
c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

A Paradigm for Coupling Procedural and
Conceptual Knowledge in Companion Systems

Marvin Schiller∗, Gregor Behnke∗, Mario Schmautz∗, Pascal Bercher∗, Matthias Kraus∗,
Michael Dorna†, Wolfgang Minker∗, Birte Glimm∗, and Susanne Biundo∗

∗Faculty of Engineering, Computer Science and Psychology, Ulm University, Ulm, Germany
†Corporate Research, Robert Bosch GmbH, Renningen, Germany

Abstract—Companion systems are technical systems that ad-
just their functionality to the needs and the situation of an
individual user. Consequently, companion systems are strongly
knowledge-based. We propose a modelling paradigm for inte-
grating procedural and conceptual knowledge which is targeted
at companion systems that require a combination of planning
and reasoning capabilities. The presented methodology couples
the hierarchical task network (HTN) planning formalism with
an ontology-based knowledge representation, thereby minimising
redundancies in modelling and enabling the use of state-of-the-
art reasoning and planning tools on the shared knowledge model.
The approach is applied within a prototype of a companion
system that assists novice users in the do-it-yourself (DIY) domain
with the planning and execution of home improvement projects
involving the use of power tools.

I. INTRODUCTION

Companion technology aims at making technical devices
really smart. Such companion systems are situation- and user-
adaptive assistants that provide their functionality in a com-
pletely individualised way to their users [1], [2]. For being
able to provide their multitude of functionalities, these systems
base, among others, on two fundamental and diametrical kinds
of knowledge that need to be incorporated into the models of
the application domain:

Firstly, the set of available tasks (which are either operations
to be carried out by the system itself, or by the system’s user to
be presented to him or her as instructions), how they contribute
to the user’s goals, and what constraints exist among them has
to be known. They are the basis for the system to plan ahead
and to present available options to the user.

Secondly, the objects and concepts in the application do-
main, together with their semantic relationships, need to be
represented in such a companion system.

Both the fields of automated planning and semantic knowl-
edge representation have brought forth their own dedicated for-
malisms. Hence, when both are used in a companion system,
redundancies, or worse, inconsistencies between the models
of the application domain might arise. Here, we propose a
methodology that serves to tightly integrate a hierarchical
planning formalism with ontology-based knowledge represen-
tation. It is based on the idea that the static relations between
objects (i.e. the planner’s state) are represented in an ontology
in such a way that the tasks of the planning model (describing
the dynamics of the domain) directly incorporate the repre-

sented conceptualisations. Our paradigm strives to minimise
any redundancies in modelling the planning domain and the
modelling of conceptual knowledge. This facilitates coherence
between the procedural and factual knowledge in the system’s
portfolio and helps to ease the issue of maintenance that arises
when developing complex modularised systems. While the
methodology itself is not limited to any particular application
domain, we employ it in the context of a companion system
which supports novice users with home improvement projects
that require the use of electric power tools, such as electric
drills, saws, and sanding machines. It represents a further
development step w.r.t. our previous work in the domain of
home appliances (e.g. setting up a home theatre [3], [4]) and
the planning of fitness trainings [5].

The problem of combining planning with conceptual knowl-
edge has previously been identified and different approaches
have been proposed based on description logic. However,
differently from our approach, some of these directly integrate
description logics into the planning formalism, with the disad-
vantage that standard planning heuristics cannot be used. Some
further approaches consider only a limited form of integration
of ontology modelling and reasoning into planning. A short
survey and comparison is presented in Sect. III.

II. APPLICATION SCENARIO

In our ongoing project, we have implemented a first demon-
strator of a companion system which assists novice users
in do-it-yourself (DIY) home improvement activities using
power tools. The domain of home improvement provides an
abundance of different activities that are carried out under
varying circumstances (e.g. available tools, attachments and
consumables) which can often be achieved by a variety of
means. The assistance is given on the operation of individual
power tools and the usage of the tools for different DIY
activities. Furthermore, the assistant system supports a user
while performing DIY projects, for which we use hierarchical
planning to be able to instruct the user step-by-step at different
levels of granularity. Further assistance is given on demand
when a user asks for specific support. In the future, proactive
support based user monitoring is planned, taking the individual
situation and user’s preferences into account.

As opposed to pure instructions, we focus on enabling
the user to gain expertise in the home improvement domain

Fig. 1. Component overview

and to be productive in the future with the used tools. This
includes the selection of tools which can be used for a given
sequence of activities, the knowledge of suited attachments
and accessories, also by taking properties of the used materials
into account. To give a simple example, when connecting
two work pieces with a screw, it may be necessary to pre-
drill (e.g. for hardwood), to use a suitable screw for the
material, etc. Again, drilling requires appropriate machine
settings, an appropriate attachment (drill-bit) and a sufficiently
charged battery for a cordless tool. The system has to provide
suitable explanations dynamically, to offer useful information
on the relevant concepts and properties, and to encourage
the user to ask questions about the proposed steps. Hence a
tight integration of task planning with conceptual knowledge
representation is required, for which we are using an ontology
and reasoning. An overview of the main components of the
system architecture is shown in Fig. 1, where the coupling
between ontology and planning represents the focus of the
remainder of this paper.

III. RELATED WORK

Gil [6] provides an extensive survey of research that con-
nects description logics and planning. She groups the ap-
proaches into four categories: those reasoning about objects,
actions, plans, and goals, respectively. The techniques we
present fall into her categories of “reasoning about objects”.
This category contains systems where description logics is
used to enhance the modelling of objects, their interconnec-
tions, and thus how states are described.

Our technique differs significantly from the previous ones.
In the past, researchers aimed for a tight integration of
descriptions logics into the planning process, which was
achieved by using description logics as the formalism for
state representation, instead of the purely propositional rep-
resentation commonly used in planning. This greatly expands
the expressiveness of the modelling language, but also in-
curs several disadvantages. First, specifying the semantics
of actions becomes more complicated, as a delete-effect of
an action cannot simply remove a fact f from the state,

because that fact may have been inferred from others. Here,
the delete effect would have to delete some other fact, such
that f cannot be derived any more. Determining and selecting
such a fact is a non-trivial problem, but was tackled e.g. by
Ahmetaj et al. [7]. Second, changing the state representation
makes almost all heuristics developed for planning useless,
as they rely on a propositional state representation. We are
only aware of the research by Sánchez-Ruiz et al. [8] on
case-based planning with state models described in description
logics, which might lead to pattern-database heuristics for
such planning formalisms. However, modern planning is only
efficient with such heuristics. Our techniques clearly separate
the ontology and the planning model, while leveraging and
combining their advantages.

More recently, other ways for combining description logics
and planning have been proposed. Our previous work [5]
falls into the line of action taxonomies, where we represent
action hierarchies in a description logic framework and show
how additional decomposition methods can be inferred au-
tomatically using reasoning. Sirin [9] propose a way to use
hierarchical planning to find suitable decompositions of web
services described in OWL-S, which is based on description
logics. Hartanto and Hertzberg [10], [11] propose to use an
ontological description of objects to prune those that are not
actually necessary for solving a given planning task, thereby
reducing the search space of the planner. Freitas et al. [12] con-
sider how an HTN planning domain can be represented within
an ontology formalism. This transformation allows one to use
existing tools for ontologies to display the planning domain
as formalised in description logics and to use reasoning tools
on it. However, this work does not address how an interplay
of procedural and factual knowledge within the application
domain can be achieved. Thus, semantic information is not
used to reason within the application domain and to integrate
semantic information into the planning process. One recently
developed framework that uses reasoning for connecting an
ontology knowledge base to a planner is KMARF [13],
where so-called “model transformation rules” are used to
translate descriptions of states and planning operators to (non-
hierarchical) PDDL problems to be solved by a planner.
However, besides the architecture of the system, no details are
offered about how these rules are defined and what modelling
conventions need to be adhered to.

Our application scenario is shared with other approaches
that propose assistance for users when interacting with tech-
nical devices, e.g. in the smart home domain (e.g. [14]).
Planning for service composition in smart homes has been
used in the SM4ALL project [15]. Georgievski et al. [16]
explore a smart home system where an ontology is used for
activity recognition and planning for controlling household
devices such as lighting with the goal of saving energy. Here,
information from activity recognition is used for planning, but
a further integration between ontology and planning domain is
not considered. On the other hand, Krieg-Brückner et al. [17]
use ontology modelling to assist users to plan and prepare
meals. Planning is performed by the SHIP-tool, which updates

states described in description logics, as opposed to our work
that connects an ontology to a standard planning system using
a propositional state representation. Their planner takes the
role of a control program that selects the next action to be
performed based on queries to the current ontology. However,
this approach does not use modern planning heuristics, since
these are not available for ontologies as state representations.

IV. PRELIMINARIES

For reasoning about possible courses of action to reach the
user’s goals, we rely on a hierarchical planning formalism,
which offers many advantages, in particular in the context of
providing advanced user support based on planning technol-
ogy [18].

The most fundamental ingredient to planning are tasks. By
executing a task, the system or the user may transform one
world state into another. In hierarchical planning, two kinds
of tasks exist: primitive tasks and abstract tasks. A primitive
task specifies a state transition, whereas an abstract task can
be seen as a standard recipe for how to carry out more abstract
activities [19]. I.e., an abstract task has to be refined into
further courses of action.

More formally, a primitive task is a 3-tuple
〈t(τ̄), pre(τ̄), eff (τ̄)〉 consisting of the task’s name t
and a sequence of task parameters τ̄ . In our running example,
we might have a task called t = AttachBattery for describing
how to attach a battery (cf. Fig. 4). The task parameters
are variables, each associated with a sort; in our example,
τ1 = ?t is of sort Tool and τ2 = ?b is of sort Battery.
The planning domain contains a set of constants, which
describe the available objects. Constants are grouped into
(not necessarily disjoint) sorts. The task parameters are
used by the preconditions pre(τ̄) and effects eff (τ̄) of the
task. In its most simple form, preconditions and effects are
simply conjunctions of literals over the task parameters. For
instance, in the given example, the task’s effect is simply the
single literal (AttachedBattery ?t ?b). For practical purposes,
we allow quantifiers as well. E.g., a precondition of the
task is (not(exists(?c − Battery)(AttachedBattery ?t ?c))),
quantifying over all constants of the sort Battery. We extended
the planning domain description language PDDL [20] to not
only allow the quantification over variables of a specific sort,
but also over sorts themselves. E.g., a further precondition is
(exists(?tt−Type [. . .])[. . .](typeOf ?t ?tt)) stating that there
needs to exist a sort ?tt, such that the tool ?t is of that sort
(note that “type” is the PDDL nomenclature for sort). We
call a task ground if all its parameters are bound to constants.
A ground primitive task is referred to as an action. Given
the preconditions hold in a state, which is a conjunction of
positive ground literals, the application of an action results in
a successor state in which all negative effects are removed
and all positive effects are added.

Whereas primitive tasks specify state transitions, abstract
tasks1 describe how to carry out more complex activities. For

1Abstract tasks are also referred to as compound in HTN planning [21].

this purpose, the planning domain contains a set of so-called
decomposition methods for each abstract task. Each method
is simply a pair mapping an abstract task to a plan, which is
a partially ordered set of further primitive or abstract tasks.
A planning problem then consists of such an initial plan that
needs to be refined into an executable sequence of actions
[21], [19].

For representing conceptual knowledge, we consider an
ontology formulated in OWL.2 For the described approach,
the restricted EL profile of OWL2 is sufficient, but more
expressive languages could as well be used (e.g. OWL2 DL).
OWL is underpinned by description logics, whose syntax
we adopt in the following. As usual, concept names are
denoted with capital letters A,B,C, . . . ; role names with small
letters r, s, . . . ; individuals with small letters a, b, . . . ; and
the universal concept with >. Complex concept expressions
are formed by using conjunction (C1 u C2) and existential
restriction (∃r.C). Axioms that specify the subconcept rela-
tionship between two concept expressions C1 and C2, also
known as subsumption, are denoted as C1 v C2. Concept
assertion axioms assert that an individual a is in the extension
of a concept (expression) C, written C(a), and role assertions
specify that two individuals a, b are connected by role r,
written as r(a, b). Several further constructors are included
in OWL2 EL (e.g. equivalence and disjointness axioms for
concepts, role composition and role inclusion).2 Description
logics have a set-theoretic semantics, where an interpretation
I assigns concepts and individuals to sets and elements,
respectively, in a domain ∆ and roles to binary relationships
over the domain. An interpretation I is a model of an ontology
O (a set of axioms) if I satisfies all axioms in O (written
I |= O). An axiom α is entailed by an ontology (O |= α)
if all models of O also satisfy α. Ontology reasoners provide
services to reason over ontologies, e.g., they can be used to
determine entailments (such as concept subsumptions) of an
ontology.

V. A PARADIGM FOR COUPLING PROCEDURAL AND
CONCEPTUAL KNOWLEDGE

In complex companion systems, a multitude of components
is necessary to provide the offered assistance services. In our
use case – assisting humans in handling complex mechanical
appliances and tools – this includes at least (cf. Fig 1):

• a planning component – determining the steps the user
should take in order to achieve his goal and answering
procedural questions to the user

• a knowledge management component – handling the
factual knowledge of the domain and answering factual
questions to the user

• a dialogue component – mediating the interaction be-
tween companion system and user

Since all these three components use model-driven approaches,
we have to create an adequate model for each of them.

2Web Ontology Language, see https://www.w3.org/TR/owl2-profiles/

Fig. 2. Part of the decomposition hierarchy for the running example

However, doing so is a complex process (requiring expert-
level knowledge in several disciplines) and introduces natural
redundancies between the models. For example, both the mod-
els of the planning and the knowledge management component
have to contain possible configurations for each tool, e.g. the
information which battery fits into which device. The planning
component has to find suitable configurations for each tool and
determine the order in which they should be used, while the
knowledge base has to be able to explain why only a certain
configuration is allowed (e.g. for drilling into softwood, or
why a 16V battery cannot be used with a 9V device). Such
double-specifications are hard to create and even more difficult
to maintain over time – especially, if the model has to be
changed or extended. Therefore, the overall design objective
is to minimise redundancy by specifying each fact only once
in the best-suited model for dealing with it. The necessary
facts for the other models are generated automatically from
the single source model.

In this paper, we focus mainly on the interaction between the
planning model and the knowledge base, as their connection
is the most complex one. Using this design principle, we
have to specify procedural knowledge – how to do things,
which effects tasks have and how they depend on each
other – in the planning model, while the ontology handles
factual and conceptual knowledge. For the running example
of drilling a hole with an electric drill, consider the part of
the planning domain depicted in Fig. 2. Tasks are written in
bold (e.g. MakeHole), primitive tasks are in bold surrounded
by filled boxes, and method decompositions are represented
by labelled arrows where method names are underlined (e.g.
MakeHole Drill). The unlabelled arrows represent dependen-
cies between pre- and postconditions. The graph shows that
the MakeHole task can be decomposed by the MakeHole Drill
method which introduces three subtasks (EnsureBat, EnsureBit
and Drill DrillHole). The EnsureBat task in turn is decom-
posed (which results in a battery being attached to a tool,
as a precondition for drilling) by applying the primitive task
AttachBattery, which is discussed in more detail later.

Fig. 3. Part of the concept hierarchy for the running example

SHARING CONCEPTS AND PROPERTIES

Relationships between objects and concepts are specified in
the ontology. This includes, for instance, descriptions of the
currently available tools, devices, materials, as well as their
properties. By generating the planner’s problem description
from these assertions, we make it easily accessible to the
planner, while retaining a standard semantics for the planner’s
tasks. Accordingly, we design tasks to only refer to those
properties in the domain that are relevant for the applicability
of an action, such that the planning domain remains generic
w.r.t. the individual objects that are available in a concrete
planning problem.

Concepts in the application domain are modelled as con-
cepts/classes in the ontology, and particular instances thereof
(e.g. devices) as individuals (cf. Fig. 3). Concepts are arranged
in a taxonomy. For instance, suppose that a particular device
drill-1 is an instance of a class of devices DrillDriverTypeA.
Suppose further that it is either specified in the ontology
(as in Fig. 3), or that it can be inferred that all devices
DrillDriverTypeA are also of class Tool (subsumption). Then
drill-1 is (by inference) also an instance of Tool . Role
assertions are used to model binary relationships between
individuals in the domain or between individuals and values
such as character strings or numbers.

In the planning domain, concepts are represented as sorts
while objects are represented as constants of the respective
sorts. Before the planner is executed, the information repre-
sented in the ontology is transformed into the planner’s initial
state. Each concept name C in the ontology corresponds to a
sort C in the planning model and for every instance t of C
(i.e. each constant of sort C), we add the respective assertion,
written t - C in PDDL syntax [20], to the planning model.

Binary relationships – role assertions – in the ontology
represent the connections and relations between the repre-
sented objects. More specifically, they represent both the
current configuration of objects in the real world, as well as
higher-level relationships. This latter category, e.g. includes
the knowledge which configurations of a tool are suited for
which specific task.

Role assertions are made available to the planner in the
initial state as binary predicates. For concrete roles/data prop-
erties, we have to add additional sorts (like Number or

1 (:action AttachBattery
2 :parameters (?t - Tool ?b - Battery)
3 :precondition (and
4 (exists (?tt - Type ?bt - Type)
5 (and (typeOf ?t ?tt) (typeOf ?b ?bt)
6 (exists (?conf - BatteryConfig)
7 (and (master ?conf ?tt) (slave ?conf ?bt)))
8))
9 (not (exists (?c - Battery) (AttachedBattery ?t ?c)))

10 (not (exists (?u - Tool) (AttachedBattery ?u ?b))))
11 :effect (AttachedBattery ?t ?b)
12)

Fig. 4. Task declaration AttachBattery for the running example

String) to the planning model and add the data values
occurring in the ontology as instances of these sorts.

By strictly adhering to this separation principle, when
writing the planning domain model, we would have no access
to the sort definitions, as they are contained in the ontology
and only transferred to the planning model when starting
a planning process. However, the modeller of the planning
domain needs to be able to refer to these sorts where they are
relevant for specifying methods and tasks. For instance, the
AttachBattery task (cf. Fig. 4) can only be performed
with a battery (which is a concept in the ontology).

This means that the ontology and the planning model have
to agree on a minimal common vocabulary as a kind of
interface between them. Ideally, it is as lean as possible. This
is achieved by using the most generic concepts that are needed
to specify the planning domain (e.g. that AttachBattery
applies to instances of the Tool concept), and allowing more
fine-grained concepts in the ontology, where inference can
be used to establish all their superconcepts (e.g. that any
particular instance of DrillDriver is also a Tool).

THE CASE OF N-ARY RELATIONS

In complex technical domains, the applicability of an ac-
tion sometimes depends on n-ary relationships (e.g. whether
an action requires a specific combination of device(s) and
property values). Ontology languages, however, are typically
restricted to binary relations (roles). We reify each n-ary
relationship by introducing an instance representing such a
“configuration” in the ontology. Each individual parameter
of the configuration is then assigned using binary (abstract
and/or concrete) roles. Accordingly, the tasks quantify over
configurations and their binary predicates, instead of using n-
ary predicates. We see an example for such a reified relation3

in the task declaration shown in Fig. 4: The existence of an
instance of a BatteryConfig is required as part of the
precondition (in line 6), which represents valid combinations
of batteries and tools. The roles master and slave denote
that a device can be equipped with a specific battery type.
Such configurations are also obtained as part of the initial
state by translation from the ontology, with a small twist. In

3It would not technically be necessary here, because we reify a binary
predicate. We have nevertheless chosen this example to keep the illustration
of the applied principle as simple as possible.

the planning domain, configurations play the role of a special
kind of for-all statement: they specify that all instances of
the concepts A,B,C, . . . linked in the ontology by a con-
figuration are valid as part of that specific configuration. For
instance, a BatteryConfig in the ontology might specify that
a DrillDriverTypeA is compatible with a BatTypeA battery
(written in first-order logic): ∀x, y : DrillDriverTypeA(x) ∧
BatTypeA(y)→ compatible(x, y). Such kinds of statements
are known as concept products in description logics [22], but
the feature is not part of OWL EL and unsupported in standard
reasoners.

To represent such configurations in the ontology, we intro-
duce individuals of a special concept Config . Each individual
is linked to the concepts that are specified to be part of the
configuration using axioms of the form (∃r.A)(c), where c is
the individual and r is a role. E.g., the assertions

BatteryConfig(conf1)

(∃master .DrillDriverTypeA)(conf1)

(∃slave.BatTypeA)(conf1)

represent the above-mentioned compatibility between
DrillDriverTypeA and BatTypeA. Note that the Config
concept is subdivided into more specific concepts (e.g.
BatteryConfig v Config). When dealing with an individual
c representing a Config , the associated axioms with
existential restrictions are translated to atoms of the form
(r c A) in the initial state. Thus, in the example, the
planning model’s initial state receives the declaration conf1
- BatteryConfig (and by inference also conf1 -
Config) and the atoms

(master conf1 DrillDriverTypeA)
(slave conf1 BatTypeA)

These atoms are then able to fulfil the precondition in lines
6–7 in Fig. 4. Additionally, if O|=DrillDriverTypeA(tool1)
and O |= BatTypeA(bat1), the initial state will also
contain the atoms tool1 - DrillDriverTypeA and
bat1 - BatTypeA. Therefore, the precondition of the
AttachBattery action, which is responsible for actually
inserting a battery into a tool, can determine the sorts (?tt
and ?tb) of both the tool ?t and the battery ?b using the
typeOf-predicate.4 Based on given sorts, it can be deter-
mined whether attaching a battery of sort ?tb to a tool of
sort ?tt is allowed. Since the configuration-related predicates
(e.g. master and slave) are static in the planning model,
i.e. they cannot be changed by any action, reification comes
at no cost in the planning model – static preconditions are
statically evaluated before planning.

VI. PROTOTYPE REALISATION

A prototype system has been implemented that demonstrates
the proposed methodology. Reasoning and planning are per-
formed using the ontology reasoner JFact5 and the planning

4typeOf is an extension of the PDDL standard for general qualifications
over sorts. This construct is compiled into standard PDDL.

5http://jfact.sourceforge.net/

Fig. 5. Interface

system PANDA [23]. Thanks to the described approach, the
planner does not need to be equipped with its own description
of all the objects and concepts in the domain, as usual in
planning, but receives this information dynamically from the
ontology component. Since all objects in the planning domain
originate from the ontology, it is possible to query the ontology
about the concepts, their relationships and additional informa-
tion (e.g. descriptions and hints). An interface (cf. Fig. 5) is
provided to the system by a front-end web application created
using the Vue.js framework6 in combination with a dialogue
management module. The dialogue component uses LUIS7 for
speech recognition to identify planning goals. Generated plans
are presented in the form of slides and synthesised speech.

VII. CONCLUSION

Parametrising the planning domain by information repre-
sented in the ontology enables the integration of procedural
and conceptual knowledge while maintaining a clean sep-
aration. As a result, the information in the ontology can
be changed (e.g. devices added, properties added, etc.) and
becomes dynamically available for planning. A further ad-
vantage of the tight integration of conceptual and procedu-
ral knowledge comes to bear when a companion system is
required to deliver explanations for the plans it generates.
To-be-explained relationships in the planning domain directly
refer to concepts and relations in the ontology, such that both
procedural and conceptual knowledge can be combined in the
generated explanations.

ACKNOWLEDGEMENT

This paper describes ongoing work within the technology
transfer project ”Do it yourself, but not alone: Companion
Technology for Home Improvement” of the Transregional
Collaborative Research Centre SFB/TRR 62 ”Companion-
Technology for Cognitive Technical Systems” funded by the
German Research Foundation (DFG). The industrial project
partner is the Corporate Research Sector of the Robert Bosch
GmbH. We would like to thank the anonymous reviewers for
their valuable feedback.

REFERENCES

[1] S. Biundo and A. Wendemuth, “Companion-technology for cognitive
technical systems,” Künstliche Intelligenz, vol. 30, no. 1, pp. 71–75,
2016, special Issue on Companion Technologies.

6https://vuejs.org/ 7https://www.luis.ai/

[2] S. Biundo, D. Höller, B. Schattenberg, and P. Bercher, “Companion-
technology: An overview,” Künstliche Intelligenz, vol. 30, no. 1, pp.
11–20, 2016, special Issue on Companion Technologies.

[3] P. Bercher, S. Biundo, T. Geier, T. Hörnle, F. Nothdurft, F. Richter, and
B. Schattenberg, “Plan, repair, execute, explain - How planning helps to
assemble your home theater,” in Proc. of ICAPS. AAAI Press, 2014,
pp. 386–394.

[4] P. Bercher, F. Richter, T. Hörnle, T. Geier, D. Höller, G. Behnke,
F. Nothdurft, F. Honold, W. Minker, M. Weber, and S. Biundo, “A
planning-based assistance system for setting up a home theater,” in Proc.
of AAAI. AAAI Press, 2015, pp. 4264–4265.

[5] G. Behnke, D. Ponomaryov, M. Schiller, P. Bercher, F. Nothdurft,
B. Glimm, and S. Biundo, “Coherence across components in cognitive
systems – One ontology to rule them all,” in Proc. of IJCAI. AAAI
Press, 2015, pp. 1442–1449.

[6] Y. Gil, “Description logics and planning,” AI Magazine, vol. 26, no. 2,
pp. 73–84, 2005.

[7] S. Ahmetaj, D. Calvanese, M. Ortiz, and M. Šimkus, “Managing change
in graph-structured data using description logics,” in Proc. of AAAI.
AAAI Press, 2014, pp. 966–973.

[8] A. A. Sánchez-Ruiz, P. A. González-Calero, and B. Dı́az-Agudo, “Ab-
straction in knowledge-rich models for case-based planning,” in Case-
Based Reasoning Research and Development, vol. 5650. Springer,
2009, pp. 313–327.

[9] E. Sirin, “Combining description logic reasoning with AI planning for
composition of web services,” Ph.D. dissertation, University of Maryland
at College Park, 2006.

[10] R. Hartanto and J. Hertzberg, “Fusing DL reasoning with HTN plan-
ning,” in KI 2008: Advances in AI, ser. LNCS, vol. 5243. Springer,
2008, pp. 62–69.

[11] ——, “On the benefit of fusing DL-reasoning with HTN-planning,” in
KI 2009: Advances in AI, ser. LNCS, vol. 5803. Springer, 2009, pp.
41–48.

[12] A. Freitas, D. Schmidt, A. Panisson, F. Meneguzzi, R. Vieira, and R. H.
Bordini, “Semantic representations of agent plans and planning problem
domains,” in Proc. of EMAS 2014, ser. LNCS, vol. 8758. Springer,
2014, pp. 351–366.

[13] A. V. Feljan, A. Karapantelakis, L. Mokrushin, R. Inam, E. Fersman,
C. R. B. Azevedo, K. Raizer, and R. S. Souza, “KMARF: A framework
for knowledge management and automated reasoning,” in Proc. of ISEC
2017 Workshops: ModSym, DIAS, and EDUDM, 2017, vol. 1819, CEUR
Workshop Proceedings.

[14] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer, “EasyLiving:
Technologies for intelligent environments,” in Proc. of Handheld and
Ubiquitous Computing, ser. LNCS, vol. 1927. Springer, 2000, pp. 12–
29.

[15] E. Kaldeli, E. U. Warriach, A. Lazovik, and M. Aiello, “Coordinating
the web of services for a smart home,” ACM Trans. Web (TWEB), vol. 7,
no. 2, pp. 10:1–10:40, 2013.

[16] I. Georgievski, T. A. Nguyen, and M. Aiello, “Combining activity
recognition and AI planning for energy-saving offices,” in Proc. of
UIC/ATC. IEEE, 2013, pp. 238–245.

[17] B. Krieg-Brückner, S. Autexier, M. Rink, and S. G. Nokam, “Formal
modelling for cooking assistance,” in Software, Services, and Systems.
Springer, 2015, pp. 355–376.

[18] P. Bercher, D. Höller, G. Behnke, and S. Biundo, Companion Technology
– A Paradigm Shift in Human-Technology Interaction. Springer, 2017,
ch. User-Centered Planning, pp. 79–100.

[19] ——, “More than a name? On implications of preconditions and effects
of compound HTN planning tasks,” in Proc. of ECAI. IOS Press, 2016,
pp. 225–233.

[20] M. Fox and D. Long, “PDDL2.1: An extension to PDDL for expressing
temporal planning domains,” JAIR, no. 20, pp. 61–124, 2003.

[21] T. Geier and P. Bercher, “On the decidability of HTN planning with task
insertion,” in Proc. of IJCAI. AAAI Press, 2011, pp. 1955–1961.

[22] S. Rudolph, M. Krötzsch, and P. Hitzler, “All elephants are bigger than
all mice,” in Proc. of DL, ser. CEUR Workshop Proceedings, vol. 353,
2008.

[23] P. Bercher, S. Keen, and S. Biundo, “Hybrid planning heuristics based
on task decomposition graphs,” in Proc. of SoCS. AAAI Press, 2014,
pp. 35–43.

