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Abstract Companion-Technology for cognitive technical systems consists of a mul-
titude of components that implement different properties. A primary point is the
architecture which is responsible for the interoperability of all components. It de-
fines the capabilities of the systems crucially. For research concerning the require-
ments and effects of the architecture, several demonstration scenarios were devel-
oped. Each of these demonstration scenarios focuses on some aspects of a Com-
panion-System. For the implementation a middleware concept was used, having the
capability to realize the major part of the Companion-Systems. Currently the system
architecture takes up only a minor property in projects which are working on related
research topics. For the description of an architecture representing the major part of
possible Companion-Systems, the demonstration scenarios are studied, regarding
their system structure and the constituting components. A monolithic architecture
enables a simple system design and fast direct connections between the compo-
nents, such as: sensors with their processing and fusion components, knowledge
bases, planning components, dialog systems and interaction components. Herein,
only a limited number of possible Companion-Systems can be represented. In a
principled approach, a dynamic architecture, capable of including new components
during run time, is able to represent almost all Companion-Systems. Furthermore
an approach for enhancing the architecture is introduced.
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1 Introduction

Future technical systems will use Companion-Technology to increase their usabil-
ity and extend their functionality. By adding the feasibility to adapt specific system
components to the individual user in any given context of use, the system could
increase its efficiency and cooperativeness by assisting the user with his everyday
tasks. Companion-Systems should be highly available in an individual way and they
should always act on behalf of their users, striving for a maximum degree of reliabil-
ity (cf. Chap. 1. By these properties Companion-Systems differ from contemporary
technical systems. To offer these properties, some new capabilities need to be imple-
mented as shown in Fig. 1. In that way, existing applications, services, or technical
systems can be wrapped by specialized modules to form a Companion-System. The
required modules from Fig. 1 can be classified as follows:

Recognition: These modules encompass diverse sensors for emotion and inten-
tion recognition. In addition, ongoing changes in the environment are also recog-
nized to allow adaptive reasoning and responses of other modules.

Knowledge: A central knowledge base (KB) infers and provides knowledge
based on the recognizers’ inputs. Since sensor data may be afflicted with uncer-
tainty, the KB provides probability distributions along with its requested values.

Planning, Reasoning, Decision: The process of adaptive output generation de-
cides about task planning, dialog strategy and user interface (UI) configuration.
Each involved reasoning process infers its results with the use of the knowledge
as provided by the KB.

Interaction: Modules for adaptive dialog and interaction management along with
different input and output devices are responsible for providing a suitable UL
With that, the user can perform either implicit or explicit interaction.

A Companion-System is a kind of evolution of cognitive technical systems, as
it combines miscellaneous cognitive properties implemented in different modules.
The application itself as well as the linked process of human-computer interaction
(HCI) needs a perception of the emotion and the intention of the user as well as of
the situation. According to Knappmeyer et al. [15], context data can be collected
via physical sensors, logical sensors, virtual sensors, and user profiles. A context-
provisioning middleware can be used to analyze and aggregate such data. Decision
processes of application and service logic are able to access the so aggregated data
(ibid.). Companion-Technology utilizes all these sensor classes to comprehend the
current situation of the user and the environment. This knowledge in combination
with the system’s internal state is what we call the context of use (CoU). In our
knowledge-centered approach, the KB acts as the one provider for any information
that is related to the CoU.

To gain an easy access on the complex sensor data from the different sensors,
hierarchical fusion concepts for combining data are necessary. Fusion can be per-
formed on different levels [5, 6]. Based on Caschera et al. [5], this chapter addresses
fusion approaches on the data-level and feature-level (also known as early and late
or semantic fusion). Fusion on the application-level as mentioned by Glodek et al.
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Fig. 1 Abstract integration of the Companion-Technology in a technical system to generate a spe-
cific Companion-System (cf. [4]). A basic technical system is wrapped by different aspects of
Companion-Technology. The added concepts relate to the four areas of recognition, knowledge
acquisition, planning and reasoning, as well as interaction.

[6] takes place in diverse modules (application, planning, reasoning, decision) and
does not have a direct impact on the architecture.

The range of applications in the domain of Companion-Systems is multifaceted.
In order to cover a variety of possible applications we focus on the following three
exemplary settings as possible implementations for Companion-Systems: (1) an
adaptive Wiring Assistant for setting up a home cinema system (see Chap. 24), (2) an
adaptive and emotion-aware Ticket Vending Machine (see Chap. 25) and (3) a multi-
sensor setup for data acquisition (see Sect. 3.2).

The first setting realizes a cooperative system, where the focus is on the adaptiv-
ity of modules for planning, dialog management and multimodal interaction man-
agement. Thereby, the process of output generation is realized as a pipeline as
described by Honold et al. [9]. A central KB provides the involved modules with
knowledge required for reasoning. The second setting focuses on multimodal data-
acquisition and includes fusion concepts on different levels. This setting makes use
of diverse sensors and addresses fusion of temporal and spatial events. The third set-
ting tackles the challenge of almost real-time multimodal data acquisition. Hence,
this setting requires an infrastructure that allows exact timing and fast processing
under conditions of chronological synchronism.

The remainder of this chapter analyzes the requirements of these three heteroge-
neous exemplary settings with regard to the architecture in order to come up with a
dynamic reference architecture for future Companion-Systems.
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2 Requirements and Middleware

Evolving a technical system to a Companion-System requires some additional func-
tionalities. These functionalities originate from different modules and research do-
mains. To facilitate interdisciplinary research and to ensure flexibility, Companion-
Technology with inter-modular dependencies should not be realized in a monolithic
manner. Spreading desired functionality over several modules in a distributed sys-
tem comes with further advantages. In that way, modules can be shared and ex-
changed to increase availability and maintainability.

To handle the complexity that results from the interplay of different modules
and various sensors, we recommend the use of a dedicated middleware concept
for inter-process communication within such a distributed system. In addition, the
employed middleware shall facilitate the use of different operation systems and pro-
gramming languages, and shall further allow offering application programming in-
terfaces (APIs) for any module.

The following Sect. 2.1 focuses on the impact of derived requirements from Com-
panion-Technology on the architecture. The use of a suitable middleware concept is
discussed in the subsequent Sect. 2.2.

2.1 Impact of Requirements on the Architecture

A Companion-System’s architecture encompasses different modules, which add de-
sired properties to some basic technical system or service. In that way, applied
Companion-Technology shall originate, add, and combine characteristics like “com-
petence, individuality, adaptability, availability, cooperativeness and trustworthi-
ness” [4]. To realize these characteristics, a basic application can be wrapped by
several different Companion-Technology components, as illustrated in Fig. 1. Some
of these modules lead to specific requirements for the architecture to fulfill their
function (e. g. the availability of linked modules of reference, or a minimum infra-
structural data throughput with respect to a desired quality of service). Therefore a
complex and inter-component architecture evolves, whereas every subsystem inher-
its its own architecture. For easy maintenance, the use of coherent concepts is an
important aspect; furthermore, privacy and security issues have to be covered by the
architectural approach as well.

One major aspect of Companion-Technology is user-adaptive behavior. For this
reason, a user-specific KB is necessary to support the involved reasoning processes
and the application. Only with sufficient knowledge about the user, a technical sys-
tem is able to act and decide as a true Companion in a satisfying and user-intended
way. Although eligible, this property often raises concerns of privacy, reliability, and
trustworthiness. From this follows that the architectural communication approach
shall at least support an encryption mechanism to ensure secure inter-process com-
munication. Another reasonable approach might be to virtually split the KB and to
swap user-related data to one of the user’s personal devices (e. g. his smartphone). A
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third aspect addresses the process of output generation to ensure a Ul that respects
specific privacy guidelines. This could be realized by utilizing an additional privacy
decision engine, as motivated by Schaub [23].

Besides the mentioned modules, the applied architectural concept itself could
help to realize the aforementioned characteristics. Most architectural approaches so
far are rather rigid. Once a system is set-up, the architecture remains static without
any changes during runtime. In that regard, an architecture-specific managing com-
ponent could help to dynamically configure the architecture’s topology on-demand,
even during runtime. Such an ability would lead to a dynamic, knowledge-based
architecture, which allows to individually integrate required and available modules.

The analysis of the Wiring Assistant setting (see Chap. 24 and [2, 3, 9]) shows
that several modules act as processing pipeline (e. g. output generation via planner,
dialog management (DM), fission, and interface components). Despite this depen-
dency, all of these components refer to the central KB as a host for necessary data. If
one of these modules stops working, the whole process chain is affected by that. To
meet the requirement of continuous availability, the architecture shall provide two
additional mechanisms. First, it shall allow to detect the status of each participat-
ing module, and second, it shall offer a possibility to dynamically add and remove
modules to the overall architecture. With such adaptability, envisaged but stalled
modules can be replaced by other available modules that offer the same functional-
ity. This could be realized for the architecture’s modules in the same way as already
implemented with the available input and output devices, as applied in the Wiring
Assistant setting. There, the fission module adaptively decides about the configura-
tion of the utilized end devices.

A system’s competence depends on its knowledge. Companion-Systems shall be
able to gain and infer necessary knowledge to some extend by means of recognition
and cognition. This requires different sensors and fusion mechanisms to derive and
extract desired information for further reasoning. Thereby, the architecture shall al-
low to easily integrate all kind of sensors; even dynamically at runtime. This concept
of a Self-Organizing Sensor Network is explained more in detail in Sect. 4.

Knowledge about the time of data acquisition is of great importance for the se-
mantically correct fusion of such sensor data [5]. Fusion of old data might result
in misinterpretation. There are several methods for taking care of timing, e. g. by
synchronizing data acquisition and data processing or by adding time stamps to
recorded and processed data. Both concepts support time-related processing of data
within the fusion process. Companion-Systems require data fusion on different lev-
els e. g. raw sensor data, semantic features or logical data (see Sect. 3.1 and 3.3).

The system needs the ability to be customized to the actual application by con-
figuring a set of required modules. Due to the number of components and their
function-specific requirements, it is hardly possible to implement a Companion-
System in a monolithic way. Since the components are implemented as independent
modules, the overall system needs a standardized way of communication, preferable
via network. This is the topic of the next section.
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2.2 Middleware

Companion-Technology can be implemented in different ways, using various tech-
nologies. According to Knappmeyer et al. [15], a middleware concept can be used to
“overcome problems of heterogeneity and hide complexity”. As almost every device
can handle a network communication, this would be a good and simple opportunity
to connect all components to each other, whether they operate on the same or on
different computers. To realize a flexible and extensible middleware a client server
protocol would be best. Furthermore this central server component would be able
to record all the communication for the debugging process, and take care that the
communication is still working if one component is disabled.
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Rleduis Android
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OpenWire

Module
SEMAINE API MQTT

OpenWire
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Module ActiveMQ
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Fig. 2 SEMAINE Middleware Adoption

For reducing development effort, the middleware from the message broker system-
based SEMAINE project [24] was used and adapted. It is set up using the well known
and tested ActiveMQ! server from the Apache foundation utilizing the OpenWire?
communication protocol. This communication protocol is an improved version of
the Java Messaging Service (JMS), which also offers implementations for program-
ming languages beyond Java. The OpenWire protocol uses topics or direct connec-
tions between the communicating components. Furthermore, the SEMAINE imple-
mentation offers password-protected communication to ensure privacy.

As shown in Fig. 2, the SEMAINE middleware is another layer between the
OpenWire protocol and the application layer. This allows abstraction and simpli-

! Apache ActiveMQ: An open source messaging and integration patterns server — http://
activemq.apache.org [accessed: 2015-12-18]

2 Apache ActiveMQ — OpenWire: A cross language wire protocol — http://activemqg.
apache.org/openwire.html [accessed: 2015-12-18]
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fies the implementation of modules on the application layer. The communication is
organized by the so-called System Manager, which is a Java application that offers
visualization concepts of the distributed system’s topology, the senders and receivers
of messages along with the topics, as well as the sent messages. The UI of this
singleton-like central instance can support debugging processes and can perform
on-demand logging of communication items and communication-specific events.

To support the integration of small ubiquitous sensors other message broker con-
cepts have to be taken into account. Therefore we added an adapter for the MQTT-
protocol’. This can also be used to connect android devices as described by Glodek
et al. [6].

3 Deriving System Requirements from Prototypical Systems

When working on Companion-Technology, the problem of finding suitable architec-
tures for those systems comes along. Several prototypical systems were developed
for researching the structure of Companion-Systems. In this section some of the pro-
totypical systems will be analyzed to gain information about the general problems
of architectures and Companion-Systems. The topics of the prototypical systems
are following the data flow starting with the sensors and data fusion and finishing
with situation- and user-adaptive functionality. For developing and demonstrating
the sensor setup and the data fusion of sensor and input signals (cf. Fig. 3) a proto-
typical system was set up, supporting the user in the task of using a Ticketr Vending
Machine as described in Chap. 25. The architecture of this system includes sensors,
a multi level data fusion, and the application. While the actual architecture of this
system is covered in Sect. 3.3, a general overview is given in Sects. 3.1 and 3.2.
Sect. 3.5 describes the second analyzed system. It is an assistance system, which
helps a user to set up a home theater. It utilizes a KB and a planner to resolve prob-
lems for the user. Based on that, the system uses modules for dialog and interaction
management to guide the use to the solution of said problems. Thus, both systems
cover different parts of the described Companion-Technology. The applied concepts
are compatible to each other and need to be combined according to the requirements.
Both described scenarios were set up using the middleware as described in Sect. 2.2.

3.1 Sensor Setup and Data Fusion

This section focuses on the general definitions of sensor signal acquisition and sen-
sor data fusion to give a short introduction on the topic. In complex systems like
Companion-Systems, there are many layers between the physical sensor and the ac-

3 Message Queue Telemetry Transport (MQTT) is a machine-to-machine connectivity protocol for
the internet of things — http://www.mgtt .org/ [accessed: 2015-12-18]
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tual application, as only in very simple systems the application is directly connected
to physical sensors.

There are various publications with differing definitions dealing with sensor
setup and data fusion. Knappmeyer et al. [15] distinguish the categories from sen-
sors between physical sensors, which are in contact with the environment; virtual
sensors, results of software-based algorithms, and logical sensors, like calender data.

Sensor Data
Processing 1

Primary
Sensor 1
Sensor Data
Processing 2

Primary

M Application knowledge S *Sensor Data Sensor 2
EEES UL Sensor Data
Processing 3
O  Data-level fusion
J¢  Semantic/Feature-level fusion Sensor Pata
[1  Application-level fusion Processing 4

Fig. 3 A potential instance of a basic architecture of sensor data fusion for Companion-Systems.

Fig. 3 shows the basic sensor setup and data fusion structure from a sensory
perspective. In comparison to the architecture proposed by Knappmeyer et al. [15],
the physical sensors are called primary sensors since they deliver direct and unpro-
cessed information of the environment. A primary sensor is an electronic device
which records data from the environment and converts it to a machine-processable
digital representation (raw data). Thus the primary sensors “Primary Sensor 1 and
“Primary Sensor 2” in Fig. 3 just record data and send it to linked sensor data pro-
cessing components.

The sensor data processing is realized in software, extracting relevant informa-
tion from raw data, provided by the primary sensor(s). In that manner, data is trans-
ferred to a more abstract or symbolic representation. Primary sensors and sensor
data processing modules constitute virtual sensors (cf. Sec. 1), similar to the def-
inition given by Knappmeyer et al. [15]. Virtual sensors emit the result of simple
sensor data processing, as well as data-level fusion processes.

A virtual sensor deals with data of a primary sensor, which can also be located in
a mobile device. The virtual sensor’s processing probably needs to be run on a com-
puting server due to low computing power of most mobile devices. This case induces
an additional communication layer between the primary sensor and the sensor data
processing, which needs to be established. The data communication management
is covered by a Self-Organizing Sensor Network, which can change and control the
sensor setup under runtime conditions (see Sect. 3.4).

Several virtual sensors can share a primary sensor as exemplarily shown in Fig. 3.
Furthermore a virtual sensor can rely on data from sensor data processings; e. g.
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emotion recognition from speech [26] needs knowledge about the structure of the
spoken sentence, thus the speech recognition needs to be run first.

Data fusion for Companion-Systems [6] is a major research topic of the research
for the Companion-Technology. A wide range of fusion methods on different data
abstraction levels was developed in recent years. From the architectural point of
view mainly the fusion levels are relevant, as various kinds of data can be processed
in the data fusion for Companion-Systems. In their surveys on multimodal fusion
methods Atrey et al. [1] as well as Caschera et al. [5] give an overview on the fusion
levels as well as the fusion methods. They differentiate feature- or recognition- level
fusion, so called early fusion, which is performed on a very low level of abstraction.
The decision-level fusion also known as late fusion (which processes abstract data)
results e. g. from sensor data processings (ibid.).

The different levels of data fusion that are relevant for Companion-Systems are
discussed by Glodek et al. [6]. The different fusion concepts are shown in Fig. 3
and Fig. 6. The authors distinguish between perception-level and data-level fusion,
the KB- or semantic-level fusion and additionally the application-level fusion. The
first level is the closest to the sensor data and is therefore dealing with raw or only
slightly processed data and complies with the feature-level fusion (cf. [1]). Fusion
on the feature level is usually performed in a separate fusion module, but can be
required in sensor data processing as well (see Fig. 3: Sensor Data Processing 2).
The data is represented on a semantic level after the sensor data processings. Hence,
the fusion algorithms have to deal with more complex data.

The classes recognized on the perception level of a knowledge-based data fu-
sion module are enriched with models created by human experts aiming at a more
abstract or contradiction-free representation of data. Furthermore the temporal vari-
ation and context information are taken into account on this fusion level. On the
KB level, this data is combined with context information in a second semantic data
fusion, which provides information to the application. Application-level fusion is
directly involved in the decision making process and combines abstract information
from multiple sources as the explicit user input, the KB, the DM, and the actual
application.

The primary sensors can share trigger signals for synchronization to take care of
relying on a common time base (see Sect. 3.2). Thus the data fusion processing can
be restricted to a certain time slot.

3.2 Concepts of Sensor Synchronization

In cases where many sensors are analyzed, it is necessary to ensure that all sensors’
data ground on the same time base. The common methods to realize a synchronous
recording are using a hard-wired synchronization signal, embedding a time code,
or using the network time for distributed systems. Due to the wide range of used
sensors, embedding the same time code in every recorded sample is hard to real-
ize. The hard-wired synchronization signal and the network time base were tested
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to gain their potential for Companion-Systems. From the synchronization point of
view digital sensors can be divided in value-based and frame-based devices. Value-
based sensors use only one recording clock controlling the sensor data acquisition,
which is usually the case for audio signal acquisition or biophysical data. Data of
frame-based sensors enclose the basic raw data items plus a data structure, e. g. RGB
cameras or laser rangefinders. In the latter case, the sensor synchronization can be
realized by synchronizing to the frame clock or to the raw data clock.

Digital Camera Signals Ii Data
Cameras and Physical Data
3D Sensors Processing Units

Digital Biophysical Signals * A

Logical Sensor

Biophysical
Sensors

Synchronization Triggerbox
Signal

gna Digital
Audio

Microphones Signals

Masterclock

Audio-Interface
Analog Audio Signals

Fig. 4 Sensor Synchronization Structure

The common approach for laboratory conditions is the hard-wired synchroniza-
tion signal. A structure for a multimodal synchronization method as shown in Fig. 4
was developed and tested for a group of psychological experiments, e. g. for the Last
Minute experiment (see Rosner et al. [22]). Such experiments focus on the psycho-
logical aspects of HCI. The aim is to build validated classifiers to gain the emotional
state or disposition of the user from the different modalities. The synchronization
method is set up by an asynchronous communication protocol and a hard-wired syn-
chronous clock. In these experiments many modalities, namely four high resolution
video cameras, two 3D cameras, several sensors for biophysical data measurement
(cf. [14]), and several audio channels are used. Furthermore the screen of the user is
recorded for analyzing the user’s reactions and the run of the experiment.

In these experiments the fastest recording clock was used as a master clock. As
the used cameras were working with an internal pixel clock the camera synchroniza-
tion was frame-based. Thus, the 44.1 kHz audio sampling rate of the eight line in/out
audio interface Yamaha Steinberg MR-X816 was used as master clock. In recent ex-
periments the Yamaha 01V96i was used as audio interface to improve the recorded
audio quality and set the number of lost audio samples. Using this clock, the trigger
signal for the cameras and stereo cameras is derived using the computer-controlled
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timer counter module (Measurement Computing USB4303) by dividing it by 1764
(cf. Triggerbox in Fig. 4). The resulting 25 Hz signal is fed into the trigger input of
those cameras and results in images, which are synchronous to the audio clock.

This method cannot be used directly for the biophysical measurement system
“Nexus32” and the screen recorder. Both devices use built-in clocks and offer no
opportunity to feed them with an external signal. The Nexus32 is able to record a
signal that is derived from the audio clock as well, thus its data can be reconstructed
close to the desired synchronous state. The screen recorder is recording with the
clock of the graphic card, which cannot be fed by any other signal. The only oppor-
tunity here is to record an audio stream with the computer.

Due to the required computing power for recording the different modalities, the
recording system is set up as a distributed system, using an asynchronous com-
munication of a topic-based message broker system. The different programs can
be divided into the recorder of the different modalities and the management sys-
tem. The management system is able to control the available recorders and start a
recording with a specified name. By starting the recording process, all recorders
are set in an armed state via the asynchronous message broker system. To start the
synchronous trigger signal it sends a code word via USB to the USB4303 device.
Along with all audio signals, the reference/trigger signal gets recorded and enables
the synchronization of visual, 3D, and audio channels.

The advantage of this system is that all signals, which are recorded with a sam-
pling rate, derived from the base clock are perfectly aligned. The technical overhead
for a compact sensor phalanx covering multiple sensor principles is acceptable, but
is getting inefficient for a large sensor array distributed over a wide area.

The setup is flexible by design, but only under laboratory conditions. For a real-
world scenario it is a rather static and monolithic approach by requiring hard-wired
sensor setups and it synchronizes only the acquisition of a data recording. By syn-
chronizing the sensor data processing, the effort will pay off, but the effort for a
distributed system is very high. There are only very limited possibilities to correct
the missing or misaligned data in an online processing. Thus, this synchronization
method is mainly capable for recording of a dataset, which will be processed offline.

A middleware-oriented synchronization method is used in recording settings, in
which a flexible setup with sensors without external inputs was required. The syn-
chronization is realized by using SEMAINE network time. This enables the syn-
chronous recording of sensors like webcams, Kinect etc., which does not allow
hard-wired synchronization. Due to the network delay, the accuracy is limited to
the range of milliseconds, which is appropriate for HCI interactions [25]. Advanced
HCT capabilities are one of the main objectives of Companion-Systems, hence the
system needs to meet at least weak real-time conditions.
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Fig. 5 Setup and application of the prototype system for multimodal sensor data acquisition, pro-
cessing, and fusion.

3.3 Architecture Aspects for Sensor Data Fusion

The setting with the Ticket Vending Machine (see Fig. 5 and Chap. 25) demonstrates
an interactive HCI system, designed to research the cooperation of different subsys-
tems for multimodal sensor data acquisition, processing and fusion, as well as the
resulting benefit for the user interaction and the application. Therefore the primary
sensors’ readings are analyzed online using the developed algorithms in the sensor
data processing (e. g. feature extraction and classification). Based on that, the results
are combined in the hierarchical data fusion structure, as shown in Fig. 6 (cf. [25]).

The sensor phalanx of the system consists of a high resolution camera (AVT
Pike F145C) for mimic analysis [18, 19], a Point Grey Bumblebee 2 stereo cam-
era attached to a pose detection [17], a RGB-D camera (Kinect V1) for gesture
recognition [8], a laser rangefinder array containing two SIC LD-MRS 4-layer laser
scanners for environment recognition [21], and a head-mounted radio microphone
(Sennheiser HSP2 via EW100) for speech and disposition recognition [7, 27]. In the
following, only the virtual sensor results will be used, as the physical sensors are di-
rectly connected to their sensor data processing components. Those virtual sensor
results are sent via the SEMAINE message broker system to different data fusion
processes.

The levels of data fusion introduced in Sect. 3.1, are implemented in separate
components with different requirements regarding to the data processings. The
application-level fusion is localized in the input fusion component, which is reading
the smart input modalities directly, e.g. the touch events, the speech and gesture
recognition results. Furthermore it processes the results of the emotional fusion,
which analyzes the state of the user and the environment fusion, which processes all
data available regarding the surroundings.

The fusion of emotion-related sensor data uses mainly mimic and prosody for its
decisions thus the system is able to determine the emotional state of the user. Hence
the HCI can react properly if the user is happy, neutral, or unhappy. Information
from the sensors is transformed from raw data to a complex semantic level by the
preceding fusion levels and is combined in the input fusion component.
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Fig. 6 Architecture of the system for multimodal sensor data acquisition, processing, and fusion.

As the environmental fusion is being fed by the laser rangefinders, the pose and
gestures recognizers gain information to support the task of the user. In that way, an
approaching person initializes the system, which responds with a greeting. Accord-
ing to the user’s approach velocity, the system decides to start in either standard
or compact dialog mode. Due to reduced complexity, the compact mode is more
suitable for a precipitant user. Furthermore, the environment fusion determines the
probable number of persons traveling with the user via the laser scanners and the
RGB-D camera. The body pose gained from the stereo camera and the Kinect pro-
vides important information to the HCI, whether the user is currently corresponding
to the system or someone else. Therefore the pose and gesture recognition data is
used to extract information if the user is looking towards the system or not, or if he
is probably on the phone. This information is used to minimize the misconception
of the speech recognition. The information transferred to the application represents
the essence of the complete multimodal sensor phalanx. The environmental fusion
results are used as an additional input for the subsequent input fusion component.
The results of the emotional fusion are functioning as a control input for the HCI and
allows implicit interaction. Due to the data fusion, the system can cover a missing
sensor and keep up the overall functionality.

All components are connected indirectly via the message broker system SE-
MAINE, controlled by a central management system, which is able to start up all
required software components of the distributed system. All logical sensor data is
processed online and the results are immediately sent to one of the fusion processes,
but not directly to the application. The acquisition of all sensors apart from the
Kinect is synchronized using the hard-wired method described in Sect. 3.2.
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3.4 Self-Organizing Sensor Network

Self-Organizing Sensor Network
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Fig. 7 The smallest version of a Self-Organizing Sensor Network. The Transfer Layer can have
n inputs and m outputs. Based on that it is possible to build a complex sensor network as described
in Fig. 9.

The sensor phalanx of the prototyped Ticked Vending Machine is set up as a dis-
tributed sensor network, with mostly sending abstract information via the SEMAINE
protocol. But including sensors of mobile devices exceeds the computation power
of those. Therefore the data processing needs to be relocated in some situations.
The signal processing is commonly implemented in software executable on every
available processor. By introducing a client server model for sensor data process-
ing, computationally demanding processing parts can be transferred to any compu-
tation center. This allows Companion-Systems even to be used with smart phones or
tablets. The idea of the Self-Organizing Sensor Network is to act as a subsystem of
a Companion-System. It realizes and controls the required sensor data streams and
distributes them according to the computation capabilities. Controlling the sensor
data streams includes a network time based synchronization method to relate the
sensor readings to a common time base.

A generalizing abstraction is given in Fig. 7, where the client only contains the
physical sensor and a preprocessing unit. A transfer layer is distributing the sensor
data to several signal processing units if required. The required sensor synchroniza-
tion is realized by time stamps derived from a high precision network time, which
gives the required accuracy in the time domain. Several signal processing units can
use the data of a certain sensor, e. g. prosody extraction and speech recognition. The
transfer layer can realize connections with n inputs and m outputs and is able to
realize a complex sensor network. The Self-Organizing Sensor Network enables the
dynamization of the sensor setup (see Sect. 4).
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3.5 Situation- and User-Adaptive System Functionality

Application /
Technical System

Planning Dialog Interaction Output
Components Management Management Devices
Dialog Multimodal
Management Fission Input

Nomination Devices
Manager

Explanation .
m Environment
el Recognition
Fusion

’ -

Explanation

Knowledge Base T
Knowledge

Fig. 8 Abstract view of the architecture of the prototyped Wiring Assistant for wiring a home
theater, based on the architectural approach as presented by Honold et al. [12].

The Wiring Assistant setting [2, 3, 9] implements an assistance system for wiring
a complex home theater (see Chap. 24). The architecture (see Fig. 8) and the used
components are domain-independent, thus a variety of application areas can be im-
plemented using this system structure. The domain-specific knowledge is stored in
different areas of the KB. It manages all necessary knowledge for the working sys-
tem. Every system component has a connection to the centralized KB. The data
structures in the KB are separated in static and time-stamp-based information from
the user, environment, and the system. The knowledge-based system integrates sub-
stantial planning-capabilities (Plan Generation, Execution, Explanation and Repair)
with an adaptive multimodal user interface (Dialog and Interaction Management).
This Wiring Assistant system is only equipped with a minimal sensor setup being
sufficient for demonstrating the capabilities for an assistance system like this. The
laser rangefinder is used for user-localization. Data from the used touch screen sen-
sors in combination with data from the laser rangefinder is used for user identifi-
cation. The integration of a comprehensive sensor-setting has already been imple-
mented in the Ticket Vending Machine setting (see Chap. 25 and Sect. 3.3) and is
used in that configuration. All components of the system communicate via messages
through specific channels of the message-based middleware. By a user requesting
assistance of the application, the assistance process is initialized by passing the user
given task dedicated planning problem to the plan generation component. It gener-
ates a solution e. g. a wiring plan, which describes doing a complete wiring of the
devices of the respective home theater system. This solution is sent to the plan ex-
planation and plan execution components. The plan execution component monitors
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the system, identifying the next plan step in dependency of the current state of the
wiring process and sends it to the dialog management.

The dialog management component generates the facility of presentation for ev-
ery activated plan step. To reach the goals of each plan step, the dialog management
identifies the most successful dialog goal by combining the actual plan step with the
associated hierarchical dialog model. The goal-oriented and adaptive dialog struc-
ture is dissected and step-wise forwarded to the interaction management.

In that way, every dialog step is transmitted to the interaction management, where
the fission reasons about the currently valid UI configuration. In the present system,
the UI can consist of multiple devices (see Chap. 10). Based on the fission’s process,
the most reasonable input and output devices are in charge of rendering their dedi-
cated parts of the UL The user’s inputs can be made explicitly over several devices
(e. g. touch or speech input) or can be interpreted as implicit input via the environ-
ment sensors (e. g. when moving from one spot to another). To get a distinct input,
all input channels are fused in the input fusion module.

If the user has obscurities about why the system reacts in a certain way, he can ask
the system at any time for an explanation of the currently presented plan step. The
dialog management gets the user’s demand through the interaction management and
requests an explanation for the current step from the plan explanation component.
The derived explanation is generated from a formal one, which shows the necessity
of the step for the overall user task (see Chaps. 24 and 5). It is sent back to the
dialog management, which starts the presentation process of the answer upon the
user’s demand.

In some cases, the plan step does not work (e. g. if a required cable is broken
and the system does not know this yet). The plan execution component can be told
about the problem via user interaction and initializes plan repair. The plan genera-
tion module derives a new plan with the modified requirements.

4 A Reference Architecture for Companion-Systems

Fig. 1 shows that Companion-Technology allows to transform a cognitive techni-
cal system to a Companion-System. The benefit of a reference architecture is a
methodical setup for Companion-Systems [13]. It supports the generation of new
implementations and the extension of capabilities of existing systems with regard to
future upgrades. The goal of the reference architecture is to cover a multitude of pos-
sible implementations for a certain system. It further increases the compatibilities of
different systems among each other and concludes in the support of an inter-system-
communication and dynamization (also known as loose coupling (cf. [16])).

The knowledge about the architectures of the aforementioned prototypical sys-
tems and the experience of the synchronous recording setup, can serve as basis for a
common reference architecture. To manage the dynamic architecture and its compo-
nents, an additional control structure is necessary. The architecture’s central compo-
nent is the Controller (see Fig. 9). The controller consists of three components: the
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Fig. 9 A reference architecture for Companion-Systems with Controller components and
Self-Organizing Sensor Network.

Component Controller, the Sensor Network Controller, and the Service Controller.
Each controller focuses on different aspects of the overall system.

The Service Controller acts as the administrative interface for other compo-
nents (e. g. management of requests to several controller components). It also con-
trols the communication between the linked system modules like the SEMAINE
system controller (cf. [24]).

All components in the system are administrated by the central Component Con-
troller. Tt has knowledge about the configurations of possible and desired Com-
panion-Systems. Using said knowledge, the controller can identify the necessary
components for a specific and desired implementation. The controller accesses the
current state of all available components, which enables the controller to react to
a component failure according to the configuration data. Due to the goal of con-
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tinuous availability and full functionality of the system, the controller manages the
distribution of the functionalities between the appropriate, available modules within
the system. For redundancy reasons it is also possible to operate more than the re-
quired modules with the same functionality. The controller should be able to create
a functional system with reduced capabilities if there is no replacement for a miss-
ing component. In such a case, the functional reduction can be communicated to the
user with an ad-hoc creation of a respective output using the dialog and the interac-
tion management. This helps to keep the user’s mental model up to date with respect
to the system’s offered functionality.

The Sensor Network Controller manages the Self-Organizing Sensor Network
(cf. Sect. 3.4), which helps to decouple the sensor data processing and the physical
sensors dynamically in order to optimize the system’s observation capability.

The presented reference architecture is currently established as a concept. Its
improvement goes along with the further research of Companion-Technology.

5 Lessons Learned and Future Work

In this chapter an architectural view on two prototyped systems and one data record-
ing scenario is presented. The first system deals with sensor data acquisition and
processing, as well as data fusion. The second system focuses on planning, reason-
ing, decision making, and user adaption. The system architectures of the described
systems cover different aspects of Companion-Systems. Both systems have compo-
nents of data fusion and an advanced human computer interface in common and are
consequently sharing certain parts of the architectural components.

The fusion of the different architectures (see Fig. 9) leads to an architecture which
is close to being referential for Companion-Systems. The resulting architecture is
still static and by now limited to a certain range of use cases. A future goal is to
increase the adaptivity of the architecture to reach a wider range of applications in
technical systems.

The definition of the communication structure among all necessary components
of a Companion-System is an important task in architecture development. A stan-
dardized interface for Companion-Systems would be helpful for an easy integration
with existing and future projects. Furthermore such an architecture needs to cover
aspects of the component interaction such as: loose coupling, service discovery, data
communication management, synchronization, security, and privacy. To realize dy-
namization, the concept of loose coupling of modules can be applied as described
by Krafzig et al. [16]. This concept is closely related with the idea of a Service-
Oriented Architecture (SOA), where logical modules can be combined on demand
based on a common service description language. The required modules could be
discovered from a repository as described by Papazoglou et al. [20]. If necessary,
specific and service-related UI elements can be realized as described by Honold
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et al. [10]. Privacy issues can be addressed using Schaub’s PriMA* approach [23]
along with the process of modality arbitration as described by Honold et al. [11].

Mobile devices, such as smart phones and tablet-PCs, are probable target sys-
tems for the main interaction with the user. They contain sensors, recording a user’s
voice, face and position, and carry private data as well. Especially when using an
individual, specific KB in insecure networks, it is a goal for the future to consider
and integrate issues of security and privacy. The KB needs to contain information
about several areas, which may be required to be secured against each other. Mo-
bile devices are usually wireless components with very limited computing power,
which will be part of the distributed system used to generate a Companion-System.
Therefore no hard sensor data acquisition synchronization can be established. The
synchronization needs to be realized via network-based communication.

A distributed system can be configured dynamically for different users’ demands
by setting up the Companion-System using existing hardware components as sen-
sors and interaction devices in the current environment of any user. It is possible
to add modules of the architecture — like KB or data fusion — solely using the
network communication. Then, the time constraints regarding the data fusion are
important for the design of the system architecture. Finally the benefit of Compan-
ion-Technology could increase if one running Companion-System could connect to
and communicate with other Companion-Systems around.
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