
Addressing Uncertainty in Hierarchical
User-Centered Planning

Felix Richter and Susanne Biundo

Abstract Companion-Systems need to reason about dynamic properties of their
users, e.g., their emotional state, and the current state of the environment. The
values of these properties are often not directly accessible, hence information on
them must be pieced together from indirect, noisy or partial observations. To en-
sure probability-based treatment of partial observability on the planning level, plan-
ning problems can be modeled as Partially Observable Markov Decision Processes
(POMDPs).

While POMDPs can model relevant planning problems, it is algorithmically dif-
ficult to solve them. A starting point for mitigating this is that many domains exhibit
hierarchical structures where plans consist of a number of higher-level activities,
each of which can be implemented in different ways that are known a priori. We
show how to make use of such structures in POMDPs using the Partially Observ-
able HTN (POHTN) planning approach by developing a Partially Observable HTN
(POHTN) action hierarchy for an example domain derived from an existing deter-
ministic demonstration domain.

We then apply Monte-Carlo Tree Search to POHTNs for generating plans and
evaluate both the developed domain and the POHTN approach empirically.

1 Introduction

Companion-Systems offering decision making capabilities need to reason about dy-
namic properties of their environment. Most notably, this environment consists of
the user of the system and its physical surroundings. Aspects of interest include the
user’s emotional state as well as attributes of relevant physical objects, both of which
and may be difficult or costly to measure. It is however often possible to gain some

Felix Richter and Susanne Biundo
Institute of Artificial Intelligence, Ulm University e-mail: forename.surname@uni-ulm.de

1

2 Felix Richter and Susanne Biundo

knowledge about the aspects of interest by observing related, more easily accessible
properties, even if these observations offer only noisy or partial information.

A natural planning model that accounts for partial observability within a proba-
bility-based framework is given by Partially Observable Markov Decision Processes
(POMDPs) [19]. A drawback of POMDPs, however, is that it is difficult to compute
policies that prescribe good courses of action. This is especially true for large prob-
lems, which often arise when adequately modeling a task at hand requires factoring
in many different user and world properties.

At the same time, many problems humans are confronted with typically consist
of a number of higher-level activities. These activities can be hierarchically divided
into smaller activities and eventually simple actions. Often, there is also a limited
number of useful possibilities how a particular activity can be performed. This hier-
archical structure opens opportunities for Companion-Systems to mitigate the com-
putational burden of computing policies in partially observable environments.

For deterministic planning domains, Hierarchical Task Network (HTN) plan-
ning [6, 5] is a practical planning approach that allows modeling and exploiting
such hierarchical structures. It allows for efficient plan generation and makes it easy
to express expert knowledge about a planning domain. As such, it has been success-
fully applied to many real-world problems [14]. Typical such hierarchically struc-
tured real-world problems that can be tackled with HTN planning are, e.g., given by
instances of the home theater setup domain developed for demonstration purposes
in the context of intelligent assistance systems [1, 2, 9] and described in Chapter 24.
The task in this domain is depicted in Fig. 1a: given an assortment of devices and
cables, connect the devices such that in the end, the user has a working home theater,
as depicted in Fig. 1b.

Sat Blu-ray

A/V TV

(a) The task: an assortment of unconnected de-
vices and cables.

Sat Blu-ray

A/V TV

(b) The goal: devices are prop-
erly connected.

Fig. 1: Schematic representation of the home theater setup domain. The A/V re-
ceiver, TV, satellite receiver, and Blu-ray player each have various female ports,
where , , , and denote HDMI, SCART, cinch video and cinch audio ports,
respectively. Black ports on cables denote male ports. There are two HDMI ca-
bles and one SCART-to-cinch-AV cable.

Addressing Uncertainty in Hierarchical User-Centered Planning 3

A number of approaches exist that make use of hierarchical structure in planning
domains that exhibit uncertainty of some kind, in either fully observable MDP or
partially observable POMDP settings. Some approaches augment the original set of
actions with macro-actions in the spirit of the options framework [20]: approaches
in this category either have a one-to-one correspondence between macro-actions and
their implementation [21] or try to generate restricted implementations at planning
time [8]. Other hierarchical POMDP approaches such as PolCA+ [16] or MAXQ-
hierarchical policy iteration [7] define a fixed hierarchical decomposition of a task a
priori, similar to the MAXQ decomposition [4] or HAM [15] in the fully observable
MDP setting, and individually optimize sub-policies for each abstract action.

An alternative to the above approaches is to directly extend HTN planning to
POMDPs, which results in the Partially Observable HTN (POHTN) approach that
we describe in our earlier work [12, 13]. In this chapter, we develop a variant of
the domain sketched in Fig. 1 that relaxes the full observability assumption and
create a suitable POHTN hierarchy. To demonstrate the effectiveness of the POHTN
approach, we evaluate our approach empirically on several instances of the home
theater setup domain.

The chapter is structured as follows. We first explain POMDP concepts and
how the home theater domain is modeled using the Relational Influence Dia-
gram Language (RDDL) [17] in Sect. 2. Next, Sect. 3 reviews an existing popular
non-hierarchical approach to POMDP planning, namely Monte-Carlo Tree Search
(MCTS) on the basis of observable histories. Section 4 presents the POHTN ap-
proach and shows how a POHTN hierarchy can be constructed for the home theater
setup domain. Section 4.4 describes the application of MCTS to POHTN planning.
Our experiments in Sect. 5 compare MCTS-based POHTN planning and history-
based MCTS planning and also show how modeling choices lead to domain vari-
ants with different computational difficulty and practical implications. Section 6
concludes with some final remarks.

2 The Home Theater Setup POMDP

A POMDP is an 8-tuple (S,A,O,T,Z,R,b0,H), where S, A, and O are finite sets of
states, actions, and observations, respectively. The effects of executing actions on
the system’s environment are defined by the transition function T , in the sense that
for a given state s ∈ S and action a ∈ A, T (s,a) defines a probability distribution
over possible successor world states s′ ∈ S. Similarly, the system’s sensor model is
determined by the observation function Z such that for a given action a ∈ A and
successor state s′ ∈ S, Z(a,s′) defines a probability distribution over possible obser-
vations o ∈ O. The system alternatingly executes actions and receives observations
as depicted in Fig. 2. Note that the successor world state s′ is not visible to the
system, it must infer information on the identity of s′ from the observation o.

What the system can see about its environment is the actions it executes and
the observations it receives. After t steps, the system’s entire knowledge about the

4 Felix Richter and Susanne Biundo

System World

Action a

Observation o∼ Z(a,s′)

State transition
from s to s′

s′ ∼ T (s,a)

Fig. 2: The POMDP interaction cycle

evolution of its environment is thus the sequence a1o1 . . .atot , called an observable
history. Because of that, the system’s policy can be represented as a function that
maps observable histories to actions.

The system’s goals are given in terms of a real-valued reward function R(s,a,s′)
that determines how beneficial it is for the system when the result of executing a∈ A
in s ∈ S is s′ ∈ S. The system’s success is determined by the expected accumulated
reward it is able to gather in a given number of time steps H, called the horizon, start-
ing in a state that is sampled from the probability distribution b0, the initial belief
state. Formally, this can be captured as follows: for a given history h = a1o1 . . .atot ,
let hao denote the history extended by a and o, i.e., a1o1 . . .atotao, and let π denote
the system’s policy. Then the quality of π in a given state s is given by

V h
π (s) =

{
Es′∼T (s,π(h))[R(s,π(h),s′)] if h has H steps

Es′∼T (s,π(h))[R(s,π(h),s′)+Eo∼Z(s′,π(h))[V
hπ(h)o
π (s′)]] else,

(1)
where Ex∼X [f (x)] denotes the expectation of f (x) when x is distributed according to
X . The quality of π in the initial belief state is V h

π (b0) = Es∼b0 [V
h
π (s)]. The goal in

POMDP planning is finding an optimal policy, i.e., a policy π∗ = argmaxπ V h
π (b0).

In RDDL, POMDPs are defined using typed first-order logic. First, a set of types
is defined that determines the relevant objects. For the home theater domain, these
include types for devices, ports, and so on:

Device: object; // TV, Blu-ray player, etc.
SignalType: object; // audio, video, ...
// ultimate source of signal, e.g., Blu-ray player
SignalSource: object;
Port: object; // a port such as HDMI, cinch, ...
// numbers for counting the number of free ports
count: {@zero,@one,@two,@three};
// how tight a connection is
tightness: {@none,@loose,@tight};

For defining the set of states S, typed parametrized state fluents are used
in RDDL, which are either predicates or functions in the first-order logic
sense. The home theater domain uses four state fluents to capture relevant as-
pects of a given state. The first two, freeFemalePorts(Device,Port)
and freeMalePorts(Device,Port), determine the number of free female

Addressing Uncertainty in Hierarchical User-Centered Planning 5

and male ports on a device, respectively, and can assume values from zero
to three. Whether a device has received a signal of a certain source and type
is kept track of via hasSignal(Device,SignalType,SignalSource).
E.g., hasSignal(TV,audio,Sat) means that the audio signal of the satellite
receiver has reached the TV. The connected(Device,Device,Port) fluent
models how tightly two devices are connected—not at all, loosely, or tightly. This
represents a deviation from the original domain, where devices are connected tightly
or not at all [1]. The difference between a tight and a loose connection is that while
the cable is plugged in in both cases, a loose connection does not transport a sig-
nal of any kind. This could be interpreted as a halfheartedly plugged in cable, for
example. We will later use this to add partial observability to the domain.

The set of states is then given by the set of possible interpretations of state fluents.
E.g., suppose the available devices are a TV, a satellite receiver, and an HDMI cable.
A state where both the satellite receiver and the TV have one free female HDMI port
each, the HDMI cable has two free male HDMI ports, the satellite receiver creates
an audio and a video signal, and nothing is connected yet is defined as follows:

freeFemalePorts(Sat,HDMI) = @one;
freeFemalePorts(TV,HDMI) = @one;

freeMalePorts(HDMI_Cable,HDMI) = @two;

hasSignal(Sat,audio,Sat);
hasSignal(Sat,video,Sat);

Actions and observations are defined in a similar manner, using specific ac-
tion and observation fluents, respectively. The home theater setup domain fea-
tures a connect(Device,Device,Port) action fluent for instructing the user
to connect two devices via some port, a tighten(Device,Device,Port)
action fluent for instructing the user to tighten loose connections, and a
checkSignals(Device) action fluent for instructing the user to check the sig-
nals on a given device. The only observation fluent of the home theater setup domain
is hasSignalObs(Device,SignalType,SignalSource), which signi-
fies whether a given device has a signal of a given type from a given source.

RDDL also has the possibility to define so-called intermediate fluents, whose val-
ues are calculated from the current state and which can be used to calculate the suc-
cessor state. These non-observable fluents are useful when several successor state
fluents depend on a single probabilistic outcome. The home theater setup domain
uses this feature in connectSucceeded(Device,Device,Port) for deter-
mining whether a connection between two devices is tight or loose after they are
connected. The last type of fluent, called non-fluents, is useful for static properties,
such as whether a signal type can be transported through a certain kind of port. E.g.,
HDMI ports will transport both video and audio signals, but a cinch video port will
only transport video.

State transitions are defined in terms of parametrized functions, one for each
state fluent and intermediate fluent, called conditional probability functions. For

6 Felix Richter and Susanne Biundo

each instantiation of a state fluent or intermediate fluent, they define a prob-
ability distribution over its value in the successor state. E.g., the value of
connectSucceeded(Device,Device,Port) is defined as follows using
RDDL syntax:

connectSucceeded(?d1,?d2,?p) =
if (connect(?d1,?d2,?p) ˆ
(freeFemalePorts(?d1,?p) ˜= @zero ˆ
freeMalePorts(?d2,?p) ˜= @zero |
freeMalePorts(?d1,?p) ˜= @zero ˆ
freeFemalePorts(?d2,?p) ˜= @zero)) then
Discrete(tightness,@none:0,@loose:0.2,@tight:0.8)

else if (tighten(?d1,?d2,?p) ˆ
connected(?d1,?d2,?p) == @loose) then
KronDelta(@tight)

else KronDelta(@none);

This means that when connect is executed and suitable ports are free on the
devices that should be connected, the connect action will succeed. However, the con-
nection will be loose with probability 0.2. This can be fixed by executing tighten
to make sure the connection is tight.

The value of connected(Device,Device,Port) persists unless the con-
nection is tighter than it was before. Similarly, the number of free ports on a device
remains unchanged unless connect was executed. Signal availability is deter-
mined via hasSignal(Device,SignalType,SignalSource) by propa-
gating signals over tight connections in every time step. Note that depending on
the order in which connect actions are executed, it will take several time steps
for a signal to propagate over a chain of devices. It would be preferable to have
instantaneous signal propagation, but this would require computing the transitive
closure over hasSignal(Device,SignalType,SignalSource), which
is not supported in RDDL.

Observation probabilities are defined analogously to
state transition probabilities. The home theater domain has
hasSignalObs(Device,SignalType,SignalSource) as its sole
observation fluent. When checkSignals(Device) was executed on a device
and the device can be checked for the type of signal in question (modeled using a
non-fluent), it will reveal every signal available on the device to the system. The
rationale behind this is that a TV can be checked for both video and audio signals
by simply turning it on, as opposed to an HDMI cable. Checking for signals is the
only way for the system to determine whether connections are tight.

The reward function in the model is constructed to fulfill several conditions:

1. The system’s first priority should be to bring signals from source devices, such
as a satellite receiver, to target devices, such as a TV. The target devices are
identified using a non-fluent. In its simplest form, the reward for each time step
is simply given by summing the number of signals that have already been brought
to their target devices:

Addressing Uncertainty in Hierarchical User-Centered Planning 7

sum_{?d: Device, ?t: SignalType, ?s: SignalSource}
DEVICE_NEEDS_SIGNAL(?d,?t,?s)*hasSignal’(?d,?t,?s)

A system trying to maximize its expected accumulated reward will therefore
strive to bring all signals to their respective target devices in as few time steps
as possible. It also urges the system to order connect actions such that cables are
plugged in from source devices to target devices. This is more an artifact intro-
duced by the signal propagation mechanism than intended. However, one could
argue that this is in the interest of the user of the system, since the system’s action
recommendations can then be understood as “bringing” the signals to the target
devices.

2. The system should avoid executing actions when their “preconditions” are not
fulfilled (attempting connects when the required ports do not exist or are not
free, attempting tighten when there is no connection at all, checking uncheckable
devices). While these conditions are not observable in a strict sense, the system
can in principle still derive whether the corresponding actions will succeed. E.g.,
the number of free ports evolves deterministically, therefore the system can al-
ways know whether a connect would fail to at least establish a loose connection.
Similarly, whether a device can be checked for signals is known in advance, so
checking uncheckable devices can be avoided.

3. The system should avoid executing unnecessary actions (tighten when a connec-
tion is already tight, checking for signals more than once on a given device). In
contrast to the conditions described in (2), these conditions are harder to fulfill,
because they depend on partially observable state properties: suppose a satellite
receiver and a TV are connected via a cable and the system has determined that
the signal does not reach the TV. This means that one or both of the connec-
tions is loose. In this case, the system cannot see which connection is loose, so it
must risk tightening an already tight connection to make sure both connections
are tight. Still, these conditions are useful since, e.g., tighten never needs to be
executed more than once for a given connection.

4. Checking signals and then deciding whether tightening is necessary should be
more attractive than simply tightening connections without looking. Some care
needs to be taken considering the balance between the different rewards men-
tioned above. As argued, the system sometimes cannot avoid tightening an al-
ready tight connection. But doing so should still be unattractive, otherwise the
system can simply ignore the possibility for checking signals and just tighten all
connections directly after connecting.

We conclude the description of the home theater setup domain by noting that, in
the initial state of every instance, all devices are unconnected and the only devices
that have any signals are the signal source devices.

8 Felix Richter and Susanne Biundo

3 History-based POMDP Planning

Next, we review a non-hierarchical POMDP planning approach, which will serve
as baseline for our experiments in Sect. 5. Monte-Carlo Tree Search is a very pop-
ular approach to planning in uncertain environments [3], in particular UCT (Upper
Confidence Bound applied to Trees [11]) and its variants, such as MaxUCT [10].
MCTS is a round-based anytime algorithm that incrementally constructs an explicit
representation of the search space in memory. The tree contains alternating layers of
decision nodes nd and chance nodes nc, where the root node is a decision node. The
number of visits and estimated value of a node in the tree after k rounds of search are
denoted by Ck(n) and V k(n), respectively. Chance nodes also have estimates Rk(nc)
for the immediate reward of executing their associated action. Applied to POMDPs,
the search space is the space of observable histories [18] as depicted in Fig. 3.

root node: empty history

observable history

action

observation

decision node layer

chance node layer

decision node layera1o1 a1o2 a2o1 a2o2

a1 a2

o1 o2 o1 o2

Fig. 3: Search tree for history-based POMDP planning. Rectangular nodes represent
observable histories and are called decision nodes. Grey round nodes are called
chance nodes.

Each round of search consists of two phases, tree traversal and backup. In the
traversal phase, a generative model of the search space is used in conjunction with a
tree traversal strategy to explore promising parts of the search space: starting from
the root node, the tree is traversed by selecting actions and simulating their out-
comes, until a terminal node is reached. In the case of search in the space of ob-
servable histories, the root node represents the empty history and terminal nodes are
histories of length H. A typical tree traversal strategy is the UCT action selection
formula [11], which, in a given decision node nd , chooses the action (equivalently
chance node nc) that maximizes V k(nc) + B

√
(logCk(nd))/Ck(nc), where B is a

parameter that trades of between exploitative (favor high V k(nc)) and explorative
(favor rarely visited nc) behavior.

The backup phase updates the value estimates by incorporating the information
gathered during the traversal, in reverse order of traversal. Chance node values are
defined as

V k(nc) = Rk(nc)+
∑nd∈succk(n)C

k(nd)V k(nd)

Ck(nc)
, (2)

Addressing Uncertainty in Hierarchical User-Centered Planning 9

where the counters Ck(n) are simply incremented in each visit, the immediate re-
ward estimates Rk(nc) are averages over the experienced immediate rewards, and
succk(n) denotes the successor nodes of n in the search tree.

Several useful variants for backing up decision node values exist, most notably
Monte-Carlo backup used in UCT [11], i.e.,

V k(nd) =

0 if nd is a terminal node
∑nc∈succk(nd)

Ck(nc)V k(nc)

Ck(nd)
else,

(3)

and Max-Monte-Carlo backups used in MaxUCT[10]:

V k(nd) =

{
0 if nd is a terminal node
maxnc∈succk(nd)

V k(nc) else.
(4)

Both have different strengths and weaknesses, the discussion of which is be-
yond the scope of this paper. We use a custom combination of both based on the
weighted power mean which we call Soft Max-Monte-Carlo backups. For this, let
p =Ck(nd)/

∣∣succk(nd)
∣∣ and define

V k(nd) =


0 if nd is a terminal node(

∑nc∈succ(nd)
Ck(nc)(V k(nc))

p

Ck(nd)

)1/p

else.
(5)

Until all actions have been tried once, this resembles Monte-Carlo backups when
used in conjunction with UCT tree traversal, and converges to Max-Monte-Carlo
backups as the number of samples grows.

For our experiments, we denote MCTS in the space of observable histories
in conjunction with Soft Max-Monte-Carlo backups and UCT tree traversal as
POUCT.

4 Partially Observable HTN Planning

Hierarchical Task Network planning, as originally proposed for deterministic plan-
ning domains [5], has been successfully applied to a range of real-world planning
problems [14]. HTN planning domains are defined in terms of a hierarchy of actions:
abstract actions are introduced to represent higher-level activities. Normal actions
are then often called primitive to distinguish them from abstract actions. An HTN
planning problem is given as a number of activities to be performed in a certain
order. Since these activities are higher-level, they cannot be directly executed and
act as placeholders. For each abstract action, several implementations, called meth-
ods, are given. They represent possible ways in which the activity can be performed
in terms of a “sub-plan”, in turn consisting of primitive or abstract actions. Plan

10 Felix Richter and Susanne Biundo

generation in HTN planning means iteratively replacing the abstract actions of the
initially specified abstract plan with suitable implementations until a solution plan
is found that only contains primitive actions. Next, we review the definition of the
POHTN approach given in our earlier work [12, 13].

4.1 HTN Planning

As a basis, we start by giving a formal description of a simple deterministic
HTN planning framework based on the HTN planning formalization of Geier and
Bercher [6]. The formalism only uses parameter-less fluents for representing states
and actions to keep its description as simple as possible. However, the description
can be easily generalized. Furthermore, we simplify the formalism by requiring that
all task networks are totally ordered. We will therefore prefer to speak of action se-
quences instead of task networks, and denote the set of action sequences over action
set X as TNX . An HTN planning problem is a 6-tuple (L,C,A,M,cI ,sI), where L is a
finite set of state fluents. The primitive and abstract actions are given by the disjoint
finite sets A and C, respectively. The available methods are given by M⊆C×TNA∪C,
and cI ∈ C and sI ∈ 2L denote the initial action and initial state, respectively. The
dynamics of a primitive action a is defined in terms of preconditions, add and delete
lists (prec(a),add(a),del(a)) ∈ 2L×2L×2L.

Let ts1 = a1, . . . ,ak−1,c,ak+1, . . . ,an be an action sequence, c an abstract action,
and m = (c,tsm) with tsm = am

1 , . . . ,a
m
l be a method for c. Applying m to ts1 cre-

ates a new action sequence ts2 = a1, . . . ,ak−1,am
1 , . . . ,a

m
l ,ak+1, . . . ,an and is denoted

ts1 →m ts2. When ts2 can be created from ts1 by applying an arbitrary number of
methods from M, we write ts1→∗M ts2.

An action sequence a1, . . . ,an is called executable in s, if and only if every ai is
primitive and there exists a state sequence s0, . . . ,sn such that s0 = s, and prec(ai)⊆
si−1 and si = (si−1 \del(ai))∪ add(ai) for all 1≤ i≤ n. Finally, an action sequence
tsS is a solution to an HTN problem if and only if it is executable in sI and can be
created from cI , i.e., cI →∗ tsS.

4.2 POHTN Planning

We will now describe the POHTN formalism in order to apply the HTN planning
principles just described to POMDPs. We will again describe the POHTN formalism
for parameter-less fluents only for brevity, but will give parametrized examples from
the home theater domain.

First, we need an appropriate policy representation. We choose logical finite state
controllers [12] for this purpose, since they can compactly represent POMDP poli-
cies and are a natural generalization of action sequences. A (logical) finite state
controller fsc = (N,α,δ ,n0) is a directed graph with node set N. Each node n ∈ N

Addressing Uncertainty in Hierarchical User-Centered Planning 11

is labeled with an action from action set X via α(n) ∈ X . Edges are labeled with
transition conditions δ (n,n′), which are first-order formulas over a set of observa-
tion fluents Y . We call a controller well-defined if the outgoing transition conditions
for every given node are mutually exclusive and exhaustive [13], i.e., if transitions
define a distinct successor node for every possible observation. The controller is
equipped with an initial node n0 ∈ N. We denote the set of well-defined finite state
controllers over X and Y as FSC(X ,Y). Figure 4 shows a finite state controller for
the home theater POMDP.

connect(Sat,HDMI Cable,HDMI)

connect(HDMI Cable,TV,HDMI)

checkSignals(TV)

tighten(HDMI Cable,TV,HDMI)

tighten(Sat,HDMI Cable,HDMI)

noop

∼ ϕ

ϕ

Fig. 4: A finite state controller for the home theater POMDP. The ϕ symbol is short
for exists {?type,?source} hasSignalObs(TV,?type,?source).
To reduce clutter, unlabeled edges denote true transition conditions say that the
transition condition between two unconnected nodes is false.

Executing a finite state controller in a given POMDP works by executing the
action associated with the current node, starting with the initial node. It is then
checked which transition condition ϕ is fulfilled by the received observation o, i.e.,
whether o |= ϕ , and the current node is updated to the target node of the transition
whose condition is fulfilled. The process is repeated with the new current node until
the horizon is reached. Given a history h, it is thus simple to determine the prescribed
action of a controller by following observation edges.

Just as in HTN planning, we introduce a set of abstract actions C to complement
the primitive actions A of the POMDP. For the home theater scenario, we will in-

12 Felix Richter and Susanne Biundo

troduce the abstract action connect abstract(Device,Device)1. The in-
tended meaning of the action is that it is an abstraction of bringing the signals of the
first device to the second device via any number of intermediate devices, while also
making sure that all intermediate connections are tight by checking signals on the
target device and tightening connections if necessary.

Additionally, we also model observations on an abstract level and introduce a
set of abstract observation fluents OC. The idea is that, just as abstract actions
are an abstraction of different courses of action with a common purpose, abstract
observations are an abstraction of the observations made while executing such a
course of action. The sole abstract observation fluent in the home theater domain
is loose connection found, which is used to represent the fact that a loose
connection was found somewhere along the intermediate connections created by
connect abstract(Device,Device).

Methods in POHTN are, analogously to HTN planning, tuples consisting of an
abstract action and an implementing controller. The controller representing the im-
plementation part of the method is however a little more complicated due to the need
to represent the abstract outcome of the associated abstract action. Such a method
controller is a finite state controller which is augmented with a set of terminal nodes
Nt , Nt ∩N = /0. Each terminal node nt is labeled with an interpretation L(nt) of the
abstract observation fluents and can be the target of transitions. As an example, con-
sider one of the implementations of connect abstract(Device,Device)
given in Fig. 5. We denote the set of method controllers over action set X , observa-
tion fluent set Y and abstract observation fluent set T as MFSC(X ,Y,T).

With the above elements, we can syntactically define the POHTN planning prob-
lem as a tuple (P,C,OC,M, fscI), where

• P = (S,A,O,T,Z,R,b0,H) is a POMDP,
• C is a finite set of abstract actions with C∩A = /0,
• OC is a finite set of abstract observations with O∩OC = /0,
• M ⊆C×MFSC(A∪C,O∪OC,OC) is the set of methods, and
• fscI ∈ FSC(A∪C,O∪OC) is the partially abstract initial controller.

In spirit, method application in POHTN planning works very similarly to how it
works in HTN planning, albeit a little more involved due to the multiple possible
“results” of abstract actions. Let predfsc(n) = {n′ ∈ N|δ (n′,n) 6= false} be the set
of predecessor nodes of a controller node n, i.e., the set of nodes from which n can be
reached in one step. Let fsc1 = (N1,α1,δ 1,n1

0) be a partially abstract controller, c ∈
C an abstract action, and n1

C ∈ N1 with α1(n1
C) = c the node to decompose. Let fur-

ther m = (c,mfsc) be a decomposition method and let fsc2 = (N2,α2,δ 2,n2
0,N

2
t ,L

2)
be an isomorphic copy of mfsc, for which N1∩ (N2∪N2

t) = /0. Applying m to fsc1

results in a new controller fsc3 = (N3,α3,δ 3,n3
0) which is defined as follows:

• The resulting node set N3 = (N1∪N2)\{n1
C} contains all nodes from N1 and N2

except the decomposed node n1
C.

1 To be precise, this actually introduces n2 parameter-less abstract actions when n is the number of
devices.

Addressing Uncertainty in Hierarchical User-Centered Planning 13

connect(?d1,?d2,?p)

checkSignals(?d2)

tighten(?d1,?d2,?p)

∼loose connection found

loose connection found

∼ ϕ

ϕ

Fig. 5: The method controller of a method for connect abstract(?d1,?d2).
The ϕ symbol is short for exists {?type,?source}
hasSignalObs(?d2,?type,?source). The method implements
connect abstract(?d1,?d2) by connecting the devices directly, checking
the connection between them, and creating an abstract observation with the result.
To represent this method in our parameter-less framework, consider an instantiation
of connect abstract(?d1,?d2) with a fixed pair of values for ?d1 and
?d2. This yields one method for each possible value for ?p.

• Action labels are kept from the original controllers, i.e.,

α3(n) =

{
α1(n), if n ∈ N1

α2(n), if n ∈ N2.

• Unless the initial node of the original controller was decomposed, the initial node
remains unchanged:

n3
0 =

{
n1

0, if n1
0 6= n1

C

n2
0, if n1

0 = n1
C.

• For the node transitions, inner transitions of fsc1 and fsc2 are kept. Transitions
to the replaced node n1

C are converted to transitions to the initial node of the
method controller n2

0. Transitions to the terminal nodes of fsc2 are redirected
to the successor nodes of n1

C by checking whether the terminal nodes labels,
i.e., interpretations of abstract observation fluents, fulfill the outgoing transition
conditions of the decomposed node, which are formulas over abstract observation
fluents:

14 Felix Richter and Susanne Biundo

δ 3(n,n′)=



δ 1(n,n′), n,n′ ∈ N1

δ 2(n,n′), n,n′ ∈ N2,n′ 6= n2
0

δ 1(n,n1
C), n ∈ predfsc1(n1

C),n
′ = n2

0∨
t∈N2

t ,L2(t)|=δ 1(n1
C ,n
′) δ 2(n, t), n ∈ predfsc2(t),n′ ∈ N1∨

t∈N2
t ,L2(t)|=δ 1(n1

C ,n
1
C)

δ 2(n, t)∨δ 2(n,n′), n ∈ predfsc2(t),n′ = n2
0

false, else

It can be shown that if the transitions in fsc1 and fsc2 are well-defined, then so
are the transitions in fsc3 [13].

As an example, consider the partially abstract controller in Fig. 6.
Applying the method shown in Fig. 5 to the node labeled with
connect abstract(HDMI Cable,TV) yields the primitive policy shown in
Fig. 4.

Again, we write fsc1 →∗M fsc2 when fsc2 can be created from fsc1 by applying
an arbitrary number of methods from M. Let L(fscI ,M) = {fsc|fscI →∗M fsc, fsc ∈
FSC(A,O)} be the set of primitive controllers that can be constructed from initial
controller fscI by applying methods from M. The solution to a POHTN planning
problem fsc∗ = argmaxfsc∈L(fscI ,M)V

H
fsc(b0) is then defined as the best primitive con-

troller in L(fscI ,M).

connect(Sat,HDMI Cable,HDMI)

connect abstract(HDMI Cable,TV)

tighten(Sat,HDMI Cable,HDMI)

noop

loose connection found

∼loose connection found

Fig. 6: A partially abstract policy. Grey nodes denote abstract actions.

For deterministic problems, the POHTN approach very closely resembles total-
order HTN planning in the formalism described above. Intuitively, a total-order
HTN problem can be converted into a POHTN problem by using a sufficiently large
planning horizon and a reward function that is defined as minus 1 for violated pre-
conditions and 0 else. If a policy with an accumulated reward of 0 exists, then it also

Addressing Uncertainty in Hierarchical User-Centered Planning 15

represents an HTN solution. The task sequences in methods are converted to con-
trollers where each element of the sequence is a node and there are true transition
conditions between nodes.

4.3 A Hierarchy for Home Theater Setup

We are now ready to define a POHTN hierarchy for the home theater setup domain,
which boils down to defining methods for connect abstract(?d1,?d2). The
key assumption is that connect abstract(?d1,?d2) is always used in such
a way that ?d1 has a signal that needs to be transported to ?d2, and that ?d2 is
checkable for that signal. We also assume that ?d2 is checked for signals and that
loose connection found is true whenever there is no signal at ?d2.

Given that this is the case, we distinguish four cases. The simplest case is that the
two devices can be connected directly, which leads to the method controller depicted
in Fig. 5, i.e., the devices are connected, ?d2 is checked, and the connection is
tightened if necessary.

When the devices cannot be connected directly, e.g., a Sat and TV, we
can attempt connecting via a third device, e.g., an HDMI Cable. This is re-
alized by first executing connect(?d1,?d3,?p) for some port type ?p,
and afterwards using connect abstract(?d3,?d2). When the result of
connect abstract(?d3,?d2) is loose connection found, we exe-
cute tighten(?d1,?d3,?p) to make sure the connection between ?d1 and
?d3 is tight.

We also address the case that a connection between ?d1 and ?d2 was already
established in the course of connecting two other devices. In this case, we only
check ?d2 for signals and report the result in loose connection found.

Sometimes, it is necessary to create more than one connection between ?d1
and ?d2, for example when the video and audio signals need to be trans-
ported via dedicated video and audio cables. Therefore, the last method contains
connect abstract(?d1,?d2) twice.

An initial controller for a given problem instance is always easily created: it sim-
ply consists of a sequence of connect abstract(?d1,?d2) nodes for each
pair of signal source device ?d1 and target device ?d2.

4.4 Monte-Carlo Tree Search for POHTNs

MCTS can also be applied to POHTNs [13]. The search space in this case is
L(fscI ,M), i.e., the set of controllers that can be generated by applying methods to
the initial controller. The root node of the tree is consequently labeled with fscI , and
the available “actions” are the methods applicable to a given controller, as illustrated
in Fig. 7. Note that method application is deterministic, therefore each chance node

16 Felix Richter and Susanne Biundo

only has a single successor. Also, it does not incur an immediate reward. Terminal
nodes correspond to primitive controllers, where both uncertainty and non-zero re-
wards occur: Once a primitive controller is reached, its execution is simulated once
and the resulting accumulated reward is propagated up the tree.

If the hierarchy is chosen suitably, the number of decision that need to be made
during planning can be much smaller than in the case of MCTS in the space of his-
tories. An important commonality of MCTS in the space of controllers and MCTS
in the space of histories is that they do the same number of simulator calls in each
round. This means that we can compare their performance on the basis of the num-
ber of iterations, i.e., their sample complexity.

C

partially abstract controller

partially abstract controller
created by applying m1 to C

method application

C′ C′′

m1 m2

Fig. 7: A visualization of the MCTS search space when applied to POHTNs. The
redundant chance node layer is omitted.

5 Experiments

We conducted several kinds of experiments to (1) check whether our model satisfies
our design goals stated at the end of Sect. 2, (2) to compare the performance of
the POUCT algorithm against MCTS applied to POHTNs planning (henceforth just
POHTN), and (3) to measure the influence of different modeling choices for the
home theater domain.

5.1 Quality of Hand-Crafted Policy

In the first experiment, we checked whether our intuition of appropriate courses of
action is in agreement with the results of automated planning methods. To this end,
we considered a very simple instance of the domain, where there is only a satellite
receiver with an HDMI port, a TV with an HDMI port, and an HDMI cable. The
satellite receiver has a video and an audio signal, which the TV needs. The TV
is also checkable for both signals. The planning horizon is set to 10. We expect
that the policy shown in Fig. 4 is an optimal, or at least near-optimal policy for this
instance. We therefore compare the expected accumulated reward of this policy with

Addressing Uncertainty in Hierarchical User-Centered Planning 17

the result of running POUCT for a very long time. Figure 8 shows the result. It can
be seen that POUCT eventually finds a policy of similar quality as the hand-crafted
policy in some runs. Also, there does not seem to be a policy of significantly higher
accumulated reward than the hand-crafted policy. This indicates that our intuition of
what the optimal policy should look like is correct.

3 Devices, 1 Port

−5

0

5

10

15

101 102 103 104 105

iterations

po
lic

y
qu

al
ity

approach hand−crafted POUCT

Fig. 8: A plot comparing the policy depicted in Fig. 4 and policies generated using
POUCT on a small problem instance. It shows the median (curve) and the max./min.
(ribbon) policy quality from thirty runs over the number of iterations. The value of
a policy is estimated by simulating its execution forty times and averaging over the
accumulated rewards.

5.2 POHTN vs. POUCT

For the second experiment, we created several instances of the home theater domain
with an increasing number of devices and port types (i.e., difficulty), again with the
horizon set to 10. We run both POUCT and POHTN on these instances. We expected
the POHTN approach to scale better due to the smaller search space. Indeed, it can
be seen in Fig. 9 that the POHTN approach outperforms POUCT on all instances
and that the difference in performance grows for larger instances.

5.3 Alternative Reward Structure

In the third experiment, we consider a variant of the reward function: the system
receives its reward for bringing signals to target devices only when all signals are

18 Felix Richter and Susanne Biundo

3 Devices, 1 Port 7 Devices, 1 Port

7 Devices, 4 Ports 16 Devices, 7 Ports
−10
−5

0
5

10
15

−10
−5

0
5

10
15

101 102 103 104 101 102 103 104

iterations

po
lic

y
qu

al
ity

approach POHTN POUCT

Fig. 9: A plot comparing POUCT and POHTN policy quality on different instances
of the home theater setup domain. It shows the median (curve) and max./min. (rib-
bon) policy quality from thirty runs over the number of iterations.

at their respective target devices. This is closer to how the goal is defined in the
original, deterministic domain.

It is not immediately apparent whether this improves or degrades planning per-
formance. On the one hand, this makes it harder for the system to initially identify
useful actions. On the other hand, it does not reward “dead-end” cable configura-
tions that cannot be completed to solutions. We present a comparison of the two
variants in Fig. 10 on the same instances as in Fig. 9. The policy qualities achieved
by the planners are not directly comparable to the results in Fig. 9 due to the dif-
ferent reward structure. However, it can be seen that policy quality improves only
very slowly over time for both approaches, except for very small instances. This in-
dicates that rewarding the system for achieving intermediate goals is necessary for
generating high-quality policies.

5.4 Eliminating Uncertainty

Lastly, we wanted to analyze the effect of eliminating uncertainty in the home the-
ater setup task, i.e., when connecting devices always results in tight connections.
The results are shown in Fig. 11. This plot shows that, at least for the smallest in-
stance, the best hierarchical controller is not necessarily the best possible policy
for the POMDP. In this case, we can even explain where the hierarchical policy
is suboptimal: A controller generated with our hierarchy will always check whether

Addressing Uncertainty in Hierarchical User-Centered Planning 19

3 Devices, 1 Port 7 Devices, 1 Port

7 Devices, 4 Ports 16 Devices, 7 Ports
−10
−5

0
5

10
15

−10
−5

0
5

10
15

101 102 103 104 101 102 103 104

iterations

po
lic

y
qu

al
ity

approach POHTN POUCT

Fig. 10: A plot comparing POUCT and POHTN policy quality when the system
receives a positive reward only when all devices are connected correctly. It shows
the median (curve) and max./min. (ribbon) policy quality from thirty runs over the
number of iterations.

the signals have reached the target devices. However, when connect always results in
tight connections, this is unnecessary, and therefore punished. Apart from this, it can
be seen from the collapsing ribbon that all POHTN runs on the first three instances
eventually generated a policy of the same quality. While this does not guarantee that
the best hierarchical controller has been found, it certainly is suggestive.

6 Conclusion

We described an approach for exploiting hierarchical structures in partially observ-
able planning problems. To demonstrate its effectiveness, we developed a partially
observable variant of the home theater setup domain and constructed a suitable ac-
tion hierarchy. Our empirical evaluation pursued two goals. First, we tested our
modeling decisions by examining the influence of various parameters on solution
quality. Second, we compared the performance of the POHTN approach with non-
hierarchical planning. The former experiments indicate that our model of the home
theater setup domain is adequate. From the latter experiment, we can conclude that
our approach is indeed able to exploit existing hierarchical structures in partially
observable planning domains. Also note that the same POHTN hierarchy is used in
all experiments, regardless of the number devices in the problem instance, which

20 Felix Richter and Susanne Biundo

3 Devices, 1 Port 7 Devices, 1 Port

7 Devices, 4 Ports 16 Devices, 7 Ports

−10

0

10

−10

0

10

101 102 103 104 101 102 103 104

iterations

po
lic

y
qu

al
ity

approach POHTN POUCT

Fig. 11: A plot comparing POUCT and POHTN policy quality when connecting de-
vices always results in tight connections. It shows the median (curve) and max./min.
(ribbon) policy quality from thirty runs over the number of iterations.

means that the POHTN approach scales to POMDPs with large state, action, and
observation spaces.

Acknowledgements This work was done within the Transregional Collaborative Research Centre
SFB/TRR 62 “Companion-Technology for Cognitive Technical Systems” funded by the German
Research Foundation (DFG).

References

1. Bercher, P., Biundo, S., Geier, T., Hoernle, T., Nothdurft, F., Richter, F., Schattenberg, B.: Plan,
repair, execute, explain - how planning helps to assemble your home theater. In: Proceedings
of the 24th International Conference on Automated Planning and Scheduling (ICAPS 2014),
pp. 386–394. AAAI Press (2014)

2. Bercher, P., Richter, F., Hörnle, T., Geier, T., Höller, D., Behnke, G., Nothdurft, F., Honold, F.,
Minker, W., Weber, M., Biundo, S.: A planning-based assistance system for setting up a home
theater. In: Proceedings of the 29th National Conference on Artificial Intelligence (AAAI
2015). AAAI Press (2015)

3. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P.,
Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree search meth-
ods. Computational Intelligence and AI in Games, IEEE Transactions on 4(1), 1–43 (2012)

4. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value function decom-
position. J. Artif. Intell. Res. (JAIR) 13, 227–303 (2000)

Addressing Uncertainty in Hierarchical User-Centered Planning 21

5. Erol, K., Hendler, J., Nau, D.: UMCP: A sound and complete procedure for hierarchical task-
network planning. In: Proceedings of the 2nd International Conference on Artificial Intelli-
gence Planning Systems (AIPS 1994), pp. 249–254 (1994)

6. Geier, T., Bercher, P.: On the decidability of HTN planning with task insertion. In: Proc. of the
22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 1955–1961
(2011)

7. Hansen, E.A., Zhou, R.: Synthesis of hierarchical finite-state controllers for pomdps. In: Pro-
ceedings of the Thirteenth International Conference on Automated Planning and Scheduling
(ICAPS 2003), pp. 113–122 (2003)

8. He, R., Brunskill, E., Roy, N.: PUMA: planning under uncertainty with macro-actions. In:
Proc. of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010 (2010)

9. Honold, F., Bercher, P., Richter, F., Nothdurft, F., Geier, T., Barth, R., Hörnle, T., Schüssel, F.,
Reuter, S., Rau, M., Bertrand, G., Seegebarth, B., Kurzok, P., Schattenberg, B., Minker, W.,
Weber, M., Biundo, S.: Companion-technology: Towards user- and situation-adaptive func-
tionality of technical systems. In: Proceedings of the 10th International Conference on Intel-
ligent Environments (IE 2014), pp. 378–381. IEEE (2014). DOI 10.1109/IE.2014.60

10. Keller, T., Helmert, M.: Trial-based heuristic tree search for finite horizon mdps. In: Proceed-
ings of the 23rd International Conference on Automated Planning and Scheduling (ICAPS
2013), pp. 135–143. AAAI Press (2013)

11. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Proceedings of the 17th
European Conference on Machine Learning(ECML 2006), pp. 282–293 (2006)

12. Müller, F., Biundo, S.: HTN-style planning in relational POMDPs using first-order FSCs. In:
J. Bach, S. Edelkamp (eds.) Proceedings of the 34th Annual German Conference on Artificial
Intelligence (KI 2011), pp. 216–227. Springer (2011)

13. Müller, F., Späth, C., Geier, T., Biundo, S.: Exploiting expert knowledge in factored POMDPs.
In: Proceedings of the 20th European Conference on Artificial Intelligence (ECAI 2012), pp.
606–611. IOS Press (2012)

14. Nau, D., Au, T.C., Ilghami, O., Kuter, U., Muñoz-Avila, H., Murdock, J.W., Wu, D., Yaman,
F.: Applications of SHOP and SHOP2. IEEE Intelligent Systems (2004)

15. Parr, R., Russell, S.J.: Reinforcement learning with hierarchies of machines. In: Advances in
Neural Information Processing Systems 10 (NIPS 1997), pp. 1043–1049 (1997)

16. Pineau, J., Gordon, G., Thrun, S.: Policy-contingent abstraction for robust robot control. In:
Proceedings of the 19th conference on Uncertainty in Artificial Intelligence (UAI 2003), pp.
477–484. Morgan Kaufmann Publishers Inc. (2003)

17. Sanner, S.: Relational dynamic influence diagram language (rddl): Language description
(2010). Http://users.cecs.anu.edu.au/ ssanner/IPPC 2011/RDDL.pdf

18. Silver, D., Veness, J.: Monte-carlo planning in large POMDPs. In: J. Lafferty, C. Williams,
J. Shawe-Taylor, R. Zemel, A. Culotta (eds.) Advances in Neural Information Processing Sys-
tems 23, pp. 2164–2172. Curran Associates, Inc. (2010)

19. Sondik, E.: The optimal control of partially observable markov decision processes. Ph.D.
thesis, Stanford University (1971)

20. Sutton, R.S., Precup, D., Singh, S.: Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence 112(1), 181–211 (1999)

21. Theocharous, G., Kaelbling, L.P.: Approximate planning in pomdps with macro-actions. In:
S. Thrun, L. Saul, B. Schölkopf (eds.) Advances in Neural Information Processing Systems
16 (NIPS 2004), pp. 775–782. MIT Press (2004)

