
Ontology Materialization by Abstraction Refinement in Horn SHOIF

Birte Glimm and Yevgeny Kazakov and Trung-Kien Tran
Institute of Artificial Intelligence, University of Ulm, Germany

<first name>.<last name>@uni-ulm.de

Abstract
Abstraction refinement is a recently introduced technique us-
ing which reasoning over large ABoxes is reduced to reason-
ing over small ‘abstract’ ABoxes. Although the approach is
sound for any classical Description Logic such as SROIQ,
it is complete only for Horn ALCHOI. In this paper, we
propose an extension of this method that is now complete
for Horn SHOIF and also handles role- and equality-
materialization. To show completeness, we use a tailored set
of materialization rules that loosely decouple the ABox from
the TBox. An empirical evaluation demonstrates that, de-
spite the new features, the abstractions are still significantly
smaller than the original ontologies and the materialization
can be computed efficiently.

Introduction
Description Logics (DLs) are popular languages for knowl-
edge representation and reasoning. They are the underly-
ing formalism for the standardized Web Ontology Language
OWL, which is widely used in many application areas. Re-
cent years have also seen an increasing interest in ontology-
based data access, where a TBox with background knowl-
edge, often expressed in a DL language, is used to enrich
datasets (ABoxes), which are then accessible via queries.
Ontology materialization is a reasoning task that computes
logical consequences of the dataset w.r.t. the TBox and it is
the most important task in some languages, e.g. OWL 2 RL.
In other languages, e.g., those that allow existential quantifi-
cation, materialization is a stepping stone for query answer-
ing via rewriting (Kontchakov et al. 2011).

To make ontology materialization useful in practice, es-
pecially for large datasets, scalable materialization is of
great importance. Several approaches have been proposed
to achieve this goal. The RDFox (Motik et al. 2014) and
WebPIE (Urbani et al. 2012) systems operate on the en-
tire dataset and utilize parallel computing to perform a rule-
based materialization for OWL 2 RL. Other approaches try
to reduce the size of the dataset. Modules or so-called ‘indi-
vidual islands’ (Wandelt and Möller 2012) are used for re-
ducing the set of ABox assertions to those that are sufficient
for computing the entailed assertions for a given individual.
The SHER system (Dolby et al. 2009) improves consistency

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

checking and query answering for a large ABox by com-
puting a so-called ‘summary ABox’ in which several origi-
nal individuals are merged into one. If the resulting ABox is
found consistent, then so is the original ABox. If not, then
explanations (Kalyanpur et al. 2007) are used to pinpoint
the contradictory axioms or relax the summary to avoid in-
consistency. Similar to SHER, the abstraction refinement
method for HornALCHOI (Glimm et al. 2014) represents
several individuals of the original ABox by one individual
in a corresponding ‘abstract ABox’. In contrast to the sum-
mary ABox, the abstract ABox, however, provides an under-
approximation rather than an over-approximation of entail-
ments. That is, whereas the summary ABox entails at least
assertions entailed in the original ABox (when individuals
are replaced with their representatives), the abstract ABox
can entail at most such assertions. To ensure completeness
of the method, the so-called refinement step is used that re-
computes the abstraction based on new (sound) entailments
obtained from a previous abstraction. This has the added
benefit that not only consistency but also the full material-
ization of the ABox can be computed without (rather ex-
pensive) explanation computations or repeated consistency
checks. This paper significantly advances the abstraction re-
finement method in several directions:

1. We extend the approach to guarantee completeness in the
presence of transitive and functional roles, thus fully sup-
porting Horn SHOIF ontologies. Reasoning with nom-
inals, inverse roles, and functionality is known to be chal-
lenging due to the loss of the tree-model property and the
existence of implicitly cardinality constrained concepts
(implicit nominals).

2. We materialize not only concept assertions, but also role
and equality assertions. In ALCHOI, role and equality
assertions can be computed by expanding the role hier-
archy and analyzing assertions of nominals. In SHOIF
special techniques are needed to properly handle function-
ality and the consequences of implicit nominals.

3. We present a new set of materialization rules, which
loosely decouple the ABox from the TBox. Although we
use them only for proving completeness of the method,
these rules can be of interest on its own, e.g., as a basis
of an efficient implementation for ABox reasoning. This
provides a fresh view of the approach as the completeness

Syntax Semantics
Concepts:

atomic concept A AI ⊆ ∆I

nominal o oI ⊆ ∆I , ||oI || = 1
top > ∆I

bottom ⊥ ∅
negation ¬C ∆I \ CI
conjunction C uD CI ∩DI
disjunction C tD CI ∪DI
existential restriction ∃R.C {d |∃e ∈ CI : 〈d, e〉 ∈ RI}
universal restriction ∀R.C {d | 〈d, e〉 ∈ RI → e ∈ CI}

Axioms:
concept inclusion C v D CI ⊆ DI
role inclusion R v S RI ⊆ SI
role transitivity tran(R) RI ◦RI ⊆ RI
role functionality func(R) 〈d, e〉, 〈d, e′〉∈RI→ e = e′

concept assertion C(a) aI ∈ CI
role assertion R(a, b) 〈aI , bI〉 ∈ RI
equality assertion a ≈ b aI = bI

Table 1: The syntax and semantics of the DL SHOIF

proofs are principally different from the proofs by Glimm
et al. (2014) and the method can potentially be extended
to other languages having similar rules.

4. We evaluate the approach on several real life and bench-
mark ontologies. The abstractions are often significantly
smaller than the original ontologies (by orders of magni-
tude) and the materialization can be computed efficiently.

We refer readers to a technical report (Glimm, Kazakov, and
Tran 2017) for full proofs of our results and further details.

Preliminaries
The syntax of SHOIF is defined using a vocabulary con-
sisting of countably infinite disjoint sets NC of atomic con-
cepts, NO of nominals, NR of atomic roles, and NI of indi-
viduals. A role is either an atomic role or an inverse role r−
with r ∈ NR. We define R− := r− if R = r and R− := r if
R = r−. Complex concepts and axioms are defined in Ta-
ble 1. An ontology O is a finite set of axioms, written as
O = A ∪ T , where A is an ABox consisting of the concept,
role, and equality assertions inO and T a TBox consisting of
the concept and role inclusion, transitivity, and functionality
axioms inO. To simplify presentation, we do not distinguish
between axioms R(a, b), a ≈ b, R v S, tran(R) and, re-
spectively, R−(b, a), b ≈ a, R− v S−, tran(R−). We use
con(O), rol(O), and ind(O) for the sets of atomic concepts,
atomic roles, and individuals occurring in O, respectively.

An interpretation I = (∆I , ·I) consists of a non-empty
set ∆I , the domain of I, and an interpretation function ·I ,
that assigns to each A ∈ NC a subset AI ⊆ ∆I , to each
o ∈ NO a singleton subset oI ⊆ ∆I , ||oI || = 1, to each
R ∈ NR a binary relation RI ⊆ ∆I × ∆I , and to each
a ∈ NI an element aI ∈ ∆I . This assignment is extended
to roles by (r−)I = {〈e, d〉 | 〈d, e〉 ∈ rI} and to complex
concepts as shown in Table 1. I satisfies an axiom α (written

I |= α) if the corresponding condition in Table 1 holds.
Given an ontology O, I is a model of O (written I |= O)
if I |= α for all axioms α ∈ O; O is consistent if O has
a model; and O entails an axiom α (written O |= α), if
every model of O satisfies α. A role R is functional (in O)
if func(R) ∈ O and transitive (in O) if tran(R) ∈ O. For
an ontology O, let v∗H be the reflexive transitive closure of
the role hierarchy H = {R v S ∈ O}. If R v∗H S, then
we say that R is a sub-role of S and S is a super-role of R;
a role R is simple (in O) if it has no transitive sub-roles. If
func(R) ∈ O, then R must be simple.

A SHOIF ontology O is Horn (Krötzsch, Rudolph, and
Hitzler 2013) and in normalized form if (1) for everyC(a)∈
O, C is an atomic concept; (2) for every C v D ∈ O, the
concepts C and D satisfy the following grammar:

C(i) ::=> | ⊥ | A | o | C1 u C2 | C1 t C2 (1)

D(i) ::=> | ⊥ | A | o | ∃R.A | ∀R.A | ¬C (2)

and (3) for every C v ∀R.A ∈ O and every transitive sub-
role T of R, there exists an atomic concept B that occurs
only in {C v ∀T.B,B v ∀T.B,B v A} ⊆ O and not inC
or A. W.l.o.g., we assume that every ontology is normalized
by applying a structural transformation and a technique for
eliminating transitivity axioms; see e.g. (Kazakov 2009).

(Horn) ALCHOI is the fragment of (Horn) SHOIF in
which functionality and transitivity are disallowed.

For an ontologyO, we say thatO is concept-materialized
if O |= A(a) implies A(a) ∈ O for each A ∈ con(O) and
a ∈ ind(O); O is role-materialized if O |= r(a, b) implies
r(a, b) ∈ O for each r ∈ rol(O) and a, b ∈ ind(O); O is
equality-materialized if O |= a ≈ b implies a ≈ b ∈ O
for each a, b ∈ ind(O); O is (fully) materialized if it is
concept-, role-, and equality-materialized. Given an ontol-
ogy O, the concept-, role-, equality-, and/or (full) material-
ization of O is the smallest super-set of O that is concept-,
role-, equality-, and/or fully materialized respectively. Note
that the full materialization of O is always finite since the
sets con(O), rol(O) and ind(O) are finite.

Computing Materialization by Abstraction
The main idea of the abstraction refinement method is to
materialize an ontology O = A ∪ T with a large ABox A
by constructing a smaller ABox B such that the materializa-
tion of O is obtained from the materialization of B ∪ T by
transferring entailments to O in a certain way. The ABox B
is usually called the abstraction of the original ABox A (or
just the abstract ABox), and the individuals in B are called
representatives of the original individuals inA. All results in
this section apply to any DL with (classical) set-theoretic se-
mantics, e.g., SROIQ (Horrocks, Kutz, and Sattler 2006).

Definition 1. Let A and B be ABoxes. A mapping h :
ind(B) → ind(A) is called a homomorphism (from B to A)
if, for every assertion α ∈ B, we have h(α) ∈ A, where
h(C(a)) := C(h(a)), h(R(a, b)) := R(h(a), h(b)), and
h(a ≈ b) := h(a) ≈ h(b). We say an individual b ∈ ind(B)
is a representative of an individual a ∈ ind(A) if there exists
a homomorphism h : ind(B)→ ind(A) such that h(b) = a.

Example 1. Consider the ABoxes A = {A(a), A(b)} and
B = {A(u)}. Then the individual u of B is a representative
for both individuals a and b.

The following property of homomorphisms allows trans-
ferring entailments from abstractions to original ABoxes.
Lemma 1. Let h : ind(B) → ind(A) be a homomorphism
between the ABoxes B and A. Then, for every TBox T and
every axiom β, B ∪ T |= β implies A ∪ T |= h(β).
Corollary 2. If an individual u ∈ ind(B) is a representative
for an individual a ∈ ind(A), then, for every TBox T and
concept C, if B ∪ T |= C(u), then A ∪ T |= C(a).

According to Corollary 2, in Example 1 one can trans-
fer any entailed concept assertion for u to the corresponding
assertions for a and b. In fact, in this particular case, all en-
tailed concept assertions for A can be computed this way
because there is also a homomorphism from A to B.
Example 2 (Example 1 continued). Consider the homomor-
phism h : ind(A) → ind(B) defined by h = {a 7→ u, b 7→
u}. Then by Lemma 1, for every TBox T and concept C if
A ∪ T |= C(a) or A ∪ T |= C(b) then B ∪ T |= C(u).

In practice, computing a sufficiently small abstraction B
of A such that there are homomorphisms in both directions
is rarely possible, so the set of concept assertions trans-
ferred using Corollary 2 is usually incomplete (e.g., homo-
morphisms from B to A guarantee only soundness). To en-
sure completeness, one can employ further refinement steps
that recompute the abstraction based on the new information
derived. This method was shown to be complete for concept
materialization of HornALCHOI ontologies (Glimm et al.
2014). The aim of this paper is to extend this approach to
Horn SHOIF . Before we go into further details of our ex-
tension, we first describe challenges that the new functional-
ity and transitivity axioms pose for ontology materialization.

Full Materialization for Horn SHOIF
It is easy to show using model-theoretic arguments that an
ALCHOI ontology O without equality assertions entails
an equality between individuals a ≈ b iff either a = b or
both a and b are instances of some nominal concept o occur-
ring in O. To compute such entailed equality assertions, it
is sufficient to compute instances of nominals, which can be
accomplished by introducing an axiom o v Ao with a fresh
concept Ao for each nominal o and computing instances of
Ao. If O contains equality assertions, one needs to addition-
ally perform the transitive symmetric closure of the result-
ing equality assertions. For role-materialization, similarly,
one can show that if O |= R(a, b) then either (i) there ex-
ists R′(a′, b′) ∈ O such that O |= a ≈ a′, O |= b ≈ b′, and
R′ v∗H R, or (ii) a is an instance of ∃R.o and b is an in-
stance of o for some nominal o, or (iii) a is an instance of o
and b is an instance of ∃R−.o for some nominal o. All these
conditions can be checked by introducing fresh concepts and
computing the concept-materialization.

That is, (full) materialization of Horn ALCHOI ontolo-
gies can be reduced to concept-materialization by syntactic
transformations. The following examples illustrate that for
Horn SHOIF ontologies such reductions do not work.

Example 3. Consider the ontology O = A ∪ T with A =
{A(a), A(b)} and T = {A v ∃F−.o, func(F)}. ThenO |=
a ≈ b but neither a nor b are instances of the nominal o.

As Example 3 illustrates, equality testing in (Horn)
SHOIF becomes less trivial; the main reason is that using
a combination of functional roles, inverse roles, and nomi-
nals one can express entailed nominal concepts such as A in
Example 3, which can be interpreted by at most one element.

In the following example, we demonstrate how functional
roles can also result in some non-trivial entailments of role
assertions, even if no equality or nominals are used.
Example 4. Consider the ontology O = A ∪ T with
A = {A(a), R(a, b)} and T = {A v ∃S.>, R v F, S v
F, func(F)}. Then O |= S(a, b), but O 6|= R v S.

As can be seen from Examples 3 and 4, the computation
of equality- and role-materialization becomes a non-trivial
problem for Horn SHOIF ontologies. Fortunately, using
the following corollary of Lemma 1, one can extend the main
idea behind concept-materialization described in the previ-
ous section to equality- and role-materialization.
Corollary 3. Let h : ind(B)→ ind(A) be a homomorphism
between the ABoxes B and A, u, v ∈ ind(B), a = h(u), b =
h(v) ∈ ind(A), and T a SROIQ TBox. Then B∪T |= u ≈
v implies A ∪ T |= a ≈ b, and B ∪ T |= R(u, v) implies
A ∪ T |= R(a, b), for every role R.

Unfortunately, the abstract ABoxes that are sufficient to
guarantee completeness of concept-materialization are not
sufficient to guarantee completeness of equality- and role-
materialization as demonstrated in the following example.
Example 5. Consider the ABox A and its abstraction B
from Example 1. As stated in Example 2, for any TBox T
all entailed concept assertions of T∪A can be obtained using
Corollary 2 for the abstraction B. However, the abstraction B
may be insufficient for computing all entailed role or equal-
ity assertions using Corollary 3. Indeed, consider T ={A v
o}. Then A ∪ T |=a ≈ b, but, clearly, there is no homomor-
phism h : ind(B)→ ind(A) such that h(u)=a and h(u)=b
required to derive this assertion using Corollary 3. Similarly,
it is possible thatA∪T |=R(a, b) for some roleR, but we are
not able to derive this assertion using Corollary 3, for exam-
ple, for T = {A v ∃T.o, A v ∃T−.o, tran(T), T v R}.

Abstraction Refinement for Horn SHOIF
The general algorithm for ontology reasoning using the ab-
straction refinement method can be summarized as follows:

1. Build a suitable abstraction of the original ontology;
2. Compute the entailments from the abstraction using a rea-

soner and transfer them to the original ontology using ho-
momorphisms (Lemma 1);

3. Compute the deductive closure of the original ontology
using some (light-weight) rules;

4. Repeat from Step 1 until no new entailments can be added
to the original ontology.

The efficiency and theoretical properties of this method
depend on the choices of how the abstraction is computed

in Step 1, which entailments are transferred in Step 2, and
which rules are used to compute the deductive closure in
Step 3. In the following we detail these choices.

To compute the abstraction of the original ABox (Step 1),
we define types of individuals based on their assertions.

Definition 2. Let A be an ABox and a an individual.
The concept type of a is a set of concepts τC(a) =
{C | C(a) ∈ A}. The role type of a is a set of roles τR(a) =
{R | ∃b : R(a, b) ∈ A}. The (combined) type of a is the pair
τ(a) = 〈τC(a), τR(a)〉 where τC(a) is the concept type of
a and τR(a) is the role type of a.

Example 6. LetA = {A(a), A(b), R(a, b)}. Then τC(a) =
τC(b) = τ1 = {A}, τR(a) = {R}, τR(b) = {R−}, τ(a) =
τ2 = 〈{A}, {R}〉, and τ(b) = τ3 = 〈{A}, {R−}〉.

The abstract ABox is then constructed by choosing one
representative for each type with the respective assertions.

Definition 3. The abstraction of an ABox A is an ABox
B =

⋃
a∈ind(A)(BτC(a) ∪ Bτ(a)), where:

• for each concept type τC , BτC = {C(uτC) | C ∈ τC},
• for each combined type τ = 〈τC , τR〉, Bτ = {C(vτ) |
C ∈ τC} ∪ {R(vτ , w

R
τ) | R ∈ τR},

where uτC , vτ , and wRτ are distinguished abstract individu-
als for each concept type τC and each combined type τ .

Example 7. The abstraction forA in Example 6 is the ABox
B = BτC(a)∪BτC(b)∪Bτ(a)∪Bτ(b), where BτC(a) = BτC(b)

= Bτ1 = {A(uτ1)}, Bτ(a) = Bτ2 = {A(vτ2), R(vτ2 , w
R
τ2)},

Bτ(b) = Bτ3 = {A(vτ3), R−(vτ3 , w
R−

τ3)}.
Intuitively, the abstraction is a disjoint union of ABoxes

simulating concept and combined types. Note that each map-
ping h : ind(B)→ ind(A) such that:

h(uτC) ∈ {a ∈ ind(A) | τC(a) = τC}, (3)
h(vτ) ∈ {a ∈ ind(A) | τ(a) = τ}, (4)

h(wRτ) ∈ {b ∈ ind(A) | R(h(vτ), b) ∈ A}, (5)

is a homomorphism from B to A. This allows us to trans-
fer entailments back to the original ABox using Corollar-
ies 2 and 3. Note that each original individual a in A has at
least two representatives in B: uτC(a), which has exactly the
same concept assertions as a, and vτ(a), which additionally
has assertions with the same roles. The use of two repre-
sentatives distinguishes the abstractions from the previously
introduced ones (Glimm et al. 2014) and solves the problem
with role and equality assertions in Example 5.

Example 8. Consider the ABox A = {A(a), A(b)} and
TBox T = {A v o} mentioned in Example 5. We have
τC(a)=τC(b)=τ1 ={A}, and τ(a)=τ(b) =τ2 =〈{A}, ∅〉.
The abstraction ofA is defined as B = Bτ1∪Bτ2 with Bτ1 =
{A(uτ1)}, Bτ2 = {A(vτ2)}. Since B ∪ T |= uτ1 ≈ vτ2 , and
h = {uτ1 7→ a, vτ2 7→ b} is a homomorphism from B to A,
using Corollary 3 we obtain A ∪ T |= a ≈ b.

Next, we detail which entailed assertions are transferred
from B to A in Step 2 of the algorithm. To achieve com-
pleteness it is not necessary to transfer all of them.

Definition 4. Let B be the abstraction of an ABox A (by
Definition 3), and ∆B a set of assertions. The update of A
(using ∆B) is the smallest set of assertions ∆A such that:

C(vτ(a)) ∈ ∆B ⇒ C(a) ∈ ∆A, (6)

C(wRτ(a)) ∈ ∆B, R(a, b) ∈ A ⇒ C(b) ∈ ∆A, (7)

S(vτ(a), w
R
τ(a))∈ ∆B, R(a, b) ∈ A ⇒ S(a, b) ∈ ∆A, (8)

S(vτ(a), vτ(a)) ∈ ∆B ⇒ S(a, a) ∈ ∆A (9)

uτC(a) ≈ vτ(b) ∈ ∆B ⇒ a ≈ b ∈ ∆A, (10)

R(uτC(a), vτ(b)) ∈ ∆B ⇒ R(a, b) ∈ ∆A. (11)

The following lemma can be established using homomor-
phisms from B to A satisfying conditions (3)–(5).

Lemma 4. Let B be the abstraction ofA, ∆A an update for
∆B, and T a TBox. ThenB∪T |= ∆B impliesA∪T |= ∆A.

After transferring the entailed assertions according to
Definition 4, in Step 3 we compute the closure of the ABox
A under equality, transitivity, and functionality.

Definition 5. We say that an ABox A is equality-closed if:

a ∈ ind(A) implies a ≈ a ∈ A (12)
{a ≈ b, b ≈ c} ⊆ A implies a ≈ c ∈ A, (13)
{a ≈ b, A(a)} ⊆ A implies A(b) ∈ A, (14)
{a ≈ b, R(a, c)} ⊆ A implies R(b, c) ∈ A, (15)

A is closed under the axiom tran(T) if:

{T (a, b), T (b, c)} ⊆ A implies T (a, c) ∈ A. (16)

A is closed under the axiom func(F) if:

{F (a, b), F (a, c)} ⊆ A implies b ≈ c ∈ A. (17)

The closure of A (w.r.t. a TBox T) under equality, transitiv-
ity, and/or functionality is the smallest super-set of A that
is closed under equality, for each tran(T) ∈ T and/or each
func(F) ∈ T , respectively.

Computing the closure of an ABox under equality, func-
tionality, and transitivity is a relatively lightweight operation
that does not require using a DL reasoner. Note that all these
assertions must be derived in order to compute the full ma-
terialization. The previous method (Glimm et al. 2014) does
not involve the computation of the closure as in Step 3. One
can easily check that this and the lack of the additional indi-
viduals for the concept types results in incompleteness even
for concept-materialization of Horn SHOIF ontologies.

Soundness of the algorithm is a direct consequence of
Lemma 4 and soundness of the additional rules (12)–(17),
which hold for any DL with (classical) set-theoretic seman-
tics, e.g., SROIQ. Steps 2 and 3 can only extend the origi-
nal ABox with entailed atomic assertions. Since the number
of such assertions is bounded by the size of the materializa-
tion, the procedure eventually terminates and the number of
repeat loops is polynomial in the size of the ontology. We
next show that the procedure is complete.

R1
≈ a ≈ a

: a ∈ ind(A) R2
≈
a ≈ b b ≈ c

a ≈ c
R3
≈
a ≈ b R(a, c)

R(b, c)
R4
≈
a ≈ b A(a)

A(b)

R1
t

T (a, b) T (b, c)

T (a, c)
: tran(T) ∈ T R2

t

N(a) M(b)

T (a, b)
: T ′ |= {N v ∃T.N ′,M v ∃T−.N ′, |N ′| = 1}, tran(T) ∈ T

R3
t

N(a)

T (a, a)
: T ′ |= N v ∃(T u T−).>, tran(T) ∈ T R∃

N(a) M(b)

R(a, b)
: T ′ |= {N v ∃R.M, |M | = 1}

R1
≤
F (a, b) F (a, c)

b ≈ c
: func(F) ∈ T R||

N(a) N(b)

a ≈ b
: T ′ |= |N | = 1 R∀

N(a) R(a, b)

B(b)
: T ′ |= N v ∀R.B

R2
≤
M(a) F (a, b)

S(a, b) A(b)
: T ′ |= M v ∃(F u S).A, func(F) ∈ T R1

v
R(a, b)

S(a, b)
: R v S ∈ T R2

v
N(a)

B(a)
: T ′ |= N v B

Table 2: Materialization rules for Horn SHOIF ontologies

A Criterion for Ontology Materialization
To prove completeness of the abstraction refinement proce-
dure in the case of Horn SHOIF , we characterize when
such ontologies are fully materialized by means of closure
of the ABox assertions under certain rules. The rules are
similar to the rules for reasoning in Horn SHOIQ (Or-
tiz, Rudolph, and Simkus 2010) in the sense that they de-
rive logical consequences of axioms. Since we are only in-
terested in ABox consequences and not going to use these
rules for computing the materialization (but merely for prov-
ing completeness of the algorithm), however, we will not de-
rive TBox axioms explicitly, but use their entailments in side
conditions of the rules.

Recall from the discussion after Example 3, that in
SHOIF one can express some non-trivial nominal con-
cepts. We extend the language with such new axiom types.
Definition 6. A concept cardinality restriction is an axiom
of the form |C| ≥ n or |C| = n with C a concept and n ∈
N. An interpretation I satisfies |C| ≥ n (|C| = n), written
I |= |C| ≥ n (I |= |C| = n), iff |CI | ≥ n (|CI | = n).

We also use role conjunctions Ru S, interpreted by (Ru
S)I = RI ∩ SI . The new constructors and axioms are used
only in the conditions of rules and not in the ontology.

In the following, we denote by N and M conjunctions of
atomic concepts or nominals. If we writeC ∈ N , we treatN
as the corresponding set of conjuncts, whereN = > denotes
the empty conjunction. We writeN(a) ∈ A if C(a) ∈ A for
every C ∈ N .
Definition 7. LetA be an ABox. Then N(A) = {|N | ≥ 1 |
N(a) ∈ A} is the set of cardinality axioms induced by A.

The materialization rules forO = A∪T are presented in
Table 2 with T ′ = T ∪N(A). These rules are complete for
ontology materialization.
Theorem 5. LetO = A∪T be a normalized Horn SHOIF
ontology. Then A is closed under the rules in Table 2 w.r.t.
T iff O is fully materialized.

Proof sketch. The non-trivial case is the only if direction
when ind(O) 6= ∅ and T ′ is consistent. We show that there
exists a model J of O such that J |= α implies α ∈ A,
for every atomic assertion α. Then O |= α implies J |= α,
which implies α ∈ A, i.e., O is materialized. To construct
J , we construct an interpretation I, which satisfies all but
transitivity axioms, using a chase-like technique (Abiteboul,
Hull, and Vianu 1995). Intuitively, I has a forest-like struc-
ture with a graph part containing elements for individuals
and concepts that have exactly one instance. The tree parts
grow from the graph part to satisfy entailed existential ax-
ioms. J is then obtained from I by extending the interpre-
tation of non-simple roles to satisfy transitivity axioms.

Completeness
Once the abstraction refinement procedure terminates, we
claim that the ontology is fully materialized by showing that
it is closed under the rules in Table 2.

Lemma 6. Let A ∪ T be an ontology such that A is
equality-, transitivity-, and functionality-closed, B the ab-
straction of A, B′ an ABox such that B ⊆ B′, N(B′) =
N(A) and ∆A ⊆ A with ∆A the update of A using B′ \ B.
Then, B′ is closed under the rules in Table 2 w.r.t. T implies
that A is also closed under the rules w.r.t. T .

Proof sketch. Since N(B′) = N(A), the side condition of
each rule holds for B′ ∪ T iff it holds for A ∪ T . Clearly,
A is closed under R1

≈–R4
≈, R1

≤,R
1
t . For the other rules, the

intuition is that if the premises of a rule R hold for some
assertions γ in A, then the premises of R also hold for the
corresponding abstract assertions γ′ in B, and in B′ conse-
quently. Since B′ is closed under R, the conclusion κ′ of γ′
w.r.t. R is already in B′. Then, the condition ∆A ⊆ A guar-
antees that the conclusion κ of γ w.r.t. R is already in A,
which implies that A is closed under R.

Using Lemma 6, we show that the procedure is complete.

onto- TBox ABox mater. 1st abstraction 2nd abstraction loading and reasoning times in seconds
logy # ax. # assert # assert # types # assert # types # assert Oload Kabst

reas Oreas Kload KCLI
reas Pload Preas

NPD 773 911 K 1.7 M 1 K 21 K − − 12 4 6 9 5 21 49
DBP+ 1 762 25.2 M 28.5 M 188 K 3.2 M 187 K 3.9 M 470 297 412 240 145 101 167
IMDb+ 135 27.7 M 83.8 M 366 2 K − − 171 1 173 280 172 36 209
L10 96 850 K 1.3 M 29 227 29 321 6 2 7 10 5 3 8
L50 96 4.4 M 6.9 M 27 217 27 309 33 2 27 55 31 20 48
L100 96 8.9 M 13.9 M 27 217 27 309 68 2 61 102 67 43 97
L500 96 44.6 M 69.3 M 27 217 27 309 433 2 304 592 351 221 621
U10 157 1.9 M 3.9 M 4 K 91 K 9 K 369 K 35 35 54 23 25 7 25
U50 157 9.7 M 19.8 M 8 K 173 K 19 K 781 K 129 69 155 120 144 43 138
U100 157 19.5 M 39.8 M 10 K 217 K 24 K 1 M 199 95 267 254 315 89 298
U500 157 98.3 M 200.3 M 15 K 336 K 42 K 1.8 M 1 152 143 1 213 1 440 2107 509 1 591

Table 3: Test ontologies, sizes of abstractions, and reasoning times with and without abstraction (K=thousands, M=millions)

Theorem 7. The ontology O = A ∪ T obtained from the
abstraction refinement procedure is fully materialized.

Proof. Let B be the abstraction of A, B′∪T the material-
ization of B∪T , ∆B = B′ \B, and ∆A the update of A.
For every A(a) ∈ A, we have A(vτ(a)) ∈ B ⊆ B′, which
implies N(A) ⊆ N(B′). There always exists a homomor-
phism h from B to B such that h(uτC(a)) = vτ(a). There-
fore, for every A(uτC(a)) ∈ B′, we have A(vτ(a)) ∈ B′.
Since the procedure terminated, i.e. ∆A ⊆ A, for every
A(vτ(a))∈B′ or A(wRτ(a))∈B

′, we have A(a)∈A for some
a ∈ ind(A). Hence, we also obtain N(B′) ⊆ N(A). Thus,
N(A)=N(B′), which allows us to apply Lemma 6. By The-
orem 5, B′ is closed under the rules in Table 2. Therefore, by
Lemma 6, A is closed under those rules. Consequently, by
Theorem 5, O is materialized.

Implementation and Evaluation
We implemented a prototype system Orar for full materi-
alization of Horn SHOIF ontologies, evaluated Orar on
popular ontologies, and compared it with other reasoners.

Table 3 presents detailed information about the test on-
tologies and the experimental results. NPD is an ontology
about petroleum activities, DBPedia+ (DBP+) is an exten-
sion of the DBPedia ontology, and IMDb+ consists of the
Movie ontology and the dataset from the IMDb website. For
the popular benchmarks LUBM (Guo, Pan, and Heflin 2005)
and UOBM (Ma et al. 2006), we use Ln and Un to de-
note the datasets for n universities respectively. LUBM is
in Horn SHI and IMDb+ is in Horn SHIF . For the other
ontologies, we extracted the relevant Horn fragment by re-
moving axioms with disjunctions; NPD is in Horn SHIF ,
DBPedia+ and UOBM are in Horn SHOIF . The test on-
tologies and our system are available online.1

For each ontology, Orar reached the fixpoint after at most
two abstraction steps. As seen in Table 3, the sizes of the
abstractions are significantly smaller than the sizes of the
original ABoxes. For LUBM and IMDb+, the reduction is
over four orders of magnitude. LUBM is also known to be

1https://www.uni-ulm.de/en/in/ki/software/orar

easily handled by other related approaches such as SHER.
For NPD, the reduction is also significant: the abstraction
is just 2% of the size of the original ABox. UOBM and
DBPedia+ are more challenging as the ontologies addition-
ally have nominals. For U10, the size of the abstract ABox
is approximately 19% of the size of the original one. Un-
surprisingly, the size reductions improve with the sizes of
datasets, e.g., the abstraction for U500 is less than 2% in
the size of the original ABox. For DBPedia+, the abstract
ABox is merely 15% of the size of the original one. This is
because individuals in this ontology are more diverse due to
the relatively large number of atomic concepts and roles.

The last part of Table 3 aims at providing a comparison of
reasoning times with and without abstraction. We limit this
comparison to the reasoners Konclude 0.6.2 (Steigmiller,
Liebig, and Glimm 2014) and PAGOdA 2.0 (Zhou et al.
2015), which we found to perform best for our test ontolo-
gies (see the technical report for evaluations of other rea-
soners). Unfortunately, even with Konclude and PAGOdA
we had difficulties in computing full materialization. The
reasoning results of PAGOdA (Preas) do not include equal-
ity materialization. Konclude can only be controlled via the
OWLLink API (Liebig et al. 2011), which causes a signif-
icant communication overhead due to the large number of
individuals. In particular, Konclude timed out for all our test
ontologies. Instead, for reference, we provide the (incom-
plete) results of the command-line client of Konclude (KCLI

reas),
which does not use OWLLink, but supports only concept
materialization. All results were obtained using a compute
server with two Intel Xeon E5-2660V3 processors and 512
GB RAM and a timeout of five hours.

We present the full reasoning times of Orar (Oreas) ex-
cluding loading time (Oload) and including reasoning time
of Konclude via OWLLink on the abstract ABoxes (Kabst

reas).
Currently, the computation of abstractions is not optimized.
In particular, the total reasoning time is dominated by copy-
ing the entailed assertions from the abstract ABoxes to the
original ABox. This step could be avoided by recomputing
the abstractions directly. Also, unlike PAGOdA and Kon-
clude, our implementation is not parallel. In any case, the
purpose of our evaluation was not to show the superiority

of Orar, but to see if our approach can improve the perfor-
mance of existing reasoners on large data sets. As the ab-
stract ABoxes are often significantly smaller than the orig-
inal ones, directly implementing the technique in existing
reasoners could bring even better improvements.

Discussion and Future Work
The presented approach for full materialization of Horn
SHOIF ontologies results in abstractions that are signif-
icantly smaller than the original ontologies (by orders of
magnitude) and can be computed efficiently. This is despite
the more complex structure of the abstractions and the ad-
ditionally required closure rules to achieve completeness in
the presence of nominals, inverse roles, and functionality.

A remaining challenge is the extension to non-Horn on-
tologies, which is non-trivial since reasoners do not commu-
nicate non-deterministic information.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases. Addison-Wesley.
Dolby, J.; Fokoue, A.; Kalyanpur, A.; Schonberg, E.; and
Srinivas, K. 2009. Scalable Highly Expressive Reasoner
(SHER). J. of Web Semantics 7(4):357–361.
Glimm, B.; Kazakov, Y.; Liebig, T.; Tran, T.; and Vialard, V.
2014. Abstraction Refinement for Ontology Materialization.
In Proc. of the 13th Int. Semantic Web Conference, ISWC
2014, 180–195.
Glimm, B.; Kazakov, Y.; and Tran, T.-K. 2017. Ontol-
ogy Materialization by Abstraction Refinement in Horn
SHOIF . Technical report, University of Ulm. Avail-
able at https://www.uni-ulm.de/en/in/ki/
publications.
Guo, Y.; Pan, Z.; and Heflin, J. 2005. LUBM: A Bench-
mark for OWL Knowledge Base Systems. J. Web Sem. 3(2-
3):158–182.
Horrocks, I.; Kutz, O.; and Sattler, U. 2006. The Even More
Irresistible SROIQ. In Proc. of 10th International Confer-
ence on Principles of Knowledge Representation and Rea-
soning, KR 2006, 57–67.
Kalyanpur, A.; Parsia, B.; Horridge, M.; and Sirin, E. 2007.
Finding all justifications of OWL DL entailments. In Proc.
of the 6th Int. Semantic Web Conference, ISWC 2007, 267–
280.
Kazakov, Y. 2009. Consequence-Driven Reasoning for Horn
SHIQ Ontologies. In Proc. of the 21st Int. Joint Conf. on
Artificial Intelligence, IJCAI 2009, 2040–2045.
Kontchakov, R.; Lutz, C.; Toman, D.; Wolter, F.; and Za-
kharyaschev, M. 2011. The Combined Approach to
Ontology-Based Data Access. In Proc. of the 22nd Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2011, 2656–2661.
Krötzsch, M.; Rudolph, S.; and Hitzler, P. 2013. Complexi-
ties of Horn Description Logics. ACM Trans. Comput. Log.
14(1).

Liebig, T.; Luther, M.; Noppens, O.; and Wessel, M. 2011.
OWLlink. Semantic Web 2(1):23–32.
Ma, L.; Yang, Y.; Qiu, Z.; Xie, G. T.; Pan, Y.; and Liu, S.
2006. Towards a Complete OWL Ontology Benchmark. In
Proc. of European Semantic Web Conference, ESWC 2006,
125–139.
Motik, B.; Nenov, Y.; Piro, R.; Horrocks, I.; and Olteanu,
D. 2014. Parallel Materialisation of Datalog Programs in
Centralised, Main-Memory RDF Systems. In Proc. of the
Twenty-Eighth AAAI Conference on Artificial Intelligence,
AAAI 2014, 129–137.
Ortiz, M.; Rudolph, S.; and Simkus, M. 2010. Worst-Case
Optimal Reasoning for the Horn-DL Fragments of OWL 1
and 2. In Proc. of the Twelfth International Conference on
Principles of Knowledge Representation, KR 2010.
Steigmiller, A.; Liebig, T.; and Glimm, B. 2014. Konclude:
System Description. J. Web Sem. 27:78–85.
Urbani, J.; Kotoulas, S.; Maassen, J.; van Harmelen, F.; and
Bal, H. E. 2012. WebPIE: A Web-scale Parallel Inference
Engine using MapReduce. J. Web Semantics 10:59–75.
Wandelt, S., and Möller, R. 2012. Towards ABox Modular-
ization of Semi-Expressive Description Logics. J. of Applied
Ontology 7(2):133–167.
Zhou, Y.; Grau, B. C.; Nenov, Y.; Kaminski, M.; and Hor-
rocks, I. 2015. PAGOdA: Pay-As-You-Go Ontology Query
Answering Using a Datalog Reasoner. J. Artif. Intell. Res.
(JAIR) 54:309–367.

