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Abstract One of the key characteristics of a Companion-System is the adaptation of
its functionality to the user’s preferences and the environment. On the one hand, a
dynamic environment model facilitates the adaption of output modalities in human
computer interaction (HCI) to the current situation. On the other hand, continuous
tracking of users in the proximity of the system allows for resuming a previously
interrupted interaction. Thus, an environment perception system based on a robust
multi-object tracking algorithm is required to provide these functionalities. In typ-
ical Companion-System applications, persons in the proximity are closely spaced
which leads to statistical dependencies in their behavior. The multi-object Bayes
filter allows for modeling these statistical dependencies by representing the multi-
object state using random finite sets. Based on the social force model and the knowl-
edge base of the companion system, an approach to model object interactions is pre-
sented. In this work, the interaction model is incorporated into the prediction step
of the sequential Monte Carlo (SMC) of the multi-object Bayes filter. Further, an
alternative implementation of the multi-object Bayes filter based on labeled random
finite sets is outlined.
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1 Introduction

In addition to adapting the system behavior to the user’s preferences and its cog-
nitive state, a Companion-System is expected to adapt to the current environment.
An intuitive example is the adaptation of the system’s input and output modalities.
For example, audio output should not be used for providing confidential informa-
tion if other persons are in the proximity of the Companion-System. Further, the
presence of other persons typically increases the uncertainty of speech and gesture
input. To realize these capabilities, the Companion-System requires an exact model
of its environment including all persons in its proximity.

The environment model is realized using a multi-object tracking system which
jointly estimates the number of persons as well as the current state of the individual
persons. The continuous tracking of the persons in the proximity of the Companion-
System additionally facilitates the resumption of previously interrupted interactions.
Standard multi-object tracking approaches like the Joint Probabilistic Data Associ-
ation (JPDA) [1] filter, the Joint Integrated Probabilistic Data Association (JIPDA)
filter [16], and Multiple Hypotheses Tracking (MHT) [18] are bottom-up approaches
which extend the Kalman filter [7] to facilitate the tracking of multiple objects. Dur-
ing the last decade, approximations of the Multi-Object Bayes filter [11] became
very popular in multi-object tracking applications. The representation of the multi-
object state using random finite sets (RFSs) naturally represents the uncertainty in
the number of objects as well as in their individual states. Hence, a realization of an
RFS delivers an estimate for the number of persons in the proximity of the Compan-
ion-System. Since the number of objects in each realization is fixed, an RFS allows
for the incorporation of dependencies between the objects which is not possible in
standard multi-object tracking approaches. Especially in crowded environments, the
modeling of statistical dependencies between the objects is required since the pres-
ence of other objects physically restricts the possible movements of the considered
object. A popular approach to model the interactions of persons is the Social Force
Model [5] which is widely used for the simulation of evacuation scenarios.

This chapter is outlined as follows: First, the basics of random finite sets and
multi-object tracking are introduced. In Section 3, a sequential Monte Carlo imple-
mentation of the multi-object Bayes filter as well as possibilities to integrate object
interactions in the filtering algorithm are presented. Finally, an accurate and efficient
approximation of the multi-object Bayes filter, the labeled multi-Bernoulli filter, is
introduced and the differences to the sequential Monte Carlo implementation of the
multi-object Bayes filter are illustrated.

2 Random Finite Sets and the Multi-Object Bayes Filter

Random vectors are typically used to represent the state of an object in single-object
tracking. A commonly used approach to apply random vectors for multi-object
tracking is to stack the vectors of the individual objects. However, a drawback of
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this approach are the missing representation of the uncertainty about the number
of objects and the ordering of the stacked vectors. In contrast, an random finite set
(RFS)

X = {x(1), . . . ,x(n)} (1)

comprises a random number n≥ 0 of unordered points whose states are represented
by random vectors x(1), . . . ,x(n). Hence, an RFS X implicitly captures the uncer-
tainty in the number of objects of the multi-object state. Similar to single-object
tracking, the state of the individual objects is represented using random vectors.
Due to the varying number of objects in the sensor’s field of view and the possibil-
ity of missed detections and false alarms, the measurement process typically returns
a random number of measurements. Further, the values of the measurements are
also random. Consequently, an RFS

Z = {z(1), . . . ,z(m)} (2)

is well-suited to represent the uncertainty of the measurement process where z(i) de-
notes a single measurement. Finite set statistics (FISST) facilitates calculations with
RFSs using the notion of integration and density in a way which is consistent with
point process theory. Hence, FISST provides a mathematically well-founded way to
extend the well-known single-object Bayes filter to multi-object tracking applica-
tions using RFSs – the multi-object Bayes Filter [11]. By filtering a finite set valued
random variable over time, the estimate obtained by the multi-object Bayes filter
captures the uncertainty in number of objects in addition to the state uncertainty
of the individual objects. Similar to the single-object Bayes filter, the multi-object
Bayes filter comprises a prediction and an update step which are outlined in the
following. For additional details as well as the derivations, the reader is referred to
[11].

In the prediction or time update step, the multi-object posterior density at time k
is predicted to the time of the next measurement. In contrast to single-object track-
ing, where a prediction of the object’s state x to the time of the next measure-
ment using a Markov density f+(x+|x) is sufficient, the motion models required
for multi-object tracking are far more complex. In addition to the state transition of
the individual objects, the multi-object motion model is required to handle object
appearance and disappearance. In some applications, it may even be necessary to
incorporate object spawning, i.e. that an already existing object originates a new
object. Since spawning is not relevant for the environment perception of a Compan-
ion-System, it is neglected in the following.

The standard multi-object motion model introduced by Mahler [11] comprises
the following assumptions:

• an object survives during the transition to the time of the next measurement with
probability pS(x),

• each object is assumed to move independent of other objects in the scene based
on a Markov transition density f+(x+|x),
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• new-born objects follow a Poisson distributed birth density πB(X) which is sta-
tistically independent of the persisting objects.

Based on these assumptions, the multi-object Markov density is given by

f+(X+|X) = πB(X+)π+( /0|X)∑
θ

∏
i:θ(i)>0

pS(x
(i)) · f+(x

(θ(i))
+ |x(i))

(1− pS(x
(i))) ·λB pB(x

(θ(i))
+ )

. (3)

Here, the state dependent survival probability is denoted by pS(·) and the expected
number of new-born objects λB as well as the probability density pB(·) are pa-
rameters of the birth model. The sum in (3) includes all possible associations
θ : {1, . . . ,n′} → {0,1, . . . ,n}, the association θ(i) = 0 represents the disappear-
ance of object i and θ(i) > 0 implies the persistence of object i. The probabilities
for all objects being new-born and for the disappearance of all objects are given by

πB(X+) = e−λB
n

∏
i=1

λB pB(x
(i)
+ ) (4)

π+( /0|X) =
n′

∏
i=1

(
1− pS(x

(i))
)
. (5)

Observe that the contribution of a state vector x(i) to (4) and (5) is canceled out for
all associations θ(i)> 0 by the denominator of the product in (3).

Using the Chapman-Kolmogorov equation and the multi-object Markov density
(3), the prediction of the multi-object Bayes filter to the time of the next measure-
ment is given by

π+(X+) =
∫

f (X+|X)π(X)δX . (6)

where π(X) is the prior multi-object density. Observe that the Markov assumption is
used in (6) implies that the multi-object posterior density π (X) captures the entire
information about the multi-object state at a time k. The integral in (6) is a set
integral which integrates over all possible cardinalities.

The update step of the multi-object Bayes filter is based on a multi-object likeli-
hood function g(Z|X+) incorporating the single-object likelihood function g(z|x+),
the field of view (FOV) of the sensor, the detection probability, and the false alarm
rate. Here, the single-object likelihood function g(z|x+) provides the likelihood that
a measurement z has been generated by object x+ based on the spatial distance and
the according uncertainties. Further, the state dependent detection probability incor-
porates the handling of the sensor’s FOV. The standard multi-object measurement
model [11] is illustrated by Figure 1 and uses the following assumptions:

• A measurement is generated by at most one object and each object is observed
by the sensor according to a single-object spatial likelihood function g(z|x+),

• Each object gives rise to a measurement according to the state dependent detec-
tion probability pD(x+) and it is not detected with probability 1− pD(x+),
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Fig. 1 Illustration of the events represented by the multi-object likelihood function: object de-
tections (red rectangles), missed detections (no measurement for partially occluded person on the
right side), false alarms (red dashed rectangles).

• The sensor delivers Poisson distributed false alarms with mean number of λc
measurements. The false alarms follow the spatial distribution c(z) which is usu-
ally modeled by a uniform distribution over the sensor’s FOV. Further, the object
detection process and the false alarm process are assumed to be statistically in-
dependent and the measurements have to be conditionally independent of the
objects’ states.

In multi-object tracking, the track-to-measurement association, i.e. which mea-
surement belongs to which target, is ambiguous in most scenarios due to the spatial
uncertainty of the objects’ states and the measurements. Further, the possibility of
missed detections and false alarms additionally increases the ambiguity. To handle
these ambiguities, the multi-object likelihood function averages over all possible
association hypotheses which is the best one can do if no prior knowledge about
the track-to-measurement is available. Similar to the multi-object Markov density,
the association hypotheses for n objects and m measurements are represented by
θ : {1, . . . ,n} → {0,1, . . . ,m} where the measurement ’0’ covers possible missed
detections of some of the objects. The assumption that a measurement belongs to at
most one of the objects is ensured by θ(i) = θ( j) > 0 if and only if i = j, which
uniquely assigns a measurement z

θ(i) to an object i. The missed detection of an
object is represented by θ(i) = 0.

Using the associations θ , the multi-object likelihood function covering missed
detections and false alarms is given by

g(Z|X+) = πC(Z)π ( /0|X+)∑
θ

∏
i:θ(i)>0

pD
(
x(i)+
)
·g
(
z

θ(i)|x
(i)
+

)
(
1− pD

(
x(i)+
))
·λcc

(
z

θ(i)

) , (7)
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where pD(·) denotes the state dependent detection probability and g(·|·) is the
single-object likelihood function representing the likelihood for a measurement z

θ(i)

given an object with predicted state x(i)+ . The expected number of false alarms λc and
the spatial distribution c(·) are the parameters of the clutter process. The factor

π ( /0|X+) =
n

∏
i=1

(
1− pD

(
x(i)+
))
, (8)

denotes the probability that none of the objects has been detected by the sensor at
the current time step and

πC(Z) = e−λc ∏
z∈Z

λcc(z). (9)

is the probability that all measurements z ∈ Z are originated by the clutter process.
Using (7), the multi-object posterior density after integrating the current set of

measurements is calculated using the multi-object Bayes filter update

π(X |Z) = g(Z|X)π(X)∫
g(Z|X)π(X)δX

. (10)

The recursive update of the multi-object posterior density is consequently realized
by applying (6) and (10) each time a new measurement is obtained. Similar to the
single-object Bayes filter, an analytical implementation of the multi-object Bayes
filter is not possible in general. However, the multi-object Bayes filter facilitates an
approximation using sequential Monte-Carlo (SMC) methods as well as a closed-
form implementation using δ -generalized labeled multi-Bernoulli (δ -GLMB) RFSs
which are presented in detail in Sections 3 and 4.

Further approximations of the multi-object Bayes filter which will not be dis-
cussed in in this chapter are the probability hypothesis density (PHD) Filter [9], the
cardinalized probability hypothesis density (CPHD) filter [10], and the cardinality
balanced multi-target multi-Bernoulli (CB-MeMBer) filter [32]. While the PHD and
CPHD filter approximate the multi-object posterior by the first statistical moment
(and the cardinality distribution in case of the CPHD filter), the CB-MeMBer fil-
ter approximates the posterior using a Multi-Bernoulli distribution. Further details
as well as implementations of these filters using Gaussian mixture (GM) and SMC
methods are, e.g., given in [33, 29, 28, 10, 31, 32].

3 SMC Implementation of the Multi-Object Bayes Filter and
Modeling of Object Interactions

In typical applications of Companion-Systems, a high number of humans in the
proximity is expected. Obviously, the movement of the individual persons is re-
stricted in these scenarios by the presence of other persons leading to statistical
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dependencies in their movements. In the following, the sequential Monte-Carlo
(SMC) implementation of the multi-object Bayes filter incorporating object inter-
actions is presented. For further details, the reader is referred to [20, 23, 19] as well
as [26, 29, 8, 11].

In the SMC implementation of the single-object Bayer filter, vector-valued parti-
cles x(i) ∈Rn are typically used to approximate the spatial distribution p(x). For the
sequential Monte-Carlo multi-object Bayes (SMC-MOB) filter, each multi-object
particle has to be a sample of a random finite set and is consequently given by a set
of state vectors

X(i) ,
{

x(1), . . . ,x(n)
}
, (11)

where the number of objects n as well as the state vectors x( j) are random. In the
following, the state vectors x( j) of the multi-object particle X(i) are conveniently
called ”particles”. Using the ν multi-object particles, the multi-object probability
density is approximated by

π (X)∼=
ν

∑
i=0

w(i) ·δX(i)(X). (12)

3.1 Prediction

The prediction step of the SMC-MOB filter has to predict each multi-object particle
according to the multi-object Markov density (3) incorporating the motion of per-
sisting objects as well as object appearance and disappearance. Consequently, the
prediction of a multi-object particle is obtained by the union of the set of surviving
particles X(i)

+,S and the set of new-born particles X(i)
B :

X(i)
+ = X(i)

+,S∪X(i)
B (13)

The set of persisting particles of a multi-object particle X(i) = {x(1), . . . ,x(n)} is ob-
tained by a multi-Bernoulli distribution using the persistence probability pS(x

( j)) as
a parameter. Since a multi-Bernoulli distribution is the union of several independent
Bernoulli distributions, the persistence of each object is assumed to be statistically
independent of other objects. Thus, the persistence of a subset {x(1), . . . ,x(n′)} has a
probability of

π

({
x(1), . . . ,x(n

′)}∣∣X(i)
)
= ∏

x∈X(i)

(1− pS(x)) · ∏
x̃∈{x(1),...,x(n′)}

pS(x̃)
1− pS(x̃)

. (14)

Instead of drawing the persisting particles directly using (14), the independence
of the M Bernoulli distributions within the multi-Bernoulli distribution facilitates
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to sample the persistence of each particle independently. This can be realized by
drawing a uniformly distributed random number ζ ( j) for each particle in X(i). Con-
sequently, the set of persisting particles follows

X(i)
S =

{
x : ζ

( j) < pS(x
( j)) ∀ j = 1, . . . , |X(i)|

}
. (15)

Hence, a particle only persists if its state dependent survival probability is greater
than the drawn random number. Finally, the j = 1, . . . ,n′ persisting particles have
to be predicted to the time of the next measurement using a single-object Markov
transition density

x( j)
+ ∼ f+

(
·|x( j)

)
(16)

in order to obtain the predicted set of surviving particles:

X(i)
+,S =

{
x(1)+ , . . . ,x(n

′)
+

}
. (17)

The birth process is utilized to obtain the set of new born particles X(i)
B . There-

fore, the number of appearing objects nB is sampled from a Poisson distributed
cardinality distribution ρB(n) with an expectation value of λB. The state of the new-
born particles is obtained by sampling from the spatial distribution pB of new born
objects:

x( j)
+ ∼ pB(·) ∀ j = 1, . . . ,nB. (18)

3.2 Update

In the update step of the SMC-MOB, the weight of each multi-object particle has to
be updated using the multi-object likelihood function (7). The usage of a hypothe-
ses tree [13, 12, 14] facilitates an intuitive representation of all valid association
hypotheses. An example for a hypotheses tree is illustrated by Figure 2 for a sce-
nario with two objects and two measurements. A complete association hypothesis
for a multi-object particles corresponds to the path from the root of the tree to a leaf.
Since different cardinalities are represented by additional hypotheses trees and the
assignment of measurements to the clutter source is realized by the factor πC(Z),
the hypotheses tree for the SMC-MOB filter is less complex than the one for the
joint integrated probabilistic data association (JIPDA) algorithm in [12, 14]. The
likelihood of an association θ(i) corresponds to an edge of the hypotheses tree.
The value of each summand of (7) is calculated by multiplying the edge likelihoods
from the root of the tree to the corresponding leaf. The likelihood of the measure-
ment Z for the multi-object particle X(i)

+ is obtained by accumulating the likelihoods
for all paths and a subsequent multiplication with the clutter factor πC(Z) and the
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t2↔ /0t2↔ z2 t2↔ z1 t2↔ /0 t2↔ z1 t2↔ z2 t2↔ /0

t1↔ z1 t1↔ z2 t1↔ /0

Fig. 2 Hypotheses tree for a scenario with two objects t1 and t2 and two measurements z1 and z2.
Each node represents an association of the object ti to measurement z j (i.e., θ(i) = j ) or the missed
detection /0 (i.e., θ(i) = 0 ).

missed detection factor π ( /0|X(i)
+ ). Similar to [12, 14], the likelihoods for all track-

to-measurement assignments are calculated a priori and stored in a lookup table.
The implementation of the hypotheses tree using recursion is straight-forward.

The update step of the SMC-MOB filter does not affect the state of the multi-
object particles, i.e. the posterior multi-object particles are identical to the predicted
ones:

X(i) , X(i)
+ . (19)

However, the weights of the multi-object particles are updated using the multi-object
likelihood function:

w(i) ,
g
(

Z|X(i)
+

)
ν

∑
e=0

π

(
Z|X(e)

+

) . (20)

Here, the denominator is a normalizing constant which ensures that the weights still
sum up to one after the update.

After several measurement updates, the weights typically tend to concentrate on
one or only a few multi-object particles since the prediction step increases the vari-
ance of the particles and the update does not decrease the variance. Hence, standard
resampling approaches used for SMC implementation of the single-object Bayes
have to be applied [25, 27].
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3.3 Modeling Object Interactions

The standard multi-object motion model given by (7) assumes that the motion of
each object depends only on its current state and the assumed motion model, i.e. the
objects are considered to be statistically independent. Especially in scenarios with
closely spaced objects, this assumption leads to physically impossible multi-object
states after prediction. In the context of a Companion-System, typical examples of
these impossible states are multi-object particles

In order to avoid invalid multi-object states, an appropriate model for human mo-
tion is required. In [6], Henderson observed correlations between fluid dynamics and
human motion. However, this approach facilitates only a macroscopic formulation
which, e.g., delivers the mean velocity of a group of people. In contrast, the Social
Force Model proposed by Helbing and Molnar [5] uses a microscopic model to rep-
resent human motion where changes of the individual behaviors due to the current
environment are modeled by attractive and repellent force vectors. Repellent forces
are typically used to avoid collisions with other persons as well as static obstacles.
Attractive forces are, e.g., used to model the destination of a person. Further, the
model is based on the knowledge that each person tries to reach its destination on
the shortest path while moving with its desired velocity.

In addition to scenarios with closely spaced objects, the incorporation of object
interaction is also recommended for scenarios with occlusions or in case of low mea-
surement rates. In Section 3.3.1, an approach based on the incorporation of physical
constraints is proposed which avoids collisions of the persons and may be realized
without any additional information. Further, Section 3.3.2 outlines the possibilities
to improve the tracking results by using the information available in the Compan-
ion-Systems knowledge base.

3.3.1 Set Based Weight Adaption

In order to obtain only valid predicted multi-object states, an incorporation of ob-
ject inter-dependencies in the transition densities is required. Since the computation
of such transition densities is computationally demanding, the proposed method
predicts all objects within a multi-object particle independently and a subsequent
weight adaption of the multi-object particles is applied to remove invalid ones.

The weight adaption is based on the repellent forces used in the social force
model which are modeled using exponential functions [17]. In case of circular ob-
jects with radius rp, the likelihood that a multi-object particle comprises two objects
s and t follows

Λd(x(s),x(t)) =

0 if d(x(s),x(t))< 2rp

1− exp
(
− (d(x(s),x(t))−2rp)

2

2σ2
d

)
otherwise

(21)
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where d(x(s),x(t)) denotes their Euclidean distance. Obviously, a likelihood of zero
is assigned if two objects are overlapping and the exponential function facilitates a
smooth transition of the likelihood function for all distances up to the preferred inter-
object distance. Afterwards, the weight of the multi-object particle X(i) is adapted
using the minimum likelihood of all possible pairings (s, t):

w̃(i)
+ = min

s=1,...,|X(i)|

(
min

t=1,...,|X(i)|,t 6=s

(
Λd(x(s),x(t))

))
·w(i)

+ . (22)

The weight of a multi-object particle is set to zero if any two of its objects are
colliding. In contrast, the weight of the multi-object particle is unchanged if the
distances between all of its objects are higher than the preferred distance.

3.3.2 Integration of Destinations Using Knowledge Base

Probablilistic
Knowledge BasePlanning Dialogue

Management

MOB Filter

Sensor

Classifier

Sensor

. . .

Fig. 3 Architecture of a prototypical Companion-System. The central knowledge base main-
tains a filtered belief state. It integrates between lower-level sensor processing modules like the
multi-object tracker and further classifier, and high-level functionality including decision mak-
ing/planning and routines of the user interface.

A Companion-System comprises a multitude of different components. Each of
which can potentially produce and/or consume information. As decision making and
inference across different modules has to be kept consistent, a central probabilistic
knowledge base (KB) is tasked with maintaining a global filtered probabilistic be-
lief state XKB. Consistency requires that the local belief state XC of a component
C must correspond to the marginalization of XKB over the variables not included
in C. To achieve this global synchronization, probabilistic state information may
flow bidirectionally between the KB and the interfacing modules. By maintaining
a globally consistent belief state, the knowledge base provides mutual abstraction
between all interfacing components, such that every module has to deal only with
its local view of the global state. Such joint treatment of belief across components
fosters synergistic effects, which may also improve the state prediction of multi-
object trackers. Information originating from high-level components can be used to
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improve track continuity — in particular in situations featuring occlusions or low
measurement rates, where the associations of the tracks between the individual time
steps is ambiguous.

Basically every correlation between the global belief state XKB and the true loca-
tion of a certain object/user can be used to improve the association quality. We can
identify several sources of potentially useful information, although a large part of
the model is application dependent. As human users are supposed to interact with
the system, we can harvest this interaction to gain hints of their true location. A reg-
istered touch event at a stationary device gives a strong indication that a user instead
of a non-user is standing in front of the device. Further, knowledge about screen
content increases the chance that a user will be moving toward the screen to read
the information, even if no touch contact takes place. Beside information originating
from the dialog management, we can also use knowledge obtained from planning.
The planning component maintains a future course of action for the user [2] to fol-
low. If some actions are known to be connected to a certain location, we can exploit
this knowledge to improve the tracking accuracy. An exemplary situation happens
when the system issues a job to a printer, and the user is supposed to fetch the pro-
duced document. Then this knowledge, in combination with knowledge of the loca-
tion of the printer, can be used to disambiguate which observed object corresponds
to the current user.

To exploit such hints on the true user location, one can follow two approaches.
One approach consists of the multi-object tracking algorithm maintaining the track
labels only in cases of high confidence, trying to avoid any wrong associations. This
results in many spawned tracks belonging to the same object in challenging situa-
tions. Then a track to person association can be maintained by the knowledge base
using available background information. The feasibility of this approach has been
demonstrated successfully in an experimental setting [3, 4] using a probabilistic
model formulated with Markov Logic [24]. One major disadvantage could be iden-
tified in the requirement of discretizing the user position, because of the limitations
of the modeling language. The second approach is to improve the performance of
the multi-object tracking algorithm itself by integrating the hints about current and
future positions of human users. The (typically imprecise) knowledge about future
destinations of the user may be used within the Social Force Model to improve the
predicted state of the users which is expected to significantly improve the perfor-
mance in case of long term occlusions.

3.4 Real-Time Implementation

An implementation of the SMC-MOB filter requires a very large number of multi-
object particles to obtain a sufficient approximation of the multi-object posterior.
The reason for this is that the dimension of the space of the multi-object particles
is given by the dimension of the state vector times the number of objects in the
scene. The prediction and update step of the SMC-MOB filter facilitate a massively
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parallel implementation since the calculations for each multi-object particle do not
depend on any other multi-object particle. Consequently, graphics processing units
(GPUs) are well suited for the implementation of the SMC-MOB filter.

Due to the combinatorial complexity and the restrictions concerning recursive
functions on GPUs, an exact computation of the multi-object likelihood function is
only feasible for a limited number of tracks and measurements. The reason for the
complexity is the assumption that a measurement is created by at most one object.
Neglecting this assumption, the multi-object likelihood function simplifies to [19]

g̃(Z|X+) = πC(Z)π ( /0|X+) ·
n

∏
i=1

1+
m

∑
j=1

pD

(
x(i)+
)
·g
(

z j|x
(i)
+

)
(

1− pD(x
(i)
+ )
)

λcc(z j)

 , (23)

i.e. the multi-object likelihood may be calculated using two for loops and the com-
putational complexity reduces to O(mn) where n is the number of objects and m is
the number of measurements. The corresponding hypotheses tree for two measure-
ments and two tracks is depicted by Figure 4. Obviously, the approximation leads
to two additional nodes in the tree (marked by dashed lines) and the approxima-
tion error is negligible if each measurement has a significant likelihood for at most
one object, i.e. the association hypotheses due to the two additional nodes have an
insignificant contribution to the multi-object likelihood function. Modeling object
interactions as presented in Section 3.3, the approximation errors are negligible if
the extend of the objects is significantly larger than the standard deviation of the
measurement noise.

t2↔ z1 t2↔ /0t2↔ z2 t2↔ z1 t2↔ z2 t2↔ /0 t2↔ z1 t2↔ z2 t2↔ /0

t1↔ z1 t1↔ z2 t1↔ /0

Fig. 4 Approximate multi-object likelihood function: Compared to Figure 2, two additional nodes
(marked by red dashed lines) have been added which facilitate the assignment of one measurement
to multiple tracks.

In [21, 23], it is shown that the proposed approximation of the multi-object likeli-
hood function facilitates a real-time capable implementation of the SMC-MOB filter
using a GPU. With a total number of 25000 multi-object particles, a Nvidia Tesla
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C2075 GPU processes the prediction step, the update step and the track extraction
in less than 40 ms for a scenario with up to seven objects.

4 Labeled Multi-Bernoulli Filter

The SMC-MOB filter introduced in the previous section requires a huge amount
of multi-object particles since the dimension of the sample space increases linear
in the number of objects. Since the required number of multi-object particles for
a sufficient state representation grows exponentially with the state dimension, the
maximum number of objects in the scene is limited due to the available computa-
tional resources. Hence, alternative approaches are required to handle large numbers
of objects.

In [30], Vo and Vo showed that the class of δ -generalized labeled multi-Bernoulli
(δ -GLMB) RFSs is closed under the prediction and update equations of the multi-
object Bayes filter1 for the standard multi-object motion model as well as the stan-
dard multi-object likelihood. Hence, the δ -GLMB filter [30] facilitates an analytical
implementation of the multi-object Bayes filter. Similar to the SMC-MOB filter, the
number of components required within the δ -GLMB filter is combinatorial. The la-
beled multi-Bernoulli (LMB) filter [22, 19] approximates the δ -GLMB distribution
by an LMB distribution which facilitates the tracking of a huge number of object
due to the application of principled approximations.

4.1 Labeled Random Finite Sets

The SMC-MOB filter as well as the PHD, CPHD, and CB-MeMBer filters require
a (typically heuristic) post-processing to extract object tracks out of the estimated
multi-object probability density. The underlying idea of the class of labeled RFSs is
to augment the state by track labels. Thus, filtering a labeled RFS over time delivers
a joint estimate of the number of tracks, their individual positions as well as the
trajectory of the tracks.

In a labeled RFS, each object’s state x ∈X is augmented by a label ` ∈ L, where
L is a discrete label space (e.g., the set of positive integers N). Consequently, a
labeled multi-object state is represented by the set X = {x(1), . . . ,x(n)} on the space
X×L where the labeled state vectors are abbreviated using x = (x, `). In multi-
object tracking applications, it is required that the object labels are distinct, i.e. a
label ` may be assigned to at most one object in each realization. In order to ensure
distinct labels within each realization of a labeled RFS X, the distinct label indicator
[30]

1 Observe that the number of components of the δ -GLMB distribution increases during these steps.
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∆(X) = δ|X|(|L (X)|) (24)

requires the cardinality of a realization X to be equal to the number of distinct track
labels |L (X)| where the set of track labels is given by the projection

L (X) = {L (x) : x ∈ X} (25)

with L (x) = L ((x, `)) = `.

4.1.1 Labeled Multi-Bernoulli Random Finite Set

The representation of the uncertainty about object existence is intuitively realized
using a Bernoulli RFS X. With the existence probability r, the Bernoulli RFS is
given by a singleton. Consequently, the RFS X corresponds to the empty set with
probability 1− r. The probability density of a Bernoulli RFS follows [11, pp. 368]

π (X) =

{
1− r, if X = /0,
r · p(x), if X = {x},

(26)

where p(x) is the spatial distribution of the object on the space X. Obviously, the
cardinality distribution follows a Bernoulli distribution with parameter r. A multi-
Bernoulli distribution X [11] is the union of M independent Bernoulli RFS X(i), i.e.
X = ∪M

i=1X(i).
By interpreting the component indices of the multi-Bernoulli distribution as track

labels, the LMB RFS [30] is obtained which is completely defined by the parameter
set

π (X) = {(r(`), p(`))}`∈L . (27)

Using the multi-object exponential notation, an LMB RFS is expressed by

π (X) = ∆(X)w(L (X))pX , (28)

where hX = ∏x∈X h(x) and h /0 = 1. The weights of the realizations are given by the
multi-Bernoulli distribution

w(L) = ∏
i∈L

(
1− r(i)

)
∏
`∈L

1L(`)r(`)

1− r(`)
, (29)

and the spatial distributions are p(x, `) = p(`)(x). An example for an LMB RFS is
illustrated by the upper part of Fig. 5.
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Fig. 5 Representation of the multi-object state using LMB and δ -GLMB RFSs. An LMB RFS can
be equivalently rewritten in δ -GLMB form. In contrast, a δ -GLMB RFS can only be approximated
using an LMB RFS.

4.1.2 δ -Generalized Labeled Multi-Bernoulli Random Finite Set

An LMB RFS facilitates exactly one realization for a given set of track labels due
to the assumption of statistical independence of the tracks. In contrast, a δ -GLMB
RFS provides the possibility of several realizations for each set I of track labels. The
distribution of a δ -GLMB RFS is given by

π (X) = ∆(X) ∑
(I,ξ )∈F (L)×Ξ

w(I,ξ )
δI(L (X))

[
p(I,ξ )

]X
, (30)

where ξ denotes the history of track-to-measurement associations. Thus, the δ -
GLMB RFS is able to represent the ambiguity in the track-to-measurement asso-
ciation during the filter update using several components or hypotheses for each set
of track labels.

The difference between an LMB RFS and a δ -GLMB RFS is depicted by Fig. 5
(observe that only a subset of all hypotheses of the δ -GLMB RFS is shown). While
the LMB RFS requires the tracks to be statistically independent, the δ -GLMB RFS
facilitates the representation of statistical dependencies. Since an LMB RFS is a
special case of a δ -GLMB RFS, it can be transformed into the corresponding δ -
GLMB representation. In contrast, a δ -GLMB RFS can only be approximated by
an LMB RFS.



Environment Adaption for Companion-Systems 17

4.2 Implementation of the Labeled Multi-Bernoulli Filter

The labeled multi-Bernoulli (LMB) filter is based on the representation of the multi-
object state using an LMB RFS. A complete cycle of the LMB filter is conceptually
illustrated by Fig. 6. In the following, the main ideas behind the LMB filter are
outlined for an implementation using GMs. For additional details, the derivation of
the filter, and SMC implementations, refer to [22, 19].

Fig. 6 LMB Filter schematic.

In the prediction step, the Bernoulli distribution of each track ` is predicted in-
dependently. First, the spatial distribution of the track is predicted using the well-
known Kalman filter equations. In case of slightly non-linear motion models, the
corresponding equations of the extended Kalman filter (EKF) or unscented Kalman
filter (UKF) have to be applied. The prediction of the track’s existence probability
is realized by multiplying the posterior existence probability with the survival prob-
ability pS. Finally, the tracks of the birth distribution have to be appended to the
predicted LMB RFS.

To reduce the computational complexity of the filter update, the predicted LMB
density is partitioned using a grouping procedure. The grouping procedure returns
groups of closely spaced objects and their associated measurements where the
groups can be assumed to be statistically independent in case of sufficiently large
gating values. Thus, the filter update can be applied to each group independently
which significantly reduces the computational load [22].

The grouping procedure enables parallel processing of each group during filter
update. The update of each group is performed as follows: After transforming the
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LMB RFS of each group to δ -GLMB form, the full δ -GLMB update [30] is applied
which results in several hypotheses for each set of track labels due to the ambigu-
ity of the track-to-measurement association. The hypotheses are again given by the
tree in Fig. 2, where each path from the root to a leaf represents a single associa-
tion hypothesis. In order to reduce computational load, only the k best association
hypotheses are evaluated for large groups using Murty’s algorithm [15]. After cal-
culation the updated hypotheses, the posterior δ -GLMB density of each group is
approximated by an LMB RFS. The approximation matches the first moment of the
δ -GLMB density, i.e. the spatial distribution and the mean value of the cardinality
distribution of the approximation are equivalent while the cardinality distribution
itself differs. Finally, the LMB RFSs of the groups are merged and the subsequent
track management module is extracting track estimates and pruning tracks with very
small existence probabilities.

5 Conclusion

This chapter presented two multi-object tracking algorithms based on random finite
sets which are suitable to track all humans in the proximity of a Companion-System.
The SMC-MOB filter facilitates the integration of object-interactions as well as the
information of a knowledge-base in the filtering algorithm. In contrast, the LMB
filter requires significantly smaller computational resources and is capable to track
even huge numbers of objects. The table in Figure 7 summarizes the differences
of the two filters and illustrates, that the choice for the most convenient tracking
algorithm strongly depends on the scenarios that should be handled.

The presented multi-object tracking algorithms facilitate an adaption of the Com-
panion-System’s behavior to the current environment. Examples for the adaption are
given in the context of the demonstration scenario 3 (see Chapter 25), e.g., activa-
tion of the system or including the group size into the purchase process. Further, the
continuous tracking of the user provides the possibility to resume previously inter-
rupted interactions. Other possibilities include the adaption of the input and output
modalities to the current situation.
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