
X and more Parallelism
Integrating LTL-Next into SAT-based Planning with Trajectory Constraints while

Allowing for even more Parallelism

Gregor Behnke and Susanne Biundo
Institute of Artificial Intelligence, Ulm University, D-89069 Ulm, Germany

{gregor.behnke, susanne.biundo}@uni-ulm.de

Abstract
Linear temporal logic (LTL) provides expressive means to
specify temporally extended goals as well as preferences. Re-
cent research has focussed on compilation techniques, i.e.,
methods to alter the domain ensuring that every solution ad-
heres to the temporally extended goals. This requires either
new actions or an construction that is exponential in the size
of the formula. A translation into boolean satisfiability (SAT)
on the other hand requires neither. So far only one such en-
coding exists, which is based on the parallel ∃-step encoding
for classical planning. We show a connection between it and
recently developed compilation techniques for LTL, which
may be exploited in the future. The major drawback of the
encoding is that it is limited to LTL without the X operator.
We show how to integrate X and describe two new encodings,
which allow for more parallelism than the original encoding.
An empirical evaluation shows that the new encodings out-
perform the current state-of-the-art encoding.

1 Introduction
Linear temporal logic (LTL (Pnueli 1977)) is a generic and
expressive way to describe (state-)trajectory constraints. It
is often used to specify temporal constraints and preferences
in planning, e.g., to describe safety constraints, to state nec-
essary intermediate goals, or to specify the ways in which a
goal might be achieved. Most notably, the semantics of such
constraints in PDDL 3.0 (Gerevini and Long 2005) is given
in terms of LTL formulae, which is the de-facto standard for
specifying planning problems.

Traditionally, LTL constraints are handled by first com-
piling them into an equivalent Büchi Automaton, and then
translating the automaton into additional preconditions and
effects for actions (see e.g. Edelkamp (2003)). This compi-
lation might be too expensive as the Büchi Automaton for
a formula φ can have up to 2|φ| states. Recent work pro-
posed another compilation using Alternating Automata (Tor-
res and Baier 2015). These automata have onlyO(|φ|) states
allowing for a guaranteed linear compilation. There are also
planners that do not compile the model, but evaluate the for-
mula during forward search, e.g., TALplanner (Doherty and
Kvarnström 2001), TLplan (Bacchus and Kabanza 2000), or
the work by Hsu et al. (2007). However, heuristics have to
be specifically tailored to incorporate the formula, or else the
search becomes blind. TALplanner and TLplan even use the
temporally extended goals for additional search guidance.

Another option is to integrate LTL into planning via
propositional logic. Planning problems can be translated into
(a sequence of) boolean formulae. A temporally extended
goal can then be enforced by adding additional clauses to
this formula. So far only one such encoding has been devel-
oped by Mattmüller and Rintanen (2007). It uses an LTL to
SAT translation from the model checking community, which
assumes that only a single state transition is executed at a
time. The main focus of their work lies on integrating the ef-
ficient ∃-step encoding with this representation of LTL for-
mulae. In the ∃-step encoding operators can be executed si-
multaneously, as long as they are all applicable in the cur-
rent state, the resulting state is uniquely determined, and
there is an ordering in which they are actually executable.
Mattmüller and Rintanen presented alterations to the ∃-step
formula restricting the parallelism such that LTL formulas
without the next-operator are handled correctly.

We point out an interesting relationship between the LTL
encoding of Mattmüller and Rintanen and the Alternating
Automaton encoding by Torres and Baier, showing that both
use the same encoding technique, although derived by dif-
ferent means. This insight might prove useful in the future,
e.g., to allow for optimisation of the propositional encod-
ing using automata concepts. Next, we show how the propo-
sitional encoding by Mattmüller and Rintanen can be ex-
tended to also be able to handle the next-operator X . We
introduce a new concept – partial evaluation traces – to cap-
ture the semantics of the encoding with respect to an LTL
formula and show that our extension is correct. Based on
partial evaluation traces, we show that the restrictions posed
by Mattmüller and Rintanen (2007) on allowed parallelism
can be relaxed while preserving correctness. We provide an
alteration of their encoding allowing for more parallelism.
We present an alternative encoding, also based on partial
evaluation traces, which allows for even more parallelism by
introducing intermediate timepoints at which the formula is
evaluated. Our empirical evaluation of all encodings shows
that our new encodings outperform the original one.

2 Preliminaries
Planning
We consider propositional planning without negative pre-
conditions. This is known to be equivalent to STRIPS (al-



lowing for negative preconditions) via compilation. Also
note that all our techniques are also applicable in the pres-
ence of conditional effects. We do not consider them in
this paper to keep the explanation of the techniques as sim-
ple as possible. For the extension to conditional effects, see
Mattmüller and Rintanen (2007).

Let A be a set of proposition symbols and Lit(A) =
{a,¬a | a ∈ A} be the set of all literals over A. An ac-
tion a is a tuple a = 〈p, e〉, where p – the preconditions –
is a subset of A and e – the effects – is a subset of Lit(A).
We further assume that the effects are not self-contradictory,
i.e., that for no a ∈ A both a and ¬a are in e. A state s
is any subset of A. An action a = 〈p, e〉 is executable in
s, iff p ⊆ s. The state resulting form executing a in s is
(s \ {a | ¬a ∈ e}) ∪ {a | a ∈ e}. A planning problem
P = 〈A,O, sI , g〉 consists of a set of proposition symbols
A, a set of operators O, the initial state sI , and the goal
g ⊆ A. A sequence of actions o1, . . . , on is a plan for P
iff there exists a sequence of states s0, . . . , sn+1 such that
for every i ∈ {1, . . . , n+ 1}, oi is applicable in si, its appli-
cation results in si+1, s0 = sI , and g ⊆ sn+1. This sequence
of states is called an execution trace.

Linear Temporal Logic
Formulae in Linear Temporal Logic (LTL) are constructed
over a set of primitive propositions. In the case of planning
these are the proposition symbols A. LTL formulae are re-
cursively defined as any of the following constructs, where
p is a proposition symbol and f and g are LTL formulae.

⊥ | > | p | ¬f | f ∧ g | f ∨ g | Xf | X̊f | Ef | Gf | fUg

X , X̊ , E, G, and U are called temporal operators. There
are several further LTL-operators (like Ů , R, or S and T ,
see e.g. (Biere et al. 2006)). Each of them can be trans-
lated into a formula containing only the temporal opera-
tors X , X̊ , and U . The semantics of an LTL formula φ
is given with respect to an execution trace. In general this
trace can be infinitely long, as LTL can describe repeated
behaviour. We consider only LTL over finite traces, which is
commonly called LTLf (De Giacomo and Vardi 2013). The
encodings we present can easily be extended to the infinite
case (see Mattmüller and Rintanen 2007). The truth value
of an LTLf formula φ is defined over an execution trace
σ = (s0, s1, . . . , sn) as [[φ]](σ) where

[[p]](s0, σ) = p ∈ s0 if p ∈ A
[[¬f ]](σ) = ¬[[f ]](σ)

[[f ∧ g]](σ) = [[f ]](σ) ∧ [[g]](σ)

[[f ∨ g]](σ) = [[f ]](σ) ∨ [[g]](σ)

[[Xf ]](s0, σ) = [[X̊f ]](s0, σ) = [[f ]](σ)

[[Xf ]](s0) = ⊥
[[X̊f ]](s0) = >

[[Ef ]](s0, σ) = [[f ]](s0, σ) ∨ [[Ef ]](σ)

[[Gf ]](s0, σ) = [[f ]](s0, σ) ∧ [[Gf ]](σ)

[[Ef ]](s0) = [[Gf ]](s0) = [[f ]](s0)

[[fUg]](s0, σ) = [[g]](s0, σ)∨
([[f ]](s0, σ) ∧ [[fUG]](σ))

[[fUg]](s0) = [[g]](s0)

The intuitive of the semantics of temporal operators are: Ef
– eventually f , i.e., f will hold at some time, now or in the
future, Gf – globally f , i.e., f will hold from now on for
ever, fUg – f until g, i.e., g will eventually hold and until
that time f will always hold, and Xf – next f , i.e., f holds
in the next state of the trace. Since we consider the case of
finite LTL, we have – in addition to standard LTL – a new
operator: weak next X̊ . The formula Xf requires that there
is a next state and that f holds in that state. In contrast, X̊f
asserts that f holds if a next state exists; if there is none, X̊f
is always true, taking care of the possible end of the state
sequence.

As a preprocessing step, we always transform an LTL
formula φ into negation normal form without increasing its
size, i.e., into a formula where all negations only occur di-
rectly before atomic propositions. This can be done using
equivalences like ¬Gf = E¬f . Next, we add for each
proposition symbol a ∈ A a new proposition symbol a. Its
truth value will be maintained such that it is always the in-
verse of a. I.e. whenever an action has ¬a as its effect, we
add the effect a and when it has the effect a we add ¬a.
Lastly, we replace ¬a in φ with a, resulting in a formula not
containing negation.

Given a planning problem P and a LTL formula φ, LTL
planning is the task of finding a plan π whose execution trace
σ will satisfy φ, i.e., for which [[φ]](σ). For a given LTL
formula φ we define A(φ) as the set of predicates contained
in φ and S(φ) to be the set of all its subformulae. We write
[o]φe for the intersections of the effects of o and A(φ), i.e. all
those effects that occur in φ.

3 State-of-the-art LTL→SAT encoding
As far as we are aware, there is only a single encoding
of LTL planning problems into boolean satisfiability, de-
veloped by Mattmüller and Rintanen (2007). They adapted
a propositional encoding for LTL developed by Latvala et
al. 2004 for bounded model checking. The main focus of
Mattmüller and Rintanen’s work lies on integrating modern,
non-sequential encodings of planning problems into the for-
mula. The encoding models evaluating the LTL formula in
timesteps, which correspond to the states in a trace. In Lat-
vala et al.’s encoding (which was not developed for plan-
ning, but for a more general automata setting) only a single
action may be executed at each timestep in order to evalu-
ate the formula correctly. Research in translating planning
problems into propositional formulae has however shown
that such sequential encodings perform significantly worse
than those that allow for a controlled amount of parallel
action execution (Rintanen, Heljanko, and Niemelä 2006).
Mattmüller and Rintanen addressed the question of how to
use the LTL encoding by Latvala et al. in a situation where
multiple state transitions take care in parallel – as is the
case in these planning encodings. They used the property of
stutter-equivalence which holds for LTL−X (i.e. LTL with-



out the X and X̊ operators) to integrate Latvala et al.’s en-
coding. To exploit stutter-equivalence, they had to restrict
the allowed amount of parallelism to ensure correctness.

Their encoding, which we will denote with M&R’07, is
based on the ∃-step encoding of propositional planning by
Rintanen, Heljanko, and Niemelä (2006). As such, we start
by reviewing the ∃-step encoding in detail. In this encod-
ing the plan is divided into a sequence of timesteps 0, . . . , n.
Each timestep t is assigned a resulting state using decision
variables at for all a ∈ A and t ∈ {1, . . . , n + 1}, each in-
dicating that the proposition symbol a holds at timestep t,
i.e. after executing the actions at timestep t − 1. The initial
state is represented by the variables a0. Actions can be exe-
cuted between two neighbouring timesteps t and t+1, which
is represented by decision variables ot for all o ∈ O and
t ∈ {0, . . . , n}. If ot is true the action o is executed at time
t. The encoding by Kautz and Selman (1996) is then used
to determine which actions are executable in at and how the
state at+1 resulting from their application looks like. In a
sequential encoding, one asserts for each timestep t that at
most one ot atom is true. Intuitively, this is necessary to en-
sure that the state at+1 resulting from executing the actions
ot is uniquely determined. Consider, e.g., a situation where
two actions move-a-to-b and move-a-to-c are simul-
taneously applicable, but result in conflicting effects. Exe-
cuting these two actions in parallel has no well-defined re-
sult. Interestingly, the mentioned constraint is not necessary
in this case, as the encoding by Kautz and Selman already
leads to an unsatisfiable formula. There are however situa-
tions, where the resulting state is well-defined, but it is not
possible to execute the actions in any order. Consider two
actions buy-a and buy-b, both requiring money, spending
it, and achieving possession of a and b, respectively. Both
actions are applicable in the same state and their parallel ef-
fects are well-defined, as they don’t conflict. It is not pos-
sible to find a sequential ordering of these two actions that
is executable, as both need money, which won’t be present
before executing the second action. This situation must be
prohibited, which can easily be achieved by forbidding par-
allel action execution at all, as in the sequential encoding.

In the ∃-step encoding, executing actions in parallel is al-
lowed. Ideally, we would like to allow any subset S of ot
to be executable in parallel, as long as there exists a lineari-
sation of S that is executable in the state st represented by
at and all executable linearisations lead to the same state
st+1. This property is however practically too difficult to en-
code (Rintanen, Heljanko, and Niemelä 2006). Instead, the
∃-step encoding uses a relaxed requirement. Namely, (1) all
actions in S must be executable in st, then it chooses a to-
tal order of all actions O, (2) asserts that if a set of actions
S is executable, it must be executable in that order, and (3)
that the state reached after executing them is this order is
st+1. The encoding by Kautz and Selman ensures the first
and last property. The ∃-step encoding has to ensure the sec-
ond property. It however does not permit all subsets S ⊆ O
to be executable in parallel, but only those for which this
property can be guaranteed.

As a first step, we have to find an appropriate order of ac-
tions in which as many subsets S ⊆ O as possible can be

executed. For this, the Disabling Graph (DG) is used. It de-
termines which actions can be safely executed in which or-
der without checking the truth of propositions inside the for-
mula. In practice, one uses a relaxed version of the DG (i.e.
one containing more edges), as it is easier to compute (Rin-
tanen, Heljanko, and Niemelä 2006).
Definition 1. Let P = 〈A,O, sI , g〉 be a planning problem.
An action o1 = 〈p1, e1〉 affects an other action o2 = 〈p2, e2〉
iff ∃l ∈ A s.t. ¬l ∈ e1 and l ∈ p2.

A Disabling Graph DG(P) is a directed graph 〈O,E〉
with E ⊆ O × O that contains all edges (o1, o2) where o1

affects o2 and a state s exists that is reachable from sI in
which both o1 and o2 are applicable.

The DG is a domain property and is not tied to any spe-
cific timestep, as such the restrictions it poses apply to every
timestep equally. The DG encodes which actions disable the
execution of other actions after them in the same timestep,
i.e., we ideally want the actions to be ordered in the opposite
way in the total ordering chosen by the ∃-step encoding. If
the DG is acyclic, we can execute all actions in the inverted
order of the disabling graph, as none will disable an action
occurring later in that order. If so, the propositional encoding
does not need any further clauses, as any subset S of actions
can be executed at a timestep – provided that their effects do
not interfere.

The DG is in practice almost never acyclic. Problematic
are only strongly connected components (SCCs) of the
DG, were we cannot find an ordering s.t. we can guarantee
executability for all subsets of actions. Instead we fix some
order ≺ for each SCC, asserting that the actions in it will
always be executed in that order, and ensure in the SAT
formula that if two actions o1 and o2 with o1 ≺ o2 are
executed, o1 does not affect o2. This way, we can safely
ignore some of the edges of the DG – as their induced
constraints are satisfied by the fixed ordered ≺ – while
others have to be ensured in the formula. I.e. if we ensure
for every edge (o1, o2) with o1 ≺ o2 that if o1 is part of the
executed subset o2 is not, we know that there is a lineari-
sation in which the chosen subset S is actually executable.
To ensure this property, Rintanen, Heljanko, and Niemelä
introduced chains. A chain chain(≺;E;R; l) enforces
that whenever an action o in E is executed, all actions in
R that occur after a in ≺ cannot be executed. Intuitively,
E are those actions that produce some effect a, while the
actions in R rely on ¬a to be true. The last argument l
is a label that prohibits interference between multiple chains.

chain(o1, . . . , on;E;R; l) =∧
{oi → dj,l | i < j, oi ∈ E, oj ∈ R, {oi+1, .., oj−1} ∩R = ∅}

∪ {li → aj,l | i < j, {oi, oj} ⊆ R, {oi+1, .., oj−1} ∩R = ∅}
∪ {li → ¬oi | oi ∈ R}

To ensure that for any SCC S of DG(P) the mentioned
condition holds for the chosen ordering ≺ of S, we generate
for every proposition symbol a ∈ A a chain with

Ea = {o ∈ S | o = 〈p, e〉 and ¬a ∈ e}
Ra = {o ∈ S | o = 〈p, e〉 and a ∈ p}



Based on the ∃-step encoding, Mattmüller and Rinta-
nen (2007) added support for LTL formulae φ by exploiting
the stutter-equivalence of LTL−X . This stutter-equivalence
ensures that if multiple actions are executed in a row but
don’t change the truth any of the predicates inA(φ), the truth
of the formula is not affected, i.e., the truth of the formula
does not depend on how many of these actions are executed
in a row. Consequently the formula only needs to be checked
whenever the truth of propositions in A(φ) changes. Their
construction consists of two parts. First, they add clauses to
the formula expressing that the LTL formula φ is actually
satisfied by the trace restricted to the states where proposi-
tions in A(φ) change. These states are the ones represented
in the ∃-step encoding by at atoms. Second, they add con-
straints to the ∃-step parallelism s.t. in every timestep the
first action executed according to ≺ that changes proposi-
tion symbols in A(φ) is the only one to do so. Other actions
in that timestep may not alter the state w.r.t toA(φ) achieved
by that first action, but can assert the same effect.

In their paper, they provide a direct translation of φ into a
proposition formula. In practice however, this formula can-
not be given to a SAT solver, as it requires a formula in con-
junctive normal form (CNF). The formula given in the pa-
per is not in CNF and translating it into CNF can lead to a
CNF of exponential size. They instead introduce additional
variables (Mattmüller 2006), allowing them to generate (al-
most) a CNF1. For every sub-formula ψ ∈ S(φ) and every
timestep t they introduce the variable ψtLTL, stating that ψ
holds for the trace starting at timestep t. They then assert:
(1) that φ0

LTL holds and (2) that for every ψtLTL the conse-
quences must hold that make ψ true for the trace starting at
time t. The latter is expressed by clauses ψtLTL → [[ψ]]t,
where [[ψ]]t is given in Tab. 1. Note that the M&R’07 en-
coding cannot handle the next operators X and X̊ , as they
are sensitive to stuttering, i.e., stutter-equivalence does not
hold for formulae that contain X or X̊ . We have added
the encoding for X (Latvala et al. 2004). In addition, we
have restricted the original encoding from infinite to finite
LTL-traces and added a new encoding for X̊ . Note that the
M&R’07 encoding will lead to wrong results if used with
the presented encoding of the X and X̊ operators. It is how-
ever correct, if used in conjunction with a sequential en-
coding (Latvala et al. 2004). We show in Sec. 5 how the
M&R’07 encoding can be changed to handle X and X̊ cor-
rectly. Lastly, clauses need to be added in order to ensure
that actions executed in parallel do not alter the truth of
propositions inA(φ) – except for the first action that actually
changes them. The extension of ∃-step encoding achieving
this is conceptually simple, as it consists of only two changes
to the original encoding:
1. add for every two actions o1, o2 which are simultaneously

applicable the edge (o1, o2) to the DG iff [o2]φe \[o1]φe 6= ∅,
i.e., o2 would change more than o1 with respect to A(φ).

2. add for every literal l ∈ Lit(A(φ)) and SCC of DG(P)

with its total order ≺ the chain chain(≺;Eφl ;Rφl ;φl)

1The translations of f∧g, Gf and fUg contain one conjunction
each, which can be multiplied out easily.

φ t < n t = n
[[p]]t p ∈ A pt pt

[[f ∧ g]]t f tLTL ∧ gtLTL f tLTL ∧ gtLTL
[[f ∨ g]]t f tLTL ∨ gtLTL f tLTL ∨ gtLTL
[[Xf ]]t f t+1

LTL ⊥
[[X̊f ]]t f t+1

LTL >
[[Ef ]]t f tLTL ∨ (Ef)t+1

LTL f tLTL
[[Gf ]]t f tLTL ∧ (Gf)t+1

LTL f tLTL
[[fUg]]t gtLTL ∨ ((fUg)t+1

LTL ∧ f tLTL) f tLTL

Table 1: Transition rules for LTL formulae

with

(a) Eφl = {o ∈ O | o = 〈p, e〉 and l 6∈ e}
(b) Rφl = {o ∈ O | o = 〈p, e〉 and l ∈ e};

Mattmüller and Rintanen (2007) have proven that these
clauses suffice to ensure a correct and complete encoding.

4 Alternating Automata and M&R’07
In recent years, research on LTL planning focussed on trans-
lation based approaches. There, the original planning prob-
lem is altered in such a way that all solutions for the new
problem adhere to the formula (e.g. (Baier and McIlraith
2006; Torres and Baier 2015), see (Camacho et al. 2017)
for an overview). Traditionally, these approaches translate
the LTL formula into a Büchi automaton (essentially a finite
state machine, with a specific accepting criterion for infinite
traces) and then integrate the automaton into the model. The
major drawback of these translations is that the Büchi au-
tomaton for an LTL formula can have up to 2|φ| many states.

Torres and Baier (2015) proposed a translation diverging
from the classical LTL to Büchi translation. They instead
based it on Alternating Automata, which are commonly used
as an intermediate step when constructing the Büchi automa-
ton for an LTL φ formula (see e.g. (Gastin and Oddoux
2001)). Alternating Automata have a guaranteed linear size
in |φ|, but have a more complex transition function.

Definition 2. Given a set of primitive propositions A, an
alternating automaton is a 4-tuple A = (Q, δ, I, F ) where

• Q is a finite set of states
• δ : Q × 2A → B+(Q) is a transition function, where
B+(Q) is the set of positive propositional formulas over
the set of states Q, i.e., those formulae containing only ∨
and ∧.

• I ⊆ Q is the initial state
• F ⊆ Q is set of final states.

A run of an alternating automaton over a sequence of sets
of propositions (execution trace) (s1, . . . , sn) is a sequence
of sets of states (Q0, . . . , Qn) such that

• Q0 = I

• ∀i ∈ {1, . . . , n} : Qi |=
∧
q∈Qi−1

δ(q, si)

The alternating automaton accepts the trace iff Qn ⊆ F



Torres and Baier (2015) generate an alternating automa-
ton for an LTL formula φ as follows. They choose Q as the
set of sub-expression of φ starting with a temporal opera-
tor plus a state qF representing that the end of the execu-
tion trace has been reached. Being in a state q means, that
from the current time on, we have to fulfill the formula q.
The automaton is given as Aφ = (Q, δ, {qφ}, {qF }) where
Q = {qα | α ∈ S(φ)} ∪ {qF } and the transition function δ
is defined as follows:

δ(ql, s) =

{
> , if l ∈ s
⊥ , if l 6∈ s

δ(qF , s) = ⊥
δ(qf∨g, s) = δ(qf , s) ∨ δ(qg, s)
δ(qf∧g, s) = δ(qf , s) ∧ δ(qg, s)
δ(qXf , s) = qf

δ(qX̊f , s) = qF ∨ qf
δ(qEf , s) = δ(f, s) ∨ qEf
δ(qGf , s) = δ(f, s) ∧ (qGf ∨ qF )

δ(qfUg, s) = δ(qg, s) ∨ (δ(qf , s) ∧ qfUg)

Note that we have to enumerate all states that are relevant
to the formula, i.e., all states s ⊆ 2A(φ), to construct the
formula. Using the Alternating Automaton as the basis for a
translation leads to a guaranteed linear increase in size when
constructing the translated planning problem. This is due to
the fact that the encoding does not actually has to construct
the automaton, but only has to simulate its states. We will
elaborate on this later. Also, it was demonstrated that the
new encoding is more efficient that other current translation
techniques (Torres and Baier 2015).

A drawback of their translation was the need for intro-
ducing additional actions, performing bookkeeping on the
current state of the alternating automaton. A translation into
SAT, on the other hand, will not have this drawback, as we
will show. We will again extend the ∃-step encoding and
call the encoding AA (Alternating Automaton). The restric-
tion posed on parallelism by M&R’07 does not depend on
the encoding of the formula itself, as long as it does not
contain the X or X̊ operators2. We introduce new decision
variables qt for each state q ∈ Q and timestep t, signify-
ing that the automaton Aφ is in state q after executing the
actions of timestep t. To express the transition function of
the Alternating Automaton, we use formulae of the form(
qt ∧

∧
a∈s a

)
→ δ(q, s) for each state q of the automaton

and set of propositions s. We also replace each occurrence of
a state qf in δ(q, s) with the decision variable qt+1

f and intro-
duce intermediate decision variables to break down complex
formulae as in the M&R’07 encoding. The following theo-
rem holds by construction.

Theorem 1. AA in conjunction with M&R’07’s ∃-step en-
coding is correct for LTL−X .

2The actual encoding of the formula can be exchanged in the
proof of their main theorem as long as a similar version of their
Theorem 2 can be proven, which is obvious in our case.

We here want to point out that the AA encoding is not (as
the one by Torres and Baier (2015)) polynomial in the size
of the formula. The reason lies in the explicit construction
of the alternating automaton, which requires a single transi-
tion for every possible state that might be relevant to the for-
mula, i.e., for every subset ofA(φ). The translation encoding
by Torres and Baier circumvents this construction by adding
new operators, which can evaluate the necessary expression
during planning. I.e. they have actions for each transition
rule δ(·, ·), which produce as their effects the right-hand
sides of these above equations. Lastly, they introduce syn-
chronisation actions to ensure that δ(·, ·) is fully computed
before another “real” actions is executed.

If we apply this idea to the AA encoding, we would end
up with the M&R’07 encoding. Since the states of the au-
tomaton are the sub-formulae of φ starting with a temporal
operator, these decision variables are identical to the ψtLTL
variables of the M&R’07 encoding, where ψ starts with a
temporal operator. The encoding by Torres and Baier also
needs to introduce state variables for every sub formulae not
starting with a temporal operator to represent the step-wise
computation of δ(·, ·) correctly. If translated into proposi-
tional variables, these correspond to the ψtLTL variables of
M&R’07, where ψ does not start with a temporal operator.
Lastly, the transition rules for both encodings are identical.

As such, the M&R’07 encoding can also be interpreted as
a direct translation of an Alternating Automaton into propo-
sitional logic using the compression technique of Torres and
Baier (2015). Interestingly, the original proof showing cor-
rectness of the LTL-part of the M&R’07 encoding by Lat-
vala et al. (2004) does not rely on this relationship to Alter-
nating Automata, neither do they mention this connection.
We think it is an interesting theoretical insight, as it might
enable to further improve LTL encoding, e.g., based on op-
timisations of the Alternating Automaton.

5 X, Parallelism, and Partial Evaluation
We have noted that both M&R’07 and AA cannot handle
LTL formulae containing the X or X̊ operators in conjunc-
tion with the ∃-step encoding. They are however correct if
used together with the sequential encoding, where only a
single action to be executed at each timestep. In order to de-
rive extensions that can handle X and X̊ , we first present
a new theoretical foundation for both encodings. We will
use that fact that in M&R’07, we know which parts of the
formula are made true at which time and by which propo-
sitions. To formalise this, we introduce evaluation traces,
which specify how an LTL formula is fulfilled over a trace.
Definition 3. Let φ be an LTL formula. We call a sequence
ψ = (f0, . . . , fn) with fi ⊆ S(φ) an evaluation trace for φ
iff φ ∈ f0 and for all i ∈ {0, . . . , n}
1. if f ∨ g ∈ fi then f ∈ fi or g ∈ fi
2. if f ∧ g ∈ fi then f ∈ fi and g ∈ fi
3. if Xf ∈ fi then i < n and f ∈ fi+1

4. if X̊f ∈ fi then i = n or f ∈ fi+1

5. if Ef ∈ fi then f ∈ fi or i < n and Ef ∈ fi+1

6. if Gf ∈ fi then f ∈ fi and if i < n then Gf ∈ fi+1



7. if fUg ∈ fi then g ∈ fi or i < n and f ∈ fi and
fUg ∈ fi+1

A trace π = (s0, . . . , sn) satisfies an evaluation trace ψ =
(f0, . . . , fn) iff for all a ∈ fi ∩A also a ∈ si.

The following theorem follows directly, as the definition
just emulates checking an LTL formula.
Theorem 2. An execution trace π satisfies an LTL formula
φ iff an evaluation trace ψ for φ exists that satisfies π.

In M&R’07, the LTL formula is only evaluated after a set
of parallel actions have been executed. To capture this, we
define partial evaluation traces.
Definition 4. Let π = (s0, . . . , sn) be an execution trace
and φ and LTL formula. We call an evaluation trace θ =
(f0, . . . , fl) with l ≤ n a partial evaluation trace (PET) for
π if a sequence of indices 0 = i0 < i1 < ... < il = n + 1
exists such that for each k ∈ {0, . . . , l − 1} holds

sik ∩ (fk ∩A) = · · · = sik+1−1 ∩ (fk ∩A)

and if Xf ∈ fk or X̊f ∈ fk and k > 0 then ik−1 + 1 =
ik. The PET θ is satisfied by the execution trace π, iff the
execution trace (si1−1∩f0∩A, . . . , sil−1∩fl∩A) satisfies
θ in the sense of Def. 3.

A satisfying valuation of the M&R’07 encoding corre-
sponds to a partial evaluation trace that satisfies the formula
φ. M&R’07 also asserts that PET is satisfied by the execu-
tion trace corresponding to the sequential plan generated by
the ∃-step formula. The main property of Def. 4, which is
necessary for showing that we actually generate a PET, is
ensured by the chains added to the original ∃-step encoding
and the additional edges in the Disabling Graph. The follow-
ing theorem states that every partial evaluation trace that is
satisfied by an executed trace can be extended to a full eval-
uation trace and thus forms a witness that the execution trace
satisfies the LTL formula. This gives us a second, indepen-
dent proof of correctness for the M&R’07 encoding.
Theorem 3. Let π be a trace and θ be an PET for the for-
mula φ on π. If π satisfies θ, then π satisfies φ.

Proof. We need to show that the PET ψ = (f0, . . . , fl) can
be extended to a full evaluation trace on π = (s0, . . . , sn),
s.t. π satisfies that evaluation trace. If so, we can apply
Thm. 2 and conclude that π also satisfies φ. Let i0, . . . , il
be the indices of Def. 4 for which θ is a PET. We claim that

θ∗ = (

i1−i0 times︷ ︸︸ ︷
f0, . . . f0,

i2−i1 times︷ ︸︸ ︷
f1, . . . , f1, . . . ,

il−il−1 times︷ ︸︸ ︷
fl, . . . , fl )

is an evaluation trace that satisfies π, and that π satisfies φ.
First we show that θ∗ is an evaluation trace. We start by
proving the enumerated properties of Def. 3. Consider the
ith element f∗ of θ∗ and let f∗∗ be the i + 1th element (if
such exists).

1. trivially satisfied
2. trivially satisfied
3. Xf ∈ f∗. We know that f∗ is the only repetition some fj

in the trace, as θ is a PET. Also f∗∗ = fj+1. Consequently
f ∈ f∗∗. In case f∗∗ does not exist, θ cannot be an PET.

4. X̊f ∈ f∗. We know that f∗ is the only repetition of some
fj in the trace, as θ is a PET. In case f∗∗ does not exist,
we have nothing to show. Else, f∗∗ = fj+1 and f ∈ f∗∗.

For the last three requirements relating to the temporal oper-
atorsE,G, and U , we can distinguish three cases depending
on where f∗ is situated in the sequence θ∗

• f∗ is the last element of θ∗

5. if Ef ∈ f∗ then f ∈ f∗, as θ is a PET.
6. if Gf ∈ f∗ then f ∈ f∗, as θ is a PET.
7. if fUg ∈ f∗ then g ∈ f∗, as θ is a PET.

• f∗ 6= f∗∗, i.e., the last repetition of f∗. We know that
f∗ = fj and f∗∗ = fj+1 for some j ∈ {0, . . . , l − 1}.
5. if Ef ∈ f∗ then either f ∈ fj = f∗ or Ef ∈ fj+1 =
f∗∗

6. if Gf ∈ f∗ then f ∈ fj = f∗ and Gf ∈ fj+1 = f∗∗

7. if fUG ∈ f∗ then either g ∈ fj+1 = f∗∗ or f ∈ fj =
f∗ and fUg ∈ fj+1 = f∗∗

• if f∗ = f∗∗

5. if Ef ∈ f∗ then Ef ∈ f∗∗
6. if Gf ∈ f∗ then Gf ∈ f∗∗ and f ∈ f∗
7. if fUg ∈ f∗ then either g ∈ f∗, or f ∈ f∗, but then

also fUG ∈ f∗∗, since f∗ = f∗∗

φ ∈ f0 holds as θ is a PET, which concludes conclude the
proof that θ∗ is an evaluation trace.

Lastly, we have to show that θ∗ satisfies π, i.e., we have
to show for each timestep j ∈ {0, . . . n} and every a ∈
A with is true in the ith element of θ∗ that a ∈ sj holds.
Consider first the indices of the last repetitions of each fk,
i.e., the states sik−1. Since θ is a PET, it satisfies (si1−1∩f0∩
A, . . . , sil−1∩fl∩A), so it satisfies the required property for
all time-steps ik − 1. Consider any other timestep t and its
next timestep in the PET ik − 1 (which always exists, since
the last index is equal to n). Since θ is a PET, we know that
st∩ (fk−1∩A) = sik−1∩ (fk ∩A). We have chosen to set
the tth element of θ∗ to fk. Since sik−1 ∩ (fk ∩A) satisfies
the required property for fk, so must st ∩ (fk ∩A) and thus
st itself (it can have only more true predicates).

We can now use this result to integrate support for X and
X̊ into the M&R’07 encoding. For that, we have to assert
that the second last condition of Def. 4 holds, as all other
requirements are already checked by the M&R’07 encoding.
We first add four new variables per time step t.
• exactOnet – exactly one action is executed at time t
• atLeastOnet – at least one action is executed at time t
• atMostOnet – at most one action is executed at time t
• nonet – no action is executed at any time ≥ t
To enforce the semantics of these variables, we add the fol-
lowing clauses per timestep:

∀o ∈ O : nonet → ¬ot

nonet → nonet+1

atLeastOnet →
∨
o∈O

ot

exactOnet → atLeastOnet ∧ atMostOnet



Encoding the atMostOnet atom is a bit more complicated.
A native encoding requiresO(|O|2) clauses. There are how-
ever better encodings for the at most one constraint in SAT.
We have chosen the log-counter encoding, which introduces
log(|S|) new variables while only requiring |S| log(|S|)
clauses (Frisch et al. 2005). To ensure the semantics of the
atom atMostOnet, we add it as a guard to the log-counter
encoding, i.e., we add ¬atMostOnet to every clause. If
atMostOnet is required to be true, the log-counter clauses
have to satisfies, i.e., at most one action atom can be true. If
atMostOnet can be false, we can simply set it to⊥ thereby
satisfying all log-counter clauses. We lastly set exactOnet
for t = −1 to > and atLeastOnen+1 to false. Based on
these new variables, we can add the constraints necessary
for evaluating X and X̊ correctly under the ∃-step encod-
ing. For each timestep t, we add

(Xf)tLTL → exactOnet−1 ∧ f t+1 ∧ atLeastOnet

(X̊f)tLTL → exactOnet−1

(X̊f)tLTL → (f t+1 ∧ atLeastOnet) ∨ nonet

A valuation of this encoding represents a partial evaluation
trace satisfied by the execution trace of its actions. By ap-
plying Thm. 3, we know that a satisfying evaluation trace
for the plan exists. Showing completeness for the encod-
ing is trivial, since a sequential assignment satisfies the for-
mula for every plan. We will also call this extended encoding
M&R’07 in our evaluation, as it is exactly identical to this
one, provided no X or X̊ operator is present.

So far, we have not used the – in our view – most signif-
icant improvement: Relaxing the restrictions on parallelism
to only those actually needed by the current formula. Do-
ing so based on our theorem is surprisingly easy. Consider
a timestep of the M&R’07 encoding, in which actions can
be executed in parallel, which are given an implicit order
≺ by the ∃-step encoding. For each literal l ∈ Lit(A(φ))
a chain ensures that the action changing it is applied first,
i.e., that the “first” action of a timestep performs all changes
relevant to the whole formula and can thus check the for-
mula only in the resulting state. By applying Def. 4 and
Thm. 3, we have to ensure this property only for those
proposition symbols that need to be evaluated after the ac-
tions have been executed, i.e., for all at+1

LTL that are true.
We can do this simply by adding the literal ¬atLTL as a
guard (simiar to atMostOnet) to every clause in the chains
chain(≺;Eφl ;Rφl ;φa) and chain(≺;Eφl ;Rφl ;φ¬a). If we
have to make the literal atLTL true, the chains become ac-
tive, if not they are inactive (as they are trivially satisfied
by ¬atLTL). We will denote this improved encoding with
Improved-M&R’07.

To illustrate the effects of the improved M&R’07 encod-
ing, consider the following planning problem. There are six
proposition symbols a, b, c, d, e and f , of which a and b are
true in the initial state and e has to hold in the goal state.
There are five actions described in Tab. 2. We consider this
domain in conjunction with the formula φ = G((a ∧ d) →
Ef) = G(¬a ∨ ¬d ∨ Ef). The disabling graph, extended
by the edges needed for the M&R’07 encoding, is depicted
in Fig. 1. This planning problem has only a single solu-

X Y Z V W
pre a,b a,b c,d c,d g
add c d e g f
del a c

Table 2: Actions in the example domain

X

Y

Z

V

W

Figure 1: Extended disabling graph for the example domain.

tion, namely: Y, X, V, W, Z. Under the M&R’07 encod-
ing, we need four timesteps to find a plan, i.e., {Y}, {X},
{V}, {W,Z}. This is due to the fact that most action’s ef-
fects contain one of the three predicates contained in φ, but
not the others. Using the improved M&R’07 encoding, we
only need three timesteps, as now Y and X can be executed
together in the first timestep. The reason for this beeing pos-
sible is quite unintuitive, but it shows the strength of our
approach. In the M&R’07 encoding, the encoding correctly
detects that there is a state in which a and d are true simulta-
neously3 after the action Y has been executed and that thus
Ef has to hold after executing Y. In the plan for the im-
proved encoding, the solver can simply choose to achieve
Ef after {Y,X} has been executed. This way the solver is
never forced to achieve ¬a or ¬d and can thus completely
ignore the associated constraints, i.e., chains.

6 Parallelism with Tracking
There is however still room for more parallelism even com-
pared to the improved M&R’07 encoding. The key obser-
vation is that in many domains only a few actions actually
influence the truth of variables in an LTL formula, and that
those that do are usually close to each other in a topological
ordering of the inverse disabling graph. The ∃-step semantic
guarantees that if actions are executed in parallel, they can
be sequentially executed in this order. Let this ordering be
(o1, . . . , on). We can divide it into blocks, such that for each
block (oi, . . . , oj) it holds that

[oi]
φ
e ⊇ [oi+1]φe ⊇ · · · ⊇ [oj ]

φ
e

Along the actions in a block the effects that contain pred-
icates in A(φ) can only “decrease”. A block forms a set
of actions that can always – without further checking at
runtime – be executed in parallel in the M&R’07 en-
coding. The number of such blocks is surprisingly small
for most domains (see Tab. 3). We denote with B =
((o1, . . . , oi), . . . , (oj , . . . , on)) the sequence of blocks for
a given ordering of actions.

If an action from a blocks has been executed, at least (usu-
ally more) the first action of the next block cannot be exe-
cuted any more in the same timestep, as it would change
the truth of some a ∈ A(φ), even it would be possible

3Technically both a and d are not true.



in the pure ∃-step encoding. We present a method to cir-
cumvent this restriction on parallelism. Instead of restricting
the amount of parallel actions executing inside a timestep,
we (partially) trace the truth of an LTL formula within that
timestep to allow maximal parallelism. This is based on the
insight that all proofs by Mattmüller and Rintanen (2007) do
not actually require an action to be present at any timestep,
i.e., the set of actions executed in parallel can also be empty.
So, conceptually, we split each timestep into |B| many
timesteps and restrict the actions in the ith splitted step to be
those of the ith block. Then we use the M&R’07 encoding,
without the need to add chain-clauses apart from those of
the ∃-step encoding, as they are automatically fulfilled. The
resulting encoding would be sound and complete for LTL
formulae without X and X̊ by virtue of the results proven
by Mattmüller and Rintanen (2007).

We can however improve the formula even further. In the
proposed encoding, we would compute the state after each
block using the Kautz&Selman encoding. This is unneces-
sary, as know from the ∃-step encoding that we only need to
compute it after all blocks of one original timestep have been
executed. We only need to trace the truth of propositions in
A(φ) between blocks. For that we don’t need to check pre-
conditions – they are already ensured by the ∃-step encod-
ing. We end up with the ∃-step encoding, where we add at
every timestep a set of intermediate timepoints at which the
truth of propositions in A(φ) and the truth of the LTL for-
mula φ is checked. Thus we call this encoding OnParallel.

As we have noted above, this construction works only for
the original M&R’07 encoding, as supporting the X and X̊
requires to be able to specify that in the next timestep some
action must be executed. This might not be possible with
splitted timesteps, as the next action to be executed may only
be contained in a timestep |B| steps away. Luckily, we can
fix this problem by slightly altering the encoding we used to
track the truth of X and X̊ operators.

(Xf)t → atMostOnet−1 ∧ ((atLeastOneit ∧ f t+1
LTL)∨

(nextNonet+1 ∧ (Xf)t+1
LTL))

(X̊f)t → atMostOnet−1 ∧ ((f t+1
LTL ∧ atLeastOne

t)∨
(nextNonet+1 ∧ (X̊f)t+1

LTL) ∨ nonet))
The semantics of noneAtt is ensured by clauses
nextNonet → ¬ot for all i ∈ O. Lastly, we add
¬Xfn++11

LTL for any Xf ∈ S stating that a next-formula
cannot be made true at the last timestep. This would else be
possible, since atMostOnen could simply be made true.
The OnParallel encoding is correct by applying Thm. 3.

7 Evaluation
We have conducted an evaluation in order to asses the perfor-
mance of our proposed encodings. We used the same exper-
imental setting as Mattmüller and Rintanen (2007) in their
original paper. We used the domains trucks and rover
from the preference track of IPC5 (the original paper con-
sidered only rover), which contain temporally extended
goals to specify preference. In these domains, temporally-
extended goals are formulated using the syntax of PDDL

3.0 (Gerevini and Long 2005). We parse the preferences and
transform them into LTL formulae using the patterns defined
by Gerevini and Long (Gerevini and Long 2005). As did
Mattmüller and Rintanen, we interpret these preferences as
hard constraints and randomly choose a subset of three con-
straints per instance4. To examine the performance of our
encoding for X and X̊ , we have also tested the instances
of the trucks domain with a formula that contains these
operators. We have used the following formula5:

φ = ∀?l−Location?t− Truck :

G(at(?l, ?t)→ X̊(¬at(?l, ?t) ∨ X̊¬at(?l, ?t)))

It forces each truck to stay at a location for at most one
timestep – either it leaves the location right after entering
it, or in the next timestep. The domain contains an explicit
symbolic representation of time, which is used in tempo-
ral goals. When planning with φ, the number of timesteps
is never sufficed to find a plan satisfying φ. We have there-
fore removed all preconditions, effects, and action param-
eters pertaining to the explicit representation of time. As a
result, the domain itself is easier than the original one. We
denote these instances in the evaluation with trucks-XY-φ.

Each planner was given 10 minutes of runtime and 4GB of
RAM per instance on an Intel Xeon E5-2660 v3. We’ve used
the SAT solver Riss6 (Manthey, Stephan, and Werner 2016),
one of the best-performing solvers in the SAT Competition
2016. We have omitted results for all the trucks instances
11− 20, as no planner was able to solve them.

Table 3 shows the results of our evaluation. We show per
instance the number of ground actions and blocks. The num-
ber of blocks is almost always significantly smaller than the
number of ground operators. In the largest rover instance,
only≈ 1.4% of operators start a new block. For the trucks
domain this is ≈ 1.7% for the largest instance.

For every encoding, we show both the number of paral-
lel steps (i.e. timesteps) necessary to find a solution, as well
as the time needed to solve the respective formula and the
number of sequential plan steps found by the planner. In al-
most all instances the OnParallel encoding performs best,
while there are some where the improved M&R’07 encod-
ing is faster. Our improvement to the M&R’07 encoding al-
most always leads to a faster runtime. Also, the improved
parallelism actually leads to shorter parallel plans. In ap-
proximately half of the instances we can find plans with a
fewer parallel steps. In the experiments with the formula φ
containing the X̊ operator, this is most pronounced. The On-
Parallel encoding cuts the number of timesteps by half and
is hence significantly faster, e.g., on trucks-03-φ where the
runtime is reduced from 165s to 6s. On the other hand, the
sequential plans found are usually a few actions longer, al-
though the same short plan could be found – this result is
due to the non-determinism of the SAT solver.

4Mattmüller and Rintanen (2007) noted that it is impossible to
satisfy all constraints at the same time and that a random sample of
more than three often leads to unsolvable problems. If a sample of
3 proved unsolvable we have drawn a new one.

5We handlethese lifted LTL constraints by grounding them us-
ing the set of delete-relaxed reachable ground predicates.
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8 Conclusion
In this paper, we have improved the state-of-the-art in trans-
lating LTL planning problems into propositional formulae
in several ways. We have first pointed out an interesting the-
oretical connection between the propositional encoding by
Mattmüller and Rintanen (2007) and the compilation tech-
nique by Torres and Baier (2015). Next, we have presented
a new theoretical foundation for the M&R’07 encoding –
partial evaluation traces. Using them, we presented (1) a
method to allow the X and X̊ operators in the M&R’07
encoding, (2) a method to further improve the parallelism
in the M&R’07 encoding, and (3) a new encoding for LTL
planning. In an evaluation, we have shown that both our
improved M&R’07 encoding and the OnParallel encoding
perform empirically better than the original encoding by
Mattmüller and Rintanen. We plan to use the developed en-
coding in a planning-based assistant (Behnke et al. 2018) for
enabling the user to influence the instructions he is presented
by the assistant, which is turn are based on the solution gen-
erated by a planner. Instructions given by the user can be
interpreted as LTL goal and integrated into the plan using
the presented techniques.
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