-
stractions we can identify within the prototype.

The abstraction in the prototype between Fis, DM and Pl is of two kinds. We can
identify temporal abstraction in the sense that decisions made on higher levels have
a longer duration and occur less frequently. In addition, a arbitrational abstraction
reduces the size/dimensionality of the decision space towards the Pl end. In an ex-
treme sense the lowest layer has to assign a color to every pixel of a screen, while
on the higher level, between DM and Pl, the action is merely to “instruct the user to
connect cable X with device Y”.

7.1 Temporal Abstraction

Temporal abstraction is a well researched topic in reinforcement learning [36, 19,
27, 7, 47], a field that deals with solving POMDP problems through interaction with
the environment.2 Within the MDP setting, options [46] formalize time-extended

2 This is also called model-free reinforcement learning, as the model has to be learned together
with a policy.
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actions that are equipped with specialized sub-policies. The abstract decision prop-
agation between decision components in the prototype bears much resemblance to
options, as, e.g., the actions decided upon by the planner are implemented by the
dialogue manager by a sequence of dialogues. A peculiarity of options is that the
abstract policy cannot look inside options, and it is not able to interrupt them. This
property also holds in both abstraction stages within the prototype. Because they
have to choose between different actions less frequently, the higher level decision
components are also able to use more complex algorithms that show a slower re-
sponse. Decisions on the lower levels have to be found quickly, and thus it is not
possible to take into account much context—they are often of a reactive character.

When examining Figure 3, we can observe a hierarchy of filtering models, mir-
roring the hierarchical arrangement of the decision components with the pairings
Fus-Fis, DS-DM, and PS-Pl. Apparently it is natural to have abstraction within the
state space of the joint POMDP, too. In contrast to hierarchical abstraction dur-
ing decision making, the literature on temporal abstraction of probabilistic models
appears to be much sparser. Brendan Burns and others describe an approach to tem-
poral abstraction in Dynamic Bayesian networks (DBNs) [10]. Several works by
Kalia Orphanou [31, 32] address temporal abstraction in DBNs for the evaluation of
experimental data. Another very well researched field that strongly relies on tempo-
ral abstraction is automatic speech recognition, where approaches already span the
range form the waveform over phonemes and words to the grammar level [12].

7.2 Arbitrational Abstraction

We have introduced the term arbitrational abstraction to describe the constellation
where the action space or state is coarsened without changing the temporal extent.
This concept on its own appears to be much less researched than temporal abstrac-
tion for action abstraction. This is potentially due to the fact that both types of-
ten occur together and thus are not recognized as separate phenomena, at least in
the setting of planning and decision making. In [41] an approach to reinforcement
learning with factored state and action spaces is described, where planning occurs
by inference within a restricted Boltzmann machine. In the analysis, Sallans and
Hinton identify some variables that act as “macro actions”. Their activation defines
the joint behavior of many primitive decision variables. They also observe that the
variables acting as macro actions are activated over longer periods of time, and thus
arbitrational abstraction coincides with temporal abstraction again.

For probabilistic inference (not necessarily the temporal kind), arbitrational ab-
straction is omnipresent. The task of classification consists in mapping a high-
dimensional input, for example an image, to a single output variable that repre-
sents an abstract concept like the proposition “contains a face”. Only recently, larger
progress has been made in the field of deep learning [1], where classification is done
over a sequence of layers. This layering of classificators has proven to yield a good
boost in classification performance to earlier “shallow” architectures, and the used
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Fig. 6: The difference between a control input and a measurement of the target are
used to control the dynamic system in a closed-loop architecture.

layer model can also be a probabilistic graphical model. As such, the crafted ab-
straction hierarchy on the inference side of Figure 3 bears some resemblance to
“learned” abstraction hierarchies found by deep learning approaches.

8 Related Work

There are many examples of existing complex systems that can be thought of as
CTSs. There exist problem areas where the complete issue of acting based on obser-
vations has to be (and to some extent is) solved; for example, robotics and dialogue
management.

8.1 Control Theory

Control theory is concerned with the control of systems with simple dynamics. It
has a long tradition and rests on solid mathematical foundations [2]. At the heart of
the field lies the idea of exploiting feedback from measurements of the controlled
system (see Figure 6). The simple closed-loop controller can be interpreted within
our framework as having a degenerate filtering stage without latent variables. On the
more complex end of control theory, the concept of multiple-input/multiple-output
controllers [16, pp. 591] approaches the complexity of POMDPs with factored ac-
tions and observations.

8.2 Robot Architectures

It has been observed that many independently designed robot architectures have a
similar structure. In robotics, three-layer architectures are common [13]. They con-
sist of a controller, a sequencer and a liberator. The controller consists of computa-
tions that realize a tight coupling between sensors and effectors, and it is often us-
ing approaches from control theory [44, 16]. The sequencer determines the behavior
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the controller is to follow, and possibly supplies additional parameters. According
to [13], the sequencer resembles an MDP policy. On the highest level, the libera-
tor implements computations that may require an arbitrary amount of processing
time and cannot implement any real-time requirements. Our rendition of the general
three-layer architecture is presented in Figure 7.

controller sequencer liberator

acting decision

sensing filtering

Fig. 7: Interpretation of the general three-layer-architecture.

8.3 Dialogue Systems

Multi-layer architectures have been used for dialogue management. For exam-
ple [25] proposes a two layer architecture. The task of the lower layer is to react
to phenomena related to maintenance of the communication channel, such as turn
taking, back-channel feedback (from the listener to the speaker), or interruption. The
higher layer is concerned with structuring and planning of the conversation. There
are also attempts at tracking the dialogue state using graphical models [38].

9 Conclusion

We have analyzed a prototypical implementation of an assistive CTS. We have pro-
vided a descriptive problem specification by arguing that the joint behavior of the
system can be considered an attempt to solve a POMDP problem. Based on the
POMDP formalization, we have interpreted implemented software components as
contributions of solving the POMDP using the belief MDP approach, thus partition-
ing functionality into filtering and decision-making. We have identified temporal
and arbitrational abstraction as major components of the architecture. We have also
discussed approaches to the modularization of filtering and decision making, and
given references to related work.
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