
Embracing Change by Abstraction
Materialization Maintenance for Large ABoxes

Markus Brenner and Birte Glimm
University of Ulm, Germany

markus.brenner@uni-ulm.de, birte.glimm@uni-ulm.de

Abstract
Abstraction Refinement is a technique which al-
lows for reducing materialization of an ontology
with a large ABox to materialization of a smaller
(compressed) ‘abstraction’ of this ontology. In this
paper, we show how Abstraction Refinement can be
adopted for incremental ABox materialization by
combining it with the well-known DRed algorithm
for materialization maintenance. The combination
is non-trivial and to preserve correctness, already
HornALCHI requires more complex abstractions.
Nevertheless, we show that significant benefits can
be obtained for synthetic and real-world ontologies.

1 Introduction
Most ontology reasoners support the task of materialization
(i.e., they compute and explicitly store all entailed atomic
concept and role assertions for the individuals in the on-
tology), which allows for directly evaluating conjunctive
instance queries. Computing the materialization is com-
putationally expensive and approaches such as summariza-
tion [Dolby et al., 2009], ABox modularization [Wandelt
and Möller, 2012], or Abstraction Refinement [Glimm et al.,
2014; 2017] attempt to “compress” the size of the dataset over
which the materialization is computed to be able to material-
ize large ABoxes. Even using efficient materialization tech-
niques, recomputing all consequences whenever input data
changes can cause a significant delay before user queries
can be answered again, which might be prohibitive for some
application scenarios. Incremental maintenance algorithms
originating from the database and Datalog communities (see,
e.g., [Volz et al., 2003; Motik et al., 2015]) have been applied
to description logics and the semantic web for incremental
classification [Kazakov and Klinov, 2013], incremental ma-
terialization via Datalog [Volz et al., 2005] and RDF stream
reasoning [Barbieri et al., 2010]. Apart from the technique
used in the RDFox system [Motik et al., 2014], the mentioned
materialization algorithms focus on and are optimized for on-
tologies that can be expressed in the form of (Datalog) rules,
i.e., proper existentials are not supported. Furthermore, how
incremental maintenance algorithms can be combined with
data compression techniques is an open problem, only ad-
dressed in a sketchy way by Steigmiller et al. [Steigmiller et

al., 2015] in the form of a representative cache maintaining
individuals in an incremental fashion.

We address this problem by extending the Abstraction Re-
finement method s.t. abstractions capture information beyond
the simple presence of assertions. This ultimately allows us
to deal with changes of the underlying ABox. To show the
correctness of the obtained theoretical framework, we devise
novel proof techniques. Our empirical evaluation with syn-
thetic and real-world ontologies shows up to four times im-
proved materialization times compared to the approach with-
out Abstraction Refinement in different change scenarios.

2 Preliminaries
The syntax ofALCHI is defined using a vocabulary consist-
ing of countably infinite disjoint sets NC of atomic concepts,
NR of atomic roles, and NI of individuals. A role is either an
atomic role or an inverse role r− with r ∈ NR. We denote
atomic roles with lower case and (possibly non-atomic) roles
with upper case letters. We define R− := r− if R = r and
R−:=r if R = r−. An ALCHI concept is defined as

C ::= > | ⊥ | A | ¬C | C1 u C2 | C1 t C2 | ∀R.C | ∃R.C,
where A ∈ NC and R is a role. Let C,D be concepts, R,S
roles and a, b individuals. A TBox is a set of concept and role
inclusion axioms of the form C v D and R v S, respec-
tively. An ABox is a set of (concept and role) assertions of the
formC(a) andR(a, b), respectively. An ontologyO = A∪T
consists of an ABox and a TBox. To simplify the presenta-
tion, we do not distinguish between R(a, b) and R−(b, a) as
well as R v S and R− v S−. We use con(O), rol(O), and
ind(O) for the sets of atomic concepts, atomic roles, and in-
dividuals occurring in O, respectively.

An interpretation I = (∆I , ·I) consists of a non-empty
set ∆I , the domain of I, and an interpretation function ·I ,
that assigns to each A ∈ NC a subset AI ⊆ ∆I , to each
R ∈ NR a binary relation RI ⊆ ∆I × ∆I , and to each
a ∈ NI an element aI ∈ ∆I . This assignment is extended to
roles by (r−)I = {〈e, d〉 | 〈d, e〉 ∈ rI} and, inductively, to
complex concepts as>I = ∆I ,⊥I = ∅, (¬C)I = ∆I \CI ,
(C uD)I = CI ∩DI , (C tD)I = CI ∪DI , and

(∀r.C)I = {d ∈ ∆I | 〈d, e〉 ∈ RI → e ∈ CI},
(∃r.C)I = {d ∈ ∆I | e ∈ CI : 〈d, e〉 ∈ RI}.

An interpretation I satisfies an axiom α, written I |= α, if

α = C v D and CI ⊆ DI , α = R v S and RI ⊆ SI ,
α = C(a) and aI ∈ CI , or α = R(a, b) and 〈aI , bI〉 ∈ RI ;
I is a model of an ontology O, written I |= O, if I |= α for
each α ∈ O; O entails an axiom α, written O |= α, if every
model of O satisfies α.

An ALCHI ontology O is Horn [Krötzsch et al., 2013]
and in normalized form if, for every C(a) ∈ O, C ∈ NC

and, every C v D ∈ O, is in one of the forms > v A,A v
B,A v ∃R.B,A v ⊥, A u B v C,A v ∀R.B where
A,B,C ∈ NC and R is a role. W.l.o.g., we assume in the
remainder every ontology as normalized by applying a struc-
tural transformation; see e.g. [Kazakov, 2009].

For ALCHI ontologies, determining entailed role asser-
tions can easily be done using a precomputed role hierarchy.
Hence, we focus on the task of computing entailed concept
assertions: For an ontologyO = A∪T , we say thatA is ma-
terialized w.r.t. T , if O |= A(a) implies A(a) ∈ A for each
A ∈ con(O) and a ∈ ind(O). The materialization of A w.r.t.
T is the smallest super-set of A that is materialized w.r.t. T .

2.1 Abstraction Refinement
The main idea of the Abstraction Refinement method [Glimm
et al., 2014; 2017] is to materialize an ontology O = A ∪ T
with a potentially large ABox A by constructing a smaller
ABox B s.t. the materialization of B∪T can be computed by
a general-purpose reasoner, and transferring the new entail-
ments back to O. The ABox B is usually called the abstrac-
tion of the original ABox A. Homomorphisms are used for
transferring back entailments:

Definition 1. For A and B ABoxes, a mapping h : ind(B)→
ind(A) is called a homomorphism (from B to A) if h(B) =
∪α∈Bh(α) ⊆ A, where h(C(a)) := C(h(a)) and
h(R(a, b)) := R(h(a), h(b)). An individual b ∈ ind(B) is
a representative of an individual a ∈ ind(A) if there exists a
homomorphism h : ind(B)→ ind(A) s.t. h(b) = a.

The following property enables the transfer of entailments:

Lemma 1. Let h : ind(B) → ind(A) be a homomorphism
between the ABoxes B and A. Then, for every TBox T and
every axiom β, B ∪ T |= β implies A ∪ T |= h(β).

Abstractions are based on asserted roles and concepts for
single individuals using types:

Definition 2 (Type). Let A be an ABox and a an individual.
The concept type of a w.r.t. A is a set of concepts τC(a) =
{C | C(a) ∈ A}. The role type of a w.r.t. A is a set of roles
τR(a) = {R | ∃b : R(a, b) ∈ A}. The (combined) type of a
w.r.t. A is a pair (τC(a), τR(a)), where τC(a) and τR(a) are
the concept and role type of a w.r.t. A, respectively.

Example 1. Let A = {A(a), A(b), r(a, b)}. Then τC(a) =
τC(b) = {A}, τR(a) = {r}, τR(b) = {r−}, τ(a) = τ1 =
〈{A}, {r}〉, and τ(b) = τ2 = 〈{A}, {r−}〉.

The abstract ABox is then constructed by introducing one
representative for each type with the respective assertions.

Definition 3 (Abstraction). Let τ = 〈τC , τR〉 be a type. The
abstraction for τ is an ABox

Bτ = {C(vτ) | C ∈ τC} ∪ {R(vτ , w
R
τ) | R ∈ τR},

Function update(∆B, A)
In: ∆B: abstract assertions, A: ABox
Out: ∆A: update using ∆B

1 ∆A ← ∅
2 for C(vτ(a)) ∈ ∆B do
3 ∆A ← ∆A ∪ C(a)

4 for R(a, b) ∈ A and C(wRτ(a)) ∈ ∆B do
5 ∆A ← ∆A ∪ C(b)

6 return ∆A

Algorithm 1: materializeAR(O)
In: O = A ∪ T : ontology
Out: A∞: materialization of A w.r.t. T

1 A∞ ← A, ∆A ← ∅
2 repeat
3 A∞ ← A∞ ∪∆A // not needed in loop round 1
4 Let B be the abstraction of A (Definition 3)
5 Let B∞ be the materialization of B w.r.t. T
6 ∆B ← B∞ \ B, ∆A ← update(∆B, A)
7 until ∆A ⊆ A∞
8 return A∞

where vτ and wRτ are distinguished abstract individuals for
the type τ . The abstraction of an ABox A is

⋃
a∈ind(A) Bτ(a),

where τ(a) is the type for a w.r.t. A.

Example 2. The abstraction for A in Example 1 is B =
Bτ(a) ∪ Bτ(b), where Bτ(a) = Bτ1 = {A(vτ1), r(vτ1 , w

r
τ1)},

Bτ(b) = Bτ2 = {A(vτ2), r−(vτ2 , w
r−

τ2)}.
Intuitively, the abstraction is a disjoint union of ABoxes

simulating combined types. Note that each mapping
h : ind(B) → ind(A) s.t. h(vτ) ∈ {a ∈ ind(A) | τ(a) = τ},
and h(wRτ) ∈ {b ∈ ind(A) | R(h(vτ), b) ∈ A} is a ho-
momorphism from B to A, which allows for transferring
entailments from the abstraction back to the original ABox
(Lemma 1). For B∞ the materialization of B ∪ T and
∆B = B∞ \ B, the function update(∆B, A) uses the
above defined homomorphism to generate an update using
∆B.

Algorithm 1 then defines the Abstraction Refinement
method for materializing a HornALCHI ontology. The loop
is repeated until a fix-point is reached and the update con-
tains no assertions not already present in the materialization.
The method is sound, complete, and terminating for Horn
ALCHI [Glimm et al., 2014] and, with some extensions,
even for Horn SHOIF [Glimm et al., 2017].

3 Incremental Materialization
For computing the materialization, we compute the closure of
the ABox assertions using a modified version of the material-
ization rules given by Glimm et al. (2017) for Horn SHOIF
restricted to Horn ALCHI as shown in Figure 1. Premises
are given above the horizontal line and the conclusions below.
Side conditions are given after the colon and restrict the ex-
pressions to which the rules are applicable. For example, rule

Rv
A1(a) · · · An(a)

B(a)
: T |=

l

i
Ai v B

R∀
A1(a) · · · An(a) R(a, b)

B(b)
: T |=

l

i
Ai v ∀S.B

and T |= R v S

Figure 1: Materialization rules (A,B ∈ NC, R,S roles, a, b ∈ NI)

Rv produces one inference for each individual a and con-
cepts A1, . . . , An, B s.t. T |= A0 u . . . u An v B with the
premise {A1(a), . . . , An(a)} and the conclusion B(a). Note
that TBox axioms are only used in side conditions and never
as premises of the rules, which allows us to focus on ABox
reasoning and leave TBox reasoning to a suitable reasoner.
Theorem 1 can be shown in a very similar (but simpler) way
to the proof used by Glimm et al. (2017).
Theorem 1. The rules in Figure 1 are sound and complete for
the materialization of a normalized Horn ALCHI ontology.

3.1 The Delete/Rederive Algorithm
For the changes, we adopt the database view, in which only
known ABox facts can be added or deleted. This already pro-
vides enough expressivity for many use cases, e.g. stream rea-
soning [Barbieri et al., 2010]. Due to the monotonicity of DL
reasoning, additions can be handled by simply ‘continuing’
materialization. Hence, we only focus on deletions and as-
sume: Given a Horn ALCHI ontology O = A ∪ T , the
materialization A∞ of A w.r.t. T , and a set A− ⊆ A of dele-
tions, we want to determine the materialization of A \ A−
w.r.t. T using A∞. This is non-trivial and requires the iden-
tification and removal of assertions in A∞ no longer deriv-
able from A \ A−. The Delete/Rederive (DRed) algorithm
[Gupta et al., 1993; Staudt and Jarke, 1996] initially overes-
timates the necessary deletions and then determines facts still
derivable from A \ A−. The overestimation is obtained by
continuously (over-)deleting facts, which can be derived us-
ing already deleted facts. We formalize this using restricted
rule applications.
Definition 4 (Restricted Derivation). Given a set of deduction
rulesR, an ontologyO = A∪T , and an ABoxA′, an axiom
α can directly be derived fromO under restrictionA′, written
O `RA′ α, if α can be derived from O by a rule in R s.t. at
least one of the premises is in A′.

In the remainder, we simply write A ∪ T `A′ α and as-
sumeR to consist of the rules from Figure 1.

For the presentation of the DRed algorithm, we follow the
presentation style of Motik et al. (2015), but we adapt it to
a consequence-based calculus, to avoid complications with
ensuring termination of a Datalog program in the presence
of function symbols, which are required to handle existen-
tial quantifiers. DRed, formalized in Algorithm 2, consists
of three consecutive phases: (1) compute the overdeletion,
(2) rederive deletions with an alternative derivation in one
step, (3) reinsert facts with alternative derivations. Phase (1)
and (3) can directly be used to extend the Abstraction Refine-
ment method for incremental materialization maintenance.

Function overdelete(T , A∞, A−)
In: T : TBox, A∞: materialization, A−: deletions
Out: Dall: overdeletion w.r.t. T

1 Dnew ← A−, Dall ← ∅, Dprev ← Dnew \ Dall
2 while Dprev 6= ∅ do
3 Dall ← Dall ∪ Dprev,

Dnew ← {α | A∞ ∪ T `Dprev α},
Dprev ← Dnew \ Dall

4 return Dall

Function reinsert(T , A∞new, Dnew)
In: T : TBox, A∞new: overdeletion, Dnew: rederivation
Out: A∞new: materialization of A \ A− w.r.t. T

1 Dprev ← Dnew \ A∞new
2 while Dprev 6= ∅ do
3 A∞new ← A∞new ∪ Dprev,

Dnew ← {α | A∞new ∪ T `Dprev α},
Dprev ← Dnew \ A∞new

4 return A∞new

Hence, we define the according functions overdelete and
reinsert, which are then used in Algorithm 2. The com-
puted set of deletions Dall in the function overdelete can
be seen as a sort of closure for A∞ ∪ T `Dall α. The search
for facts with an alternative derivation in the reinsertion phase
is restricted to assertions in the overdeletion set Dall using an
additional premise for the derivation rules. The computed set
Dnew is then used in Phase (3) by the function reinsert
to restore the correct materialization. Rule applicability is
restricted to avoid unnecessary rule applications. Although
Dall does not appear in the reinsertion phase, due to the way
the overdeletion is generated, Phase (3) determines A∞new as a
closure for A∞new ∪ T `A∞new∩Dall α.

3.2 DRed and Abstraction Refinement
We adopt DRed in the general Abstraction Refinement way:
We construct, for each of the different phases, suitable ab-
stractions of the ABox on which we perform the respective
operations. Interleaved refinement steps (for overdeletion and
reinsertion repeatedly until the fix-point) transfer results back
to the original ABox and yield an adapted abstraction. Since
DRed operations on abstractions additionally require knowl-
edge about the set of deletions, we extend the original defini-
tions to bi-types and bi-abstractions.
Definition 5 (Bi-Type). Given ABoxesA1,A2, the bi-type of
an individual a ∈ ind(A1 ∪ A2) w.r.t. (A1,A2) is a quadru-
ple (τ1C(a), τ1R(a), τ2C(a), τ2R(a)), where (τ1C(a), τ1R(a)) is
the combined type of a w.r.t. A1 and (τ2C(a), τ2R(a)) is the
combined type of a w.r.t. A2.
Definition 6 (Bi-Abstraction). Given two ABoxes A1, A2

and a bi-type τ = (τ1C , τ
1
R, τ

2
C , τ

2
R) w.r.t. (A1,A2), the

bi-abstraction for τ is an ABoxB1τ∪B2τ , whereB1τ = {C(vτ) |
C ∈ τ1C} ∪ {R(vτ , w

R
τ) | R ∈ τ1R}, B2τ = {C(vτ) |

C ∈ τ2C} ∪ {R(vτ , w
R
τ) | R ∈ τ2R}, and vτ and wRτ

are distinguished abstract individuals for the bi-type τ . The

Algorithm 2: DRed(O, A∞, A−)
In: O = A ∪ T : ontology, A∞: materialization,
A−: deletions

Out: A∞new: materialization of A \ A− w.r.t. T
. overdeletion phase /

1 Dall ← overdelete(O, A∞, A−)
. rederivation phase /

2 A∞new ← A∞ \ Dall, Dnew ← Dall ∩ (A \ A−)
3 Apply the rules (Fig. 1) to A∞new w.r.t. T s.t. the

conclusion is added to Dnew and with the additional side
condition that the conclusion occurs in Dall
. reinsertion phase /

4 A∞new ← reinsert(O, A∞new, Dnew)
5 return A∞new

bi-abstraction of (A1,A2) is B = B1 ∪ B2 with
B1 =

⋃
a∈ind(A) B1τ(a) and B2 =

⋃
a∈ind(A) B2τ(a),

where τ(a) is the bi-type for a w.r.t. (A1,A2) and B1τ(a) ∪
B2τ(a) is the bi-abstraction for τ(a).

The following example highlights how bi-abstractions also
differentiate types based on their (over-)deleted assertions,
while still aggregating ‘similar’ cases.

Example 3. Let A = {A(a1),A(a2),A(a3),r(a1,b),r(a2,b),
r(a3, b)} and A− = {A(a1), A(a3)}, the combined type of
a1, a2, and a3 w.r.t. A is ({A}, {r}). To distinguish a1 and
a3 from a2, we consider the bi-types w.r.t. (A \ A−,A−):
τ(a1) = τ(a3) = (∅, {r}, {A}, ∅), τ(a2) = ({A}, {r}, ∅, ∅),
τ(b) = (∅, {r−}, ∅, ∅).

Similar to the DRed algorithm, the Abstraction Refinement
Delete and Rederive algorithm (ARDRed) consists of three
consecutive phases: (1) compute the overdeletion using the
function overdelete on abstractions followed by the re-
finement step until a fix-point is reached, (2) rederive dele-
tions in the abstraction with an alternative derivation in one
step, (3) reinsert facts with alternative derivations using Ab-
straction Refinement. For the reinsertion phase, we again re-
strict the derivation rules using the second part of bi-types,
which represents the deleted assertions, as opposed to using
the overdeletion set Dall in DRed.

We note two things about the overdeletion phase of Algo-
rithm 3: First, the input ABox B1 ∪ B2 for overdelete
is not necessarily fully materialized, which can delay some
derivations until the next loop round. Second, the function
update uses the initial role assertions in A∞, i.e. deletions
are also propagated over deleted roles. The rederivation phase
does not share parts with DRed (Algorithm 2), as we cannot
restrict rederivations in a similar way, due to missing infor-
mation about the concept deletions for role successors.

3.3 Correctness
It can easily be verified that the Abstraction Refinement as-
pects of the rederivation and reinsertion phases operate like
the original Abstraction Refinement procedure and that the
used rules are sound. Hence, soundness follows from the
completeness of the overdeletion phase, i.e. we need to show

Algorithm 3: ARDRed(O, A∞, A−)
In: O = A ∪ T : ontology, A∞: materialization,
A−: deletions

Out: A∞new: materialization of A \ A− w.r.t. T
. overdeletion phase /

1 Dnew ← A−, Dall ← ∅
2 while Dnew \ Dall 6= ∅ do
3 Dall ← Dall ∪ Dnew, Dnew ← ∅
4 Let B1∪B2 be the bi-abstraction w.r.t. (A∞\Dall,Dall)
5 Eall ← overdelete(T , B1 ∪ B2, B2)
6 Dnew ← update(Eall \ B2, A∞)
. rederivation phase /

7 A∞new ← A∞ \ Dall, Dnew ← Dall ∩ (A \ A−), Enew ← ∅
8 Let B1 ∪ B2 be the bi-abstraction w.r.t. (A∞new,Dall)
9 Apply the rules (Fig. 1) to B1 w.r.t. T s.t. the conclusion

is added to Enew and with the additional side condition
for Rv that the conclusion occurs in B2

10 Dnew ← (Dnew ∪ update(Enew, A∞new)) ∩ Dall
. reinsertion phase /

11 while Dnew \ A∞new 6= ∅ do
12 A∞new ← A∞new ∪ Dnew

13 Let B1 ∪ B2 be the bi-abstraction w.r.t. (A∞new,Dall)
14 Enew ←reinsert(T , B1, B1 ∩ B2)
15 Dnew ← update(Enew \ B1, A∞new)

16 return A∞new

that assertions no longer derivable from A \ A− are not
present when starting the rederivation phase. We make the
notion of overdeletion precise using ABox justifications:
Definition 7 (ABox Justification, Overdeletion). Let O =
A ∪ T be an ontology. For an axiom α s.t. O |= α, an ABox
justification w.r.t. T is any set J ⊆ A s.t. J ∪ T |= α; J is
minimal, if ∀J ′ ⊂ J : J ′ ∪ T 6|= α.

Let A∞ be the materialization of A w.r.t. T and A− ⊆ A
deletions. Any superset of the set {α ∈ A∞ | J ∩ A− 6=
∅ for J ⊆ A a minimal ABox justification for α w.r.t. T } is
an overdeletion of A∞ w.r.t. A−.

For the overdeletion and reinsertion phases, we exe-
cute functions overdelete and reinsert over bi-
abstractions and use homomorphisms to transfer the ob-
tained results. Both functions construct closures via restricted
derivations. For our argumentation, we consider two impor-
tant properties induced by restricted derivations:
Lemma 2 (Restricted Derivation Properties). Let O = A ∪
T be an ontology and A1,A2 ABoxes with A1 ⊆ A2,
ind(A1) ⊆ ind(A) and B an ABox, s.t. there is a homomor-
phism h : ind(A)→ ind(B) from A to B. Then the following
properties hold for any assertion α:

A ∪ T `A1 α implies A ∪ T `A2 α. (1)
A ∪ T `A1

α implies B ∪ T `h(A1) h(α). (2)
The overdeletion/reinsertion phases terminate after reach-

ing the fix-point, where no further information can be trans-
ferred using homomorphisms. We show that, in the fix-
point, the closures constructed over bi-abstractions can be

lifted up to closures over the original ABoxes. For the inner
overdeletion (line 5), we have B1 ∪ B2 as the bi-abstraction
w.r.t. (A∞ \ Dall,Dall) (line 4). The inner overdeletion
(line 5) extends B2 with assertions α to determine a clo-
sure over B1 ∪ B2 ∪ T `B2 α. For the inner reinsertion,
we have B1 ∪ B2 as the bi-abstraction w.r.t. (A∞new,Dall)
(line 13). The inner reinsertion (line 14) constructs a clo-
sure for B1 ∪ T `B1∩B2 α. Note that, compared to the
closure constructed by reinsert in the DRed algorithm,
this is actually a restriction since (bi-)abstractions only con-
tain concept assertions for individuals of the form vτ . Still,
this restriction does not affect the final result. We can lift
these closures up toA∞ ∪ T `Dall α for the overdeletion and
A∞new ∪ T `A∞new∩Dall α for the reinsertion. Lemma 3 provides
the proof for the overdeletion phase. The proof for the rein-
sertion phase is analogous.
Lemma 3 (Overdeletion Fix-Point). Let O = A ∪ T be a
normalized HornALCHI ontology with materializationA∞
and deletions A− ⊆ A. Further, let Dall be s.t. A− ⊆
Dall ⊆ A∞ and B = B1 ∪ B2 the bi-abstraction w.r.t.
(A∞ \ Dall,Dall).

For each individual a ∈ ind(A) with bi-type τ =
(τ1C , τ

1
R, τ

2
C , τ

2
R), each atomic conceptA ∈ con(O), and each

role R ∈ rol(O), if

1. B1 ∪ B2 ∪ T `B2 A(vτ) implies A(a) ∈ Dall and

2. B1 ∪ B2 ∪ T `B2 A(wRτ) and R(a, b) ∈ A implies
A(b) ∈ Dall,

then, for each assertion α s.t. A∞ ∪ T `Dall α, α ∈ Dall.

Sketch. Extend B = B1∪B2 to B′ = B1′ ∪ B2′ as follows:
If r(a, b) ∈ A∞ \ Dall, extend B1 with r(vτ(a), vτ(b)); if
r(a, b) ∈ A−, extend B2 with r(vτ(a), vτ(b)). Note that there
is a homomorphism h from A∞ to B′, thus, by Lemma 2 (2),
if A∞ ∪ T `Dall α, then B′ ∪ T `h(Dall) h(α). We can then
show that h(Dall) ⊆ B2

′, hence, by B′ ∪ T `B2′ h(α).
We next sketch why B′ has the same atomic concept as-

sertions as direct derivations under restriction B2′ as B un-
der restriction B2. Let r(a, b) ∈ A∞. By considering the
construction of B′ from B, the rules in Figure 1 and the con-
ditions of restricted derivations, we can show that introduc-
ing the new role assertion r(vτ(a), vτ(b)) does not result in
new restricted entailments. Hence, according to condition 1,
A(a) ∈ Dall.

Lemma 4 (Soundness). Let O=A ∪ T be a Horn ALCHI
ontology, A∞ the materialization of A w.r.t. T , A− ⊆ A
a set of deletions, and A∞new the result of ARDRed(O, A∞,
A−). If α ∈ A∞new, then (A \ A−) ∪ T |= α.

Sketch. We mainly need to show that the set Dall obtained as
a closure according to Lemma 3 is complete and contains all
assertions that are to be removed in the sense of Definition 7.
To the contrary of what is to be shown, assume there is some
α /∈ Dall s.t. a minimal ABox justification J for α contains
an assertion from A−. By Theorem 1, α can be derived via
a number of rule applications from J and, thus, there is a
number of premises, of which at least one also has a minimal
ABox justification J ′ ⊆ J with J ′ ∩ A− 6= ∅. By doing

so repeatedly, we eventually determine some assertion β s.t.
A∞ ∪ T `Dall β, which is a contradiction. The ARDred al-
gorithm removes Dall from A∞ and, as shown earlier, only
sound assertions are reinserted.

We now show completeness using the previous results.

Lemma 5 (Completeness). Let O = A ∪ T be a Horn
ALCHI ontology, A∞ the materialization of A w.r.t. T ,
A− ⊆ A a set of deletions, and A∞new the result of
ARDRed(O, A∞, A−). If (A \ A−) ∪ T |= α, then
α ∈ A∞new.

Sketch. First, we consider the inputs A∞new and Dnew as they
are used in the closure construction of the reinsertion phase.
By Lemma 4,Dall contains the overdeletion ofA∞ w.r.t.A−.
For A∞new, we can then confirm that A \ A− ⊆ A∞new using
the definition of the algorithm. ForDnew, we need to consider
the effects of the rederivation phase. Using the rules in Fig-
ure 1 and the construction of the bi-abstraction B1 ∪ B2, we
can show that Dnew is determined s.t. it contains at least all
assertions, which can directly be rederived from A∞ \ Dall.
It remains to show that under these conditions, constructing
A∞new as a closure over A∞new ∪ T `A∞new∩Dall α results in A∞new
s.t. (A\A−)∪T |= α implies α ∈ A∞new. Assuming the con-
trary, let α be some concept assertion, s.t. (A\A−)∪T |= α
and α /∈ A∞new. Due to the initial construction of A∞new, there
must be some ‘initial culprit’ β /∈ A∞new, which can directly
be derived from A∞new using a rule from Figure 1. We can
then show that the conditions of the construction of A∞new are
violated.

Theorem 2 (Correctness). LetO=A∪T be a HornALCHI
ontology, A∞ the materialization of A w.r.t. T , A− ⊆ A a
set of deletions. ARDRed(O, A∞, A−) terminates and the
returned A∞new is s.t. α ∈ A∞new iff (A \ A−) ∪ T |= α.

Sketch. The overdeletion and reinsertion loops of the algo-
rithm terminate and, once an iteration cannot determine new
assertions, we obtain the termination of the algorithm as a di-
rect consequence of the already shown soundness (Lemma 4)
and completeness (Lemma 5) results. In particular, termina-
tion occurs in the worst case, whenDall = A∞ (overdeletion)
and A∞new = A∞ (reinsertion).

4 Implementation and Evaluation
For the evaluation, we focus on directly comparing the algo-
rithms, i.e. classical DRed and ARDRed. To do so, we have
implemented both from scratch in Java including support for
additions. The code and the experimental data are publicly
available [Glimm and Brenner, 2018]. As basis for the test
cases, we used the UOBM benchmark [Ma et al., 2006], for
which we generated instances of 10, 50 and 100 universities
(denoted UOBM10, UOBM50, and UOBM100, respectively)
and the well-known NPD and Reactome ontologies. All on-
tologies were preprocessed by dropping non-Horn ALCHI
axioms and by normalizing the remaining axioms. Table 1
shows the number of TBox and ABox axioms of the prepro-
cessed ontologies.

0
25
50
75

100
125
150
175
200

UOBM10 UOBM50 UOBM100 NPD Reactome

ARDRed

DRed

(a) add-only case

0
10
20
30
40
50
60
70
80
90

100

UOBM10 UOBM50 UOBM100 NPD Reactome

ARDRed

DRed

(b) add/remove case
UOBM10 UOBM50 UOBM100 NPD Reactome

0

50

100

150

200

250

300

350 DRed	stream

DRed	init

ADRed	stream

ADRed	init

(c) remove-only case

Figure 2: Materialization time in s. For the remove-only case, the initial reasoning times over A0 (init) are noticeable (and, therefore,
included) and the results for UOBM are scaled by 0.1 for visual clarity.

add-only add/remove remove-only
ARDRed DRed ARDRed DRed ARDRed DRed

|T | |A| stream stream init stream sum init stream sum
UOBM10 498 1926897 19.03 18.40 8.44 12.45 7.22 311.28 318.50 18.26 287.41 305.67
UOBM50 498 9751681 87.88 89.29 32.22 48.17 42.22 1 401.40 1 443.62 114.84 1 503.09 1 617.94
UOBM100 498 19571755 176.26 191.79 59.49 98.24 96.56 2 815.68 2 912.24 281.48 3 191.51 3 472.99
NPD 1241 911517 6.15 24.83 3.06 11.93 3.39 20.03 23.42 27.78 12.95 40.73
Reactome 597 7087410 67.43 157.04 17.93 72.98 25.83 165.29 191.12 158.94 150.44 309.38

Table 1: Test ontologies with the number of axioms (|T |) and assertions (|A|) for their Horn ALCHI subsets with the stream materialization
times in seconds. Materialization time for A0 (init) is only given for the remove-only case (the times for the other cases are < 200ms).

An incremental test consists of a TBox T and a base ABox
A from which we obtain an initial ABox A0 and 100 change
ABoxes containing assertions to be either added or deleted,
depending on the test scenario. Each change ABox contains
all assertions for 1% of the individuals from A.1 We evalu-
ate three scenarios: (1) add-only starts with an almost empty
A0 and step by step adds the change ABoxes; (2) remove-only
starts withA0 = A and then removes the change ABoxes; (3)
add-remove alternates between additions and removals, start-
ing with two initial addition steps to avoid adding/removing
the same individuals over and over again. All tests were ex-
ecuted on a server with two Intel hexa core processors at
2.60GHz (without using parallelization) and each test exe-
cution was assigned 200 GB of the overall 500 GB RAM to
allow for keeping all test data in memory to avoid I/O impact.
The number of 100 change ABoxes is large enough to even
out JVM behavior (e.g. code optimization at runtime).

Results are shown in Table 1 and visualized in Figure 2. It
can be seen that our approach outperforms the classical DRed
implementation in almost all cases. We can also observe the
typical Abstraction Refinement behavior, in that the advan-
tage of ARDRed over DRed increases with the ABox size:
For UOBM10, DRed still outperforms ARDRed in the add-
only and remove-only cases. Figure 2c shows initial reason-
ing times stacked under the streaming times to display accu-
mulated results. When running an incremental reasoning sys-
tem for a longer time period, initial reasoning times eventu-
ally become irrelevant. Considering this argument, ARDRed
behaves slightly worse than DRed for NPD and Reactome in
the remove-only case. Our analysis shows that this is due to
the unoptimized bi-types, which currently require individuals

1We exclude individuals which are used like nominals (implicitly
belonging to the terminological part), e.g. the individual realizing
the SwimmingClass concept in UOBM. Such individuals make up
far less than 1% of the total individuals.

to start with the same materialization and to receive the same
deletions, to be classified into the same type and we presume
that this restriction is too strong for practical ontologies. This
does not seem to be a problem for the UOBM ontologies,
which we attribute to the synthetic data generation. The im-
provement achieved by ARDRed over DRed is less noticeable
than that for non-incremental materialization by Abstraction
Refinement. We attribute this to a generally increased over-
head of the abstraction construction and refinement aspects
in the incremental setting, which is confirmed by the fact that
the initial materialization times forA0 in the remove-only set-
ting are comparable to those of the original Abstraction Re-
finement approach. The runtimes of the add-remove case are
generally lower than the runtimes of the add-only case, which
in return are lower than those of the remove-only case. The
first can be explained by the general number of assertions,
which is lower in the add-remove case (as we keep adding
and removing the same number of individuals). The second
result is also to be expected, as deletion of assertions is far
more expensive than adding assertions.

5 Conclusion and Future Work

The introduced novel materialization maintenance algorithm
for Horn ALCHI ontologies combines DRed and Abstrac-
tion Refinement. Benefits of this approach lie in the sum-
marization of similar deletion and reasoning tasks, paving
the road for efficient maintenance of materializations of large
ABoxes.

For the implementation, further optimizations for the Ab-
straction Refinement part (e.g. caching of types, further sum-
marization of types in the overdeletion) and the DRed part
(e.g. integrating the Backward/Forward optimization [Motik
et al., 2015]) are paths to be explored.

Acknowledgements
This work was done within the project “Reasoning over
Large Amounts of Data in Ontologies via Abstraction and
Refinement” (GL 779/3-2) and the Transregional Collabora-
tive Research Centre SFB/TRR 62 “Companion-Technology
for Cognitive Technical Systems” funded by the German Re-
search Foundation (DFG).

References
[Barbieri et al., 2010] Davide Francesco Barbieri, Daniele

Braga, Stefano Ceri, Emanuele Della Valle, and Michael
Grossniklaus. Incremental reasoning on streams and rich
background knowledge. In Extended Semantic Web Con-
ference, pages 1–15. Springer, 2010.

[Dolby et al., 2009] Julian Dolby, Achille Fokoue, Aditya
Kalyanpur, Edith Schonberg, and Kavitha Srinivas. Scal-
able Highly Expressive Reasoner (SHER). J. of Web Se-
mantics, 7(4):357–361, 2009.

[Glimm and Brenner, 2018] Birte Glimm and Markus
Brenner. Dataset and Software for Abstraction
Materialization Maintenance, April 2018. Zenodo.
https://doi.org/10.5281/zenodo.1229328.

[Glimm et al., 2014] Birte Glimm, Yevgeny Kazakov,
Thorsten Liebig, Trung-Kien Tran, and Vincent Vialard.
Abstraction refinement for ontology materialization. In
Proc. of the 13th Int. Semantic Web Conference, ISWC
2014, pages 180–195, 2014.

[Glimm et al., 2017] Birte Glimm, Yevgeny Kazakov, and
Trung-Kien Tran. Ontology materialization by abstrac-
tion refinement in horn SHOIF. In Proceedings of the 31st
AAAI Conference on Artificial Intelligence, pages 1114–
1120. AAAI Press, 2017.

[Gupta et al., 1993] Ashish Gupta, Inderpal Singh Mumick,
and V. S. Subrahmanian. Maintaining views incrementally.
In Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’93, pages
157–166. ACM, 1993.

[Kazakov and Klinov, 2013] Yevgeny Kazakov and Pavel
Klinov. Incremental reasoning in OWL EL without book-
keeping. In Proceedings of the 12th International Seman-
tic Web Conference (ISWC 2013), volume 8218 of Lec-
ture Notes in Computer Science, pages 232–247. Springer,
2013.

[Kazakov, 2009] Yevgeny Kazakov. Consequence-Driven
Reasoning for Horn SHIQ Ontologies. In Proc. of the
21st Int. Joint Conf. on Artificial Intelligence, IJCAI 2009,
pages 2040–2045, 2009.

[Krötzsch et al., 2013] Markus Krötzsch, Sebastian
Rudolph, and Pascal Hitzler. Complexities of Horn
Description Logics. ACM Trans. Comput. Log., 14(1),
2013.

[Ma et al., 2006] Li Ma, Yang Yang, Zhaoming Qiu, Guo-
tong Xie, Yue Pan, and Shengping Liu. Towards a com-
plete owl ontology benchmark. The Semantic Web: Re-
search and Applications, pages 125–139, 2006.

[Motik et al., 2014] Boris Motik, Yavor Nenov, Robert Piro,
Ian Horrocks, and Dan Olteanu. Parallel Materialisation
of Datalog Programs in Centralised, Main-Memory RDF
Systems. In Proc. of the Twenty-Eighth AAAI Confer-
ence on Artificial Intelligence, AAAI 2014, pages 129–137,
2014.

[Motik et al., 2015] Boris Motik, Yavor Nenov, Robert
Edgar Felix Piro, and Ian Horrocks. Incremental update of
datalog materialisation: the backward/forward algorithm.
In Proceedings of the 29th AAAI Conference on Artificial
Intelligence, pages 1560–1568. AAAI Press, 2015.

[Staudt and Jarke, 1996] Martin Staudt and Matthias Jarke.
Incremental maintenance of externally materialized views.
In Proceedings of the 22th International Conference on
Very Large Data Bases, VLDB ’96, pages 75–86. Morgan
Kaufmann Publishers Inc., 1996.

[Steigmiller et al., 2015] Andreas Steigmiller, Birte Glimm,
and Thorsten Liebig. Completion graph caching for ex-
pressive description logics. In Proceedings of the 28th In-
ternational Workshop on Description Logics, volume 1350
of CEUR Workshop Proceedings. CEUR-WS.org, 2015.

[Volz et al., 2003] Raphael Volz, Steffen Staab, and Boris
Motik. Incremental maintenance of materialized ontolo-
gies. In On The Move to Meaningful Internet Systems
2003: CoopIS, DOA, and ODBASE - OTM Confederated
International Conferences, CoopIS, DOA, and ODBASE,
volume 2888 of Lecture Notes in Computer Science, pages
707–724. Springer, 2003.

[Volz et al., 2005] Raphael Volz, Steffen Staab, and Boris
Motik. Incrementally maintaining materializations of on-
tologies stored in logic databases. Journal on Data Seman-
tics II, pages 1–34, 2005.

[Wandelt and Möller, 2012] Sebastian Wandelt and Ralf
Möller. Towards ABox Modularization of Semi-
Expressive Description Logics. J. of Applied Ontology,
7(2):133–167, 2012.

