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Abstract Linear temporal logic (LTL) provides expressive means to specify temporally extended goals as well as

preferences. Recent research has focussed on compilation techniques, i.e., methods to alter the domain ensuring

that every solution adheres to the temporally extended goals. This requires either new actions or an construction

that is exponential in the size of the formula. A translation into boolean satisfiability (SAT) on the other hand

requires neither. So far only one such encoding exists, which is based on the parallel ∃-step encoding for classical

planning. We show a connection between it and recently developed compilation techniques for LTL, which may

be exploited in the future. The major drawback of the encoding is that it is limited to LTL without the X

operator. We show how to integrate X and describe two new encodings, which allow for more parallelism than the

original encoding. An empirical evaluation shows that the new encodings outperform the current state-of-the-art

encoding.
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1 Introduction

Linear temporal logic (LTL [18]) is a generic and expressive way to describe (state-)trajectory constraints.
It is often used to specify temporal constraints and preferences in planning, e.g., to describe safety
constraints, to state necessary intermediate goals, or to specify the ways in which a goal might be
achieved. Most notably, the semantics of such constraints in PDDL 3.0 [11] is given in terms of LTL
formulae, which is the de-facto standard for specifying planning problems.

Traditionally, LTL constraints are handled by first compiling them into an equivalent Büchi Automa-
ton, and then translating the automaton into additional preconditions and effects for actions (see e.g.
Edelkamp [8]). This compilation might be too expensive as the Büchi Automaton for a formula φ can have
up to 2|φ| states. Recent work proposed another compilation using Alternating Automata [20]. These
automata have only O(|φ|) states allowing for a guaranteed linear compilation. There are also planners
that do not compile the model, but evaluate the formula during forward search, e.g., TALplanner [7],
TLplan [1], or the work by Hsu et al. [12]. However, heuristics have to be specifically tailored to incor-
porate the formula, or else the search becomes blind. TALplanner and TLplan even use the temporally
extended goals for additional search guidance.

ISSN: 1137-3601 (print), 1988-3064 (on-line)
c©IBERAMIA and the authors

http://journal.iberamia.org/


76 Inteligencia Artificial 62(2018)

Another option is to integrate LTL into planning via propositional logic. Planning problems can be
translated into (a sequence of) boolean formulae. A temporally extended goal can then be enforced
by adding additional clauses to this formula. So far only one such encoding has been developed by
Mattmüller and Rintanen [17]. It uses an LTL to SAT translation from the model checking community,
which assumes that only a single state transition is executed at a time. The main focus of their work
lies on integrating the efficient ∃-step encoding with this representation of LTL formulae. In the ∃-step
encoding operators can be executed simultaneously, as long as they are all applicable in the current state,
the resulting state is uniquely determined, and there is an ordering in which they are actually executable.
Mattmüller and Rintanen presented alterations to the ∃-step formula restricting the parallelism such that
LTL formulas without the next-operator are handled correctly.

We point out an interesting relationship between the LTL encoding of Mattmüller and Rintanen and
the Alternating Automaton encoding by Torres and Baier, showing that both use the same encoding
technique, although derived by different means. This insight might prove useful in the future, e.g.,
to allow for optimisation of the propositional encoding using automata concepts. Next, we show how
the propositional encoding by Mattmüller and Rintanen can be extended to also be able to handle the
next-operator X. We introduce a new concept – partial evaluation traces – to capture the semantics of
the encoding with respect to an LTL formula and show that our extension is correct. Based on partial
evaluation traces, we show that the restrictions posed by Mattmüller and Rintanen [17] on allowed
parallelism can be relaxed while preserving correctness. We provide an alteration of their encoding
allowing for more parallelism. We present an alternative encoding, also based on partial evaluation
traces, which allows for even more parallelism by introducing intermediate timepoints at which the
formula is evaluated. Our empirical evaluation of all encodings shows that our new encodings outperform
the original one.

2 Preliminaries

2.1 Planning

We consider propositional planning without negative preconditions. This is known to be equivalent
to STRIPS allowing for negative preconditions via compilation. Also note that all our techniques are
also applicable in the presence of conditional effects. We do not consider them in this paper to keep
the explanation of the techniques as simple as possible. For the extension to conditional effects, see
Mattmüller and Rintanen [17].

Let A be a set of proposition symbols and Lit(A) = {a,¬a | a ∈ A} be the set of all literals over A.
An action a is a tuple a = 〈p, e〉, where p – the preconditions – is a subset of A and e – the effects – is
a subset of Lit(A). We further assume that the effects are not self-contradictory, i.e., that for no a ∈ A
both a and ¬a are in e. A state s is any subset of A. An action a = 〈p, e〉 is executable in s, iff p ⊆ s.
Executing a in s results in the state (s \ {a | ¬a ∈ e})∪{a | a ∈ e}. A planning problem P = 〈A,O, sI , g〉
consists of a set of proposition symbols A, a set of operators O, the initial state sI , and the goal g ⊆ A.
A sequence of actions o1, . . . , on is a plan for P iff there exists a sequence of states s0, . . . , sn+1 such that
for every i ∈ {1, . . . , n + 1}, oi is applicable in si, its application results in si+1, s0 = sI , and g ⊆ sn+1.
This sequence of states is called an execution trace.

2.2 Linear Temporal Logic

Formulae in Linear Temporal Logic (LTL) are constructed over a set of primitive propositions. In the
case of planning these are the proposition symbols A. LTL formulae are recursively defined as any of the
following constructs, where p is a proposition symbol and f and g are LTL formulae.

⊥ | > | p | ¬f | f ∧ g | f ∨ g | Xf | X̊f | Ef | Gf | fUg

X, X̊, E, G, and U are called temporal operators. There are several further LTL-operators like Ů , R, or
S and T [4]. Each of them can be translated into a formula containing only the temporal operators X,
X̊, and U . The semantics of an LTL formula φ is given with respect to an execution trace. In general
this trace can be infinitely long, as LTL can describe repeated behaviour. We consider only LTL over
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finite traces, which is commonly called LTLf [6]. The encodings we present can easily be extended to
the infinite case (see Mattmüller and Rintanen [17]). The truth value of an LTLf formula φ is defined
over an execution trace σ = (s0, s1, . . . , sn) as [[φ]](σ) where

[[p]](s0, σ) = p ∈ s0 if p ∈ A
[[¬f ]](σ) = ¬[[f ]](σ)

[[f ∧ g]](σ) = [[f ]](σ) ∧ [[g]](σ)

[[f ∨ g]](σ) = [[f ]](σ) ∨ [[g]](σ)

[[Xf ]](s0, σ) = [[X̊f ]](s0, σ) = [[f ]](σ)

[[Xf ]](s0) = ⊥
[[X̊f ]](s0) = >

[[Ef ]](s0, σ) = [[f ]](s0, σ) ∨ [[Ef ]](σ)

[[Gf ]](s0, σ) = [[f ]](s0, σ) ∧ [[Gf ]](σ)

[[Ef ]](s0) = [[Gf ]](s0) = [[f ]](s0)

[[fUg]](s0, σ) = [[g]](s0, σ)∨
([[f ]](s0, σ) ∧ [[fUG]](σ))

[[fUg]](s0) = [[g]](s0)

The intuition of the semantics of temporal operators is: Ef – eventually f , i.e., f will hold at some time,
now or in the future, Gf – globally f , i.e., f will hold from now on for ever, fUg – f until g, i.e., g will
eventually hold and until that time f will always hold, and Xf – next f , i.e., f holds in the next state
of the trace. Since we consider the case of finite LTL, we have – in addition to standard LTL – a new
operator: weak next X̊. The formula Xf requires that there is a next state and that f holds in that
state. In contrast, X̊f asserts that f holds if a next state exists; if there is none, X̊f is always true,
taking care of the possible end of the state sequence.

As a preprocessing step, we always transform an LTL formula φ into negation normal form without
increasing its size, i.e., into a formula where all negations only occur directly before atomic propositions.
This can be done using equivalences like ¬Gf = E¬f . Next, we add for each proposition symbol a ∈ A
a new proposition symbol a. Its truth value will be maintained such that it is always the inverse of a.
I.e. whenever an action has ¬a as its effect, we add the effect a and when it has the effect a we add ¬a.
Lastly, we replace ¬a in φ with a, resulting in a formula not containing negation.

Given a planning problem P and an LTL formula φ, LTL planning is the task of finding a plan π
whose execution trace σ will satisfy φ, i.e., for which [[φ]](σ). For a given LTL formula φ we define A(φ)
as the set of predicates contained in φ and S(φ) to be the set of all its subformulae. We write [o]φe for
the intersections of the effects of o and A(φ), i.e. all those effects that occur in φ.

3 State-of-the-art LTL→SAT encoding

As far as we are aware, there is only a single encoding of LTL planning problems into boolean satisfiability,
developed by Mattmüller and Rintanen [17]. They adapted a propositional encoding for LTL developed
by Latvala et al. [14] for bounded model checking. The main focus of Mattmüller and Rintanen’s work lies
on integrating modern, non-sequential encodings of planning problems into the formula. The encoding
models evaluating the LTL formula in timesteps, which correspond to the states in a trace. In Latvala
et al.’s encoding (which was not developed for planning, but for a more general automata setting) only
a single action may be executed at each timestep in order to evaluate the formula correctly. Research
in translating planning problems into propositional formulae has however shown that such sequential
encodings perform significantly worse than those that allow for a controlled amount of parallel action
execution [19]. Mattmüller and Rintanen addressed the question of how to use the LTL encoding by
Latvala et al. in a situation where multiple state transitions take care in parallel – as is the case in these
planning encodings. They used the property of stutter-equivalence which holds for LTL−X (i.e. LTL
without the X and X̊ operators) to integrate Latvala et al.’s encoding. To exploit stutter-equivalence,
they had to restrict the allowed amount of parallelism to ensure correctness.
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Their encoding, which we will denote with M&R’07, is based on the ∃-step encoding of propositional
planning by Rintanen et al. [19]. As such, we start by reviewing the ∃-step encoding in detail. In this
encoding the plan is divided into a sequence of timesteps 0, . . . , n. Each timestep t is assigned a resulting
state using decision variables at for all a ∈ A and t ∈ {1, . . . , n+ 1}, each indicating that the proposition
symbol a holds at timestep t, i.e. after executing the actions at timestep t − 1. The initial state is
represented by the variables a0. Actions can be executed between two neighbouring timesteps t and t+1,
which is represented by decision variables ot for all o ∈ O and t ∈ {0, . . . , n}. If ot is true the action o
is executed at time t. The encoding by Kautz and Selman [13] is then used to determine which actions
are executable in at and how the state at+1 resulting from their application looks like. In a sequential
encoding, one asserts for each timestep t that at most one ot atom is true. Intuitively, this is necessary to
ensure that the state at+1 resulting from executing the actions ot is uniquely determined. Consider, e.g.,
a situation where two actions move-a-to-b and move-a-to-c are simultaneously applicable, but result
in conflicting effects. Executing these two actions in parallel has no well-defined result. Interestingly, the
mentioned constraint is not necessary in this case, as the encoding by Kautz and Selman already leads to
an unsatisfiable formula. There are however situations, where the resulting state is well-defined, but it is
not possible to execute the actions in any order. Consider two actions buy-a and buy-b, both requiring
money, spending it, and achieving possession of a and b, respectively. Both actions are applicable in the
same state and their parallel effects are well-defined, as they don’t conflict. It is not possible to find a
sequential ordering of these two actions that is executable, as both need money, which won’t be present
before executing the second action. This situation must be prohibited, which can easily be achieved by
forbidding parallel action execution at all, as in the sequential encoding.

In the ∃-step encoding, executing actions in parallel is allowed. Ideally, we would like to allow any
subset S of ot to be executable in parallel, as long as there exists a linearisation of S that is executable in
the state st represented by at and all executable linearisations lead to the same state st+1. This property
is however practically too difficult to encode [19]. Instead, the ∃-step encoding uses a relaxed requirement.
Namely, (1) all actions in S must be executable in st, then it chooses a total order of all actions O, (2)
asserts that if a set of actions S is executable, it must be executable in that order, and (3) that the state
reached after executing them in this order is st+1. The encoding by Kautz and Selman ensures the first
and last property. The ∃-step encoding has to ensure the second property. It however does not permit
all subsets S ⊆ O to be executable in parallel, but only those for which this property can be guaranteed.

As a first step, we have to find an appropriate order of actions in which as many subsets S ⊆ O as
possible can be executed. For this, the Disabling Graph (DG) is used. It determines which actions can be
safely executed in which order without checking the truth of propositions inside the formula. In practice,
one uses a relaxed version of the DG (i.e. one containing more edges), as it is easier to compute [19].

Definition 1. Let P = 〈A,O, sI , g〉 be a planning problem. An action o1 = 〈p1, e1〉 affects another action
o2 = 〈p2, e2〉 iff ∃l ∈ A s.t. ¬l ∈ e1 and l ∈ p2.

A Disabling Graph DG(P) of a planning problem P is a directed graph 〈O,E〉 with E ⊆ O × O that
contains all edges (o1, o2) where o1 affects o2 and a state s exists that is reachable from sI in which both
o1 and o2 are applicable.

The DG is tied to the domain itself and is not tied to any specific timestep, as such the restrictions
it poses apply to every timestep equally. The DG encodes which actions disable the execution of other
actions after them in the same timestep, i.e., we ideally want the actions to be ordered in the opposite
way in the total ordering chosen by the ∃-step encoding. If the DG is acyclic, we can execute all actions
in the inverted order of the disabling graph, as none will disable an action occurring later in that order.
If so, the propositional encoding does not need any further clauses, as any subset S of actions can be
executed at a timestep – provided that their effects do not interfere.

The DG is in practice almost never acyclic. Problematic are only strongly connected components
(SCCs) of the DG, where we cannot find an ordering s.t. we can guarantee executability for all subsets
of actions. Instead we fix some order ≺ for each SCC, asserting that the actions in it will always be
executed in that order, and ensure in the SAT formula that if two actions o1 and o2 with o1 ≺ o2 are
executed, o1 does not affect o2. This way, we can safely ignore some of the edges of the DG – as their
induced constraints are satisfied by the fixed ordered ≺ – while others have to be ensured in the formula.
I.e. if we ensure for every edge (o1, o2) with o1 ≺ o2 that if o1 is part of the executed subset o2 is not,
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we know that there is a linearisation in which the chosen subset S is actually executable. To ensure this
property, Rintanen et al. introduced chains. A chain chain(≺;E;R; l) enforces that whenever an action
o in E is executed, all actions in R that occur after a in ≺ cannot be executed. Intuitively, E are those
actions that produce some effect a, while the actions in R rely on ¬a to be true. The last argument l is
a label that prohibits interference between multiple chains.

chain(o1, . . . , on;E;R; l) =∧
{oi → dj,l | i < j, oi ∈ E, oj ∈ R, {oi+1, .., oj−1} ∩R = ∅}

∪ {li → aj,l | i < j, {oi, oj} ⊆ R, {oi+1, .., oj−1} ∩R = ∅}
∪ {li → ¬oi | oi ∈ R}

To ensure that for any SCC S of DG(P) the mentioned condition holds for the chosen ordering ≺ of S,
we generate for every proposition symbol a ∈ A a chain with

Ea = {o ∈ S | o = 〈p, e〉 and ¬a ∈ e}
Ra = {o ∈ S | o = 〈p, e〉 and a ∈ p}

Based on the ∃-step encoding, Mattmüller and Rintanen [17] added support for LTL formulae φ by
exploiting the stutter-equivalence of LTL−X . This stutter-equivalence ensures that if multiple actions are
executed in a row but don nott change the truth of any of the predicates in A(φ), the truth of the formula
is not affected, i.e., the truth of the formula does not depend on how many of these actions are executed
in a row. Consequently the formula only needs to be checked whenever the truth of propositions in A(φ)
changes. Their construction consists of two parts. First, they add clauses to the formula expressing that
the LTL formula φ is actually satisfied by the trace restricted to the states where propositions in A(φ)
change. These states are the ones represented in the ∃-step encoding by at atoms. Second, they add
constraints to the ∃-step parallelism s.t. in every timestep the first action executed according to ≺ that
changes proposition symbols in A(φ) is the only one to do so. Other actions in that timestep may not
alter the state with respect to A(φ) achieved by that first action, but can assert the same effect.

In their paper, they provide a direct translation of φ into a proposition formula. In practice however,
this formula cannot be given to a SAT solver, as it requires a formula in conjunctive normal form (CNF).
The formula given in the paper is not in CNF and translating it into CNF can lead to a CNF of exponential
size. They instead introduce additional variables [16], allowing them to generate (almost) a CNF1. For
every sub-formula ψ ∈ S(φ) and every timestep t they introduce the variable ψtLTL, stating that ψ holds
for the trace starting at timestep t. They then assert: (1) that φ0

LTL holds and (2) that for every ψtLTL
the consequences must hold that make ψ true for the trace starting at time t. The latter is expressed by
clauses ψtLTL → [[ψ]]t, where [[ψ]]t is given in Tab. 1. Note that the M&R’07 encoding cannot handle the

next operators X and X̊, as they are sensitive to stuttering, i.e., stutter-equivalence does not hold for
formulae that contain X or X̊. We have added the encoding for X [14]. In addition, we have restricted
the original encoding from infinite to finite LTL-traces and added a new encoding for X̊. Note that
the M&R’07 encoding will lead to wrong results if used with the presented encoding of the X and X̊
operators. It is however correct, if used in conjunction with a sequential encoding [14]. We show in Sec. 5
how the M&R’07 encoding can be changed to handle X and X̊ correctly. Lastly, clauses need to be added
in order to ensure that actions executed in parallel do not alter the truth of propositions in A(φ) – except
for the first action that actually changes them. The extension of the ∃-step encoding achieving this is
conceptually simple, as it consists of only two changes to the original encoding:

1. Add for every two actions o1, o2 which are simultaneously applicable the edge (o1, o2) to the DG iff
[o2]φe \ [o1]φe 6= ∅, i.e., o2 would change more than o1 with respect to A(φ).

2. Add for every literal l ∈ Lit(A(φ)) and SCC ofDG(P) with its total order≺ the chain chain(≺;Eφl ;Rφl ;φl)
with

1The translations of f ∧ g, Gf , and fUg contain one conjunction each, which can transformed easily.
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φ t < n t = n
[[p]]t p ∈ A pt pt

[[f ∧ g]]t f tLTL ∧ gtLTL f tLTL ∧ gtLTL
[[f ∨ g]]t f tLTL ∨ gtLTL f tLTL ∨ gtLTL
[[Xf ]]t f t+1

LTL ⊥
[[X̊f ]]t f t+1

LTL >
[[Ef ]]t f tLTL ∨ (Ef)t+1

LTL f tLTL
[[Gf ]]t f tLTL ∧ (Gf)t+1

LTL f tLTL
[[fUg]]t gtLTL ∨ ((fUg)t+1

LTL ∧ f tLTL) f tLTL

Table 1: Transition rules for LTL formulae

(a) Eφl = {o ∈ O | o = 〈p, e〉 and l 6∈ e}

(b) Rφl = {o ∈ O | o = 〈p, e〉 and l ∈ e};

Mattmüller and Rintanen [17] have proven that these clauses suffice to ensure a correct and complete
encoding.

4 Alternating Automata and M&R’07

In recent years, research on LTL planning focussed on translation based approaches. There, the original
planning problem is altered in such a way that all solutions for the new problem adhere to the formula (e.g.
Baier and McIlraith [2] and Torres and Baier [20], see Camacho et al. [5] for an overview). Traditionally,
these approaches translate the LTL formula into a Büchi automaton (essentially a finite state machine,
with a specific accepting criterion for infinite traces) and then integrate the automaton into the model.
The major drawback of these translations is that the Büchi automaton for an LTL formula can have up
to 2|φ| many states.

Torres and Baier [20] proposed a translation diverging from the classical LTL to Büchi translation.
They instead based it on Alternating Automata, which are commonly used as an intermediate step when
constructing the Büchi automaton for an LTL φ formula (see e.g. Gastin and Oddoux [10]). Alternating
Automata have a guaranteed linear size in |φ|, but have a more complex transition function.

Definition 2. Given a set of primitive propositions A, an alternating automaton is a 4-tuple A =
(Q, δ, I, F ) where

• Q is a finite set of states

• δ : Q × 2A → B+(Q) is a transition function, where B+(Q) is the set of positive propositional
formulas over the set of states Q, i.e., those formulae containing only ∨ and ∧.

• I ⊆ Q is the initial state

• F ⊆ Q is the set of final states.

A run of an alternating automaton over a sequence of sets of propositions (execution trace) (s1, . . . , sn)
is a sequence of sets of states (Q0, . . . , Qn) such that

• Q0 = I

• ∀i ∈ {1, . . . , n} : Qi |=
∧
q∈Qi−1

δ(q, si)

The alternating automaton accepts the trace iff Qn ⊆ F

Torres and Baier [20] generate an alternating automaton for an LTL formula φ as follows. They
choose Q as the set of sub-expressions of φ starting with a temporal operator plus a state qF representing
that the end of the execution trace has been reached. Being in a state q means, that from the current
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time on we have to fulfill the formula q. The automaton is given as Aφ = (Q, δ, {qφ}, {qF }) where
Q = {qα | α ∈ S(φ)} ∪ {qF } and the transition function δ is defined as follows:

δ(ql, s) =

{
> if l ∈ s
⊥ if l 6∈ s

δ(qF , s) = ⊥
δ(qf∨g, s) = δ(qf , s) ∨ δ(qg, s)
δ(qf∧g, s) = δ(qf , s) ∧ δ(qg, s)
δ(qXf , s) = qf

δ(qX̊f , s) = qF ∨ qf
δ(qEf , s) = δ(f, s) ∨ qEf
δ(qGf , s) = δ(f, s) ∧ (qGf ∨ qF )

δ(qfUg, s) = δ(qg, s) ∨ (δ(qf , s) ∧ qfUg)

Note that we have to enumerate all states that are relevant to the formula, i.e., all states s ⊆ 2A(φ),
to construct the formula. Using the Alternating Automaton as the basis for a translation leads to a
guaranteed linear increase in size when constructing the translated planning problem. This is due to the
fact that the encoding does not actually has to construct the automaton, but only has to simulate its
states. We will elaborate on this later. Also, it was demonstrated that the new encoding is more efficient
than other current translation techniques [20].

A drawback of their translation was the need for introducing additional actions, performing bookkeep-
ing on the current state of the alternating automaton. A translation into SAT, on the other hand, will
not have this drawback, as we will show. We will again extend the ∃-step encoding and call the encoding
AA (Alternating Automaton). The restriction posed on parallelism by M&R’07 does not depend on
the encoding of the formula itself as long as it does not contain the X or X̊ operators2. We introduce
new decision variables qt for each state q ∈ Q and timestep t, signifying that the automaton Aφ is in
state q after executing the actions of timestep t. To express the transition function of the Alternating
Automaton, we use formulae of the form

(
qt ∧

∧
a∈s a

)
→ δ(q, s) for each state q of the automaton and

set of propositions s. We also replace each occurrence of a state qf in δ(q, s) with the decision variable
qt+1
f and introduce intermediate decision variables to break down complex formulae as in the M&R’07

encoding. The following theorem holds by construction.

Theorem 1. AA in conjunction with M&R’07’s ∃-step encoding is correct for LTL−X .

We here want to point out that the AA encoding is not (as the one by Torres and Baier [20]) polynomial
in the size of the formula. The reason lies in the explicit construction of the alternating automaton, which
requires a single transition for every possible state that might be relevant to the formula, i.e., for every
subset of A(φ). The translation encoding by Torres and Baier circumvents this construction by adding
new operators, which can evaluate the necessary expression during planning. I.e. they have actions for
each transition rule δ(·, ·), which produce the right-hand sides of these above equations as their effects.
Lastly, they introduce synchronisation actions to ensure that δ(·, ·) is fully computed before another
“real” action is executed.

If we apply this idea to the AA encoding, we would end up with the M&R’07 encoding. Since the states
of the automaton are the sub-formulae of φ starting with a temporal operator, these decision variables are
identical to the ψtLTL variables of the M&R’07 encoding, where ψ starts with a temporal operator. The
encoding by Torres and Baier also needs to introduce state variables for every sub formulae not starting
with a temporal operator to represent the step-wise computation of δ(·, ·) correctly. If translated into
propositional variables, these correspond to the ψtLTL variables of M&R’07, where ψ does not start with
a temporal operator. Lastly, the transition rules for both encodings are identical.

As such, the M&R’07 encoding can also be interpreted as a direct translation of an Alternating Au-
tomaton into propositional logic using the compression technique of Torres and Baier [20]. Interestingly,

2The actual encoding of the formula can be exchanged in the proof of their main theorem as long as a similar version of
their Theorem 2 can be proven, which is obvious in our case.
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the original proof showing correctness of the LTL-part of the M&R’07 encoding by Latvala et al. [14]
does not rely on this relationship to Alternating Automata, neither do they mention this connection. We
think it is an interesting theoretical insight, as it might enable to further improve LTL encodings, e.g.,
based on optimisations of the Alternating Automaton.

5 X, Parallelism, and Partial Evaluation

We have noted that both M&R’07 and AA cannot handle LTL formulae containing the X or X̊ operators
in conjunction with the ∃-step encoding. They are however correct if used together with the sequential
encoding, where only a single action can be executed at each timestep. In order to derive extensions that
can handle X and X̊, we first present a new theoretical foundation for both encodings. We will use the
fact that in M&R’07, we know which parts of the formula are made true at which time and by which
propositions. To formalise this, we introduce evaluation traces, which specify how an LTL formula is
fulfilled over a trace.

Definition 3. Let φ be an LTL formula. We call a sequence ψ = (f0, . . . , fn) with fi ⊆ S(φ) an
evaluation trace for φ iff φ ∈ f0 and for all i ∈ {0, . . . , n} holds

1. if f ∨ g ∈ fi then f ∈ fi or g ∈ fi

2. if f ∧ g ∈ fi then f ∈ fi and g ∈ fi

3. if Xf ∈ fi then i < n and f ∈ fi+1

4. if X̊f ∈ fi then i = n or f ∈ fi+1

5. if Ef ∈ fi then f ∈ fi or i < n and Ef ∈ fi+1

6. if Gf ∈ fi then f ∈ fi and if i < n then Gf ∈ fi+1

7. if fUg ∈ fi then g ∈ fi or i < n and f ∈ fi and fUg ∈ fi+1

A trace π = (s0, . . . , sn) satisfies an evaluation trace ψ = (f0, . . . , fn) iff for all a ∈ fi ∩ A also a ∈ si
holds.

The following theorem follows directly, as the definition just emulates checking an LTL formula.

Theorem 2. An execution trace π satisfies an LTL formula φ iff an evaluation trace ψ for φ exists that
satisfies π.

In M&R’07, the LTL formula is only evaluated after a set of parallel actions have been executed. To
capture this, we define partial evaluation traces.

Definition 4. Let π = (s0, . . . , sn) be an execution trace and φ and LTL formula. We call an evaluation
trace θ = (f0, . . . , fl) with l ≤ n a partial evaluation trace (PET) for π if a sequence of indices 0 = i0 <
i1 < ... < il = n+ 1 exists such that for each k ∈ {0, . . . , l − 1} holds

sik ∩ (fk ∩A) = · · · = sik+1−1 ∩ (fk ∩A)

and if Xf ∈ fk or X̊f ∈ fk and k > 0 then ik−1 + 1 = ik. The PET θ is satisfied by the execution trace
π, iff the execution trace (si1−1 ∩ f0 ∩A, . . . , sil−1 ∩ fl ∩A) satisfies θ in the sense of Def. 3.

A satisfying valuation of the M&R’07 encoding corresponds to a partial evaluation trace that satisfies
the formula φ. M&R’07 also asserts that PET is satisfied by the execution trace corresponding to
the sequential plan generated by the ∃-step formula. The main property of Def. 4, which is necessary
for showing that we actually generate a PET, is ensured by the chains added to the original ∃-step
encoding and the additional edges in the Disabling Graph. The following theorem states that every
partial evaluation trace that is satisfied by an executed trace can be extended to a full evaluation trace
and thus forms a witness that the execution trace satisfies the LTL formula. This gives us a second,
independent proof of correctness for the M&R’07 encoding.
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Theorem 3. Let π be a trace and θ be an PET for the formula φ on π. If π satisfies θ, then π satisfies
φ.

Proof. We need to show that the PET ψ = (f0, . . . , fl) can be extended to a full evaluation trace on
π = (s0, . . . , sn), s.t. π satisfies that evaluation trace. If so, we can apply Thm. 2 and conclude that π
also satisfies φ. Let i0, . . . , il be the indices of Def. 4 for which θ is a PET. We claim that

θ∗ = (

i1−i0 times︷ ︸︸ ︷
f0, . . . f0 ,

i2−i1 times︷ ︸︸ ︷
f1, . . . , f1, . . . ,

il−il−1 times︷ ︸︸ ︷
fl, . . . , fl )

is an evaluation trace that satisfies π, and that π satisfies φ. First we show that θ∗ is an evaluation trace.
We start by proving the enumerated properties of Def. 3. Consider the ith element f∗ of θ∗ and let f∗∗

be the i+ 1th element (if such exists).

1. trivially satisfied

2. trivially satisfied

3. Xf ∈ f∗. We know that f∗ is the only repetition some fj in the trace, as θ is a PET. Also
f∗∗ = fj+1. Consequently f ∈ f∗∗. In case f∗∗ does not exist, θ cannot be an PET.

4. X̊f ∈ f∗. We know that f∗ is the only repetition of some fj in the trace, as θ is a PET. In case
f∗∗ does not exist, we have nothing to show. Else, f∗∗ = fj+1 and f ∈ f∗∗.

For the last three requirements relating to the temporal operators E, G, and U , we can distinguish three
cases depending on where f∗ is situated in the sequence θ∗

• f∗ is the last element of θ∗:

5. if Ef ∈ f∗ then f ∈ f∗, as θ is a PET.

6. if Gf ∈ f∗ then f ∈ f∗, as θ is a PET.

7. if fUg ∈ f∗ then g ∈ f∗, as θ is a PET.

• f∗ 6= f∗∗, i.e., the last repetition of f∗. We know that f∗ = fj and f∗∗ = fj+1 for some j ∈
{0, . . . , l − 1}.

5. if Ef ∈ f∗ then either f ∈ fj = f∗ or Ef ∈ fj+1 = f∗∗

6. if Gf ∈ f∗ then f ∈ fj = f∗ and Gf ∈ fj+1 = f∗∗

7. if fUG ∈ f∗ then either g ∈ fj+1 = f∗∗ or f ∈ fj = f∗ and fUg ∈ fj+1 = f∗∗

• if f∗ = f∗∗

5. if Ef ∈ f∗ then Ef ∈ f∗∗

6. if Gf ∈ f∗ then Gf ∈ f∗∗ and f ∈ f∗

7. if fUg ∈ f∗ then either g ∈ f∗, or f ∈ f∗, but then also fUG ∈ f∗∗, since f∗ = f∗∗

φ ∈ f0 holds as θ is a PET, which concludes conclude the proof that θ∗ is an evaluation trace.
Lastly, we have to show that θ∗ satisfies π, i.e., we have to show, for each timestep j ∈ {0, . . . n} and

every a ∈ A which is true in the ith element of θ∗, that a ∈ sj holds. Consider first the indices of the last
repetitions of each fk, i.e., the states sik−1. Since θ is a PET, it satisfies (si1−1∩f0∩A, . . . , sil−1∩fl∩A),
so it satisfies the required property for all time-steps ik − 1. Consider any other timestep t and its next
timestep in the PET ik − 1 (which always exists, since the last index is equal to n). Since θ is a PET,
we know that st ∩ (fk − 1 ∩ A) = sik−1 ∩ (fk ∩ A). We have chosen to set the tth element of θ∗ to fk.
Since sik−1 ∩ (fk ∩ A) satisfies the required property for fk, so must st ∩ (fk ∩ A) and thus st itself (it
can have only more true predicates).

We can now use this result to integrate support for X and X̊ into the M&R’07 encoding. For that,
we have to assert that the second last condition of Def. 4 holds, as all other requirements are already
checked by the M&R’07 encoding. We first add four new variables per time step t.
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• exactOnet – exactly one action is executed at time t
• atLeastOnet – at least one action is executed at time t
• atMostOnet – at most one action is executed at time t
• nonet – no action is executed at any time ≥ t

To enforce the semantics of these variables, we add the following clauses per timestep:

∀o ∈ O : nonet → ¬ot

nonet → nonet+1

atLeastOnet →
∨
o∈O

ot

exactOnet → atLeastOnet ∧ atMostOnet

Encoding the atMostOnet atom is a bit more complicated. A native encoding requires O(|O|2) clauses.
There are however better encodings for the at most one constraint in SAT. We have chosen the log-counter
encoding, which introduces log(|S|) new variables while only requiring |S| log(|S|) clauses [9]. To ensure
the semantics of the atom atMostOnet, we add it as a guard to the log-counter encoding, i.e., we add
¬atMostOnet to every clause. If atMostOnet is required to be true, the log-counter clauses have to be
satisfied, i.e., at most one action atom can be true. If atMostOnet can be false, we can simply set it to ⊥
thereby satisfying all log-counter clauses. We lastly set exactOnet for t = −1 to > and atLeastOnen+1

to false. Based on these new variables, we can add the constraints necessary for evaluating X and X̊
correctly under the ∃-step encoding. For each timestep t, we add

(Xf)tLTL → exactOnet−1 ∧ f t+1 ∧ atLeastOnet

(X̊f)tLTL → exactOnet−1

(X̊f)tLTL → (f t+1 ∧ atLeastOnet) ∨ nonet

A valuation of this encoding represents a partial evaluation trace satisfied by the execution trace of its
actions. By applying Thm. 3, we know that a satisfying evaluation trace for the plan exists. Showing
completeness for the encoding is trivial, since a sequential assignment satisfies the formula for every plan.
We will also call this extended encoding M&R’07 in our evaluation, as it is exactly identical to this one,
provided no X or X̊ operator is present.

So far, we have not used the – in our view – most significant improvement: Relaxing the restrictions
on parallelism to only those actually needed by the current formula. Doing so based on our theorem
is surprisingly easy. Consider a timestep of the M&R’07 encoding, in which actions can be executed in
parallel, which are given an implicit order ≺ by the ∃-step encoding. For each literal l ∈ Lit(A(φ)) a chain
ensures that the action changing it is applied first, i.e., that the “first” action of a timestep performs all
changes relevant to the whole formula and can thus check the formula only in the resulting state. By
applying Def. 4 and Thm. 3, we have to ensure this property only for those proposition symbols that
need to be evaluated after the actions have been executed, i.e., for all at+1

LTL that are true. We can do
this simply by adding the literal ¬atLTL as a guard (simiar to atMostOnet) to every clause in the chains

chain(≺;Eφl ;Rφl ;φa) and chain(≺;Eφl ;Rφl ;φ¬a). If we have to make the literal atLTL true, the chains
become active, if not they are inactive (as they are trivially satisfied by ¬atLTL). We will denote this
improved encoding with Improved-M&R’07.

To illustrate the effects of the improved M&R’07 encoding, consider the following planning problem.
There are six proposition symbols a, b, c, d, e and f , of which a and b are true in the initial state and
e has to hold in the goal state. There are five actions described in Tab. 2. We consider this domain in
conjunction with the formula φ = G((a ∧ d)→ Ef) = G(¬a ∨ ¬d ∨ Ef). The disabling graph, extended
by the edges needed for the M&R’07 encoding, is depicted in Fig. 1. This planning problem has only a
single solution, namely: Y, X, V, W, Z. Under the M&R’07 encoding, we need four timesteps to find a
plan, i.e., {Y}, {X}, {V}, {W,Z}. This is due to the fact that most actions’ effects contain one of the
three predicates contained in φ, but not the others. Using the improved M&R’07 encoding, we only need
three timesteps, as now Y and X can be executed together in the first timestep. The reason for this
beeing possible is quite unintuitive, but it shows the strength of our approach. In the M&R’07 encoding,
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X Y Z V W

pre a,b a,b c,d c,d g
add c d e g f
del a c

Table 2: Actions in the example domain

X

Y

Z

V

W

Figure 1: Extended disabling graph for the example domain.

the encoding correctly detects that there is a state in which a and d are true simultaneously3 after the
action Y has been executed and that thus Ef has to hold after executing Y. In the plan for the improved
encoding, the solver can simply choose to achieve Ef after {Y,X} has been executed. This way the solver
is never forced to achieve ¬a or ¬d and can thus completely ignore the associated constraints, i.e., chains.

6 Parallelism with Tracking

There is however still room for more parallelism even compared to the improved M&R’07 encoding. The
key observation is that in many domains only a few actions actually influence the truth of variables in
an LTL formula, and that those that do are usually close to each other in a topological ordering of the
inverse disabling graph. The ∃-step semantic guarantees that if actions are executed in parallel, they can
be sequentially executed in this order. Let this ordering be (o1, . . . , on). We can divide it into blocks,
such that for each block (oi, . . . , oj) it holds that

[oi]
φ
e ⊇ [oi+1]φe ⊇ · · · ⊇ [oj ]

φ
e

Along the actions in a block the effects that contain predicates in A(φ) can only “decrease”. A block
forms a set of actions that can always – without further checking at runtime – be executed in parallel in
the M&R’07 encoding. The number of such blocks is surprisingly small for most domains (see Tab. 3).
We denote with B = ((o1, . . . , oi), . . . , (oj , . . . , on)) the sequence of blocks for a given ordering of actions.

If an action from a block has been executed, at least (usually more) the first action of the next block
cannot be executed anymore in the same timestep, as it would change the truth of some a ∈ A(φ),
even though it would be possible in the pure ∃-step encoding. We present a method to circumvent this
restriction on parallelism. Instead of restricting the amount of parallel actions executing inside a timestep,
we (partially) trace the truth of an LTL formula within that timestep to allow maximal parallelism. This
is based on the insight that all proofs by Mattmüller and Rintanen [17] do not actually require an action to
be present at any timestep, i.e., the set of actions executed in parallel can also be empty. So, conceptually,
we split each timestep into |B| many timesteps and restrict the actions in the ith splitted step to be those
of the ith block. Then we use the M&R’07 encoding, without the need to add chain-clauses apart from
those of the ∃-step encoding, as they are automatically fulfilled. The resulting encoding would be sound
and complete for LTL formulae without X and X̊ by virtue of the results proven by Mattmüller and
Rintanen [17].

We can however improve the formula even further. In the proposed encoding, we would compute
the state after each block using the Kautz&Selman encoding. This is unnecessary, as we know from the
∃-step encoding, that we only need to compute the state again after all blocks of one original timestep
have been executed. We only need to trace the truth of propositions in A(φ) between blocks. For that
we don not need to check preconditions – they are already ensured by the ∃-step encoding. We end up
with the ∃-step encoding, where we add at every timestep a set of intermediate timepoints at which the

3Technically both a and d are not true.



86 Inteligencia Artificial 62(2018)

truth of propositions in A(φ) and the truth of the LTL formula φ is checked. Thus we call this encoding
OnParallel.

As we have noted above, this construction works only for the original M&R’07 encoding, as supporting
the X and X̊ requires to be able to specify that in the next timestep some action must be executed. This
might not be possible with splitted timesteps, as the next action to be executed may only be contained
in a timestep |B| steps ahead. Luckily, we can fix this problem by slightly altering the encoding we used
to track the truth of X and X̊ operators.

(Xf)t → atMostOnet−1 ∧ ((atLeastOneit ∧ f t+1
LTL)∨

(nextNonet+1 ∧ (Xf)t+1
LTL))

(X̊f)t → atMostOnet−1 ∧ ((f t+1
LTL ∧ atLeastOne

t)∨
(nextNonet+1 ∧ (X̊f)t+1

LTL) ∨ nonet))

The semantics of noneAtt is ensured by clauses nextNonet → ¬ot for all i ∈ O. Lastly, we add ¬Xfn++11
LTL

for any Xf ∈ S stating that a next-formula cannot be made true at the last timestep. This would
otherwise be possible, since atMostOnen could simply be made true. The OnParallel encoding is correct
by applying Thm. 3.

7 Evaluation

We have conducted an evaluation in order to assess the performance of our proposed encodings. We
used the same experimental setting as Mattmüller and Rintanen [17] in their original paper. We used the
domains trucks and rover from the preference track of IPC5 (the original paper considered only rover),
which contain temporally extended goals to specify preference. In these domains, temporally-extended
goals are formulated using the syntax of PDDL 3.0 [11]. We parse the preferences and transform them into
LTL formulae using the patterns defined by Gerevini and Long [11]. As did Mattmüller and Rintanen,
we interpret these preferences as hard constraints and randomly choose a subset of three constraints per
instance4. To examine the performance of our encoding for X and X̊, we have also tested the instances of
the trucks domain with a formula that contains these operators. We have used the following formula5:

φ = ∀?l−Location?t− Truck : G(at(?l, ?t)→ X̊(¬at(?l, ?t) ∨ X̊¬at(?l, ?t)))

It forces each truck to stay at a location for at most one timestep – either it leaves the location right
after entering it, or in the next timestep. The domain contains an explicit symbolic representation of
time, which is used in temporal goals. When planning with φ, the number of timesteps is never sufficed
to find a plan satisfying φ. We have therefore removed all preconditions, effects, and action parameters
pertaining to the explicit representation of time. As a result, the domain itself is easier than the original
one. We denote these instances in the evaluation with trucks-XY-φ.

Each planner was given 10 minutes of runtime and 4GB of RAM per instance on an Intel Xeon E5-2660
v3. We’ve used the SAT solver Riss6 [15], one of the best-performing solvers in the SAT Competition
2016. We have omitted results for all the trucks instances 11− 20, as no planner was able to solve them.

Table 3 shows the results of our evaluation. We show per instance the number of ground actions and
blocks. The number of blocks is almost always significantly smaller than the number of ground operators.
In the largest rover instance, only ≈ 1.4% of operators start a new block. For the trucks domain this
is ≈ 1.7% for the largest instance.

For every encoding, we show both the number of parallel steps (i.e. timesteps) necessary to find a
solution, as well as the time needed to solve the respective formula and the number of sequential plan
steps found by the planner. In almost all instances the OnParallel encoding performs best, while there are
some where the improved M&R’07 encoding is faster. Our improvement to the M&R’07 encoding almost
always leads to a faster runtime. Also, the improved parallelism actually leads to shorter parallel plans.

4Mattmüller and Rintanen [17] noted that it is impossible to satisfy all constraints at the same time and that a random
sample of more than three often leads to unsolvable problems. If a sample of 3 proved unsolvable we have drawn a new one.

5We handle these lifted LTL constraints by grounding them using the set of delete-relaxed reachable ground predicates.
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In approximately half of the instances we can find plans with fewer parallel steps. In the experiments
with the formula φ containing the X̊ operator, this is most pronounced. The OnParallel encoding cuts
the number of timesteps by half and is hence significantly faster, e.g., on trucks-03-φ where the runtime
is reduced from 165s to 6s. On the other hand, the sequential plans found are usually a few actions
longer, although the same short plan could be found – this result is due to the non-determinism of the
SAT solver.

8 Conclusion

In this paper, we have improved the state-of-the-art in translating LTL planning problems into proposi-
tional formulae in several ways. We have first pointed out an interesting theoretical connection between
the propositional encoding by Mattmüller and Rintanen [17] and the compilation technique by Torres
and Baier [20]. Next, we have presented a new theoretical foundation for the M&R’07 encoding – partial
evaluation traces. Using them, we presented (1) a method to allow the X and X̊ operators in the M&R’07
encoding, (2) a method to further improve the parallelism in the M&R’07 encoding, and (3) a new encod-
ing for LTL planning. In an evaluation, we have shown that both our improved M&R’07 encoding and the
OnParallel encoding perform empirically better than the original encoding by Mattmüller and Rintanen.
We plan to use the developed encoding in a planning-based assistant [3] for enabling the user to influence
the instructions he or she is presented by the assistant, which in turn are based on the solution generated
by a planner. Instructions given by the user can be interpreted as LTL goal and integrated into the plan
using the presented techniques.
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