
About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tutorial: An Introduction to Hierarchical Task
Network (HTN) Planning

Pascal Bercher and Daniel Höller

Institute of Artificial Intelligence,
Ulm University, Germany

June 25th, ICAPS 2018 (Delft)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 1 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Target Audience

Everyone (beginner or expert) who is familiar with the basics of
classical planning!

We assume prior knowledge about:

standard problem definition and semantics of classical planning

heuristics, esp. delete relaxation

search strategies (A*, greedy, etc.)

basic complexity theory (Chomsky hierarchy, automata, etc.)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 2 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Target Audience

Everyone (beginner or expert) who is familiar with the basics of
classical planning!

We assume prior knowledge about:

standard problem definition and semantics of classical planning

heuristics, esp. delete relaxation

search strategies (A*, greedy, etc.)

basic complexity theory (Chomsky hierarchy, automata, etc.)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 2 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Target Audience

Everyone (beginner or expert) who is familiar with the basics of
classical planning!

We assume prior knowledge about:

standard problem definition and semantics of classical planning

heuristics, esp. delete relaxation

search strategies (A*, greedy, etc.)

basic complexity theory (Chomsky hierarchy, automata, etc.)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 2 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Target Audience

Everyone (beginner or expert) who is familiar with the basics of
classical planning!

We assume prior knowledge about:

standard problem definition and semantics of classical planning

heuristics, esp. delete relaxation

search strategies (A*, greedy, etc.)

basic complexity theory (Chomsky hierarchy, automata, etc.)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 2 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Goals of the Tutorial

Obtain most relevant basics of the most-commonly known hierarchical
planning formalization – HTN planning:

understand the core differences to non-hierarchical (classical)
planning: HTN planning is not (just) a planning technique!

learn basic theoretical properties of HTN planning:
hardness of the problem(s), expressivity

learn the most important solving techniques

obtain some ideas on how to design heuristics (why is it more
complicated than in non-hierarchical planning?)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 3 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Goals of the Tutorial

Obtain most relevant basics of the most-commonly known hierarchical
planning formalization – HTN planning:

understand the core differences to non-hierarchical (classical)
planning: HTN planning is not (just) a planning technique!

learn basic theoretical properties of HTN planning:
hardness of the problem(s), expressivity

learn the most important solving techniques

obtain some ideas on how to design heuristics (why is it more
complicated than in non-hierarchical planning?)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 3 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Goals of the Tutorial

Obtain most relevant basics of the most-commonly known hierarchical
planning formalization – HTN planning:

understand the core differences to non-hierarchical (classical)
planning: HTN planning is not (just) a planning technique!

learn basic theoretical properties of HTN planning:
hardness of the problem(s), expressivity

learn the most important solving techniques

obtain some ideas on how to design heuristics (why is it more
complicated than in non-hierarchical planning?)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 3 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Goals of the Tutorial

Obtain most relevant basics of the most-commonly known hierarchical
planning formalization – HTN planning:

understand the core differences to non-hierarchical (classical)
planning: HTN planning is not (just) a planning technique!

learn basic theoretical properties of HTN planning:
hardness of the problem(s), expressivity

learn the most important solving techniques

obtain some ideas on how to design heuristics (why is it more
complicated than in non-hierarchical planning?)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 3 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Goals of the Tutorial

Obtain most relevant basics of the most-commonly known hierarchical
planning formalization – HTN planning:

understand the core differences to non-hierarchical (classical)
planning: HTN planning is not (just) a planning technique!

learn basic theoretical properties of HTN planning:
hardness of the problem(s), expressivity

learn the most important solving techniques

obtain some ideas on how to design heuristics (why is it more
complicated than in non-hierarchical planning?)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 3 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Outline

Part I: Theoretical Foundations

Problem Definition(s)

Computational Complexity of Plan Existence Problem

Expressivity Analysis

Part II: Practice

Solution Techniques

Heuristics

Excursion: Further Hierarchical Planning Formalisms

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 4 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Overview Part I

Theoretical Foundations

Introduction

Problem Definition
Computational Complexity of the Plan Existence Problem

General HTN Planning
HTN Planning with Task Insertion
Totally Ordered HTN Planning
Restricting Recursion (Acyclic, Regular, Tail-recursive)

Expressivity Analysis

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 5 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Non-Hierarchical Classical Planning

Classical Planning (Recap)

Environment:

Fully observable

Discrete (no time or resources)

Deterministic

Single-agent

Just one kind of action!

Planning:

Offline

Usually ground and via progression search

Solutions are action sequences

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 6 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Non-Hierarchical Classical Planning

Classical Planning (Recap)

Environment:

Fully observable

Discrete (no time or resources)

Deterministic

Single-agent

Just one kind of action!

Planning:

Offline

Usually ground and via progression search

Solutions are action sequences

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 6 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Non-Hierarchical Classical Planning

Classical Planning (Recap, cont’d)

Problem formalization, P = (V , sI ,A, g):

Set of state variables V

Initial state sI ∈ 2V

Set of actions A, a ∈ A has the form (prec, add , del) ∈ (2V)3

An action (prec, add , del) is executable in a state s ∈ 2V iff
prec ⊆ s. Its application to s results into the state (s \ del)∪ add .
Executability of task sequences defined analogously

Goal description g ⊆ V

solution:
sI s⊇g

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 7 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Hierarchical Planning – Motivation

Informal Problem Definition

What is hierarchical planning, anyway?

Here: the model specifies a task hierarchy : compound (or complex,
abstract, high-level) tasks need to be decomposed into primitive tasks.

pick(?obj,?from)

¬handopen

holding(?obj)

¬at(?obj,?from)

at(?obj,?from)

handopen
place(?obj,?to)

handopen

¬holding(?obj)

at(?obj,?to)

holding(?obj)
<

move(?obj, ?from, ?to)

move(?obj, ?from, ?to)
at(?obj,?to)
¬at(?obj,?from)at(?obj,?from)

Problem given as a compound task (or a set of compound and/or
primitive tasks).

Goal: Finding a (primitive) executable refinement.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 8 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Hierarchical Planning – Motivation

Motivation

Why relying on a hierarchical model?

More flexibility with regard to modeling approach: incorporate
procedural expert knowledge (just as a modeling means, or to
speed up search)

Describe more complex behavior (i.e., pose complex restrictions
on the desired solutions)

Allow easier user integration in the plan generation process
(mixed initiative planning; MIP)

Communicate plans on different levels of abstraction

Incorporate task abstraction in plan explanations

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Hierarchical Planning – Motivation

Motivation

Why relying on a hierarchical model?

More flexibility with regard to modeling approach: incorporate
procedural expert knowledge (just as a modeling means, or to
speed up search)

Describe more complex behavior (i.e., pose complex restrictions
on the desired solutions)

Allow easier user integration in the plan generation process
(mixed initiative planning; MIP)

Communicate plans on different levels of abstraction

Incorporate task abstraction in plan explanations

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Hierarchical Planning – Motivation

Motivation

Why relying on a hierarchical model?

More flexibility with regard to modeling approach: incorporate
procedural expert knowledge (just as a modeling means, or to
speed up search)

Describe more complex behavior (i.e., pose complex restrictions
on the desired solutions)

Allow easier user integration in the plan generation process
(mixed initiative planning; MIP)

Communicate plans on different levels of abstraction

Incorporate task abstraction in plan explanations

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Hierarchical Planning – Motivation

Motivation

Why relying on a hierarchical model?

More flexibility with regard to modeling approach: incorporate
procedural expert knowledge (just as a modeling means, or to
speed up search)

Describe more complex behavior (i.e., pose complex restrictions
on the desired solutions)

Allow easier user integration in the plan generation process
(mixed initiative planning; MIP)

Communicate plans on different levels of abstraction

Incorporate task abstraction in plan explanations

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Hierarchical Planning – Motivation

Motivation

Why relying on a hierarchical model?

More flexibility with regard to modeling approach: incorporate
procedural expert knowledge (just as a modeling means, or to
speed up search)

Describe more complex behavior (i.e., pose complex restrictions
on the desired solutions)

Allow easier user integration in the plan generation process
(mixed initiative planning; MIP)

Communicate plans on different levels of abstraction

Incorporate task abstraction in plan explanations

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Overview Part I

Theoretical Foundations

Introduction

Problem Definition
Computational Complexity of the Plan Existence Problem

General HTN Planning
HTN Planning with Task Insertion
Totally Ordered HTN Planning
Restricting Recursion (Acyclic, Regular, Tail-recursive)

Expressivity Analysis

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 10 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

HTN Planning vs. Classical Planning

“HTN planners differ from classical planners in what they plan for and
how they plan for it. In an HTN planner, the objective is not to achieve a
set of goals but instead to perform some set of tasks.”

(Ghallab, Nau, and Traverso; Automated Planning: Theory and Practice)

Main differences to classical planning problems:

It’s not about generating some goal state! The goal is find a
refinement of the initial task(s), not to satisfy some goal description

There is no arbitrary task insertion: to alter task networks, we need
to decompose compound tasks using their pre-defined methods

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 11 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

HTN Planning vs. Classical Planning

“HTN planners differ from classical planners in what they plan for and
how they plan for it. In an HTN planner, the objective is not to achieve a
set of goals but instead to perform some set of tasks.”

(Ghallab, Nau, and Traverso; Automated Planning: Theory and Practice)

Main differences to classical planning problems:

It’s not about generating some goal state! The goal is find a
refinement of the initial task(s), not to satisfy some goal description

There is no arbitrary task insertion: to alter task networks, we need
to decompose compound tasks using their pre-defined methods

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 11 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

HTN Planning vs. Classical Planning

“HTN planners differ from classical planners in what they plan for and
how they plan for it. In an HTN planner, the objective is not to achieve a
set of goals but instead to perform some set of tasks.”

(Ghallab, Nau, and Traverso; Automated Planning: Theory and Practice)

Main differences to classical planning problems:

It’s not about generating some goal state! The goal is find a
refinement of the initial task(s), not to satisfy some goal description

There is no arbitrary task insertion: to alter task networks, we need
to decompose compound tasks using their pre-defined methods

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 11 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria

P = (V ,P, δ,C,M, sI , cI)

V a set of state variables

P a set of primitive task names
δ : P → (2V)3 the task name mapping
C a set of compound task names
cI ∈ C the initial task
M ⊆ C × 2TN the methods
sI ⊆ V the initial state

A solution task network tn must:

be a refinement of cI ,
only contain primitive tasks, and
have an executable linearization.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 12 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria

primitive
tasks

compound
tasks

P = (V ,P, δ,C,M, sI , cI)

V a set of state variables
P a set of primitive task names
δ : P → (2V)3 the task name mapping
C a set of compound task names

cI ∈ C the initial task
M ⊆ C × 2TN the methods
sI ⊆ V the initial state

A solution task network tn must:

be a refinement of cI ,
only contain primitive tasks, and
have an executable linearization.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 12 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria

cI

P = (V ,P, δ,C,M, sI , cI)

V a set of state variables
P a set of primitive task names
δ : P → (2V)3 the task name mapping
C a set of compound task names
cI ∈ C the initial task

M ⊆ C × 2TN the methods
sI ⊆ V the initial state

A solution task network tn must:

be a refinement of cI ,

only contain primitive tasks, and
have an executable linearization.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 12 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria

cI

P = (V ,P, δ,C,M, sI , cI)

V a set of state variables
P a set of primitive task names
δ : P → (2V)3 the task name mapping
C a set of compound task names
cI ∈ C the initial task
M ⊆ C × 2TN the methods

sI ⊆ V the initial state

A solution task network tn must:

be a refinement of cI ,
only contain primitive tasks, and

have an executable linearization.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 12 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria

cI

P = (V ,P, δ,C,M, sI , cI)

V a set of state variables
P a set of primitive task names
δ : P → (2V)3 the task name mapping
C a set of compound task names
cI ∈ C the initial task
M ⊆ C × 2TN the methods

sI ⊆ V the initial state

A solution task network tn must:

be a refinement of cI ,
only contain primitive tasks, and

have an executable linearization.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 12 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria

cI

P = (V ,P, δ,C,M, sI , cI)

V a set of state variables
P a set of primitive task names
δ : P → (2V)3 the task name mapping
C a set of compound task names
cI ∈ C the initial task
M ⊆ C × 2TN the methods

sI ⊆ V the initial state

A solution task network tn must:

be a refinement of cI ,
only contain primitive tasks, and

have an executable linearization.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 12 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria

cI

P = (V ,P, δ,C,M, sI , cI)

V a set of state variables
P a set of primitive task names
δ : P → (2V)3 the task name mapping
C a set of compound task names
cI ∈ C the initial task
M ⊆ C × 2TN the methods

sI ⊆ V the initial state

A solution task network tn must:

be a refinement of cI ,
only contain primitive tasks, and

have an executable linearization.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 12 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria

cI

P = (V ,P, δ,C,M, sI , cI)

V a set of state variables
P a set of primitive task names
δ : P → (2V)3 the task name mapping
C a set of compound task names
cI ∈ C the initial task
M ⊆ C × 2TN the methods

sI ⊆ V the initial state

A solution task network tn must:

be a refinement of cI ,
only contain primitive tasks, and

have an executable linearization.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 12 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria

cI

P = (V ,P, δ,C,M, sI , cI)

V a set of state variables
P a set of primitive task names
δ : P → (2V)3 the task name mapping
C a set of compound task names
cI ∈ C the initial task
M ⊆ C × 2TN the methods

sI ⊆ V the initial state

A solution task network tn must:

be a refinement of cI ,
only contain primitive tasks, and

have an executable linearization.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 12 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria

cI

P = (V ,P, δ,C,M, sI , cI)

V a set of state variables
P a set of primitive task names
δ : P → (2V)3 the task name mapping
C a set of compound task names
cI ∈ C the initial task
M ⊆ C × 2TN the methods

sI ⊆ V the initial state

A solution task network tn must:

be a refinement of cI ,
only contain primitive tasks, and

have an executable linearization.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 12 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria

cI

sI

P = (V ,P, δ,C,M, sI , cI)

V a set of state variables
P a set of primitive task names
δ : P → (2V)3 the task name mapping
C a set of compound task names
cI ∈ C the initial task
M ⊆ C × 2TN the methods
sI ⊆ V the initial state

A solution task network tn must:

be a refinement of cI ,
only contain primitive tasks, and

have an executable linearization.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 12 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria

cI

sI

P = (V ,P, δ,C,M, sI , cI)

V a set of state variables
P a set of primitive task names
δ : P → (2V)3 the task name mapping
C a set of compound task names
cI ∈ C the initial task
M ⊆ C × 2TN the methods
sI ⊆ V the initial state

A solution task network tn must:

be a refinement of cI ,
only contain primitive tasks, and
have an executable linearization.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 12 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria (Cont’d)

More formally:

For the sake of simplicity, we present a ground formalism, but
most results exist for lifted planning as well

Task network: tn = (T ,≺, α) consists of:
T , a possibly empty set of tasks or task identifier symbols
≺, a partial order on the tasks
α : T → P∪̇C, the task mapping function

Primitive task names are mapped to their tuples by the task name
mapping δ : P → (2V)3

A task network is called executable if there exists an executable
linearization of its tasks

Let p be a primitive task (name) and δ(p) = (prec, add , del).
Then, p is called executable in state s ∈ 2V iff prec ⊆ s.
Its application to s results into the state (s \ del) ∪ add .
Executability of task sequences defined analogously

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 13 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria (Cont’d)

More formally:

For the sake of simplicity, we present a ground formalism, but
most results exist for lifted planning as well
Task network: tn = (T ,≺, α) consists of:

T , a possibly empty set of tasks or task identifier symbols
≺, a partial order on the tasks
α : T → P∪̇C, the task mapping function

Primitive task names are mapped to their tuples by the task name
mapping δ : P → (2V)3

A task network is called executable if there exists an executable
linearization of its tasks

Let p be a primitive task (name) and δ(p) = (prec, add , del).
Then, p is called executable in state s ∈ 2V iff prec ⊆ s.
Its application to s results into the state (s \ del) ∪ add .
Executability of task sequences defined analogously

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 13 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria (Cont’d)

More formally:

For the sake of simplicity, we present a ground formalism, but
most results exist for lifted planning as well
Task network: tn = (T ,≺, α) consists of:

T , a possibly empty set of tasks or task identifier symbols
≺, a partial order on the tasks
α : T → P∪̇C, the task mapping function

Primitive task names are mapped to their tuples by the task name
mapping δ : P → (2V)3

A task network is called executable if there exists an executable
linearization of its tasks

Let p be a primitive task (name) and δ(p) = (prec, add , del).
Then, p is called executable in state s ∈ 2V iff prec ⊆ s.
Its application to s results into the state (s \ del) ∪ add .
Executability of task sequences defined analogously

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 13 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria (Cont’d)

More formally:

For the sake of simplicity, we present a ground formalism, but
most results exist for lifted planning as well
Task network: tn = (T ,≺, α) consists of:

T , a possibly empty set of tasks or task identifier symbols
≺, a partial order on the tasks
α : T → P∪̇C, the task mapping function

Primitive task names are mapped to their tuples by the task name
mapping δ : P → (2V)3

A task network is called executable if there exists an executable
linearization of its tasks

Let p be a primitive task (name) and δ(p) = (prec, add , del).
Then, p is called executable in state s ∈ 2V iff prec ⊆ s.
Its application to s results into the state (s \ del) ∪ add .
Executability of task sequences defined analogously

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 13 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria (Cont’d)

More formally:

A decomposition method m ∈ M is a tuple m = (c, tnm) with a
compound task c and task network tnm = (Tm,≺m, αm)

Let tn = (T ,≺, α) be a task network, t ∈ T a task identifier, and
α(t) = c a compound task to be decomposed by m = (c, tnm).
We assume T ∩ Tm = ∅.
Then, the application of m to tn results into the task network
tn′ = ((T \ {t}) ∪ Tm,≺ ∪≺m ∪ ≺X , α ∪ αm)|(T\{t})∪Tm with:

≺X :={(t ′, t ′′) | (t ′, t) ∈ ≺, t ′′ ∈ Tm} ∪
{(t ′′, t ′) | (t, t ′) ∈ ≺, t ′′ ∈ Tm}

where (X1, . . . , xn)|Y restricts the sets Xi to elements in Y

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 13 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria (Cont’d)

More formally:

A decomposition method m ∈ M is a tuple m = (c, tnm) with a
compound task c and task network tnm = (Tm,≺m, αm)

Let tn = (T ,≺, α) be a task network, t ∈ T a task identifier, and
α(t) = c a compound task to be decomposed by m = (c, tnm).
We assume T ∩ Tm = ∅.
Then, the application of m to tn results into the task network
tn′ = ((T \ {t}) ∪ Tm,≺ ∪≺m ∪ ≺X , α ∪ αm)|(T\{t})∪Tm with:

≺X :={(t ′, t ′′) | (t ′, t) ∈ ≺, t ′′ ∈ Tm} ∪
{(t ′′, t ′) | (t, t ′) ∈ ≺, t ′′ ∈ Tm}

where (X1, . . . , xn)|Y restricts the sets Xi to elements in Y

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 13 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria (Cont’d)

More formally:

A task network tn is a solution if and only if:

There is a sequence of decomposition methods m that transforms
cI into tn,
tn contains only primitive tasks, and
the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 13 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria (Cont’d)

More formally:

A task network tn is a solution if and only if:
There is a sequence of decomposition methods m that transforms
cI into tn,
tn contains only primitive tasks, and

the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks.

cI

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 13 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Basic Problem Definition

Problem Definition & Solution Criteria (Cont’d)

More formally:

A task network tn is a solution if and only if:
There is a sequence of decomposition methods m that transforms
cI into tn,
tn contains only primitive tasks, and
the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks.

cI

sI

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 13 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Formalization Choices in HTN Planning

Overview

Which formalization choices do exist?
Which impact do they have?

Initial task network vs. a single initial task

Adding a goal description

Adding state constraints

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Formalization Choices in HTN Planning

Overview

Which formalization choices do exist?
Which impact do they have?

Initial task network vs. a single initial task

Adding a goal description

Adding state constraints

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Formalization Choices in HTN Planning

Overview

Which formalization choices do exist?
Which impact do they have?

Initial task network vs. a single initial task

Adding a goal description

Adding state constraints

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Formalization Choices in HTN Planning

Overview

Which formalization choices do exist?
Which impact do they have?

Initial task network vs. a single initial task

Adding a goal description

Adding state constraints

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Formalization Choices in HTN Planning

Impact of Initial Task Network

Recap: P = (V ,P, δ,C,M, sI , cI) describes an HTN planning problem
as described before.

Let P? = (V ,P, δ,C,M, sI , tnI) be an HTN planning problem with
initial task network tnI .

Then, a task network tn is a solution if and only if:

There is a sequence of decomposition methods m that
transforms tnI into tn,

tn contains only primitive tasks, and

the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 15 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Formalization Choices in HTN Planning

Impact of Initial Task Network

Recap: P = (V ,P, δ,C,M, sI , cI) describes an HTN planning problem
as described before.

Let P? = (V ,P, δ,C,M, sI , tnI) be an HTN planning problem with
initial task network tnI .

Then, a task network tn is a solution if and only if:

There is a sequence of decomposition methods m that
transforms tnI into tn,

tn contains only primitive tasks, and

the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 15 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Formalization Choices in HTN Planning

Impact of Initial Task Network (Cont’d)

Theorem: Initial task networks can be compiled away.

Proof:

Let P? = (V ,P, δ,C,M, sI , tnI) be an HTN planning problem with
initial task network tnI .

Then, there is an HTN planning problem P ′ = (V ,P, δ,C′,M′, sI , cI)
with the same set of solutions:

Let C′ := C ∪̇ {cI} and M ′ := M ∪ {(cI , tnI)}.

Identical solution set is obvious.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 16 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Formalization Choices in HTN Planning

Impact of Initial Task Network (Cont’d)

Theorem: Initial task networks can be compiled away.

Proof:

Let P? = (V ,P, δ,C,M, sI , tnI) be an HTN planning problem with
initial task network tnI .

Then, there is an HTN planning problem P ′ = (V ,P, δ,C′,M′, sI , cI)
with the same set of solutions:

Let C′ := C ∪̇ {cI} and M ′ := M ∪ {(cI , tnI)}.

Identical solution set is obvious.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 16 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Formalization Choices in HTN Planning

Impact of Goal Description

Recap: P = (V ,P, δ,C,M, sI , cI) describes an HTN planning problem
as described before.

Let P? = (V ,P, δ,C,M, sI , cI , g) be an HTN planning problem with
goal description g ⊆ V .

Then, a task network tn is a solution if and only if:

There is a sequence of decomposition methods m that
transforms cI into tn,

tn contains only primitive tasks,

the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks, and

the task sequence t̄ generates a goal state s ⊇ g.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 17 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Formalization Choices in HTN Planning

Impact of Goal Description

Recap: P = (V ,P, δ,C,M, sI , cI) describes an HTN planning problem
as described before.

Let P? = (V ,P, δ,C,M, sI , cI , g) be an HTN planning problem with
goal description g ⊆ V .

Then, a task network tn is a solution if and only if:

There is a sequence of decomposition methods m that
transforms cI into tn,

tn contains only primitive tasks,

the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks, and

the task sequence t̄ generates a goal state s ⊇ g.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 17 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Formalization Choices in HTN Planning

Impact of Goal Description (Cont’d)

Theorem: Goal descriptions can be compiled away.

Proof:

Let P? = (V ,P, δ,C,M, sI , cI , g) be an HTN planning problem with
goal description.

Then, there is an HTN planning problem P ′ = (V ,P′, δ′,C,M, sI , tnI)
with the same set of solutions:

Here, tnI contains two tasks: cI followed by a new primitive task p with
no effects and g as precondition, δ(p) = (g, ∅, ∅).

Then, the initial task network in P ′ can be compiled away as before.

Identical solution set is obvious.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Formalization Choices in HTN Planning

Impact of Goal Description (Cont’d)

Theorem: Goal descriptions can be compiled away.

Proof:

Let P? = (V ,P, δ,C,M, sI , cI , g) be an HTN planning problem with
goal description.

Then, there is an HTN planning problem P ′ = (V ,P′, δ′,C,M, sI , tnI)
with the same set of solutions:

Here, tnI contains two tasks: cI followed by a new primitive task p with
no effects and g as precondition, δ(p) = (g, ∅, ∅).

Then, the initial task network in P ′ can be compiled away as before.

Identical solution set is obvious.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Formalization Choices in HTN Planning

Impact of Goal Description (Cont’d)

Theorem: Goal descriptions can be compiled away.

Proof:

Let P? = (V ,P, δ,C,M, sI , cI , g) be an HTN planning problem with
goal description.

Then, there is an HTN planning problem P ′ = (V ,P′, δ′,C,M, sI , tnI)
with the same set of solutions:

Here, tnI contains two tasks: cI followed by a new primitive task p with
no effects and g as precondition, δ(p) = (g, ∅, ∅).

Then, the initial task network in P ′ can be compiled away as before.

Identical solution set is obvious.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Formalization Choices in HTN Planning

State Constraints in HTN Planning

State constraints have been introduced in the HTN formalization by
Erol et al. (1994):

(l, t), the literal l holds immediately before task t

(t, l), the literal l holds immediately after task t

(t, l, t ′), the literal l holds in all states between t and t ′

In case t , resp. t ′, are compound, a constraint (l, t) is, upon
decomposition, translated to (l, first[t1, . . . , tn]), where the ti are all
sub tasks of t . ((t, l) and (t, l, t ′) are handled analogously.)

Notably: Erol et al.’s formalization specifies a boolean constraint
formula, in which state, variable, and ordering constraints can be
specified with negations and disjunctions.

No compilation known yet.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 19 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Formalization Choices in HTN Planning

State Constraints in HTN Planning

State constraints have been introduced in the HTN formalization by
Erol et al. (1994):

(l, t), the literal l holds immediately before task t

(t, l), the literal l holds immediately after task t

(t, l, t ′), the literal l holds in all states between t and t ′

In case t , resp. t ′, are compound, a constraint (l, t) is, upon
decomposition, translated to (l, first[t1, . . . , tn]), where the ti are all
sub tasks of t . ((t, l) and (t, l, t ′) are handled analogously.)

Notably: Erol et al.’s formalization specifies a boolean constraint
formula, in which state, variable, and ordering constraints can be
specified with negations and disjunctions.

No compilation known yet.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 19 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Formalization Choices in HTN Planning

State Constraints in HTN Planning

State constraints have been introduced in the HTN formalization by
Erol et al. (1994):

(l, t), the literal l holds immediately before task t

(t, l), the literal l holds immediately after task t

(t, l, t ′), the literal l holds in all states between t and t ′

In case t , resp. t ′, are compound, a constraint (l, t) is, upon
decomposition, translated to (l, first[t1, . . . , tn]), where the ti are all
sub tasks of t . ((t, l) and (t, l, t ′) are handled analogously.)

Notably: Erol et al.’s formalization specifies a boolean constraint
formula, in which state, variable, and ordering constraints can be
specified with negations and disjunctions.

No compilation known yet.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 19 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Formalization Choices in HTN Planning

State Constraints in HTN Planning

State constraints have been introduced in the HTN formalization by
Erol et al. (1994):

(l, t), the literal l holds immediately before task t

(t, l), the literal l holds immediately after task t

(t, l, t ′), the literal l holds in all states between t and t ′

In case t , resp. t ′, are compound, a constraint (l, t) is, upon
decomposition, translated to (l, first[t1, . . . , tn]), where the ti are all
sub tasks of t . ((t, l) and (t, l, t ′) are handled analogously.)

Notably: Erol et al.’s formalization specifies a boolean constraint
formula, in which state, variable, and ordering constraints can be
specified with negations and disjunctions.

No compilation known yet.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 19 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Overview Part I

Theoretical Foundations

Introduction

Problem Definition
Computational Complexity of the Plan Existence Problem

General HTN Planning
HTN Planning with Task Insertion
Totally Ordered HTN Planning
Restricting Recursion (Acyclic, Regular, Tail-recursive)

Expressivity Analysis

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 20 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Introduction

Definition & Motivation

The HTN plan existence problem is defined as follows:

Given an HTN planning problem P , does P possess a solution?

Motivation for studying this problem

Deeper problem understanding

Development of problem relaxations (heuristics)
and specialized algorithms

Development of problem compilations

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 21 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Introduction

Definition & Motivation

The HTN plan existence problem is defined as follows:

Given an HTN planning problem P , does P possess a solution?

Motivation for studying this problem

Deeper problem understanding

Development of problem relaxations (heuristics)
and specialized algorithms

Development of problem compilations

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 21 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Introduction

Definition & Motivation

The HTN plan existence problem is defined as follows:

Given an HTN planning problem P , does P possess a solution?

Motivation for studying this problem

Deeper problem understanding

Development of problem relaxations (heuristics)
and specialized algorithms

Development of problem compilations

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 21 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Introduction

Definition & Motivation

The HTN plan existence problem is defined as follows:

Given an HTN planning problem P , does P possess a solution?

Motivation for studying this problem

Deeper problem understanding

Development of problem relaxations (heuristics)
and specialized algorithms

Development of problem compilations

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 21 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Complexity of the General Case

Overview Part I

Theoretical Foundations

Introduction

Problem Definition
Computational Complexity of the Plan Existence Problem

General HTN Planning
HTN Planning with Task Insertion
Totally Ordered HTN Planning
Restricting Recursion (Acyclic, Regular, Tail-recursive)

Expressivity Analysis

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 22 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Complexity of the General Case

Undecidability Proof

Theorem: HTN planning is undedicable.

Proof:

Reduction from the language intersection problem of two context-free
grammars: given G and G′, is there a word ω in both languages
L(G) ∩ L(G′)?

Construct an HTN planning problem P that has a solution if and
only if the correct answer is yes
Translate the production rules to decomposition methods. That
way only words in L(G) and L(G′) can be produced
Any solution tn contains the word ω – encoded as action
sequence – twice: once produced by G and once produced by
G′. The action encodings ensure that no other task networks are
executable

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 23 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Complexity of the General Case

Undecidability Proof

Theorem: HTN planning is undedicable.

Proof:

Reduction from the language intersection problem of two context-free
grammars: given G and G′, is there a word ω in both languages
L(G) ∩ L(G′)?

Construct an HTN planning problem P that has a solution if and
only if the correct answer is yes

Translate the production rules to decomposition methods. That
way only words in L(G) and L(G′) can be produced
Any solution tn contains the word ω – encoded as action
sequence – twice: once produced by G and once produced by
G′. The action encodings ensure that no other task networks are
executable

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 23 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Complexity of the General Case

Undecidability Proof

Theorem: HTN planning is undedicable.

Proof:

Reduction from the language intersection problem of two context-free
grammars: given G and G′, is there a word ω in both languages
L(G) ∩ L(G′)?

Construct an HTN planning problem P that has a solution if and
only if the correct answer is yes
Translate the production rules to decomposition methods. That
way only words in L(G) and L(G′) can be produced

Any solution tn contains the word ω – encoded as action
sequence – twice: once produced by G and once produced by
G′. The action encodings ensure that no other task networks are
executable

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 23 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Complexity of the General Case

Undecidability Proof

Theorem: HTN planning is undedicable.

Proof:

Reduction from the language intersection problem of two context-free
grammars: given G and G′, is there a word ω in both languages
L(G) ∩ L(G′)?

Construct an HTN planning problem P that has a solution if and
only if the correct answer is yes
Translate the production rules to decomposition methods. That
way only words in L(G) and L(G′) can be produced
Any solution tn contains the word ω – encoded as action
sequence – twice: once produced by G and once produced by
G′. The action encodings ensure that no other task networks are
executable

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 23 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Complexity of the General Case

Undecidability Proof (Cont’d)

Theorem: HTN planning is undedicable.

Proof: (Cont’d, by example)

Let G = (

non-terminal
symbols︷ ︸︸ ︷

Γ = {H,Q},

terminal
symbols︷ ︸︸ ︷

Σ = {a, b},

production
rules︷︸︸︷
R ,

start
symbol︷︸︸︷

H) and
G′ = (Γ′ = {D, F},Σ′ = {a, b}, R′,D).

Production rules R: H 7→ aQb Q 7→ aQ | bQ | a | b
Production rules R′: D 7→ aFD | ab F 7→ a | b

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 24 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Complexity of the General Case

Undecidability Proof (Cont’d)

Theorem: HTN planning is undedicable.

Proof: (Cont’d, by example)

P = (V ,

C︷ ︸︸ ︷
{H,Q,D, F},

P︷ ︸︸ ︷
{a, b, a′, b′}, δ,M,

initial state︷ ︸︸ ︷
{vturn:G}, tnI ,

goal description︷ ︸︸ ︷
{vturn:G})

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 24 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Complexity of the General Case

Undecidability Proof (Cont’d)

Theorem: HTN planning is undedicable.

Proof: (Cont’d, by example)

P = (V ,

C︷ ︸︸ ︷
{H,Q,D, F},

P︷ ︸︸ ︷
{a, b, a′, b′}, δ,M,

initial state︷ ︸︸ ︷
{vturn:G}, tnI ,

goal description︷ ︸︸ ︷
{vturn:G})

V = {vturn:G, vturn:G′} ∪ {va, vb}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 24 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Complexity of the General Case

Undecidability Proof (Cont’d)

Theorem: HTN planning is undedicable.

Proof: (Cont’d, by example)

P = (V ,

C︷ ︸︸ ︷
{H,Q,D, F},

P︷ ︸︸ ︷
{a, b, a′, b′}, δ,M,

initial state︷ ︸︸ ︷
{vturn:G}, tnI ,

goal description︷ ︸︸ ︷
{vturn:G})

V = {vturn:G, vturn:G′} ∪ {va, vb}
δ = {(a, ({vturn:G}, {vturn:G′ , va}, {vturn:G})),

(b, ({vturn:G}, {vturn:G′ , vb}, {vturn:G})),

(a′, ({vturn:G′ , va}, {vturn:G}, {vturn:G′ , va})),

(b′, ({vturn:G′ , vb}, {vturn:G}, {vturn:G′ , vb}))}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 24 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Complexity of the General Case

Undecidability Proof (Cont’d)

Theorem: HTN planning is undedicable.

Proof: (Cont’d, by example)

P = (V ,

C︷ ︸︸ ︷
{H,Q,D, F},

P︷ ︸︸ ︷
{a, b, a′, b′}, δ,M,

initial state︷ ︸︸ ︷
{vturn:G}, tnI ,

goal description︷ ︸︸ ︷
{vturn:G})

V = {vturn:G, vturn:G′} ∪ {va, vb}
δ = {(a, ({vturn:G}, {vturn:G′ , va}, {vturn:G})),

(b, ({vturn:G}, {vturn:G′ , vb}, {vturn:G})),

(a′, ({vturn:G′ , va}, {vturn:G}, {vturn:G′ , va})),

(b′, ({vturn:G′ , vb}, {vturn:G}, {vturn:G′ , vb}))}
M = M(G) ∪M(G′) (translated production rules of G′ and G′)

tnI = ({t, t ′}︸ ︷︷ ︸
T

, ∅︸︷︷︸
≺

, {(t,H), (t ′,D)}︸ ︷︷ ︸
α

)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 24 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Problem Classes

Overview

Which properties make the plan existence problem easier?

Task insertion,

Total order of all task networks,
Recursion. Methods are:

acyclic: no recursion
regular: only one compound task, which is the last one
tail-recursive: arbitrary many compound tasks, only the last one is
recursive

non-hierarchical

acyclic

regular

unrestrictive recursive

tail-recursive

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 25 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Problem Classes

Overview

Which properties make the plan existence problem easier?

Task insertion,

Total order of all task networks,

Recursion. Methods are:
acyclic: no recursion
regular: only one compound task, which is the last one
tail-recursive: arbitrary many compound tasks, only the last one is
recursive

non-hierarchical

acyclic

regular

unrestrictive recursive

tail-recursive

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 25 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Problem Classes

Overview

Which properties make the plan existence problem easier?

Task insertion,

Total order of all task networks,
Recursion. Methods are:

acyclic: no recursion
regular: only one compound task, which is the last one
tail-recursive: arbitrary many compound tasks, only the last one is
recursive

non-hierarchical

acyclic

regular

unrestrictive recursive

tail-recursive

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 25 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Problem Classes

Overview

Which properties make the plan existence problem easier?

Task insertion,

Total order of all task networks,
Recursion. Methods are:

acyclic: no recursion

regular: only one compound task, which is the last one
tail-recursive: arbitrary many compound tasks, only the last one is
recursive

non-hierarchical

acyclic

regular

unrestrictive recursive

tail-recursive

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 25 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Problem Classes

Overview

Which properties make the plan existence problem easier?

Task insertion,

Total order of all task networks,
Recursion. Methods are:

acyclic: no recursion
regular: only one compound task, which is the last one

tail-recursive: arbitrary many compound tasks, only the last one is
recursive

non-hierarchical

acyclic

regular

unrestrictive recursive

tail-recursive

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 25 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Problem Classes

Overview

Which properties make the plan existence problem easier?

Task insertion,

Total order of all task networks,
Recursion. Methods are:

acyclic: no recursion
regular: only one compound task, which is the last one
tail-recursive: arbitrary many compound tasks, only the last one is
recursive

non-hierarchical

acyclic

regular

unrestrictive recursive

tail-recursive

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 25 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Problem Classes

Overview

Which properties make the plan existence problem easier?

Task insertion,

Total order of all task networks,
Recursion. Methods are:

acyclic: no recursion
regular: only one compound task, which is the last one
tail-recursive: arbitrary many compound tasks, only the last one is
recursive

non-hierarchical

acyclic

regular

unrestrictive recursive

tail-recursive

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 25 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Plan Existence Problem of TIHTN Planning

Overview Part I

Theoretical Foundations

Introduction

Problem Definition
Computational Complexity of the Plan Existence Problem

General HTN Planning
HTN Planning with Task Insertion
Totally Ordered HTN Planning
Restricting Recursion (Acyclic, Regular, Tail-recursive)

Expressivity Analysis

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 26 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Plan Existence Problem of TIHTN Planning

Problem Definition

In HTN planning with task insertion, TIHTN planning, tasks may be
added arbitrarily to task networks (not just via decomposition):

Let P? = (V ,P, δ,C,M, sI , cI) be a TIHTN planning problem.

Then, a task network tn is a solution if and only if:

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 27 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Plan Existence Problem of TIHTN Planning

Problem Definition

In HTN planning with task insertion, TIHTN planning, tasks may be
added arbitrarily to task networks (not just via decomposition):

Let P? = (V ,P, δ,C,M, sI , cI) be a TIHTN planning problem.

Then, a task network tn is a solution if and only if:

There is a sequence of decomposition methods m and task
insertions that transforms cI into tn,

tn contains only primitive tasks, and

the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 27 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Plan Existence Problem of TIHTN Planning

Problem Definition

In HTN planning with task insertion, TIHTN planning, tasks may be
added arbitrarily to task networks (not just via decomposition):

Let P? = (V ,P, δ,C,M, sI , cI) be a TIHTN planning problem.

Then, a task network tn is a solution if and only if:

There is a sequence of decomposition methods m that
transforms cI into tn′,

tn ⊇ tn′ contains all tasks and orderings of tn′,

tn contains only primitive tasks, and

the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 27 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Plan Existence Problem of TIHTN Planning

Motivation

Benefits of allowing task insertion:

Task insertion plus goal description fully subsumes classical
planning (while allowing task hierarchies as well)

Task insertion makes the modeling process easier: certain parts
can be left to the planner

Task insertion makes the problem computationally easier (can be
exploited for heuristics)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 28 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Plan Existence Problem of TIHTN Planning

Motivation

Benefits of allowing task insertion:

Task insertion plus goal description fully subsumes classical
planning (while allowing task hierarchies as well)

Task insertion makes the modeling process easier: certain parts
can be left to the planner

Task insertion makes the problem computationally easier (can be
exploited for heuristics)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 28 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Plan Existence Problem of TIHTN Planning

Motivation

Benefits of allowing task insertion:

Task insertion plus goal description fully subsumes classical
planning (while allowing task hierarchies as well)

Task insertion makes the modeling process easier: certain parts
can be left to the planner

Task insertion makes the problem computationally easier (can be
exploited for heuristics)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 28 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Plan Existence Problem of TIHTN Planning

Influence of Task Insertion

H

D′

a Q b

D′

a b Q b

D′

a b a b

D′

a b a b

a′ F ′ D′

a b a b

a′ b′ D′

a b a b

a′ b′ a′ b′

decomposition: D′

decomposition: F ′

decomposition: D′

decomposition: Q

decomposition: Q

a a b

D′

a a b

a′ b′

decomposition: D′

decomposition: Q

decomposition: H

tnI (initial task network)

tn1

tn2

tn3

tn4

tn5

tn6

tn7

tn8

Recap: A task network is a
solution if it contains the same
word ω twice.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 29 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Plan Existence Problem of TIHTN Planning

Influence of Task Insertion

H

D′

a Q b

D′

a b Q b

D′

a b a b

D′

a b a b

a′ F ′ D′

a b a b

a′ b′ D′

a b a b

a′ b′ a′ b′

decomposition: D′

decomposition: F ′

decomposition: D′

decomposition: Q

decomposition: Q

a a b

D′

a a b

a′ b′

decomposition: D′

decomposition: Q

decomposition: H

tnI (initial task network)

tn1

tn2

tn3

tn4

tn5

tn6

tn7

tn8

Recap: A task network is a
solution if it contains the same
word ω twice.

Task network tn6 is a solution!

a b a b

a′ b′ a′ b′

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 29 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Plan Existence Problem of TIHTN Planning

Influence of Task Insertion

H

D′

a Q b

D′

a b Q b

D′

a b a b

D′

a b a b

a′ F ′ D′

a b a b

a′ b′ D′

a b a b

a′ b′ a′ b′

decomposition: D′

decomposition: F ′

decomposition: D′

decomposition: Q

decomposition: Q

a a b

D′

a a b

a′ b′

decomposition: D′

decomposition: Q

decomposition: H

tnI (initial task network)

tn1

tn2

tn3

tn4

tn5

tn6

tn7

tn8

Recap: A task network is a
solution if it contains the same
word ω twice.

Task network tn8 is no solution!

a a b

a′ b′

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 29 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Plan Existence Problem of TIHTN Planning

Influence of Task Insertion

H

D′

a Q b

D′

a b Q b

D′

a b a b

D′

a b a b

a′ F ′ D′

a b a b

a′ b′ D′

a b a b

a′ b′ a′ b′

decomposition: D′

decomposition: F ′

decomposition: D′

decomposition: Q

decomposition: Q

a a b

D′

a a b

a′ b′

decomposition: D′

decomposition: Q

decomposition: H

a b a b

a′ b′ a′ b′

task insertion:
b, a′, b′

tnI (initial task network)

tn1

tn2

tn3

tn4

tn5

tn6

tn7

tn8

≡

Recap: A task network is a
solution if it contains the same
word ω twice.

Influence of task insertion:

a a b

a′ b′

tn8

a b a b

a′ b′ a′ b′

tn6

task insertion:
b, a′, b′

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 29 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Plan Existence Problem of TIHTN Planning

Influence of Task Insertion

H

D′

a Q b

D′

a b Q b

D′

a b a b

D′

a b a b

a′ F ′ D′

a b a b

a′ b′ D′

a b a b

a′ b′ a′ b′

decomposition: D′

decomposition: F ′

decomposition: D′

decomposition: Q

decomposition: Q

a a b

D′

a a b

a′ b′

decomposition: D′

decomposition: Q

decomposition: H

a b a b

a′ b′ a′ b′

task insertion:
b, a′, b′

tnI (initial task network)

tn1

tn2

tn3

tn4

tn5

tn6

tn7

tn8

≡

Recap: A task network is a
solution if it contains the same
word ω twice.

Observation:

In TIHTN planning, recursion is
not required.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 29 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Plan Existence Problem of TIHTN Planning

Eliminating Recursion

H

D′

a Q b

D′

a b Q b

D′

a b a b

D′

a b a b

a′ F ′ D′

a b a b

a′ b′ D′

a b a b

a′ b′ a′ b′

decomposition: D′

decomposition: F ′

decomposition: D′

decomposition: Q

decomposition: Q

tnI

tn1

tn2

tn3

tn4

tn5

tn6

decomposition: H Theorem: TIHTN planning is in NEXPTIME

Idea: Restrict to acyclic decompositions, fill the rest with
task insertion, and verify.

cI

H

a Q

b Q

a

b

D

a′ F

b′

D

a′ b′

cI

H

a Q

a

b

D

a′ b′

Remove cyclic decompositions
of Q and D

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 30 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Plan Existence Problem of TIHTN Planning

Eliminating Recursion

H

D′

a Q b

D′

a b Q b

D′

a b a b

D′

a b a b

a′ F ′ D′

a b a b

a′ b′ D′

a b a b

a′ b′ a′ b′

decomposition: D′

decomposition: F ′

decomposition: D′

decomposition: Q

decomposition: Q

tnI

tn1

tn2

tn3

tn4

tn5

tn6

decomposition: H Theorem: TIHTN planning is in NEXPTIME

1. Step: Guess an acyclic decomposition:

The guessed decomposition tree describes at most
b|C|+1 decompositions.

(C = set of compound tasks)
(b = size of largest task network in the model)

Verify in O(b|C|+1) whether the tree describes a correct
sequence of decompositions.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 30 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Plan Existence Problem of TIHTN Planning

Eliminating Recursion

H

D′

a Q b

D′

a b Q b

D′

a b a b

D′

a b a b

a′ F ′ D′

a b a b

a′ b′ D′

a b a b

a′ b′ a′ b′

decomposition: D′

decomposition: F ′

decomposition: D′

decomposition: Q

decomposition: Q

tnI

tn1

tn2

tn3

tn4

tn5

tn6

decomposition: H Theorem: TIHTN planning is in NEXPTIME

2. Step: Guess the actions and orderings to be inserted.

The (guessed) decomposition tree results into a task
network with at most ≤ b|C|+1 tasks.

Between each two actions, at most 2|V | actions need to
be inserted to achieve the next precondition.

(|V | = number of state variables)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 30 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Totally Ordered HTN Planning

Overview Part I

Theoretical Foundations

Introduction

Problem Definition
Computational Complexity of the Plan Existence Problem

General HTN Planning
HTN Planning with Task Insertion
Totally Ordered HTN Planning
Restricting Recursion (Acyclic, Regular, Tail-recursive)

Expressivity Analysis

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 31 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Totally Ordered HTN Planning

Problem Definition

An HTN planning problem P = (V ,P, δ,C,M, sI , cI) is called totally
ordered if:

All decomposition methods are totally ordered, i.e., for each
m ∈ M, m = (c, tn), tn is a totally ordered task network.

In case P uses an initial task network tnI rather than an initial
task cI , then tnI needs to be totally ordered as well.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 32 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Totally Ordered HTN Planning

Problem Definition

An HTN planning problem P = (V ,P, δ,C,M, sI , cI) is called totally
ordered if:

All decomposition methods are totally ordered, i.e., for each
m ∈ M, m = (c, tn), tn is a totally ordered task network.

In case P uses an initial task network tnI rather than an initial
task cI , then tnI needs to be totally ordered as well.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 32 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Totally Ordered HTN Planning

Computational Complexity

Theorem: Totally ordered HTN planning is in EXPTIME

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 33 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Totally Ordered HTN Planning

Computational Complexity

Theorem: Totally ordered HTN planning is in EXPTIME

Intuition:

Since plans are totally ordered, the only means of choosing the
right refinement for a given compound task is to produce a
suitable successor state

. . .

. . .
 set of totally ordered

primitive refinements

There are only finitely many states that can be produced by the
refinements of a given compound task

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 33 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Totally Ordered HTN Planning

Computational Complexity

Theorem: Totally ordered HTN planning is in EXPTIME

Intuition:

Since plans are totally ordered, the only means of choosing the
right refinement for a given compound task is to produce a
suitable successor state

. . .

. . .
 set of totally ordered

primitive refinements

There are only finitely many states that can be produced by the
refinements of a given compound task

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 33 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Totally Ordered HTN Planning

Computational Complexity

Theorem: Totally ordered HTN planning is in EXPTIME

Proof:

Create a table 2V × (C ∪ P)× 2V × {>,⊥, ?} to store:

s, p, s′, x with x ∈ {>,⊥} to express whether the primitive task p
is applicable in s creating a state satisfying s′

s, c, s′, x with x ∈ {>,⊥} to express whether the compound task
c has a primitive refinement that is applicable in s creating a state
satisfying s′

Algorithm:

Initialize the table (with all states and tasks) with value ?
Perform bottom-up approach: start with all primitive tasks, then
continue with all compound tasks that admit a primitive refinement
Continue as long as at least one value ? is changed

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 33 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Totally Ordered HTN Planning

Computational Complexity

Theorem: Totally ordered HTN planning is in EXPTIME

Proof:

Create a table 2V × (C ∪ P)× 2V × {>,⊥, ?} to store:
s, p, s′, x with x ∈ {>,⊥} to express whether the primitive task p
is applicable in s creating a state satisfying s′

s, c, s′, x with x ∈ {>,⊥} to express whether the compound task
c has a primitive refinement that is applicable in s creating a state
satisfying s′

Algorithm:

Initialize the table (with all states and tasks) with value ?
Perform bottom-up approach: start with all primitive tasks, then
continue with all compound tasks that admit a primitive refinement
Continue as long as at least one value ? is changed

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 33 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Totally Ordered HTN Planning

Computational Complexity

Theorem: Totally ordered HTN planning is in EXPTIME

Proof:

Create a table 2V × (C ∪ P)× 2V × {>,⊥, ?} to store:
s, p, s′, x with x ∈ {>,⊥} to express whether the primitive task p
is applicable in s creating a state satisfying s′

s, c, s′, x with x ∈ {>,⊥} to express whether the compound task
c has a primitive refinement that is applicable in s creating a state
satisfying s′

Algorithm:

Initialize the table (with all states and tasks) with value ?
Perform bottom-up approach: start with all primitive tasks, then
continue with all compound tasks that admit a primitive refinement
Continue as long as at least one value ? is changed

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 33 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Totally Ordered HTN Planning

Computational Complexity

Theorem: Totally ordered HTN planning is in EXPTIME

Proof:

Create a table 2V × (C ∪ P)× 2V × {>,⊥, ?} to store:
s, p, s′, x with x ∈ {>,⊥} to express whether the primitive task p
is applicable in s creating a state satisfying s′

s, c, s′, x with x ∈ {>,⊥} to express whether the compound task
c has a primitive refinement that is applicable in s creating a state
satisfying s′

Algorithm:
Initialize the table (with all states and tasks) with value ?

Perform bottom-up approach: start with all primitive tasks, then
continue with all compound tasks that admit a primitive refinement
Continue as long as at least one value ? is changed

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 33 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Totally Ordered HTN Planning

Computational Complexity

Theorem: Totally ordered HTN planning is in EXPTIME

Proof:

Create a table 2V × (C ∪ P)× 2V × {>,⊥, ?} to store:
s, p, s′, x with x ∈ {>,⊥} to express whether the primitive task p
is applicable in s creating a state satisfying s′

s, c, s′, x with x ∈ {>,⊥} to express whether the compound task
c has a primitive refinement that is applicable in s creating a state
satisfying s′

Algorithm:
Initialize the table (with all states and tasks) with value ?
Perform bottom-up approach: start with all primitive tasks, then
continue with all compound tasks that admit a primitive refinement

Continue as long as at least one value ? is changed

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 33 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Totally Ordered HTN Planning

Computational Complexity

Theorem: Totally ordered HTN planning is in EXPTIME

Proof:

Create a table 2V × (C ∪ P)× 2V × {>,⊥, ?} to store:
s, p, s′, x with x ∈ {>,⊥} to express whether the primitive task p
is applicable in s creating a state satisfying s′

s, c, s′, x with x ∈ {>,⊥} to express whether the compound task
c has a primitive refinement that is applicable in s creating a state
satisfying s′

Algorithm:
Initialize the table (with all states and tasks) with value ?
Perform bottom-up approach: start with all primitive tasks, then
continue with all compound tasks that admit a primitive refinement
Continue as long as at least one value ? is changed

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 33 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Acyclic Planning Problems

Overview Part I

Theoretical Foundations

Introduction

Problem Definition
Computational Complexity of the Plan Existence Problem

General HTN Planning
HTN Planning with Task Insertion
Totally Ordered HTN Planning
Restricting Recursion (Acyclic, Regular, Tail-recursive)

Expressivity Analysis

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 34 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Acyclic Planning Problems

Problem Definition

An HTN planning problem is called called acyclic if no compound task
can reach itself via decomposition.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 35 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Acyclic Planning Problems

Computational Complexity

Theorem: Acyclic HTN planning is in NEXPTIME.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 36 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Acyclic Planning Problems

Computational Complexity

Theorem: Acyclic HTN planning is in NEXPTIME.

Proof:

Do the same as for TIHTN problems, but without the task insertion
part:

Guess at most b|C|+1 decompositions.
(C = set of compound tasks)
(b = size of largest task network in the model)

Verify in O(b|C|+1) whether the decompositions can be applied in
sequence

Guess a linearization of the resulting task network

Verify applicability of resulting linearization in O(b|C|+1)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 36 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Acyclic Planning Problems

Computational Complexity

Theorem: Acyclic HTN planning is in NEXPTIME.

Proof:

Do the same as for TIHTN problems, but without the task insertion
part:

Guess at most b|C|+1 decompositions.
(C = set of compound tasks)
(b = size of largest task network in the model)

Verify in O(b|C|+1) whether the decompositions can be applied in
sequence

Guess a linearization of the resulting task network

Verify applicability of resulting linearization in O(b|C|+1)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 36 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Acyclic Planning Problems

Computational Complexity

Theorem: Acyclic HTN planning is in NEXPTIME.

Proof:

Do the same as for TIHTN problems, but without the task insertion
part:

Guess at most b|C|+1 decompositions.
(C = set of compound tasks)
(b = size of largest task network in the model)

Verify in O(b|C|+1) whether the decompositions can be applied in
sequence

Guess a linearization of the resulting task network

Verify applicability of resulting linearization in O(b|C|+1)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 36 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Acyclic Planning Problems

Computational Complexity

Theorem: Acyclic HTN planning is in NEXPTIME.

Proof:

Do the same as for TIHTN problems, but without the task insertion
part:

Guess at most b|C|+1 decompositions.
(C = set of compound tasks)
(b = size of largest task network in the model)

Verify in O(b|C|+1) whether the decompositions can be applied in
sequence

Guess a linearization of the resulting task network

Verify applicability of resulting linearization in O(b|C|+1)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 36 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Acyclic Planning Problems

Computational Complexity

Theorem: Acyclic HTN planning is in NEXPTIME.

Proof:

Do the same as for TIHTN problems, but without the task insertion
part:

Guess at most b|C|+1 decompositions.
(C = set of compound tasks)
(b = size of largest task network in the model)

Verify in O(b|C|+1) whether the decompositions can be applied in
sequence

Guess a linearization of the resulting task network

Verify applicability of resulting linearization in O(b|C|+1)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 36 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Overview Part I

Theoretical Foundations

Introduction

Problem Definition
Computational Complexity of the Plan Existence Problem

General HTN Planning
HTN Planning with Task Insertion
Totally Ordered HTN Planning
Restricting Recursion (Acyclic, Regular, Tail-recursive)

Expressivity Analysis

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 37 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Problem Definition

A task network tn = (T ,≺, α) is called regular if

at most one task in T is compound and
if t ∈ T is a compound task, then it is the last task in tn, i.e., all
other tasks t ′ ∈ T are ordered before t .

A method (c, tn) is called regular if tn is regular.

A planning problem is called regular if all methods are regular.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 38 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Problem Definition

A task network tn = (T ,≺, α) is called regular if
at most one task in T is compound and

if t ∈ T is a compound task, then it is the last task in tn, i.e., all
other tasks t ′ ∈ T are ordered before t .

A method (c, tn) is called regular if tn is regular.

A planning problem is called regular if all methods are regular.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 38 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Problem Definition

A task network tn = (T ,≺, α) is called regular if
at most one task in T is compound and
if t ∈ T is a compound task, then it is the last task in tn, i.e., all
other tasks t ′ ∈ T are ordered before t .

A method (c, tn) is called regular if tn is regular.

A planning problem is called regular if all methods are regular.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 38 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Problem Definition

A task network tn = (T ,≺, α) is called regular if
at most one task in T is compound and
if t ∈ T is a compound task, then it is the last task in tn, i.e., all
other tasks t ′ ∈ T are ordered before t .

A method (c, tn) is called regular if tn is regular.

A planning problem is called regular if all methods are regular.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 38 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Problem Definition

A task network tn = (T ,≺, α) is called regular if
at most one task in T is compound and
if t ∈ T is a compound task, then it is the last task in tn, i.e., all
other tasks t ′ ∈ T are ordered before t .

A method (c, tn) is called regular if tn is regular.

A planning problem is called regular if all methods are regular.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 38 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Computational Complexity

Theorem: Regular problems are in PSPACE.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 39 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Computational Complexity

Theorem: Regular problems are in PSPACE.

Proof:

Rely on progression search

Until the compound task gets decomposed, all primitive tasks
have been “progressed away”

That way, the size of any task network is bounded by the size of
the largest task network in the model

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 39 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Excursion: HTN Progression Search

s A B

C

Always progress tasks that are a possibly first task in the network

Here, these are the tasks A and C.
In case the chosen task to progress next is:

primitive: apply it and progress the state
compound: decompose it

More details in Part II of this tutorial

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 40 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Excursion: HTN Progression Search

s A B

C

Always progress tasks that are a possibly first task in the network

Here, these are the tasks A and C.

In case the chosen task to progress next is:

primitive: apply it and progress the state
compound: decompose it

More details in Part II of this tutorial

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 40 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Excursion: HTN Progression Search

s A B

C

Always progress tasks that are a possibly first task in the network

Here, these are the tasks A and C.
In case the chosen task to progress next is:

primitive: apply it and progress the state
compound: decompose it

More details in Part II of this tutorial

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 40 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Excursion: HTN Progression Search

s A B

C

s′ B

C

Always progress tasks that are a possibly first task in the network

Here, these are the tasks A and C.
In case the chosen task to progress next is:

primitive: apply it and progress the state

compound: decompose it

More details in Part II of this tutorial

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 40 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Excursion: HTN Progression Search

s A B

C

Always progress tasks that are a possibly first task in the network

Here, these are the tasks A and C.
In case the chosen task to progress next is:

primitive: apply it and progress the state
compound: decompose it

More details in Part II of this tutorial

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 40 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Excursion: HTN Progression Search

s A B

C

s BA

Always progress tasks that are a possibly first task in the network

Here, these are the tasks A and C.
In case the chosen task to progress next is:

primitive: apply it and progress the state
compound: decompose it

More details in Part II of this tutorial

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 40 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Excursion: HTN Progression Search

s A B

C

s BA

Always progress tasks that are a possibly first task in the network

Here, these are the tasks A and C.
In case the chosen task to progress next is:

primitive: apply it and progress the state
compound: decompose it

More details in Part II of this tutorial

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 40 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Excursion: HTN Progression Search

s A B

C

s BA

Always progress tasks that are a possibly first task in the network

Here, these are the tasks A and C.
In case the chosen task to progress next is:

primitive: apply it and progress the state
compound: decompose it

More details in Part II of this tutorial

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 40 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Computational Complexity

Theorem: Regular problems are in PSPACE.

Proof:

Rely on progression search

Until the compound task gets decomposed, all primitive tasks
have been “progressed away”

That way, the size of any task network is bounded by the size of
the largest task network in the model

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 41 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Computational Complexity

Theorem: Regular problems are in PSPACE.

Proof:

Rely on progression search

Until the compound task gets decomposed, all primitive tasks
have been “progressed away”

That way, the size of any task network is bounded by the size of
the largest task network in the model

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 41 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Computational Complexity

Theorem: Regular problems are in PSPACE.

Proof:

Rely on progression search

Until the compound task gets decomposed, all primitive tasks
have been “progressed away”

That way, the size of any task network is bounded by the size of
the largest task network in the model

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 41 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Computational Complexity

Theorem: Regular problems are in PSPACE.

Note:

Every STRIPS problem PSTRIPS can be canonically expressed by a
totally ordered regular HTN problem P :

The actions in PSTRIPS are primitive tasks in P
There is just one compound task X generating all possible action
sequences: for all p ∈ P, we have a method mapping X to p
followed by X

For the base case, we have a method mapping X to an artificial
primitive task encoding the goal description

The initial task is X

(This also shows the hardness of the problem.)
Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 41 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Computational Complexity

Theorem: Regular problems are in PSPACE.

Note:

Every STRIPS problem PSTRIPS can be canonically expressed by a
totally ordered regular HTN problem P :

The actions in PSTRIPS are primitive tasks in P

There is just one compound task X generating all possible action
sequences: for all p ∈ P, we have a method mapping X to p
followed by X

For the base case, we have a method mapping X to an artificial
primitive task encoding the goal description

The initial task is X

(This also shows the hardness of the problem.)
Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 41 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Computational Complexity

Theorem: Regular problems are in PSPACE.

Note:

Every STRIPS problem PSTRIPS can be canonically expressed by a
totally ordered regular HTN problem P :

The actions in PSTRIPS are primitive tasks in P
There is just one compound task X generating all possible action
sequences: for all p ∈ P, we have a method mapping X to p
followed by X

For the base case, we have a method mapping X to an artificial
primitive task encoding the goal description

The initial task is X

(This also shows the hardness of the problem.)
Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 41 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Computational Complexity

Theorem: Regular problems are in PSPACE.

Note:

Every STRIPS problem PSTRIPS can be canonically expressed by a
totally ordered regular HTN problem P :

The actions in PSTRIPS are primitive tasks in P
There is just one compound task X generating all possible action
sequences: for all p ∈ P, we have a method mapping X to p
followed by X

For the base case, we have a method mapping X to an artificial
primitive task encoding the goal description

The initial task is X

(This also shows the hardness of the problem.)
Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 41 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Regular Problems

Computational Complexity

Theorem: Regular problems are in PSPACE.

Note:

Every STRIPS problem PSTRIPS can be canonically expressed by a
totally ordered regular HTN problem P :

The actions in PSTRIPS are primitive tasks in P
There is just one compound task X generating all possible action
sequences: for all p ∈ P, we have a method mapping X to p
followed by X

For the base case, we have a method mapping X to an artificial
primitive task encoding the goal description

The initial task is X

(This also shows the hardness of the problem.)
Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 41 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Overview Part I

Theoretical Foundations

Introduction

Problem Definition
Computational Complexity of the Plan Existence Problem

General HTN Planning
HTN Planning with Task Insertion
Totally Ordered HTN Planning
Restricting Recursion (Acyclic, Regular, Tail-recursive)

Expressivity Analysis

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 42 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Informal Problem Definition

Informally, tail-recursive problems look as follows:

limited recursion for all tasks in all methods

non-last tasks have a more restricted recursion

Formally, the restrictions on recursion are defined in terms of so-called
stratifications.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 43 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Informal Problem Definition

Informally, tail-recursive problems look as follows:

limited recursion for all tasks in all methods

non-last tasks have a more restricted recursion

Formally, the restrictions on recursion are defined in terms of so-called
stratifications.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 43 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Stratifications

A stratification is defined as follows:

A set ≤ ⊆ C × C is called a stratification if it is a total preorder
(i.e., reflexive, transitive, and total)

We call any inclusion-maximal subset of C a stratum of ≤ if for all
x , y ∈ C both (x , y) ∈ ≤ and (y , x) ∈ ≤ hold.

The height of a stratification is the number of its strata.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 44 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Stratifications: Example

Stratifications: (Non-)Examples

A B C D

E

S3S2

S1

(a) Relation ≤a.

A B

C D

E

S3

S2

S1

(b) Stratification ≤b.

A B

C D

E

S3

S2

S1

(c) Stratification ≤c .

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 45 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Stratifications: Example

Stratifications: (Non-)Examples

A B C D

E

S3S2

S1

(a) Relation ≤a.

A B

C D

E

S3

S2

S1

(b) Stratification ≤b.

A B

C D

E

S3

S2

S1

(c) Stratification ≤c .

≤a = {(A,B), (B,A), (C,D), (D,C), (E ,B), (E ,C)}
≤a is not a stratification, as it is not total

≤b = {(A,B), (B,A), (C,D), (D,C), (E ,B), (E ,C), (C,A)}∗

≤c = {(A,B), (B,A), (C,D), (D,C), (E ,B), (E ,C), (A,C)}∗

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 45 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Stratifications: Example

Stratifications: (Non-)Examples

A B C D

E

S3S2

S1

(a) Relation ≤a.

A B

C D

E

S3

S2

S1

(b) Stratification ≤b.

A B

C D

E

S3

S2

S1

(c) Stratification ≤c .

≤a = {(A,B), (B,A), (C,D), (D,C), (E ,B), (E ,C)}
≤b = {(A,B), (B,A), (C,D), (D,C), (E ,B), (E ,C), (C,A)}∗

≤c = {(A,B), (B,A), (C,D), (D,C), (E ,B), (E ,C), (A,C)}∗

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 45 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Stratifications

A stratification is defined as follows:

A set ≤ ⊆ C × C is called a stratification if it is a total preorder
(i.e., reflexive, transitive, and total)

We call any inclusion-maximal subset of C a stratum of ≤ if for all
x , y ∈ C both (x , y) ∈ ≤ and (y , x) ∈ ≤ hold.

The height of a stratification is the number of its strata.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 46 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Stratifications

A stratification is defined as follows:

A set ≤ ⊆ C × C is called a stratification if it is a total preorder
(i.e., reflexive, transitive, and total)

We call any inclusion-maximal subset of C a stratum of ≤ if for all
x , y ∈ C both (x , y) ∈ ≤ and (y , x) ∈ ≤ hold.

The height of a stratification is the number of its strata.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 46 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Stratifications

A stratification is defined as follows:

A set ≤ ⊆ C × C is called a stratification if it is a total preorder
(i.e., reflexive, transitive, and total)

We call any inclusion-maximal subset of C a stratum of ≤ if for all
x , y ∈ C both (x , y) ∈ ≤ and (y , x) ∈ ≤ hold.

The height of a stratification is the number of its strata.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 46 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Stratifications: Example

Stratifications: (Non-)Examples

A B C D

E

S3S2

S1

(a) Relation ≤a.

A B

C D

E

S3

S2

S1

(b) Stratification ≤b.

A B

C D

E

S3

S2

S1

(c) Stratification ≤c .

S1 = {E}, S2 = {A,B}, and S3 = {C,D} are strata

≤b and ≤c have a height of 3.

If we add, e.g., an edge from E to D in ≤c , i.e., the tuple (D,E),
then we only have a single stratification with height 1.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 47 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Stratifications: Example

Stratifications: (Non-)Examples

A B C D

E

S3S2

S1

(a) Relation ≤a.

A B

C D

E

S3

S2

S1

(b) Stratification ≤b.

A B

C D

E

S3

S2

S1

(c) Stratification ≤c .

S1 = {E}, S2 = {A,B}, and S3 = {C,D} are strata

≤b and ≤c have a height of 3.

If we add, e.g., an edge from E to D in ≤c , i.e., the tuple (D,E),
then we only have a single stratification with height 1.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 47 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Stratifications: Example

Stratifications: (Non-)Examples

A B C D

E

S3S2

S1

(a) Relation ≤a.

A B

C D

E

S3

S2

S1

(b) Stratification ≤b.

A B

C D

E

S3

S2

S1

(c) Stratification ≤c .

S1 = {E}, S2 = {A,B}, and S3 = {C,D} are strata

≤b and ≤c have a height of 3.

If we add, e.g., an edge from E to D in ≤c , i.e., the tuple (D,E),
then we only have a single stratification with height 1.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 47 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Problem Definition

An HTN problem P is called tail-recursive if there is a stratification ≤
on the compound tasks C of P with the following property:

For all methods (c, (T ,≺, α)) ∈ M holds:

If there is a last task t ∈ T that is compound (i.e., α(t) ∈ C and
for all t ′ 6= t holds (t ′, t) ∈ ≺), then (α(t), c) ∈ ≤
For any non-last task t ∈ T with α(t) ∈ C it holds (α(t), c) ∈ ≤
and (c, α(t)) /∈ ≤

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 48 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Problem Definition

An HTN problem P is called tail-recursive if there is a stratification ≤
on the compound tasks C of P with the following property:

For all methods (c, (T ,≺, α)) ∈ M holds:

If there is a last task t ∈ T that is compound (i.e., α(t) ∈ C and
for all t ′ 6= t holds (t ′, t) ∈ ≺), then (α(t), c) ∈ ≤

For any non-last task t ∈ T with α(t) ∈ C it holds (α(t), c) ∈ ≤
and (c, α(t)) /∈ ≤

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 48 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Problem Definition

An HTN problem P is called tail-recursive if there is a stratification ≤
on the compound tasks C of P with the following property:

For all methods (c, (T ,≺, α)) ∈ M holds:

If there is a last task t ∈ T that is compound (i.e., α(t) ∈ C and
for all t ′ 6= t holds (t ′, t) ∈ ≺), then (α(t), c) ∈ ≤
This means: the last task (if one exists) is at most as hard as the
decomposed task c

For any non-last task t ∈ T with α(t) ∈ C it holds (α(t), c) ∈ ≤
and (c, α(t)) /∈ ≤

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 48 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Problem Definition

An HTN problem P is called tail-recursive if there is a stratification ≤
on the compound tasks C of P with the following property:

For all methods (c, (T ,≺, α)) ∈ M holds:

If there is a last task t ∈ T that is compound (i.e., α(t) ∈ C and
for all t ′ 6= t holds (t ′, t) ∈ ≺), then (α(t), c) ∈ ≤
This means: the last task (if one exists) is at most as hard as the
decomposed task c

For any non-last task t ∈ T with α(t) ∈ C it holds (α(t), c) ∈ ≤
and (c, α(t)) /∈ ≤

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 48 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Problem Definition

An HTN problem P is called tail-recursive if there is a stratification ≤
on the compound tasks C of P with the following property:

For all methods (c, (T ,≺, α)) ∈ M holds:

If there is a last task t ∈ T that is compound (i.e., α(t) ∈ C and
for all t ′ 6= t holds (t ′, t) ∈ ≺), then (α(t), c) ∈ ≤
This means: the last task (if one exists) is at most as hard as the
decomposed task c

For any non-last task t ∈ T with α(t) ∈ C it holds (α(t), c) ∈ ≤
and (c, α(t)) /∈ ≤
This means: any non-last task is easier (on a lower stratum) than
the decomposed task c

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 48 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Computational Complexity

Theorem: Tail-recursive problems are in EXPSPACE.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 49 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Computational Complexity

Theorem: Tail-recursive problems are in EXPSPACE.

Proof:

Rely on progression search (more details in Part II)

Until the last task gets decomposed, all tasks ordered before it
have been “progressed away”
Only the decomposition of a last task might let the current
stratification height unchanged
The decomposition of non-last tasks results into tasks of strictly
lower stratum
From this, we can calculate a progression bound – a maximal
size of task network created under progression
We get k ·mh as progression bound, where k is size of the initial
task network, m is the size of the largest method,
and h is the stratification height

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 49 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Computational Complexity

Theorem: Tail-recursive problems are in EXPSPACE.

Proof:

Rely on progression search (more details in Part II)
Until the last task gets decomposed, all tasks ordered before it
have been “progressed away”

Only the decomposition of a last task might let the current
stratification height unchanged
The decomposition of non-last tasks results into tasks of strictly
lower stratum
From this, we can calculate a progression bound – a maximal
size of task network created under progression
We get k ·mh as progression bound, where k is size of the initial
task network, m is the size of the largest method,
and h is the stratification height

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 49 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Computational Complexity

Theorem: Tail-recursive problems are in EXPSPACE.

Proof:

Rely on progression search (more details in Part II)
Until the last task gets decomposed, all tasks ordered before it
have been “progressed away”
Only the decomposition of a last task might let the current
stratification height unchanged

The decomposition of non-last tasks results into tasks of strictly
lower stratum
From this, we can calculate a progression bound – a maximal
size of task network created under progression
We get k ·mh as progression bound, where k is size of the initial
task network, m is the size of the largest method,
and h is the stratification height

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 49 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Computational Complexity

Theorem: Tail-recursive problems are in EXPSPACE.

Proof:

Rely on progression search (more details in Part II)
Until the last task gets decomposed, all tasks ordered before it
have been “progressed away”
Only the decomposition of a last task might let the current
stratification height unchanged
The decomposition of non-last tasks results into tasks of strictly
lower stratum

From this, we can calculate a progression bound – a maximal
size of task network created under progression
We get k ·mh as progression bound, where k is size of the initial
task network, m is the size of the largest method,
and h is the stratification height

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 49 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Computational Complexity

Theorem: Tail-recursive problems are in EXPSPACE.

Proof:

Rely on progression search (more details in Part II)
Until the last task gets decomposed, all tasks ordered before it
have been “progressed away”
Only the decomposition of a last task might let the current
stratification height unchanged
The decomposition of non-last tasks results into tasks of strictly
lower stratum
From this, we can calculate a progression bound – a maximal
size of task network created under progression

We get k ·mh as progression bound, where k is size of the initial
task network, m is the size of the largest method,
and h is the stratification height

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 49 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Computational Complexity: Example

Example:

following initial task network of size 3:

0 5

4

Using a method with last task increases the size,

and a task with the same stratification height remains(!),

but “this can not increase the size arbitrarily”, because the tasks
ordered before it have to be progressed away before the
remaining task can be decomposed again.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 50 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Computational Complexity: Example

Example:

following initial task network of size 3:

0 5

4

3 0

2

1
0

4

Using a method with last task increases the size,

and a task with the same stratification height remains(!),

but “this can not increase the size arbitrarily”, because the tasks
ordered before it have to be progressed away before the
remaining task can be decomposed again.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 50 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Computational Complexity: Example

Example:

following initial task network of size 3:

0 5

4

3 0

2

1
0

4

0 5

3 0

2

Using a method without last task increases the size,
but “such decompositions” can only finitely often (limited by the
stratification height).

Using a method with last task increases the size,
and a task with the same stratification height remains(!),
but “this can not increase the size arbitrarily”, because the tasks
ordered before it have to be progressed away before the
remaining task can be decomposed again.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 50 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Computational Complexity: Example

Example:

following initial task network of size 3:

0 5

4

3 0

2

1
0

4

0 5

1
0

4

Using a method with last task increases the size,

and a task with the same stratification height remains(!),

but “this can not increase the size arbitrarily”, because the tasks
ordered before it have to be progressed away before the
remaining task can be decomposed again.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 50 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Computational Complexity: Example

Example:

following initial task network of size 3:

0 5

4

3 0

2

1
0

4

0 5

1
0

4

Using a method with last task increases the size,

and a task with the same stratification height remains(!),

but “this can not increase the size arbitrarily”, because the tasks
ordered before it have to be progressed away before the
remaining task can be decomposed again.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 50 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Computational Complexity: Example

Example:

following initial task network of size 3:

0 5

4

3 0

2

1
0

4

0 5

1
0

4

Using a method with last task increases the size,

and a task with the same stratification height remains(!),

but “this can not increase the size arbitrarily”, because the tasks
ordered before it have to be progressed away before the
remaining task can be decomposed again.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 50 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Tail-recursive Problems

Computational Complexity

Theorem: Tail-recursive problems are in EXPSPACE.

Proof:

Rely on progression search (more details in Part II)
Until the last task gets decomposed, all tasks ordered before it
have been “progressed away”
Only the decomposition of a last task might let the current
stratification height unchanged
The decomposition of non-last tasks results into tasks of strictly
lower stratum
From this, we can calculate a progression bound – a maximal
size of task network created under progression
We get k ·mh as progression bound, where k is size of the initial
task network, m is the size of the largest method,
and h is the stratification height

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 51 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Complexity Results

Overview for Task Insertion

When task insertion is allowed:
Recursion does not contribute to the hardness of the problem
Additional actions can be added by task insertion rather than by
relying on recursive decomposition

TIHTN Planning is NEXPTIME-complete (only membership was
shown)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 52 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Complexity Results

Overview for Task Insertion

When task insertion is allowed:
Recursion does not contribute to the hardness of the problem
Additional actions can be added by task insertion rather than by
relying on recursive decomposition

TIHTN Planning is NEXPTIME-complete (only membership was
shown)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 52 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Complexity Results

Overview for Standard HTN Planning

HTN planning is in general undecidable

HTN planning is also semi-decidable (not shown, but trivial)

Acyclic HTN problems are NEXPTIME-complete (only
membership was shown)

Regular HTN problems are PSPACE-complete

Tail-recursive HTN problems are EXPSPACE-complete (only
membership was shown)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 53 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Complexity Results

Overview for Standard HTN Planning

HTN planning is in general undecidable

HTN planning is also semi-decidable (not shown, but trivial)

Acyclic HTN problems are NEXPTIME-complete (only
membership was shown)

Regular HTN problems are PSPACE-complete

Tail-recursive HTN problems are EXPSPACE-complete (only
membership was shown)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 53 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Complexity Results

Overview for Standard HTN Planning

HTN planning is in general undecidable

HTN planning is also semi-decidable (not shown, but trivial)

Acyclic HTN problems are NEXPTIME-complete (only
membership was shown)

Regular HTN problems are PSPACE-complete

Tail-recursive HTN problems are EXPSPACE-complete (only
membership was shown)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 53 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Complexity Results

Overview for Standard HTN Planning

HTN planning is in general undecidable

HTN planning is also semi-decidable (not shown, but trivial)

Acyclic HTN problems are NEXPTIME-complete (only
membership was shown)

Regular HTN problems are PSPACE-complete

Tail-recursive HTN problems are EXPSPACE-complete (only
membership was shown)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 53 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Complexity Results

Overview for Standard HTN Planning

HTN planning is in general undecidable

HTN planning is also semi-decidable (not shown, but trivial)

Acyclic HTN problems are NEXPTIME-complete (only
membership was shown)

Regular HTN problems are PSPACE-complete

Tail-recursive HTN problems are EXPSPACE-complete (only
membership was shown)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 53 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Overview Part I

Theoretical Foundations

Introduction

Problem Definition
Computational Complexity of the Plan Existence Problem

General HTN Planning
HTN Planning with Task Insertion
Totally Ordered HTN Planning
Restricting Recursion (Acyclic, Regular, Tail-recursive)

Expressivity Analysis

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 54 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Motivation

Expressivity of Planning Formalisms

Question:

What can be expressed with the planning formalism at hand?

How does behavior describable with a formalism look like?

Answer so far:

It is PSPACE-complete (undecidable) to find a STRIPS (HTN)
plan

Better answer:

Formalism A can be compiled into formalism B (under several
restrictions on compilation size and/or runtime)

Gives an intuition on the relative expressivity

Answer regarding STRIPS and HTN planning would be:
(in general) impossible

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 55 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Motivation

Expressivity of Planning Formalisms

Question:

What can be expressed with the planning formalism at hand?

How does behavior describable with a formalism look like?

Answer so far:

It is PSPACE-complete (undecidable) to find a STRIPS (HTN)
plan

Better answer:

Formalism A can be compiled into formalism B (under several
restrictions on compilation size and/or runtime)

Gives an intuition on the relative expressivity

Answer regarding STRIPS and HTN planning would be:
(in general) impossible

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 55 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Motivation

Expressivity of Planning Formalisms

Question:

What can be expressed with the planning formalism at hand?

How does behavior describable with a formalism look like?

Answer so far:

It is PSPACE-complete (undecidable) to find a STRIPS (HTN)
plan

Better answer:

Formalism A can be compiled into formalism B (under several
restrictions on compilation size and/or runtime)

Gives an intuition on the relative expressivity

Answer regarding STRIPS and HTN planning would be:
(in general) impossible

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 55 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Motivation

Expressivity of Planning Formalisms

Question:

What can be expressed with the planning formalism at hand?

How does behavior describable with a formalism look like?

Answer so far:

It is PSPACE-complete (undecidable) to find a STRIPS (HTN)
plan

Better answer:

Formalism A can be compiled into formalism B (under several
restrictions on compilation size and/or runtime)

Gives an intuition on the relative expressivity

Answer regarding STRIPS and HTN planning would be:
(in general) impossible

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 55 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Motivation

Expressivity of Planning Formalisms

In the next slides:
Provide a measure that allows more insights
into the structures that can be represented

Consider the small STRIPS planning problem
given at the right, P shall be delivered at B
Model is a compact representation for a space of states
Actions define state transitions
Initial state and goal definition specifies a set of (transition)
sequences we are interested in
{〈pickup(T ,P,A),move(T ,A,B), drop(T ,P,B)〉,
〈pickup(T ,P,A), drop(T ,P,A), pickup(T ,P,A),move(T ,A,B), drop(T ,P,B)〉,
〈pickup(T ,P,A),move(T ,A,B),move(T ,B,A),move(T ,A,B), drop(T ,P,B)〉,
〈move(T ,A,B),move(T ,B,A), pickup(T ,P,A),move(T ,A,B), drop(T ,P,B)〉, . . . }

→ The planning problem is a compact representation for a
(possibly infinite) set of sequences

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 56 / 73

ö A 4

B

P T

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Motivation

Expressivity of Planning Formalisms

In the next slides:
Provide a measure that allows more insights
into the structures that can be represented

Consider the small STRIPS planning problem
given at the right, P shall be delivered at B

Model is a compact representation for a space of states
Actions define state transitions
Initial state and goal definition specifies a set of (transition)
sequences we are interested in
{〈pickup(T ,P,A),move(T ,A,B), drop(T ,P,B)〉,
〈pickup(T ,P,A), drop(T ,P,A), pickup(T ,P,A),move(T ,A,B), drop(T ,P,B)〉,
〈pickup(T ,P,A),move(T ,A,B),move(T ,B,A),move(T ,A,B), drop(T ,P,B)〉,
〈move(T ,A,B),move(T ,B,A), pickup(T ,P,A),move(T ,A,B), drop(T ,P,B)〉, . . . }

→ The planning problem is a compact representation for a
(possibly infinite) set of sequences

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 56 / 73

ö A 4

B

P T

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Motivation

Expressivity of Planning Formalisms

In the next slides:
Provide a measure that allows more insights
into the structures that can be represented

Consider the small STRIPS planning problem
given at the right, P shall be delivered at B
Model is a compact representation for a space of states
Actions define state transitions
Initial state and goal definition specifies a set of (transition)
sequences we are interested in

{〈pickup(T ,P,A),move(T ,A,B), drop(T ,P,B)〉,
〈pickup(T ,P,A), drop(T ,P,A), pickup(T ,P,A),move(T ,A,B), drop(T ,P,B)〉,
〈pickup(T ,P,A),move(T ,A,B),move(T ,B,A),move(T ,A,B), drop(T ,P,B)〉,
〈move(T ,A,B),move(T ,B,A), pickup(T ,P,A),move(T ,A,B), drop(T ,P,B)〉, . . . }

→ The planning problem is a compact representation for a
(possibly infinite) set of sequences

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 56 / 73

ö A 4

B

P T

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Motivation

Expressivity of Planning Formalisms

In the next slides:
Provide a measure that allows more insights
into the structures that can be represented

Consider the small STRIPS planning problem
given at the right, P shall be delivered at B
Model is a compact representation for a space of states
Actions define state transitions
Initial state and goal definition specifies a set of (transition)
sequences we are interested in
{〈pickup(T ,P,A),move(T ,A,B), drop(T ,P,B)〉,
〈pickup(T ,P,A), drop(T ,P,A), pickup(T ,P,A),move(T ,A,B), drop(T ,P,B)〉,
〈pickup(T ,P,A),move(T ,A,B),move(T ,B,A),move(T ,A,B), drop(T ,P,B)〉,
〈move(T ,A,B),move(T ,B,A), pickup(T ,P,A),move(T ,A,B), drop(T ,P,B)〉, . . . }

→ The planning problem is a compact representation for a
(possibly infinite) set of sequences

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 56 / 73

ö A 4

B

P T

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Motivation

Expressivity of Planning Formalisms

In the next slides:
Provide a measure that allows more insights
into the structures that can be represented

Consider the small STRIPS planning problem
given at the right, P shall be delivered at B
Model is a compact representation for a space of states
Actions define state transitions
Initial state and goal definition specifies a set of (transition)
sequences we are interested in
{〈pickup(T ,P,A),move(T ,A,B), drop(T ,P,B)〉,
〈pickup(T ,P,A), drop(T ,P,A), pickup(T ,P,A),move(T ,A,B), drop(T ,P,B)〉,
〈pickup(T ,P,A),move(T ,A,B),move(T ,B,A),move(T ,A,B), drop(T ,P,B)〉,
〈move(T ,A,B),move(T ,B,A), pickup(T ,P,A),move(T ,A,B), drop(T ,P,B)〉, . . . }

→ The planning problem is a compact representation for a
(possibly infinite) set of sequences

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 56 / 73

ö A 4

B

P T

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Motivation

Comparison to Formal Languages

Planning
Problem

Set of Solutions

Formal
Grammar

Set of Words
(Language)

?

Actions of a problem form the (terminal) symbols of a language
Solution criteria define valid words
Set of solutions forms the language of the problem

→ Which languages can be expressed using a certain formalism?

Question (given before):

What can be expressed with the planning formalism at hand?

Answer:

STRIPS can represent (a subset of the) regular languages

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 57 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Motivation

Comparison to Formal Languages

Planning
Problem

Set of Solutions

Formal
Grammar

Set of Words
(Language)

?

Actions of a problem form the (terminal) symbols of a language
Solution criteria define valid words
Set of solutions forms the language of the problem

→ Which languages can be expressed using a certain formalism?

Question (given before):

What can be expressed with the planning formalism at hand?

Answer:

STRIPS can represent (a subset of the) regular languages

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 57 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Motivation

Comparison to Formal Languages

Planning
Problem

Set of Solutions

Formal
Grammar

Set of Words
(Language)

?

Actions of a problem form the (terminal) symbols of a language
Solution criteria define valid words
Set of solutions forms the language of the problem

→ Which languages can be expressed using a certain formalism?

Question (given before):

What can be expressed with the planning formalism at hand?

Answer:

STRIPS can represent (a subset of the) regular languages

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 57 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Motivation

Comparison to Formal Languages

Planning
Problem

Set of Solutions

Formal
Grammar

Set of Words
(Language)

?

Actions of a problem form the (terminal) symbols of a language
Solution criteria define valid words
Set of solutions forms the language of the problem

→ Which languages can be expressed using a certain formalism?

Question (given before):

What can be expressed with the planning formalism at hand?

Answer:

STRIPS can represent (a subset of the) regular languages
Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 57 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Motivation

Expressivity via Comparison to Formal Languages

Chomsky hierarchy as reference framework

Corresponding problems from planning and formal languages
Plan Existence and Emptiness Problem
Plan Verification and Word Problem
Plan Recognition and Prefix Problem

Representation blow-up is not considered
Theoretical approach to assess expressivity
Measures expressivity, not computational complexity

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 58 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Motivation

Expressivity via Comparison to Formal Languages

Chomsky hierarchy as reference framework
Corresponding problems from planning and formal languages

Plan Existence and Emptiness Problem
Plan Verification and Word Problem
Plan Recognition and Prefix Problem

Representation blow-up is not considered
Theoretical approach to assess expressivity
Measures expressivity, not computational complexity

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 58 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Motivation

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACHT N−T I

REG

REG = SCE

CFL

CFL = HT N−ORD
HT N−NOOP
HT N

CSL

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 59 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Language of STRIPS with Conditional Effects

Theorem: STRIPS with conditional effects (SCE) is equivalent to the
regular languages

Proof: (to show)

For every SCE planning problem, there is an equivalent regular
language

For every regular language, there is a SCE problem generating it

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 60 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Language of STRIPS with Conditional Effects

Theorem: STRIPS with conditional effects (SCE) is equivalent to the
regular languages

Proof: (to show)

For every SCE planning problem, there is an equivalent regular
language

For every regular language, there is a SCE problem generating it

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 60 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Language of STRIPS with Conditional Effects

Let P = (V ,A, s0, g) be a planning problem
We define a Deterministic Finite Automaton (Σ,S, d , i, F) with

Σ is its input alphabet
S its set of states
d : S × Σ→ S its state-transition function
i its initial state
F its set of final states

We define
Σ = A
S = 2V

i contains exactly the literals that hold in s0

Every state including the literals in g is included in F

d(s, a) =

{
s′, iff (τ(a, s) ∧ γ(a, s) = s′)

undefined , else

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 61 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Language of STRIPS with Conditional Effects

Let P = (V ,A, s0, g) be a planning problem
We define a Deterministic Finite Automaton (Σ,S, d , i, F) with

Σ is its input alphabet
S its set of states
d : S × Σ→ S its state-transition function
i its initial state
F its set of final states

We define
Σ = A
S = 2V

i contains exactly the literals that hold in s0

Every state including the literals in g is included in F

d(s, a) =

{
s′, iff (τ(a, s) ∧ γ(a, s) = s′)

undefined , else

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 61 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton

We define a planning problem P = (V ,A, s0, g)

V = S ∪ {g} and g 6∈ S
s0 = {i}, g ∈ s0 iff i ∈ F
A equals the alphabet Σ

∀a ∈ A : prec(a)

= ∅

add(a)

= {({s} → {s′}

∪ G′

) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 62 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton
We define a planning problem P = (V ,A, s0, g)

V = S ∪ {g} and g 6∈ S
s0 = {i}, g ∈ s0 iff i ∈ F
A equals the alphabet Σ

∀a ∈ A : prec(a)

= ∅

add(a)

= {({s} → {s′}

∪ G′

) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 62 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton
We define a planning problem P = (V ,A, s0, g)

V = S ∪ {g} and g 6∈ S

s0 = {i}, g ∈ s0 iff i ∈ F
A equals the alphabet Σ

∀a ∈ A : prec(a)

= ∅

add(a)

= {({s} → {s′}

∪ G′

) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 62 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton
We define a planning problem P = (V ,A, s0, g)

V = S ∪ {g} and g 6∈ S
s0 = {i},

g ∈ s0 iff i ∈ F
A equals the alphabet Σ

∀a ∈ A : prec(a)

= ∅

add(a)

= {({s} → {s′}

∪ G′

) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 62 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton
We define a planning problem P = (V ,A, s0, g)

V = S ∪ {g} and g 6∈ S
s0 = {i}, g ∈ s0 iff i ∈ F

A equals the alphabet Σ

∀a ∈ A : prec(a)

= ∅

add(a)

= {({s} → {s′}

∪ G′

) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 62 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton
We define a planning problem P = (V ,A, s0, g)

V = S ∪ {g} and g 6∈ S
s0 = {i}, g ∈ s0 iff i ∈ F
A equals the alphabet Σ

∀a ∈ A : prec(a)

= ∅

add(a)

= {({s} → {s′}

∪ G′

) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 62 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton
We define a planning problem P = (V ,A, s0, g)

V = S ∪ {g} and g 6∈ S
s0 = {i}, g ∈ s0 iff i ∈ F
A equals the alphabet Σ

∀a ∈ A : prec(a)

= ∅

add(a)

= {({s} → {s′}

∪ G′

) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 62 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton
We define a planning problem P = (V ,A, s0, g)

V = S ∪ {g} and g 6∈ S
s0 = {i}, g ∈ s0 iff i ∈ F
A equals the alphabet Σ

∀a ∈ A : prec(a) = ∅
add(a)

= {({s} → {s′}

∪ G′

) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 62 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton
We define a planning problem P = (V ,A, s0, g)

V = S ∪ {g} and g 6∈ S
s0 = {i}, g ∈ s0 iff i ∈ F
A equals the alphabet Σ

∀a ∈ A : prec(a) = ∅
add(a) = {({s} → {s′}

∪ G′

) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 62 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton
We define a planning problem P = (V ,A, s0, g)

V = S ∪ {g} and g 6∈ S
s0 = {i}, g ∈ s0 iff i ∈ F
A equals the alphabet Σ

∀a ∈ A : prec(a) = ∅
add(a) = {({s} → {s′} ∪ G′) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 62 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton
We define a planning problem P = (V ,A, s0, g)

V = S ∪ {g} and g 6∈ S
s0 = {i}, g ∈ s0 iff i ∈ F
A equals the alphabet Σ

∀a ∈ A : prec(a) = ∅
add(a) = {({s} → {s′} ∪ G′) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a)

= {(∅ → V)}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 62 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Language of STRIPS with Conditional Effects

Let (Σ,S, d , i, F) be a Deterministic Finite Automaton
We define a planning problem P = (V ,A, s0, g)

V = S ∪ {g} and g 6∈ S
s0 = {i}, g ∈ s0 iff i ∈ F
A equals the alphabet Σ

∀a ∈ A : prec(a) = ∅
add(a) = {({s} → {s′} ∪ G′) | d(s, a) = s′}

with G′ =

{
{g}, if s′ ∈ F

∅, else

del(a) = {(∅ → V)}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 62 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACHT N−T I

REG

REG = SCE

CFL

CFL = HT N−ORD
HT N−NOOP
HT N

CSL

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 63 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACHT N−T I

REG

REG = SCE
CFL

CFL = HT N−ORD
HT N−NOOP
HT N

CSL

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 63 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Totally Ordered HTN Planning Problems

Decomposition in totally ordered HTN planning problems is very
similar to rule application in context-free grammars

A

B Dc A 7→ BcD

The encoding of (totally ordered) HTN decomposition as
(context-free) grammar rules and vice versa is straightforward

Constraints introduced by preconditions and effects can be
treated via intersection with a regular language

→ HT N−ORD = CFL

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 64 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Totally Ordered HTN Planning Problems

Decomposition in totally ordered HTN planning problems is very
similar to rule application in context-free grammars

A

B Dc A 7→ BcD

The encoding of (totally ordered) HTN decomposition as
(context-free) grammar rules and vice versa is straightforward

Constraints introduced by preconditions and effects can be
treated via intersection with a regular language

→ HT N−ORD = CFL

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 64 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Totally Ordered HTN Planning Problems

Decomposition in totally ordered HTN planning problems is very
similar to rule application in context-free grammars

A

B Dc A 7→ BcD

The encoding of (totally ordered) HTN decomposition as
(context-free) grammar rules and vice versa is straightforward

Constraints introduced by preconditions and effects can be
treated via intersection with a regular language

→ HT N−ORD = CFL

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 64 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACHT N−T I

REG

REG = SCE
CFL

CFL = HT N−ORD
HT N−NOOP
HT N

CSL

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 65 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACHT N−T I

REG

REG = SCE

CFL

CFL = HT N−ORD

HT N−NOOP
HT N

CSL

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 65 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−AC

HT N−T I

REG

REG = SCE

CFL

CFL = HT N−ORD

HT N−NOOP
HT N

CSL

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 65 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Expressivity via Comparison to Formal Languages

ST RIPS

HT N−ACHT N−T I

REG

REG = SCE

CFL

CFL = HT N−ORD

HT N−NOOP
HT N

CSL

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 65 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACHT N−T I

REG

REG = SCE

CFL

CFL = HT N−ORD

HT N−NOOP
HT N

CSL

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 65 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Noop HTN Planning Problems

Subtasks of the problem’s methods may be partially ordered

First class we look at:

HT N−NOOP – actions have no preconditions and effects

Can a partially ordered method be transfered to a set of totally
ordered methods?

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 66 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Noop HTN Planning Problems

Subtasks of the problem’s methods may be partially ordered

First class we look at:

HT N−NOOP – actions have no preconditions and effects

Can a partially ordered method be transfered to a set of totally
ordered methods?

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 66 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Noop HTN Planning Problems

Subtasks of the problem’s methods may be partially ordered

First class we look at:

HT N−NOOP – actions have no preconditions and effects

Can a partially ordered method be transfered to a set of totally
ordered methods?

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 66 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Noop HTN Planning Problems

HTN Grammar
E

F G

a b c d

E 7→ FG

E 7→ GF

F 7→ ab

G 7→ cd

Word 1 cdab X Word 2 acbd X

ab||cd {abcd} ∪ {cdab}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 67 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Noop HTN Planning Problems

HTN Grammar
E

F G

a b c d

E 7→ FG

E 7→ GF

F 7→ ab

G 7→ cd

Word 1 cdab

X Word 2 acbd X

ab||cd {abcd} ∪ {cdab}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 67 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Noop HTN Planning Problems

HTN Grammar
E

F G

a b c d

E 7→ FG

E 7→ GF

F 7→ ab

G 7→ cd

Word 1 cdab X

Word 2 acbd X

ab||cd {abcd} ∪ {cdab}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 67 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Noop HTN Planning Problems

HTN Grammar
E

F G

a b c d

E 7→ FG

E 7→ GF

F 7→ ab

G 7→ cd

Word 1 cdab X Word 2 acbd

X

ab||cd {abcd} ∪ {cdab}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 67 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Noop HTN Planning Problems

HTN Grammar
E

F G

a b c d

E 7→ FG

E 7→ GF

F 7→ ab

G 7→ cd

Word 1 cdab X Word 2 acbd X

ab||cd {abcd} ∪ {cdab}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 67 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Noop HTN Planning Problems

HTN Grammar
E

F G

a b c d

E 7→ FG

E 7→ GF

F 7→ ab

G 7→ cd

Word 1 cdab X Word 2 acbd X

ab||cd {abcd} ∪ {cdab}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 67 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Noop HTN Planning Problems

The HTN depicted below generates the language anbn||cmdm

Using the Pumping Lemma for context-free languages, it can be
shown that this language is not context-free

→ CFL (HT N−NOOP

E

F

F

G

Ga b c da b c d

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 68 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Noop HTN Planning Problems

The HTN depicted below generates the language anbn||cmdm

Using the Pumping Lemma for context-free languages, it can be
shown that this language is not context-free

→ CFL (HT N−NOOP
E

F

F

G

Ga b c da b c d

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 68 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACHT N−T I

REG

REG = SCE

CFL

CFL = HT N−ORD

HT N−NOOP
HT N

CSL

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 69 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACHT N−T I

REG

REG = SCE

CFL

CFL = HT N−ORD
HT N−NOOP

HT N

CSL

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 69 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Full HTN Planning Problems

For every HTN there is a linear space-bounded Turing machine
that decides its word problem

→ HT N ⊆ CSL

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 70 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Full HTN Planning Problems

For every HTN there is a linear space-bounded Turing machine
that decides its word problem

→ HT N ⊆ CSL

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 70 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACHT N−T I

REG

REG = SCE

CFL

CFL = HT N−ORD
HT N−NOOP

HT N

CSL

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 71 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Expressivity via Comparison to Formal Languages

ST RIPS
HT N−ACHT N−T I

REG

REG = SCE

CFL

CFL = HT N−ORD
HT N−NOOP
HT N
CSL

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 71 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Expressivity via Comparison to Formal Languages

Chomsky hierarchy as reference framework
Corresponding problems from planning and formal languages

Plan Existence and Emptiness Problem
Plan Verification and Word Problem
Plan Recognition and Prefix Problem

Representation blow-up is not considered
Theoretical approach to assess expressivity
Measures expressivity, not computational complexity

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 72 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Expressivity via Comparison to Formal Languages

Chomsky hierarchy as reference framework
Corresponding problems from planning and formal languages

Plan Existence and Emptiness Problem
Plan Verification and Word Problem
Plan Recognition and Prefix Problem

Representation blow-up is not considered
Theoretical approach to assess expressivity
Measures expressivity, not computational complexity

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 72 / 73

About the Tutorial Introduction Problem Formalization Plan Existence Problem Expressivity Analysis

Analysis of Common Planning Formalisms

Thank You for Your Attention!

Thank you for your attention!

Are there questions?

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 73 / 73

	About the Tutorial
	Target Audience
	Goals of the Tutorial
	Outline

	Introduction
	Non-Hierarchical Classical Planning
	Hierarchical Planning – Motivation

	Problem Formalization
	Basic Problem Definition
	Formalization Choices in HTN Planning

	Plan Existence Problem
	Introduction
	Complexity of the General Case
	Problem Classes
	Plan Existence Problem of TIHTN Planning
	Totally Ordered HTN Planning
	Acyclic Planning Problems
	Regular Problems
	Tail-recursive Problems
	Complexity Results

	Expressivity Analysis
	Motivation
	Analysis of Common Planning Formalisms

