
Tracking Branches in Trees – A Propositional Encoding for Solving
Partially-Ordered HTN Planning Problems

Gregor Behnke and Daniel Höller and Susanne Biundo
Institute of Artificial Intelligence, Ulm University, D-89069 Ulm, Germany

{gregor.behnke, daniel.hoeller, susanne.biundo}@uni-ulm.de

Abstract

Planning via SAT has proven to be an efficient and versa-
tile planning technique. Its declarative nature allows for an
easy integration of additional constraints and can harness the
progress made in the SAT community without the need to
adapt the planner. However, there has been only little atten-
tion to SAT planning for hierarchical domains. To ease encod-
ing, existing approaches for HTN planning require additional
assumptions, like non-recursiveness or totally-ordered meth-
ods. Both limit the expressiveness of HTN planning severely.
We propose the first propositional encodings which are able
to solve general, i.e., partially-ordered, HTN planning prob-
lems, based on a previous encoding for totally-ordered prob-
lems. The empirical evaluation of our encoding shows that it
outperforms existing HTN planners significantly.

Introduction
Hierarchical Task Network (HTN) planning (Erol, Hendler,
and Nau 1996) is a versatile planning formalism, which has
been used in many practical applications (Nau et al. 2005;
Straatman et al. 2013; Champandard, Verweij, and Straat-
man 2009; Dvorak et al. 2014). It extends classical plan-
ning by introducing abstract tasks in addition to primitive
(classical) actions. They represent portfolios of more com-
plex courses of action which – if executed – achieve the ab-
stract task. Decomposition methods map abstract tasks to
partially-ordered sets of other tasks (that might be primi-
tive or abstract) – and by that express the connection be-
tween higher- and lower-levels of action abstraction. De-
composition is continued until all tasks are primitive and
these actions can be executed in the initial state. This de-
compositional structure is a powerful way to describe the set
of possible solutions, making HTN planning more expres-
sive than classical planning (Erol, Hendler, and Nau 1996;
Höller et al. 2014; Höller et al. 2016). To solve HTN plan-
ning problems, fast and domain-independent planning sys-
tems are required that are informed about both – hierarchy
and state. But as of now, the research in this area lacks be-
hind that in classical planning. Most current HTN planners
are based on heuristic search, as in classical planning. In
classical planning, SAT-based planning has also proven to
be highly efficient and has advantages compared to planning
via heuristic search. Most notably, SAT-based planners ben-
efit from future progress in SAT research without the need to

adapt the planner – simply replacing the solver is sufficient.
Also propositional encodings are easily extendable, e.g., to
add further constraints, like goals formulated in LTL. Lastly
propositional logic seems to be a suitable means to solve
HTN planning problems, as verifying solutions was shown
to be NP-complete (Behnke, Höller, and Biundo 2015).

In HTN planning, there has been little research on SAT-
based techniques. Most importantly, there is no SAT-based
HTN planner capable of handling all HTN planning prob-
lems. There are only two restricted encodings, one by Mali
and Kambhampati (1998) – which (among other restrictions)
cannot handle recursion, and one by Behnke, Höller, and Bi-
undo (2018) – which cannot handle partial order in methods,
but can handle recursion. Both restrictions limit the expres-
siveness of HTN planning severely (Höller et al. 2014; Erol,
Hendler, and Nau 1996) and limit the domain-modeller’s
freedom unnecessarily. We present the first encoding that
can handle all propositional HTN planning problems.

We will show how the encoding of Behnke, Höller, and
Biundo (2018) can be adapted such that it can also be applied
to partially ordered domains. Since in that case, any order-
ing information in the encoding is lost, we propose a mech-
anism for representing the ordering constraints contained in
the domain by additional decision variables. Since the order
between two primitive tasks can only originate from a single
method, this encoding is fairly compact.

Our empirical evaluation compares our encoding against
state-of-the-art HTN planners. Here, we have considered
combinatorial HTN planning problems, and not those where
the HTN is hand-coded to help the planner find a solution.
Our SAT-planner outperforms existing HTN planning tech-
niques on these domains, some of them significantly.

First we introduce HTN planning formally and discuss re-
lated work. Then, we review the concept of totally-ordered
Path Decomposition Trees and the SAT formula based on
them. In section five, we introduce the concept of partially-
ordered Path Decomposition Trees and present our SAT for-
mula that can be used for planning in such domains. In the
following chapter we describe the evaluation we conducted.

Preliminaries
We use the HTN formalism of Geier and Bercher (2011),
where plans (partially ordered sets of task) sare represented
by task networks.

Definition 1 (Task Network). A task network tn over a set
of task names X is a tuple (T,≺, α), where
• T is a finite, possibly empty, set of tasks
• ≺ ⊆ T × T is a strict partial order on T
• α : T → X labels every task with a task name
TNX denotes the set of all task networks over the task

names X . We write T (tn) = T , ≺ (tn)=≺ and α(tn)=α
for a task network tn = (T,≺, α). Two task networks
tn = (T,≺, α) and tn′ = (T ′,≺′, α′) are isomorphic,
written tn ∼= tn′, iff a bijection σ : T → T ′ exists, s.t.
∀t, t′ ∈ T it holds that (t, t′) ∈≺ iff (σ(t), σ(t′)) ∈≺′ and
α(t) = α′(σ(t)). Next we define the restriction notation.
Definition 2 (Restriction). Let R ⊆ D × D be a relation,
f : D → V a function and tn be a task network. Then:

R|X = R ∩ (X ×X) f |X = f ∩ (X × V)

tn|X = (T (tn) ∩X,≺(tn)|X , α(tn)|X)

An HTN planning problem is defined as follows.
Definition 3 (Planning Problem). A planning problem is a
6-tuple P = (L,C,O, γ,M, cI , sI), with
• L, a finite set of proposition symbols
• C, a finite set of compound task names
• O, a finite set of primitive task names with C ∩O = ∅
• γ : O → 2L × 2L × 2L, defining the preconditions and

effects of each primitive task
• M ⊆ C×TNC∪O, a finite set of decomposition methods
• cI ∈ C, the initial task name
• sI ∈ 2L, the initial state
The state transition semantics of primitive task names
o ∈ O is that of classical planning, given in terms
of an precondition-, an add-, and a delete-list: γ(o) =
(prec(o), add(o), del(o)). A primitive task is applicable in
a state s ⊆ L iff prec(o) ⊆ s and its application results
in the state δ(s, o) = (s \ del(o)) ∪ add(o). A sequence of
primitive tasks o1, . . . , om is applicable in a state s0 iff there
exist states s1, . . . , sn, each oi is applicable in si−1, and
δ(si−1, oi) = si. We defineM(c) = {(c, tn) | (c, tn) ∈M}
to be the methods applicable to c.

To obtain a solution in HTN planning, one starts with the
initial compound task and repeatedly applies decomposition
methods to compound tasks until all tasks in the current task
network are primitive.
Definition 4 (Decomposition). A method m = (c, tnm) ∈
M decomposes a task network tn1 = (T1,≺1, α1)
into a task network tn2 by replacing the task t, written
tn1 −−→t,m tn2, if and only if t ∈ T1, α1(t) = c, and
∃tn′ = (T ′,≺′, α′) with tn′ ∼= tnm and T ′∩T1 = ∅, where

tn2 = (T ′′,≺1 ∪ ≺′ ∪ ≺X , α1 ∪ α′)|T ′′ with

T ′′ = (T1 \ {t}) ∪ T ′

≺X = {(t1, t2) ∈ T1 × T ′ with (t1, t) ∈≺1} ∪
{(t1, t2) ∈ T ′ × T1 with (t, t2) ∈≺1}

We write tn1 →∗D tn2, if tn1 can be decomposed into tn2
using an arbitrary number of decompositions.

Using the previous definition we can describe the set of
solutions to a planning problem P .

Definition 5 (Solution). A task network tnS is a solution to
a planning problem P , if and only if

(1) there is a linearisation t1, . . . , tn of T (tnS) according
to ≺(tnS),

(2) α(tnS)(t1), . . . , α(tnS)(tn) is executable in sI , and
(3) ({1}, ∅, {(1, cI)})→∗D tnS ,

S(P) denotes the sets of all solutions of P , respectively.

Note that this definition of HTN planning problems ex-
cludes some of the features in the original formulation
by Erol, Hendler, and Nau 1996. His formalisation allows
for constraints to be present in task network, namely be-
fore, after, and between constraints. The constraint type
used most often, are before constraints, which correspond
to SHOP(2)’s method preconditions. Our planner can han-
dle them by compiling them into additional actions, as does
SHOP2. So far, we don’t support other constraint types.

To show that a task sequence π is a solution to a plan-
ning problem, we use Decomposition Trees (DTs) as wit-
nesses (Geier and Bercher 2011). They describe how π can
be obtained from the initial abstract task via decomposition.

Definition 6. Let P = (L,C,O,M, cI , sI) be an HTN
planning problem. A valid decomposition tree T is a 5-tuple
T = (V,E,≺, α, β), where

1. (V,E) is a directed tree with a root-node r.
2. ≺⊆ V × V is a strict partial order on V and is inherited

along the tree, i.e., if a ≺ b, then a′ ≺ b and a ≺ b′ for
any children a′ of a and b′ of b.

3. α : V → C ∪O assigns each inner node an abstract task
and each leaf a primitive task.

4. β : V →M assigns each inner node a method.
5. α(r) = cI
6. for all inner nodes v ∈ V with β(v) = (c, tn) and

children ch(v) = {c1, . . . , cn}, it holds that c = α(v).
Further, a bijection φ : ch(v) → T (tn) must exist
with α(ci) = α(tn)(φ(ci)) for all ci, and ci ≺ cj iff
φ(ci)≺(tn)φ(cj).

≺ may not contain orderings apart those induced by 2. or 6.
The yield yield(T) of T is the task network induced by the
leafs of T , i.e. V , α, and ≺ restricted to these leafs.

Geier and Bercher (2011) showed the following theorem:

Theorem 1. Given a planning problem P , then for every
task sequence π the following holds:
There exists a valid decomposition tree T s.t. π is a lineari-
sation of yield(T) if and only if π ∈ S(P).

This means, that instead of finding a solution to the plan-
ning problem P , we can equivalently try to find a DT whose
yield is executable – the approach we use in this paper.

Related Work
Past research has already investigated possible translations
of HTN planning problems into logic.

HTNs and Logic
Notably, Mali and Kambhampati (1998) proposed a SAT-
translation for HTNs. Their HTN formalism differs signif-
icantly from the established HTN formalism, making their
encoding simpler and different from ours. They allow insert-
ing tasks into task networks apart from decomposition and
do not specify an initial task. Furthermore their encoding
is also restricted to non-recursive domains. Such domains
can be translated into an equivalent STRIPS planning prob-
lem, which is not the case for general domains (Höller et
al. 2014). Dix, Kuter, and Nau (2003) have proposed an
encoding of totally-ordered HTN planning into answer set
programming, mimicking the search of SHOP. Their evalua-
tion shows that the translated domain performs significantly
worse than the SHOP algorithm (up to a factor of 1.000).

PDT-based encoding
Since our work is based on the encoding presented by
Behnke, Höller, and Biundo (2018), we start by reviewing
this encoding in detail. Their idea was to restrict the maxi-
mum depth of decomposition. The planner start with some
small bound K and constructs a SAT formula satisfiable if
a solution with depth ≤ K exists. If not, K is increased
and the process is repeated. To construct this formula, they
used a compact representation of all possible decomposi-
tions with depth ≤ K – the Path Decomposition Tree PDT
P . A satisfying valuation of the SAT formula then repre-
sents a decomposition tree T that is a subgraph of P . They
however studied PDTs and the resulting formula only in the
context of totally-ordered HTN planning, which is as we
have argued in the introduction far less expressive and versa-
tile than full partially-ordered HTN planning. Also we want
to note, that almost all current HTN planning systems are
constructed for partially-ordered domains, as most domains
used in practice are partially ordered.

A PDT is a compact representation of all possible de-
compositions of the initial abstract task up to a given depth-
bound K. Every such decomposition is represented by a de-
composition tree (see Def. 6). The PDT is then a graph P
such that it contains every possible decomposition tree as
one of its subgraphs P ′. To ensure a “common structure” we
also require that the root of P ′ is the root of P . Next we give
the formal definition of totally-ordered Path Decomposition
Trees. To ease notation, we denote with L(T = (V,W)) the
set of all leafs of a tree T .
Definition 7. Let P = (L,C,O,M, cI , sI) be a planning
problem and K a height bound. A Path Decomposition Tree
PK of height K is a triple PK = (V,E, α) where
1. V are the nodes of a tree of height≤ K, with edges given

by function E : V → V ∗, and which has the root node r.
2. α : V → 2C∪O assigns each node a set of possible tasks.
3. cI ∈ α(r)
4. for all inner nodes v ∈ V , for each abstract task
c ∈ α(v) ∩ C that can be assigned to that node, and
for each method (c, tn) ∈ M(c), there exists a sub-
sequence v1, . . . , v|T (tn)| of the children E(v), such that
tni ∈ α(vi) for all i ∈ {1, . . . , |T (tn)|}, where tni is the
ith element of the sequence of task names of tn.

t1

t2 p1 p2

p1p3 p4

Figure 1: An example PDT, a DT as its subgraph (nodes
filled), and the extension for primitive tasks (dashed line).
The nodes of the DT are each annotated with the task (ti for
abstract and pi for primitives ones) that they are be labelled
with in the DT. The node labelled p2 does not have children
even though it is not at the “lowest” level due to the fact that
it can only be labelled with primitive tasks (p2 in our ex-
ample), while the node labelled with p1 can potentially also
be labelled with an abstract task. For this consider e.g. the
methods t1 7→ t2, p1, p2 and t1 7→ t2, t3, p2. Note that there
is one non-filled node that is also labelled with a task. This is
an encoding trick to ensure that the leafs of the DT are also
leafs of the PDT – primitive tasks are simply “inherited” by
one of their children in the PDT.

5. ∀v ∈ L(V,E) : either α(v) ⊆ O or the height of v is K.

This definition assumes that the tasks in a method’s task
network are totally-ordered and thus can be projected di-
rectly to a totally-ordered sequence of children. As a re-
sult, the leafs of the PDT are also totally-ordered (according
to the order implied by their common ancestors). Behnke,
Höller, and Biundo (2018) provide an algorithm construct-
ing a PDT PσK given a so-called child-arrangement function
σ. Based on it, they describe a SAT-formula FD(P,K) that
is satisfiable if and only if there exists a subgraph G′ of the
PDT PσK that forms a valid decomposition tree. A satisficing
valuation ofFD(P,K) represents such a DTG′ – expressed
by two types decision variables:

• tv – v is part of G′ and is labelled with t, i.e., α(v) = t.

• mv – the method m was applied to the node v of G′, i.e.,
β(v) = m

Their encoding propagates primitive tasks occurring at any
node v downwards through the first child of v in the PDT.
This ensured that yield(G′) is represented by the leafs ofPσK
that have a task assigned to them – else inner nodes of PσK
may belong to the yield. In addition to FD(P,K), Behnke,
Höller, and Biundo used a second formula FE(P,K) en-
suring executability of the tasks assigned to the leafs of G′.

For the formulaFD(P,K) – and for other formulae there-
after, we use the functor M(V), which given a set of de-
cision variables V , outputs a formula that is satisfiable if
and only if at most one of them (Sinz 2005). FD(P,K)
consist solely of local constraint, i.e., one sub-formula is
generated per node of the PDT. The formula to be gener-
ated for a node v of the PDT PσK = (V,E, α) is either
M({tv | t ∈ α(v) ∩ O}) ∧c∈C ¬cv if v ∈ L(PσK), i.e.,

if v is a leaf, or else the following formula:

f(v) = M({tv | t ∈ α(v)}) ∧ selectMethod(v)

∧ applyMethod(v) ∧ inheritPrimitive(v)

∧ nonePresent(v)

It first asserts that every node in the decomposition tree
can be labelled with at most one task. The next four sub-
formulae encode the further restrictions a decomposition
tree must fulfil. selectMethod ensures that an applicable
method is chosen and that only one is chosen, provided v
is labelled with an abstract task.

selectedMethod(v) = M({mv |M(α(v) ∩ C)})∧ ∧
t∈α(v)∩C

tv → ∨
m∈M(t)

mv

 ∧
 ∧
m∈M(α(t)∩C)

(mv → tv)


applyMethod forces that whenever a method is selected, the
tasks in its task network are assigned to the children of v.
Let for a method m = (c, tn) be v1, . . . , v|T (tn)| the subse-
quence given in Def. 6. Let further denote ttn,i the ith task
of the (totally-ordered) task network tn.

applyMethod(v) =
∧

m=(t,tn)∈M(α(v))

[
mv →

|tn|∧
i=1

tvitn,i ∧
∧

vi∈E(v)\{v1,...,v|tn|}

∧
t∗∈C∪O

¬t∗vi
]

These clauses also propagate the total order between the sub-
tasks v1, . . . , v|tn|. inheritPrimitive and nonePresent take
care of the border cases, where v is either assigned a primi-
tive task, or none at all. Let here be v1 the first node inE(v).

inheritPrimitive(v) =∧
p∈α(v)∩O

[
pv →

pv1 ∧ ∧
vi∈E(v)\{v1}

∧
k∈C∪O

¬kvi
]

nonePresent(v) =

 ∧
t∈α(v)

¬tv
→

 ∧
vi∈E(v)

∧
t∈C∪O

¬tvi


The full decomposition formula FD(P) is then simply∧
v∈V f(v).

Partially-Ordered Decomposition
We can extend this encoding, allowing us to track the partial
order induced by the methods. As a first step, we have to ig-
nore the fact that the PDT represents any ordering constraint.
For that purpose, we introduce unordered PDTs, which dif-
fer only slightly from PDTs. Unordered PDTs – as their
names suggests – don’t have an ordering on the children
of a node. Based on this, the main difference lies in 4. of
the definition. For PDTs every node and applicable method,
the subtasks of that method must from a subsequence of the
nodes children, while for an unordered PDT it suffices that
they are a subset.

Definition 8. Let P = (L,C,O,M, cI , sI) be a planning
problem and K a height bound. An unordered PDT PK of
height K is a triple PK = (V,E, α) where

1. (V,E) is a tree of height ≤ K with the root node r.
2. α : V → 2C∪O assigns each node a set of possible tasks.
3. cI ∈ α(r)
4. for all inner nodes v ∈ V , for each abstract task
c ∈ α(v) ∩ C that can be assigned to v, and for each
method (c, tn) ∈ M(c), there exists a subset D =
{v1, . . . , v|T (tn)|} of v’s children, such that a bijection
φv(c,tn) : D → T (tn) exists with α(tn)(φv(c,tn)(d)) ∈
α(d) for all d ∈ D

5. ∀v ∈ L(V,E) : either α(v) ⊆ O or the height of v is K.

As uPDTs are a structural relaxation of PDTs, we can use
the same generation procedure based on a child-arrangement
function σ – simply by ignoring that methods are partially
ordered – we use some topological ordering of the methods
for generating PσK instead. Based on the generated uPDT, we
can also use the same formulaFD(P,K) describing decom-
position. To capture the partial order we add new decision
variables for bookkeeping:
• bvw – for nodes v and w that have the same parent, i.e., are

siblings. If bvw is true, the order v ≺ w is contained in the
method applied to the parent of v and w.

These variables are sufficient to infer the order between all
elements of yield(G′). This is due to how order is inherited
in a decomposition tree. Essentially, the order between two
nodes v and v′ can only stem from the method applied to
their last common ancestor in G′. The structure is illustrated
in Figure 2. For two leafs v and v′ of the tree, let A(v, v′)
be the last common ancestor of v and v′. Further be C(a, v),
be the child c of a, s.t. the leaf v is below c. Then v stems
from C(A(v, v′), v), while v′ from C(A(v, v′), v′). Then the
formal property is the following:
Theorem 2. Let T = (V,E,≺, α, β) be a decomposition
tree. Let v, v′ ∈ L(V,E) be two leafs of T , c = A(v, v′)
be the last common ancestor of v and v′. Then the order
between v and v′ is the same as between vc = C(c, v) and
v′c = C(c, v′) induced by the method applied to c.

Proof. Suppose there is an order between vc and v′c. Then
by 2. of Def. 6, this order must also be present between v
and v′.
Suppose there is no order between vc and v′c. Then the direct
children of vc and v′c that are ancestors of v and v′ respec-
tively cannot contain any order, too. By definition, any order
between them must either be introduced by methods or by
2. of Def. 6. Clearly, no decomposition methods could have
introduced the ordering since the tasks don’t have a common
parent. Also since vc and v′c have no order between them 2.
of Def. 6 is not applicable. By induction, we can conclude
that there is not order between v and v′.

To keep track of the ordering constraints, we have to add
for every decision variable mv clauses that enforce that the
correct bvw variables are set true. We therefore add for every
mv the following clauses to FD(P,K), where m = (c, tn),

Figure 2: An illustration where order originates from in a
decomposition tree.

v1
α(v1)=p2

v2
α(v2)=p6

v3
−

. . . vn
α(vn)=p3

p1
−

p2
p2

p3
p6

. . . pn
p3

Figure 3: Matching structure between leafs of PσK , and positions
in the primitive sequence.

{v1, . . . , vn} are the nodes of PσK to which the tasks of tn
are mapped, and {t1, . . . , tn} be those tasks.

n∧
i=1

∧
j∈{1,...,n} s.t. (ti,tj)∈≺(tn)

(mv → bvivj)

These clauses enforce that the bvws represent a superset of
the ordering constraints induced by the applied methods.

To complete the encoding we need a formula FE(P,K)
that is satisfiable if and only if yield(G′) is executable. Let
l = |L(PσK)| be the number of leafs of PσK . We separate
this formula into two parts: representing a linearisation of
yield(G′) and checking that this linearisation is executable.
A linearisation of yield(G′) is a mapping of the leafs of G′
to a sequence of positions. We can use l as an upper bound
to the number of positions – and we have always used this
value in our encoding. Also we denote these positions as
1, . . . , l. This mapping is essentially a bipartite matching
that must not contradict the ordering constraints. Figure 3
illustrates these structures.

We have to generate a SAT formula that represents such a
matching and is only satisfiable iff the matching is valid (i.e.
an actual matching and it respects the order). We omit a for-
mal proof of correctness, as we deem the encoding straight-
forward enough to be considered correct by construction.
We introduce two new decision variables:

• cvi – leaf v connected with position i

• av – leaf v contains a task (i.e. is a leaf of G′ and has to
be matched)

Based on these variables, we can formulate the restrictions a
valid matching must fulfil. First, every leaf or position may
be matched only once.

F1 =

l∧
i=1

M({cvi | v ∈ L(PσK)}) ∧
∧

v∈L(PσK)

M({cvi | 1 ≤ i ≤ l})

Next, we define the av atoms, that are true exactly if the leaf
v of PσK contains an action. We use them as intermediate

variables to decrease the overall size of the formula.

F2 =
∧

v∈L(PσK)

¬av →∧
o∈α(v)

¬ov
 ∧

av →∨
o∈α(v)

ov



Next, a leaf of PσK that contains a task has to be matched –
else it would be allowed to disregard it when checking the
executability of yield(G′).

F3 =
∧

v∈L(PσK)

¬av →∧
1≤i≤l

¬cvi

 ∧
av →∨

1≤i≤l

cvi



If all these formulae are fulfilled, the atoms cvi represent a
matching between all leafs ofG′ and the positions. As a next
step, we have to ensure that this matching does not violate
any ordering constraint induced by the chosen decomposi-
tion methods. To do that, we have to exclude the possibility
that there are two positions i < i′ where the tasks they are
matched with must occur in the opposite order. F4 forbids
the mentioned situation.

F4 =

l∧
i=1

l∧
i′=i+1

∧
v,v′∈L(PσK)

(
(cvi ∧ cv

′

i′)→ ¬b
C(A(v,v′),v′)
C(A(v,v′),v)

)
The second constraint states that the chosen linearisation

of the tasks at the leafs of G′ must be executable in the
initial state. To express executability, we use the encoding
proposed by Kautz and Selman (1996). For every proposi-
tion symbol p ∈ L, we introduce a decision variable pi for
0 ≤ i ≤ L. pi is true if p is true after executing the ith action.
Further, we introduce decision variables ti for every primi-
tive task t ∈ O, stating that t is executed at timestep i. Then
the formula FLE is defined as follows:

FLE =
∧
p∈sI

p0 ∧
∧

p∈L\sI

¬p0 ∧
l−1∧
i=0

(FA(i) ∧ FM (i))∧

l∧
i=1

M({ti | t ∈ O})

FA(i) =
∧
t∈O

ti+1 →

 ∧
p∈prec(t)

pi ∧
∧

p∈add(t)

pi+1 ∧
∧

p∈del(t)

¬pi+1


FM (i) =

∧
p∈L

(¬pi ∧ pi+1)→
∨

t∈O with p∈add(t)

ti+1


So far, we have only checked that the matching is valid and
that the sequence of actions assigned to the positions is ex-
ecutable, but not that the matching influences the tasks as-
signed to positions. I.e., we have to add two more formulae
that express that if a position it not matched to any leaf, then
it also cannot contain a task, and that if it is matched it has

to contain exactly the same task as the leaf does.

F5 =
∧

1≤i≤l

 ∧
v∈L(PK)

¬cvi

→ (∧
t∈O
¬ti
)

F6 =
∧

v∈L(PK)

∧
t∈α(v)

∧
1≤i≤l

tv ∧ cvi → ti

To sum up, the full formula expressing executability is:

FE(P,K) = F1 ∧ F2 ∧ F3 ∧ F4 ∧ F5 ∧ F6 ∧ FLE
We know that the satisfying valuations of FD(P,K) rep-
resent exactly all decomposition trees of P with an height
≤ K (Behnke, Höller, and Biundo 2018). Based on this, the
correctness and completeness of our encoding can be shown.
Theorem 3. FE(P,K)∧FD(P,K) is satisfiable iff P has
a solution with decomposition height ≤ K.

Proof. ⇒: Let ν be a satisfying valuation of FE(P,K) ∧
FD(P,K). Then ν represents a decomposition tree, since
FD(P,K) is satisfied (Behnke, Höller, and Biundo 2018).
Thus the tasks assigned to the leafs of the Path Decompo-
sition Tree encoded by FD(P,K) from the yield Y of a
Decomposition Tree. Also the sequence of actions S repre-
sented by the ti is executable, due to FLE . What remains to
show, is that this sequence is a linearisation of the yield Y .
Due to F1 ∧ F2 ∧ F3 the cvi represent a matching of Y to S
and due to F5 ∧ F6 matched elements of Y and S contain
the same task. Lastly, due to Theorem 2, the order between
two tasks in Y depends solely on the method applied to their
last common ancestor. Due to the clauses introducing the bvw
variables, at least those orderings induced by the decomposi-
tion tree are true. Allowing for more order is not a problem,
since ν already represents a linearisation. Lastly, F4 ensures
that the order encoded by the bvw is respected.
⇐: Let T = (V,E,≺, α, β) be a decomposition tree

whose yield is executable. Then a valuation ν exists that
satisfies FD(P,K) (Behnke, Höller, and Biundo 2018)
and represents T . Let v1, . . . , vn be the leafs of the PDT
who have a task assigned to them in ν. Let further be
i1, . . . , in the indices of these tasks in the executable lin-
earisation of the yield of T . We then set cvjij true for all
j ∈ {1, . . . , n}. We also set the α(vj)ij and the appropri-
ate pi true. Also we set bvw true as appropriate, which can-
not violate the clauses of F4, as the respective order must
also be present in the yield of T . This valuation satisfies
FE(P,K) ∧ FD(P,K).

Evaluation
We have conducted an empirical evaluation of our planner
to show that it performs favourably compared to other HTN
planning systems. The code of our planner is available at
www.uni-ulm.de/in/ki/panda/. Since most plan-
ning problems are given lifted, we use a combination of the
planning graph and task decomposition graphs (Bercher et
al. 2017) to ground them.

Domains. Our benchmarking set is composed of the fol-
lowing domains (will be released upon acceptance):

Domain |L| |O| |C| |M|
min max min max min max min max

PCP 6 9 8 14 4 46 10 34
ENTERTAINMENT 10 146 16 455 10 170 20 541
UM-TRANSLOG 9 25 7 22 2 27 2 28
SATELLITE 6 37 7 123 3 25 10 214
WOODWORKING 10 101 7 739 4 443 9 2002
SMARTPHONE 10 103 8 231 3 66 4 360
ROVER 21 511 73 4257 14 285 49 3279
TRANSPORT 11 364 13 1968 11 802 21 3158

Domain |L(PK)| K #clause #plansteps
min max min max min max min max

PCP 12 70 4 9 14.012 12.091.312 10 42
ENTERTAINMENT 8 78 4 6 416 42.028 7 42
UM-TRANSLOG 7 40 3 4 218 281.642 7 26
SATELLITE 5 40 3 5 183 1.375.308 5 20
WOODWORKING 3 25 3 7 531 689.552 3 19
SMARTPHONE 7 78 3 5 3.332 18.878.346 5 77
ROVER 53 61 5 5 4.048.432 7.045.922 27 36
TRANSPORT 8 48 4 6 3.980 5.176.067 8 42

• UM-TRANSLOG, WOODWORKING, SATELLITE, and
SMARTPHONE are the benchmark domains of Bercher,
Keen, and Biundo (2014).

• ENTERTAINMENT describes setting-up HiFi devices.

• ROVER is the domain used by Höller et al. (2018). It
is based on the problem instances of the IPC3 domain
ROVER combined with an HTN-structure similar to the
one developed for SHOP.

• TRANSPORT describes a deliver-with-trucks scenario.
There are several trucks (which do not need fuel) to de-
liver packages from their start location to a destination.

• PCP is an encoding of Post’s Correspondence Problem.
Since HTN planning is undecidable, we felt it proper to
show that an HTN planner is able to solve undecidable
problems (like PCP) when encoded in an HTN domain.

Behnke, Höller, and Biundo (2018) used the same domains
except PCP in their evaluation. They, however, had to alter
most of them, since these domains are naturally partially-
ordered. In order for a totally-ordered HTN planner to be
able to handle these benchmark domains, Behnke, Höller,
and Biundo (2018) have manually added additional ordering
constraints to each partially-ordered method. Adding order-
ing constraints to HTN domains can make them unsolvable
(see e.g. PCP, which cannot contain a solution when totally
ordered). The additional orderings were chosen such that at
least one solution was retained. We also want to note that
adding these orderings makes some of the domains much
easier to solve. For example, in transport, interleaving us-
ing the partial order is required to find optimal solutions. If
the domain is totally-ordered, one package has to be deliv-
ered before another package could be picked up. The do-
mains ENTERTAINMENT, ROVER, and TRANSPORT contain
method preconditions, which we compile away into addi-
tional actions preceeding all other actions.

Planners. Each planner was given 10 minutes runtime
and 4 GB RAM per instance on an Intel Xeon E5-2660. We
have compared all state-of-the-art HTN planning systems:
• SHOP2 (Nau et al. 2003) and PANDA’s version of

SHOP2,
• FAPE (Dvorak et al. 2014),
• UMCP (Erol, Hendler, and Nau 1994),

1 2 5 10 20 50 100 500

0
20

40
60

80
10

0
12

0
14

0

time in sec

so
lv

ed
 in

st
an

ce
s

SAT cms
SAT Maple
SAT Riss6
PANDApro FF
HTN2STRIPS jasper
HTN2STRIPS MpC
SHOP2 − PANDA
SHOP2

TDG−m
TDG−c
UMCP−BF
UMCP−DF
UMCP−H
FAPE
totSAT

Figure 4: Runtime vs number of solved instances per planner

• PANDA with the TDGm and TDGc heuristics (Bercher
et al. 2017) using greedy A*,

• PANDApro using the FF heuristic (Höller et al. 2018),
• HTN2STRIPS (Alford et al. 2016), and
• totSAT (Behnke, Höller, and Biundo 2018).
FAPE – according to the description in its paper – does
not support recursive domains. Thus, we ran it only on the
domains SATELLITE, WOODWORKING, and ROVER, which
are the non-recursive ones in our evaluation. Similarly, as
totSAT can only handle totally-ordered instance, we have
run it only on those instances from our benchmark set that
are totally ordered. Lastly, we have tested HTN2STRIPS
with two different classical planners. We have used both
jasper (which was originally used by Alford et al. (2016))
as well as Madagascar (Rintanen 2014), the currently best
known SAT planner. We chose to do so, to compare our
propositional encoding with the theoretically only so-far
known propositional encoding for partially-ordered HTNs:
first using the HTN2STRIPS translation and then the ∃-step
encoding (Rintanen, Heljanko, and Niemelä 2006) for the
resulting planning problem.

For our planner, we have evaluated three SAT solvers,
each a top performers at the SAT Competition 2016. These
were: cryptominisat5 (Soos 2016), MapleCOMSPS (Liang
et al. 2016), and Riss6 (Manthey, Stephan, and Werner
2016). As our planner performs the translation using a bound
K, we usually have to try several values for K. We started
with K = 1 and increased by 1 if the formula was unsolv-
able. This iterative procedure allows us to handle any recur-
sion in the domains, as we gradually unroll it.

Results. In Tab. 1 we show the number of solved instances
per planner within the given time and memory limits. Fig. 4
shows the solved instances depending on runtime. First, our
SAT-encoding, no matter the solver, solves more instances
than any other planner. Second, our planner is on par in ev-
ery domain with the best solver for that domain, or solves
significantly more instances than other planners.

#i
ns

ta
nc

es

SA
T

cm
s

SA
T

M
ap

le

SA
T

R
is

s6

PA
N

D
A

pr
o

FF

H
T

N
2S

T
R

IP
S

ja
sp

er

H
T

N
2S

T
R

IP
S

M
pC

SH
O

P2
-P

A
N

D
A

SH
O

P2

T
D

G
-m

T
D

G
-c

U
M

C
P-

B
F

U
M

C
P-

D
F

U
M

C
P-

H

FA
PE

to
tS

A
T

[A
A

A
I1

8]

PCP 17 11 11 10 10 3 3 10 0 9 8 0 0 0 - -
ENTERTAINMENT 12 12 12 12 11 5 4 9 5 9 9 5 5 6 - 12 / 12
UM-TRANSLOG 22 22 22 22 22 19 7 22 22 22 22 22 22 22 - 19 / 19
SATELLITE 25 25 24 23 25 23 8 19 22 25 21 18 20 23 22 5 / 5
WOODWORKING 11 11 11 11 10 5 4 6 8 8 10 6 6 6 0 -
SMARTPHONE 7 7 6 6 5 6 5 5 4 5 5 4 4 4 - -
ROVER 20 4 4 4 3 5 4 3 3 2 2 0 0 0 3 -
TRANSPORT 30 16 14 13 13 19 3 1 0 1 1 1 0 0 - -
total 144 108 104 101 99 85 38 75 64 81 78 56 57 61 25 36

Table 1: Number of solved instances per planner per domain.
Maxima are indicated in bold. cms = cryptominisat5

We want to point out our performance in the domains
TRANSPORT and PCP. In TRANSPORT we only solve 3 in-
stances less than HTN2STRIPS, while all other planners
solve at most a single instance. In PCP, we solve signifi-
cantly more instances than HTN2STRIPS. This is notable,
as both domains contain difficult combinatorially problem.
This is especially notable, since HTN2STRIPS internally
uses a state-of-the-art classical planner (jasper, (Xie, Müller,
and Holte 2014)). However, there still seems to be room for
improvement, as no planner seem to be well equipped to ex-
ploit the hierarchy in the ROVER domain.

The original totSAT for totally ordered domains has poor
coverage, based on the fact that most domains of the bench-
mark set are partially-ordered. Lastly, we can observer that
using Madagascar in conjunction with the HTN2STRIPS en-
coding seems to perform extremely poorly. In most instances
Madagascar is aborted after only a few seconds as it reached
the memory limit. This is probably due to the large number
of groundings for the operators in the HTN2STRIPS encod-
ing representing methods, which is a known problem of the
encoding. We have re-run Madagascar with a memory limit
of 20 GB instead of 4 GB and have only seen an increase
by 4 solved instances. Also, the per-instance runtime when
compared to jasper is fairly poor. We suppose that this is due
to the way the encoding works. Modern SAT-based planning
draws its efficiency mainly from the ability to execute sev-
eral operators in parallel. This is not possible in the encoded
domain as the next-predicates ensure that all simultaneously
applicable actions form a clique in the disabling graph, i.e.,
cannot be executed parallel in the propositional encoding.

Conclusion
We have presented the first encoding for SAT-based HTN
planning that can solve all propositional HTN planning
problems. To that end, we have utilised a previous encod-
ing that was only usable for totally-ordered planning, which
restricts the freedom of the domain modeller unnecessarily,
and extended it to partial order. Lastly, we have shown that
our new planner outperforms state-of-the-art HTN planners.
This planner has already been used in practice, namely in an
assistant teaching users how to use electronic tools in Do-It-
Yourself projects (Behnke et al. 2018).

Acknowledgments
This work was partly done within the technology trans-
fer project “Do it yourself, but not alone: Companion-
Technology for DIY support” of the SFB/TRR 62 funded
by the German Research Foundation (DFG).

References
Alford, R.; Behnke, G.; Höller, D.; Bercher, P.; Biundo, S.;
and Aha, D. W. 2016. Bound to plan: Exploiting classical
heuristics via automatic translations of tail-recursive HTN
problems. In Proc. of the 26th Int. Conf. on Autom. Plan.
and Sched., (ICAPS 2016), 20–28. AAAI Press.
Behnke, G.; Schiller, M.; Kraus, M.; Bercher, P.; Schmautz,
M.; Dorna, M.; Minker, W.; Glimm, B.; and Biundo, S.
2018. Instructing novice users on how to use tools in DIY
projects. In Proc. of the 27th Int. Joint Conf. on AI and the
23rd Europ. Conf. on AI (IJCAI-ECAI 2018). AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2015. On the com-
plexity of HTN plan verification and its implications for plan
recognition. In Proc. of the 25th Int. Conf. on Autom. Plan.
and Sched. (ICAPS 2015), 25–33. AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT –
Totally-ordered hierarchical planning through SAT. In Proc.
of the 32th AAAI Conf. on AI (AAAI 2018), 6110–6118.
AAAI Press.
Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017.
An admissible HTN planning heuristic. In Proc. of the 26th
Int. Joint Conf. on AI (IJCAI 2017), 480–488. AAAI Press.
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid planning
heuristics based on task decomposition graphs. In Proc. of
the 7th Ann. Symp. on Combinatorial Search (SoCS 2014),
35–43. AAAI Press.
Champandard, A.; Verweij, T.; and Straatman, R. 2009. The
AI for Killzone 2’s multiplayer bots. In Proc. of the Game
Developers Conference 2009 (GDC 2009).
Dix, J.; Kuter, U.; and Nau, D. 2003. Planning in answer set
programming using ordered task decomposition. In Proc. of
the 26th Annual German Conf. on AI (KI 2003), 490–504.
Springer.
Dvorak, F.; Bit-Monnot, A.; Ingrand, F.; and Ghallab, M.
2014. A flexible ANML actor and planner in robotics. In
Proc. of the 4th Work. on Plan. and Rob. (PlanRob 2014),
12–19.
Erol, K.; Hendler, J.; and Nau, D. 1994. UMCP: A sound
and complete procedure for hierarchical task-network plan-
ning. In Proc. of the 2nd Int. Conf. on AI Plan. Systems
(AIPS), 249–254. AAAI Press.
Erol, K.; Hendler, J.; and Nau, D. 1996. Complexity results
for HTN planning. Annals of Mathematics and AI 18(1):69–
93.
Geier, T., and Bercher, P. 2011. On the decidability of HTN
planning with task insertion. In Proc. of the 22nd Int. Joint
Conf. on AI (IJCAI 2011), 1955–1961. AAAI Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language classification of hierarchical planning problems.

In Proc. of the 21st Europ. Conf. on AI (ECAI 2014), volume
263, 447–452. IOS Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2016.
Assessing the expressivity of planning formalisms through
the comparison to formal languages. In Proc. of the 26th
Int. Conf. on Autom. Plan. and Sched., (ICAPS 2016), 158–
165. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, B. 2018. A
generic method to guide HTN progression search with clas-
sical heuristics. In Proc. of the 28th Int. Conf. on Autom.
Plan. and Sched. (ICAPS 2018). AAAI Press.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In Proc.
of the 13th Nat. Conf. on AI (AAAI 1996), 1194–1201.
Liang, J. H.; Oh, C.; Ganesh, V.; Czarnecki, K.; and Poupart,
P. 2016. MapleCOMSPS, MapleCOMSPS LRB, Maple-
COMSPS CHB. In Proc. of SAT Competition 2016. Univer-
sity of Helsinki.
Mali, A., and Kambhampati, S. 1998. Encoding HTN plan-
ning in propositional logic. In Proc. of the 4th Int. Conf. on
AI Plan. Systems (AIPS 2002), 190–198. AAAI.
Manthey, N.; Stephan, A.; and Werner, E. 2016. Riss 6
solver and derivatives. In Proc. of SAT Competition 2016.
University of Helsinki.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J.; Wu,
D.; and Yaman, F. 2003. SHOP2: an HTN planning system.
Journal of AI Research (JAIR) 20:379–404.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Wu, D.; Yaman,
F.; Muñoz-Avila, H.; and Murdock, J. 2005. Applications of
SHOP and SHOP2. Intelligent Systems, IEEE 20:34–41.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence 170(12-13):1031–1080.
Rintanen, J. 2014. Madagascar: Scalable planning with
SAT. In The 2014 International Planning Competition –
Description of Planners, 66–70.
Sinz, C. 2005. Towards an optimal CNF encoding of
boolean cardinality constraints. In Proc. of the 11th Int.
Conf. on Principles and Practice of Constraint Program-
ming (CP 2005), volume 3709, 827–831. Springer.
Soos, M. 2016. The CryptoMiniSat 5 set of solvers at SAT
Competition 2016. In Proc. of SAT Competition 2016. Uni-
versity of Helsinki.
Straatman, R.; Verweij, T.; Champandard, A.; Morcus, R.;
and Kleve, H. 2013. Game AI Pro: Collected Wisdom of
Game AI Professional. CRC Press. chapter Hierarchical AI
for Multiplayer Bots in Killzone 3.
Xie, F.; Müller, M.; and Holte, R. 2014. Jasper: The art
of exploration in greedy best first search. In The 8th Int.
Planning Competition, 39–42.

