
Solving Techniques Heuristics Excursion

Tutorial: An Introduction to Hierarchical Task
Network (HTN) Planning

Pascal Bercher and Daniel Höller

Institute of Artificial Intelligence,
Ulm University, Germany

June 25th, ICAPS 2018 (Delft)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 1 / 62

Solving Techniques Heuristics Excursion

Overview Part II

Solving HTN Planning Problems

Search-based Approaches
Plan Space Search
Progression Search

Compilation-based Approaches
Compilations to STRIPS/ADL
Compilations to SAT

Heuristics for Heuristic Search
TDG-based Heuristics
Relaxed Composition Heuristics

Excursion

Further Hierarchical Planning Formalisms

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 2 / 62

Solving Techniques Heuristics Excursion

Example Domain

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 3 / 62

ö A 4

B

P1 T1 D

ö C 4P2 T2

deliver(p, l2)

get-to(v , l1) pick -up(v , l1, p) get-to(v , l2) drop(v , l2, p)

m-deliver(p, l1, l2, v)

get-to(v , l2)

drive(v , l1, l2)

m-direct(v , l1, l2)

l1 6= l2

get-to(v , l2)

get-to(v , l1) drive(v , l1, l2)

m-via(v , l1, l2)

l1 6= l2

get-to(v , l)

no-op()

m-noop(v , l)

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Overview Part II

Solving HTN Planning Problems

Search-based Approaches
Plan Space Search
Progression Search

Compilation-based Approaches
Compilations to STRIPS/ADL
Compilations to SAT

Heuristics for Heuristic Search
TDG-based Heuristics
Relaxed Composition Heuristics

Excursion

Further Hierarchical Planning Formalisms

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 4 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Plan Space-based Search – Basic Characteristics

Search bases upon Partial-Order Causal-Link (POCL) planning
– extended to deal with task decomposition

Search nodes are partially ordered partial plans, i.e., they get
refined until a search node corresponding to a solution plan is
generated
Elements of the partial plan preventing it from being a solution
are represented as so-called flaws:

compound task flaw t : the task t is compound, i.e., not
decomposed yet
open precondition flaw (t, oc): the precondition oc of the task t is
still open or unprotected, i.e., no causal link protects it yet
causal treat flaw t (t ′, c, t ′′): there is a causal link between t ′ and
t ′′ protecting the condition c and the ordering constraints allow t to
be ordered between t ′ and t ′′, i.e., t ′ < t < t ′′ – and c is a delete
effect of t .

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 5 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Plan Space-based Search – Basic Characteristics

Search bases upon Partial-Order Causal-Link (POCL) planning
– extended to deal with task decomposition

Search nodes are partially ordered partial plans, i.e., they get
refined until a search node corresponding to a solution plan is
generated

Elements of the partial plan preventing it from being a solution
are represented as so-called flaws:

compound task flaw t : the task t is compound, i.e., not
decomposed yet
open precondition flaw (t, oc): the precondition oc of the task t is
still open or unprotected, i.e., no causal link protects it yet
causal treat flaw t (t ′, c, t ′′): there is a causal link between t ′ and
t ′′ protecting the condition c and the ordering constraints allow t to
be ordered between t ′ and t ′′, i.e., t ′ < t < t ′′ – and c is a delete
effect of t .

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 5 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Plan Space-based Search – Basic Characteristics

Search bases upon Partial-Order Causal-Link (POCL) planning
– extended to deal with task decomposition

Search nodes are partially ordered partial plans, i.e., they get
refined until a search node corresponding to a solution plan is
generated
Elements of the partial plan preventing it from being a solution
are represented as so-called flaws:

compound task flaw t : the task t is compound, i.e., not
decomposed yet
open precondition flaw (t, oc): the precondition oc of the task t is
still open or unprotected, i.e., no causal link protects it yet
causal treat flaw t (t ′, c, t ′′): there is a causal link between t ′ and
t ′′ protecting the condition c and the ordering constraints allow t to
be ordered between t ′ and t ′′, i.e., t ′ < t < t ′′ – and c is a delete
effect of t .

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 5 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Plan Space-based Search – Basic Characteristics

Search bases upon Partial-Order Causal-Link (POCL) planning
– extended to deal with task decomposition

Search nodes are partially ordered partial plans, i.e., they get
refined until a search node corresponding to a solution plan is
generated
Elements of the partial plan preventing it from being a solution
are represented as so-called flaws:

compound task flaw t : the task t is compound, i.e., not
decomposed yet

open precondition flaw (t, oc): the precondition oc of the task t is
still open or unprotected, i.e., no causal link protects it yet
causal treat flaw t (t ′, c, t ′′): there is a causal link between t ′ and
t ′′ protecting the condition c and the ordering constraints allow t to
be ordered between t ′ and t ′′, i.e., t ′ < t < t ′′ – and c is a delete
effect of t .

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 5 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Plan Space-based Search – Basic Characteristics

Search bases upon Partial-Order Causal-Link (POCL) planning
– extended to deal with task decomposition

Search nodes are partially ordered partial plans, i.e., they get
refined until a search node corresponding to a solution plan is
generated
Elements of the partial plan preventing it from being a solution
are represented as so-called flaws:

compound task flaw t : the task t is compound, i.e., not
decomposed yet
open precondition flaw (t, oc): the precondition oc of the task t is
still open or unprotected, i.e., no causal link protects it yet

causal treat flaw t (t ′, c, t ′′): there is a causal link between t ′ and
t ′′ protecting the condition c and the ordering constraints allow t to
be ordered between t ′ and t ′′, i.e., t ′ < t < t ′′ – and c is a delete
effect of t .

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 5 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Plan Space-based Search – Basic Characteristics

Search bases upon Partial-Order Causal-Link (POCL) planning
– extended to deal with task decomposition

Search nodes are partially ordered partial plans, i.e., they get
refined until a search node corresponding to a solution plan is
generated
Elements of the partial plan preventing it from being a solution
are represented as so-called flaws:

compound task flaw t : the task t is compound, i.e., not
decomposed yet
open precondition flaw (t, oc): the precondition oc of the task t is
still open or unprotected, i.e., no causal link protects it yet
causal treat flaw t (t ′, c, t ′′): there is a causal link between t ′ and
t ′′ protecting the condition c and the ordering constraints allow t to
be ordered between t ′ and t ′′, i.e., t ′ < t < t ′′ – and c is a delete
effect of t .

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 5 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Flaws in Partial Plans

get-to(T1,B)

Modifications for compound task flaws:

Decompose the compound task (one modification for each
method)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 6 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Flaws in Partial Plans

pick-up(T1,A,P1)
in(P1,T1)
¬at(P1,A)

at(T1,A)
at(P1,A)

Modifications for open precondition flaws:

Insert a causal link from existing plan step (one modification for
each possible producer)

Decompose a compound task if it has a sub task with a
compatible effect (one modification for each method that has a
compatible sub task)

Insert a causal link from a newly inserted task (one modification
for each possible producer) – only if task insertion is allowed!

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 6 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Flaws in Partial Plans

pick-up(T1,A,P1)
in(P1,T1)
¬at(P1,A)

at(T1,A)
at(P1,A)

Modifications for open precondition flaws:

Insert a causal link from existing plan step (one modification for
each possible producer)

Decompose a compound task if it has a sub task with a
compatible effect (one modification for each method that has a
compatible sub task)

Insert a causal link from a newly inserted task (one modification
for each possible producer) – only if task insertion is allowed!

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 6 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Flaws in Partial Plans

pick-up(T1,A,P1)
in(P1,T1)
¬at(P1,A)

at(T1,A)
at(P1,A)

Modifications for open precondition flaws:

Insert a causal link from existing plan step (one modification for
each possible producer)

Decompose a compound task if it has a sub task with a
compatible effect (one modification for each method that has a
compatible sub task)

Insert a causal link from a newly inserted task (one modification
for each possible producer) – only if task insertion is allowed!

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 6 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Flaws in Partial Plans

pick-up(T1,A,P1)
in(P1,T1)
¬at(P1,A)

at(T1,A)
at(P1,A)

Modifications for open precondition flaws:

Insert a causal link from existing plan step (one modification for
each possible producer)

Decompose a compound task if it has a sub task with a
compatible effect (one modification for each method that has a
compatible sub task)

Insert a causal link from a newly inserted task (one modification
for each possible producer) – only if task insertion is allowed!

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 6 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Flaws in Partial Plans

pick-up(T1,A,P1)
in(P1,T1)
¬at(P1,A)

at(T1,A)
at(P1,A)

drive(T1,A,B)
at(T1,B)
¬at(T1,A)

at(T1,A)
road(A,B)

Modifications for causal threat flaws:

Move the threatening task before the producer of the threatened
link, called demotion (not possible here)

Move the threatening task behind the consumer of the threatened
link, called promotion

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 6 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Flaws in Partial Plans

pick-up(T1,A,P1)
in(P1,T1)
¬at(P1,A)

at(T1,A)
at(P1,A)

drive(T1,A,B)
at(T1,B)
¬at(T1,A)

at(T1,A)
road(A,B)

Modifications for causal threat flaws:

Move the threatening task before the producer of the threatened
link, called demotion (not possible here)

Move the threatening task behind the consumer of the threatened
link, called promotion

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 6 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Flaws in Partial Plans

pick-up(T1,A,P1)
in(P1,T1)
¬at(P1,A)

at(T1,A)
at(P1,A)

drive(T1,A,B)
at(T1,B)
¬at(T1,A)

at(T1,A)
road(A,B)

<

Modifications for causal threat flaws:

Move the threatening task before the producer of the threatened
link, called demotion (not possible here)

Move the threatening task behind the consumer of the threatened
link, called promotion

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 6 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Plan Space-based Search – Basic Characteristics (Cont’d)

Partial plans (as well as solutions) are only partially ordered, thus
compactly representing many linearizations

Search works both top-down (decomposition of compound tasks)
as well as backwards (goal-directed causal link establishment)
Search works in a two-step way:

Select a most-promising plan (via standard search strategies)
Then, select a flaw (this is not(!) a backtrack point) and branch
over all possibilities to resolve it

Follows the principle of least commitment

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 7 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Plan Space-based Search – Basic Characteristics (Cont’d)

Partial plans (as well as solutions) are only partially ordered, thus
compactly representing many linearizations

Search works both top-down (decomposition of compound tasks)
as well as backwards (goal-directed causal link establishment)

Search works in a two-step way:

Select a most-promising plan (via standard search strategies)
Then, select a flaw (this is not(!) a backtrack point) and branch
over all possibilities to resolve it

Follows the principle of least commitment

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 7 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Plan Space-based Search – Basic Characteristics (Cont’d)

Partial plans (as well as solutions) are only partially ordered, thus
compactly representing many linearizations

Search works both top-down (decomposition of compound tasks)
as well as backwards (goal-directed causal link establishment)
Search works in a two-step way:

Select a most-promising plan (via standard search strategies)

Then, select a flaw (this is not(!) a backtrack point) and branch
over all possibilities to resolve it

Follows the principle of least commitment

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 7 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Plan Space-based Search – Basic Characteristics (Cont’d)

Partial plans (as well as solutions) are only partially ordered, thus
compactly representing many linearizations

Search works both top-down (decomposition of compound tasks)
as well as backwards (goal-directed causal link establishment)
Search works in a two-step way:

Select a most-promising plan (via standard search strategies)
Then, select a flaw (this is not(!) a backtrack point) and branch
over all possibilities to resolve it

Follows the principle of least commitment

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 7 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 8 / 62

Initial partial plan Pinit equals the
initial task network preceded by an
artificial task encoding the initial state

Search nodes contain partial plans
of the form (T ,≺, α,CL)

Fringe is sorted according to some
heuristic

F is a the set of all flaws of the
current partial plan

FlawSel selects (not a backtrack
point!) a flaw according to a flaw
selection strategy

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 8 / 62

Initial partial plan Pinit equals the
initial task network preceded by an
artificial task encoding the initial state

Search nodes contain partial plans
of the form (T ,≺, α,CL)

Fringe is sorted according to some
heuristic

F is a the set of all flaws of the
current partial plan

FlawSel selects (not a backtrack
point!) a flaw according to a flaw
selection strategy

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 8 / 62

Initial partial plan Pinit equals the
initial task network preceded by an
artificial task encoding the initial state

Search nodes contain partial plans
of the form (T ,≺, α,CL)

Fringe is sorted according to some
heuristic

F is a the set of all flaws of the
current partial plan

FlawSel selects (not a backtrack
point!) a flaw according to a flaw
selection strategy

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 8 / 62

Initial partial plan Pinit equals the
initial task network preceded by an
artificial task encoding the initial state

Search nodes contain partial plans
of the form (T ,≺, α,CL)

Fringe is sorted according to some
heuristic

F is a the set of all flaws of the
current partial plan

FlawSel selects (not a backtrack
point!) a flaw according to a flaw
selection strategy

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 8 / 62

Initial partial plan Pinit equals the
initial task network preceded by an
artificial task encoding the initial state

Search nodes contain partial plans
of the form (T ,≺, α,CL)

Fringe is sorted according to some
heuristic

F is a the set of all flaws of the
current partial plan

FlawSel selects (not a backtrack
point!) a flaw according to a flaw
selection strategy

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 8 / 62

Initial partial plan Pinit equals the
initial task network preceded by an
artificial task encoding the initial state

Search nodes contain partial plans
of the form (T ,≺, α,CL)

Fringe is sorted according to some
heuristic

F is a the set of all flaws of the
current partial plan

FlawSel selects (not a backtrack
point!) a flaw according to a flaw
selection strategy

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

deliver (P1,B)

deliver (P2,D)

...

...
...

...
...

Flaws Modifications

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

deliver (P1,B)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)
< <<

deliver (P2,D)

get-to(T2,C) pick-up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)
< < <

...

...
...

...
...

Flaws Modifications
compound task: deliver(P1,B) decompose with m-deliver(P1,A,B, T1)
compound task: deliver(P2,D) decompose with m-deliver(P2,C,D, T2)

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

deliver (P1,B)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)
< <<

deliver (P2,D)

get-to(T2,C) pick-up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)
< < <

...

...
...

...
...

Flaws Modifications
compound task: deliver(P1,B) decompose with m-deliver(P1,A,B, T1)
compound task: deliver(P2,D) decompose with m-deliver(P2,C,D, T2)

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

deliver (P2,D)

...

...
...

...
...

Flaws Modifications
compound task: deliver(P2,D) decompose with m-deliver(P2,C,D, T2)
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: at(P1,A) of pick-up(T1,A,P1) insert causal link from init
compound task: get-to(T1,B) decompose with m-direct(T1,A,B)

decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

open prec.: in(P1, T1) of drop(T1,B,P1) insert causal link from pickup(T1,A,P1)

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

deliver (P2,D)

...

...
...

...
...

...

Flaws Modifications
compound task: deliver(P2,D) decompose with m-deliver(P2,C,D, T2)
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: at(P1,A) of pick-up(T1,A,P1) insert causal link from init
compound task: get-to(T1,B) decompose with m-direct(T1,A,B)

decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

open prec.: in(P1, T1) of drop(T1,B,P1) insert causal link from pickup(T1,A,P1)

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

deliver (P2,D)

...

...
...

...
...

...

Flaws Modifications
compound task: deliver(P2,D) decompose with m-deliver(P2,C,D, T2)
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

compound task: get-to(T1,B) decompose with m-direct(T1,A,B)
decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

open prec.: in(P1, T1) of drop(T1,B,P1) insert causal link from pickup(T1,A,P1)

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

deliver (P2,D)

...

...
...

...
...

...

Flaws Modifications
compound task: deliver(P2,D) decompose with m-deliver(P2,C,D, T2)
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

compound task: get-to(T1,B) decompose with m-direct(T1,A,B)
decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

open prec.: in(P1, T1) of drop(T1,B,P1) insert causal link from pickup(T 1,A,P1)

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

deliver (P2,D)

...

...
...

...
...

...

Flaws Modifications
compound task: deliver(P2,D) decompose with m-deliver(P2,C,D, T2)
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

compound task: get-to(T1,B) decompose with m-direct(T1,A,B)
decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

deliver (P2,D)

...

...
...

...
...

...

Flaws Modifications
compound task: deliver(P2,D) decompose with m-deliver(P2,C,D, T2)
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

compound task: get-to(T1,B) decompose with m-direct(T1,A,B)
decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

get-to(T2,C) pick-up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

< < <

...

...
...

...
...

...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

compound task: get-to(T1,B) decompose with m-direct(T1,A,B)
decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

.

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

get-to(T2,C) pick-up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

< < <

...

...
...

...
...

...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

compound task: get-to(T1,B) decompose with m-direct(T1,A,B)
decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

.

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

get-to(T2,C) pick-up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

< < <

...

...
...

...
...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

compound task: get-to(T1,B) decompose with m-direct(T1,A,B)
decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

.

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

< <<

get-to(T2,C) pick-up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

< < <

...

...
...

...
...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

compound task: get-to(T1,B) decompose with m-direct(T1,A,B)
decompose with m-via(T1,A,B)
decompose with m-noop(T1,B)

open prec.: at(T1,B) of drop(T1,B,P1) decompose get-to(T1,B) with m-direct(T1,A,B)
decompose get-to(T1,B) with m-via(T1,A,B)

.

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) drop(T1,B,P1)

<

drive(T1,A,B)

< <

get-to(T2,C) pick-up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

< < <

...

...
...

...
...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: road(A,B) of drive(T1,A,B) insert causal link from init
.

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) drop(T1,B,P1)

<

drive(T1,A,B)

< <

get-to(T2,C) pick-up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

< < <

...

...
...

...
...

...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: road(A,B) of drive(T1,A,B) insert causal link from init
.

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) drop(T1,B,P1)

<

drive(T1,A,B)

< <

get-to(T2,C) pick-up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

< < <

...

...
...

...
...

...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

.

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) drop(T1,B,P1)

<

drive(T1,A,B)

< <

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...

...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

.

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) drop(T1,B,P1)

<

drive(T1,A,B)

< <

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

.

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) drop(T1,B,P1)

<

drive(T1,A,B)

< <

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

.

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

drive(T1,B,A)

<

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...

Flaws Modifications
open prec: at(T1,B) of drive(T1,B,A) —
open prec.: road(B,A) of drive(T1,B,A) insert causal link from init
open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init

insert causal link from drive(T1,B,A)
open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init

insert causal link from drive(T1,B,A)
.

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

drive(T1,B,A)

<

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...

Flaws Modifications
open prec: at(T1,B) of drive(T1,B,A) —
open prec.: road(B,A) of drive(T1,B,A) insert causal link from init
open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init

insert causal link from drive(T1,B,A)
open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init

insert causal link from drive(T1,B,A)
.

This partial plan can be discarded, because it has a flaw without modifications

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

get-to(T1,A) pick-up(T1,A,P1) drop(T1,B,P1)

<

drive(T1,A,B)

< <

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...

Flaws Modifications
compound task: get-to(T1,A) decompose with m-direct(T1,B,A)

decompose with m-via(T1,B,A)
decompose with m-noop(T1,A)

open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
decompose get-to(T1,A) with m-direct(T1,B,A)
decompose get-to(T1,A) with m-via(T1,B,A)

.

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

no-op()

<

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...

Flaws Modifications
open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
.

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

no-op()

<

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...
...

Flaws Modifications
open prec.: at(T1,A) of pick-up(T1,A,P1) insert causal link from init
open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
.

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

no-op()

<

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...
...

Flaws Modifications
open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
.

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

no-op()

<

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...
...

Flaws Modifications
open prec.: at(T1,A) of drive(T1,A,B) insert causal link from init
.

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

no-op()

<

get-to(T2,C) pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <<

...

...
...

...
...
...

Flaws Modifications
.

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

no-op()

<

pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <

no-op()

<

...

...
...

...
...
...

Flaws Modifications
.

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

no-op()

<

pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <

no-op()

<

...

...
...

...
...
...

Flaws Modifications
.

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Standard Plan Space-based Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 9 / 62

Input : fringe = {Pinit}
Output : A solution plan or fail.

1 while fringe 6= ∅ do
2 P := PlanSel(fringe)
3 F := FlawDet(P)
4 if F = ∅ then return P
5 f := FlawSel(F)
6 fringe := (fringe \ {P})
7 ∪Successors(P, f)

8 return fail

ö A 4

B

P1 T1 D

ö C 4P2 T2

at(T1,A)

at(P1,A)

road(B,A)

road(A,B)

at(T2,C)

at(P2,C)

road(D,C)

road(C,D)

pick-up(T1,A,P1) drop(T1,B,P1)drive(T1,A,B)

< <

no-op()

<

pick-up(T2,C,P2) drop(T2,D,P2)drive(T2,C,D)

< <

no-op()

<

...

...
...

...
...

Flaws Modifications

This partial plan has no flaws, so it is a solution and returned

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Plan Space-based Search – Properties

Plan Space-based search is sound

. . . and complete (completeness only depends on the plan
selection function (fringe sorting), but not on the flaw selection
function)

There is no current state during search (the initial state is never
changed)

Tasks are partially ordered and can be inserted anywhere in a
partial plan

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 10 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Plan Space-based Search – Properties

Plan Space-based search is sound

. . . and complete (completeness only depends on the plan
selection function (fringe sorting), but not on the flaw selection
function)

There is no current state during search (the initial state is never
changed)

Tasks are partially ordered and can be inserted anywhere in a
partial plan

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 10 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Plan Space-based Search – Properties

Plan Space-based search is sound

. . . and complete (completeness only depends on the plan
selection function (fringe sorting), but not on the flaw selection
function)

There is no current state during search (the initial state is never
changed)

Tasks are partially ordered and can be inserted anywhere in a
partial plan

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 10 / 62

Solving Techniques Heuristics Excursion

HTN Plan Space Search

Plan Space-based Search – Properties

Plan Space-based search is sound

. . . and complete (completeness only depends on the plan
selection function (fringe sorting), but not on the flaw selection
function)

There is no current state during search (the initial state is never
changed)

Tasks are partially ordered and can be inserted anywhere in a
partial plan

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 10 / 62

Solving Techniques Heuristics Excursion

HTN Progression Search

Overview Part II

Solving HTN Planning Problems

Search-based Approaches
Plan Space Search
Progression Search

Compilation-based Approaches
Compilations to STRIPS/ADL
Compilations to SAT

Heuristics for Heuristic Search
TDG-based Heuristics
Relaxed Composition Heuristics

Excursion

Further Hierarchical Planning Formalisms

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 11 / 62

Solving Techniques Heuristics Excursion

HTN Progression Search

Progression Search – Basic Characteristics

Only those (primitive or compound) tasks in a task network that
have no predecessor in the ordering relations are processed

Actions that are processed are removed from the network and
cause state transition

→ Search nodes contain the current task network and state

→ Commitment to the prefix of the solution during search

→ We are searching for an empty task network

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 12 / 62

Solving Techniques Heuristics Excursion

HTN Progression Search

Progression Search – Basic Characteristics

Only those (primitive or compound) tasks in a task network that
have no predecessor in the ordering relations are processed

Actions that are processed are removed from the network and
cause state transition

→ Search nodes contain the current task network and state

→ Commitment to the prefix of the solution during search

→ We are searching for an empty task network

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 12 / 62

Solving Techniques Heuristics Excursion

HTN Progression Search

Progression Search – Basic Characteristics

Only those (primitive or compound) tasks in a task network that
have no predecessor in the ordering relations are processed

Actions that are processed are removed from the network and
cause state transition

→ Search nodes contain the current task network and state

→ Commitment to the prefix of the solution during search

→ We are searching for an empty task network

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 12 / 62

Solving Techniques Heuristics Excursion

HTN Progression Search

Progression Search – Basic Characteristics

Only those (primitive or compound) tasks in a task network that
have no predecessor in the ordering relations are processed

Actions that are processed are removed from the network and
cause state transition

→ Search nodes contain the current task network and state

→ Commitment to the prefix of the solution during search

→ We are searching for an empty task network

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 12 / 62

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 13 / 62

Search nodes contain task network,
state, and solution prefix

Fringe is sorted according to some
heuristic

Goal test checks for empty task
network (maybe for a goal state)

Unconstrained tasks have no
predecessor

Action application removes node
and causes state transition

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 13 / 62

Search nodes contain task network,
state, and solution prefix

Fringe is sorted according to some
heuristic

Goal test checks for empty task
network (maybe for a goal state)

Unconstrained tasks have no
predecessor

Action application removes node
and causes state transition

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 13 / 62

Search nodes contain task network,
state, and solution prefix

Fringe is sorted according to some
heuristic

Goal test checks for empty task
network (maybe for a goal state)

Unconstrained tasks have no
predecessor

Action application removes node
and causes state transition

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 13 / 62

Search nodes contain task network,
state, and solution prefix

Fringe is sorted according to some
heuristic

Goal test checks for empty task
network (maybe for a goal state)

Unconstrained tasks have no
predecessor

Action application removes node
and causes state transition

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 13 / 62

Search nodes contain task network,
state, and solution prefix

Fringe is sorted according to some
heuristic

Goal test checks for empty task
network (maybe for a goal state)

Unconstrained tasks have no
predecessor

Action application removes node
and causes state transition

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 13 / 62

Search nodes contain task network,
state, and solution prefix

Fringe is sorted according to some
heuristic

Goal test checks for empty task
network (maybe for a goal state)

Unconstrained tasks have no
predecessor

Action application removes node
and causes state transition

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

pick -up(T1,A,P1) drop(T1,B,P1)

no-op()

deliver(P2,D)

pick -up(T2,C,P2) drop(T2,D,P2)

no-op() drive(T2,C,D)

...
...

...
...

...
...

...
...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)
m-deliver(P1,A,B, T1)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

pick -up(T2,C,P2) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

pick -up(T2,C,P2) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

pick -up(T1,A,P1) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)
m-deliver(P2,C,D, T2)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

pick -up(T1,A,P1) drop(T1,B,P1)

no-op() drive(T1,A,B)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

pick -up(T2,C,P2) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

get-to(T1,A)
m-noop(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

pick -up(T2,C,P2) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

pick -up(T2,C,P2) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

...
...

...
...

...
...

...
...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)
m-deliver(P2,C,D, T2)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

pick -up(T1,A,P1) drop(T1,B,P1)

no-op() drive(T1,A,B)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

pick -up(T1,A,P1) drop(T1,B,P1)

no-op() drive(T1,A,B)

get-to(T2,C)
m-noop(T2,C)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

pick -up(T1,A,P1) drop(T1,B,P1)

no-op() drive(T1,A,B)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺

≺ ≺

...
...

...
...

...
...

...
...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)
m-deliver(P1,A,B, T1)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

≺ ≺ ≺

...
...

...
...

...
...

...
...

=

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

≺ ≺ ≺

...
...

...

...
...

...
...

...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

get-to(T2,C)
m-noop(T2,C)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺ ≺ ≺

≺ ≺ ≺

...
...

...
...

...
...

...
...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺ ≺ ≺

≺

≺ ≺

...
...

...
...

...
...

...
...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

≺ ≺

...
...

...
...

...
...

...
...

π = (no-op())

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

get-to(T1,A)
m-noop(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

≺ ≺

...
...

...
...

...
...

...
...

π = (no-op())

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

≺ ≺

...
...

...
...

...
...

...
...

π = (no-op())

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

DP1ö 4T1

P2ö 4T2

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺

≺ ≺

...
...

...
...

...
...

...
...

π = (no-op(), no-op())

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

D4T1

P2ö 4T2

pick -up(T1,A,P1)

get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1))

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

D4T1

P2ö 4T2

pick -up(T1,A,P1)

get-to(T1,B)
m-direct(T1,A,B)

drop(T1,B,P1)

no-op()

drive(T1,A,B)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1))

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

D4T1

P2ö 4T2

pick -up(T1,A,P1)

drop(T1,B,P1)

no-op()

drive(T1,A,B)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1))

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

D

4T1 P2ö 4T2

pick -up(T1,A,P1)

drop(T1,B,P1)

no-op() drive(T1,A,B)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1), drive(T1,A,B))

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

D

4T1 4T2

pick -up(T1,A,P1)

drop(T1,B,P1)

no-op() drive(T1,A,B)

pick -up(T2,C,P2)

get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1), drive(T1,A,B),
pick -up(T2,C,P2))

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

D

4T1 4T2

pick -up(T1,A,P1)

drop(T1,B,P1)

no-op() drive(T1,A,B)

pick -up(T2,C,P2)

get-to(T2,D)
m-direct(T2,C,D)

drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1), drive(T1,A,B),
pick -up(T2,C,P2))

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

D

4T1 4T2

pick -up(T1,A,P1)

drop(T1,B,P1)

no-op() drive(T1,A,B)

pick -up(T2,C,P2)

drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1), drive(T1,A,B),
pick -up(T2,C,P2))

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

D

4T1

4T2

pick -up(T1,A,P1)

drop(T1,B,P1)

no-op() drive(T1,A,B)

pick -up(T2,C,P2)

drop(T2,D,P2)

no-op() drive(T2,C,D)

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1), drive(T1,A,B),
pick -up(T2,C,P2), drive(T2,C,D))

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

D

4T1

4T2P2ö

pick -up(T1,A,P1)

drop(T1,B,P1)

no-op() drive(T1,A,B)

pick -up(T2,C,P2) drop(T2,D,P2)

no-op() drive(T2,C,D)

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1), drive(T1,A,B),
pick -up(T2,C,P2), drive(T2,C,D), drop(T2,D,P2))

Solving Techniques Heuristics Excursion

HTN Progression Search

Standard Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 14 / 62

1 fringe← {(sI , tnI , ())}
2 while fringe 6= ∅ do

3 n← fringe.poll()

4 if n.isgoal then return n
5 U ← n.unconstrainedNodes

6 for t ∈ U do
7 if isPrimitive(t) then

8 n′ ← n.apply(t)
9 fringe.add(n′)

10 else
11 for m ∈ t.methods do

12 n′ ← n.decompose(t,m)

13 fringe.add(n′)
A

B C

D

4T1

4T2P2ö

P1ö

pick -up(T1,A,P1) drop(T1,B,P1)

no-op() drive(T1,A,B)

pick -up(T2,C,P2) drop(T2,D,P2)

no-op() drive(T2,C,D)

...
...

...
...

...
...

...
...
...

π = (no-op(), no-op(), pick -up(T1,A,P1), drive(T1,A,B),
pick -up(T2,C,P2), drive(T2,C,D), drop(T2,D,P2), drop(T1,B,P1))

Solving Techniques Heuristics Excursion

HTN Progression Search

Progression Search – Properties

Progression Search is sound . . .

. . . and complete

It maintains the current state during search

This has been used to control search via state-based
preconditions for methods

It is also useful for calculating heuristics

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 15 / 62

Solving Techniques Heuristics Excursion

HTN Progression Search

Progression Search – Properties

Progression Search is sound . . .

. . . and complete

It maintains the current state during search

This has been used to control search via state-based
preconditions for methods

It is also useful for calculating heuristics

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 15 / 62

Solving Techniques Heuristics Excursion

HTN Progression Search

Progression Search – Properties

Progression Search is sound . . .

. . . and complete

It maintains the current state during search

This has been used to control search via state-based
preconditions for methods

It is also useful for calculating heuristics

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 15 / 62

Solving Techniques Heuristics Excursion

HTN Progression Search

Improving Progression Search

Observation: In partially ordered models, standard progression
search searches parts of the search space more than once

This is due to branching (i.e. a non-deterministic choice) over
unconstrained compound tasks

When processing actions, the algorithm commits to an ordering
in the solution

The decision which task is decomposed implies no commitment
to the solution

The decision which method is used implies commitment to the
solution

→ For selection of the compound task, no branching is needed, we
can simply “pick” one and decompose it

→ The decision which method is used must be made via branching

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 16 / 62

Solving Techniques Heuristics Excursion

HTN Progression Search

Improving Progression Search

Observation: In partially ordered models, standard progression
search searches parts of the search space more than once

This is due to branching (i.e. a non-deterministic choice) over
unconstrained compound tasks

When processing actions, the algorithm commits to an ordering
in the solution

The decision which task is decomposed implies no commitment
to the solution

The decision which method is used implies commitment to the
solution

→ For selection of the compound task, no branching is needed, we
can simply “pick” one and decompose it

→ The decision which method is used must be made via branching

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 16 / 62

Solving Techniques Heuristics Excursion

HTN Progression Search

Improving Progression Search

Observation: In partially ordered models, standard progression
search searches parts of the search space more than once

This is due to branching (i.e. a non-deterministic choice) over
unconstrained compound tasks

When processing actions, the algorithm commits to an ordering
in the solution

The decision which task is decomposed implies no commitment
to the solution

The decision which method is used implies commitment to the
solution

→ For selection of the compound task, no branching is needed, we
can simply “pick” one and decompose it

→ The decision which method is used must be made via branching

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 16 / 62

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 17 / 62

Unconstrained tasks are split into
compound and primitive tasks

Action application is done via
branching

Only one compound task is
processed

Method application is done via
branching

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 17 / 62

Unconstrained tasks are split into
compound and primitive tasks

Action application is done via
branching

Only one compound task is
processed

Method application is done via
branching

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 17 / 62

Unconstrained tasks are split into
compound and primitive tasks

Action application is done via
branching

Only one compound task is
processed

Method application is done via
branching

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 17 / 62

Unconstrained tasks are split into
compound and primitive tasks

Action application is done via
branching

Only one compound task is
processed

Method application is done via
branching

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)

pick -up(T1,A,P1) drop(T1,B,P1)

no-op()

deliver(P2,D)

pick -up(T2,C,P2) drop(T2,D,P2)

no-op() drive(T2,C,D)

...
...

...
...

...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

DP1ö 4T1

P2ö 4T2

deliver(P1,B)
m-deliver(P1,A,B, T1)

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

pick -up(T2,C,P2) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

DP1ö 4T1

P2ö 4T2

get-to(T1,A) pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

pick -up(T2,C,P2) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

DP1ö 4T1

P2ö 4T2

get-to(T1,A)
m-noop(T1,A)

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

pick -up(T2,C,P2) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺ ≺

...
...

...
...

...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

DP1ö 4T1

P2ö 4T2

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)

pick -up(T2,C,P2) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

...
...

...
...

...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

DP1ö 4T1

P2ö 4T2

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

deliver(P2,D)

pick -up(T2,C,P2) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺...

...
...

...
...

π = (no-op())

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

DP1ö 4T1

P2ö 4T2

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

deliver(P2,D)
m-deliver(P2,C,D, T2)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

≺ ≺ ≺

...

...
...

...
...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

DP1ö 4T1

P2ö 4T2

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

≺ ≺ ≺

...

...
...

...
...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

DP1ö 4T1

P2ö 4T2

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺

≺ ≺ ≺

...
...

...
...

...

π = (no-op())

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

DP1ö 4T1

P2ö 4T2

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

get-to(T2,C)
m-noop(T2,C)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺

≺ ≺

≺ ≺ ≺

...
...

...
...

...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

DP1ö 4T1

P2ö 4T2

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺

≺ ≺

≺

≺ ≺

...
...

...
...

...

π = ()

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

DP1ö 4T1

P2ö 4T2

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺ ≺

≺

≺ ≺

...
...

...

...
...

π = (no-op())

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

DP1ö 4T1

P2ö 4T2

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

≺ ≺

...
...

...

...
...

π = (no-op())

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

DP1ö 4T1

P2ö 4T2

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺

≺ ≺

...
...

...
...

...

π = (no-op(), no-op())

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

DP1ö 4T1

4T2

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

pick -up(T2,C,P2)

get-to(T2,D) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺

≺

...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2))

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

DP1ö 4T1

4T2

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

pick -up(T2,C,P2)

get-to(T2,D)
m-direct(T2,C,D)

drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺

≺ ≺

≺

...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2))

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

DP1ö 4T1

4T2

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

pick -up(T2,C,P2)

drop(T2,D,P2)

no-op()

drive(T2,C,D)

≺

≺ ≺

≺

...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2))

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

DP1ö 4T1 4T2

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op()

drive(T1,A,B)

pick -up(T2,C,P2)

drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

≺ ≺...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2), drive(T2,C,D))

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

DP1ö 4T1 4T2

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

pick -up(T2,C,P2)

drop(T2,D,P2)

no-op() drive(T2,C,D)

≺ ≺...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2), drive(T2,C,D), no-op())

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

D4T1 4T2

pick -up(T1,A,P1)

get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

pick -up(T2,C,P2)

drop(T2,D,P2)

no-op() drive(T2,C,D)

≺...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2), drive(T2,C,D), no-op(),
pick -up(T1,A,P1))

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

D4T1 4T2P2ö

pick -up(T1,A,P1)

get-to(T1,B) drop(T1,B,P1)

no-op() drive(T1,A,B)

pick -up(T2,C,P2) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2), drive(T2,C,D), no-op(),
pick -up(T1,A,P1), drop(T2,D,P2))

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

D4T1 4T2P2ö

pick -up(T1,A,P1)

get-to(T1,B)
m-direct(T1,A,B)

drop(T1,B,P1)

no-op()

drive(T1,A,B)

pick -up(T2,C,P2) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2), drive(T2,C,D), no-op(),
pick -up(T1,A,P1), drop(T2,D,P2))

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

D4T1 4T2P2ö

pick -up(T1,A,P1)

drop(T1,B,P1)

no-op()

drive(T1,A,B)

pick -up(T2,C,P2) drop(T2,D,P2)

no-op() drive(T2,C,D)

≺

...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2), drive(T2,C,D), no-op(),
pick -up(T1,A,P1), drop(T2,D,P2))

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

D

4T1

4T2P2ö

pick -up(T1,A,P1)

drop(T1,B,P1)

no-op() drive(T1,A,B)

pick -up(T2,C,P2) drop(T2,D,P2)

no-op() drive(T2,C,D)

...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2), drive(T2,C,D), no-op(),
pick -up(T1,A,P1), drop(T2,D,P2), drive(T1,A,B))

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Algorithm

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 18 / 62

1 fringe← {(s0, tnI , ())}
2 while fringe 6= ∅ do
3 n← fringe.poll()
4 if n.isgoal then return n
5 (UC ,UP)← n.unconstrainedNodes

6 for t ∈ UP do
7 n′ ← n.apply(t)
8 fringe.add(n′)

9 t ← selectAbstractTask(UC)

10 for m ∈ t.methods do

11 n′ ← n.decompose(t,m)
12 fringe.add(n′) A

B C

D

4T1

4T2P2ö

P1ö

pick -up(T1,A,P1) drop(T1,B,P1)

no-op() drive(T1,A,B)

pick -up(T2,C,P2) drop(T2,D,P2)

no-op() drive(T2,C,D)

...
...

...
...

...

π = (no-op(), pick -up(T2,C,P2), drive(T2,C,D), no-op(),
pick -up(T1,A,P1), drop(T2,D,P2), drive(T1,A,B), drop(T1,B,P1)))

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Search – Properties

Improved version of progression search is still sound and
complete

Searching the search space more than once is avoided (to a
certain extend) but still possible

It may increase the progression bound necessary to solve the
problem (problematic for some planning systems)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 19 / 62

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Search – Properties

Improved version of progression search is still sound and
complete

Searching the search space more than once is avoided (to a
certain extend) but still possible

It may increase the progression bound necessary to solve the
problem (problematic for some planning systems)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 19 / 62

Solving Techniques Heuristics Excursion

HTN Progression Search

Improved Progression Search – Properties

Improved version of progression search is still sound and
complete

Searching the search space more than once is avoided (to a
certain extend) but still possible

It may increase the progression bound necessary to solve the
problem (problematic for some planning systems)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 19 / 62

Solving Techniques Heuristics Excursion

Compilation to STRIPS/ADL

Overview Part II

Solving HTN Planning Problems

Search-based Approaches
Plan Space Search
Progression Search

Compilation-based Approaches
Compilations to STRIPS/ADL
Compilations to SAT

Heuristics for Heuristic Search
TDG-based Heuristics
Relaxed Composition Heuristics

Excursion

Further Hierarchical Planning Formalisms

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 20 / 62

Solving Techniques Heuristics Excursion

Compilation to STRIPS/ADL

Translating HTN Problems to STRIPS/ADL

The basic idea is quite simple:

Translate the input (HTN) problem in to a classical planning
problem

Use a classical planning system to solve it

Compile classical solution back to one for the HTN problem

Approach:

Add a new part to the state that represents the current task
network
Simulate a progression search on this part of the state

Adapt original actions with respect to applicability and to maintain
the new state features
Add actions that simulate decomposition methods

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 21 / 62

Solving Techniques Heuristics Excursion

Compilation to STRIPS/ADL

Translating HTN Problems to STRIPS/ADL

The basic idea is quite simple:

Translate the input (HTN) problem in to a classical planning
problem

Use a classical planning system to solve it

Compile classical solution back to one for the HTN problem

Approach:

Add a new part to the state that represents the current task
network

Simulate a progression search on this part of the state
Adapt original actions with respect to applicability and to maintain
the new state features
Add actions that simulate decomposition methods

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 21 / 62

Solving Techniques Heuristics Excursion

Compilation to STRIPS/ADL

Translating HTN Problems to STRIPS/ADL

The basic idea is quite simple:

Translate the input (HTN) problem in to a classical planning
problem

Use a classical planning system to solve it

Compile classical solution back to one for the HTN problem

Approach:

Add a new part to the state that represents the current task
network
Simulate a progression search on this part of the state

Adapt original actions with respect to applicability and to maintain
the new state features
Add actions that simulate decomposition methods

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 21 / 62

Solving Techniques Heuristics Excursion

Compilation to STRIPS/ADL

HTN to STRIPS/ADL – Example

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 22 / 62

Introduce id variables: t0, t1, . . . , tb

Introduce new predicate for every task

,
represent current tn in the state

Modify existing actions

Add new actions simulating methods

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

deliver(P2,D)

≺ ≺

ppick-up(T1,A,P1, t2),
pget-to(T1,B, t3),
pdrop(T1,B,P1, t5),
pdeliver(P2,D, t4),
before(t2 , t3), before(t3 , t5)pick -up(T1,A,P1, t2)

pre :precs from domain,
ppick -up(T1,A,P1, t2),
∀ti ∈ {t0 . . . tb} : ¬before(ti , t2)

eff :effects from domain,
¬ppick-up(T1,A,P1, t2), free(t2)
∀ti ∈ {t0 . . . tb} : ¬before(t2 , ti)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

m-deliver(P2,C,D, T2)

m-deliver(P2,C,D, T2, t4, t1, t6, t7)
pre :pdeliver(P2,D, t4)

∀ti ∈ {t0 . . . tb} : ¬before(ti , t4)
free(t1), free(t6), free(t7)

eff :¬pdeliver(P2,D, t4)
pget-to(T2,C, t1)
ppick-up(T2,C,P2, t6)
pget-to(T2,D, t7)
pdrop(T2,D,P2, t4)
before(t1, t6), . . .¬free(t1), . . .

Solving Techniques Heuristics Excursion

Compilation to STRIPS/ADL

HTN to STRIPS/ADL – Example

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 22 / 62

Introduce id variables: t0, t1, . . . , tb

Introduce new predicate for every task,
represent current tn in the state

Modify existing actions

Add new actions simulating methods

tasks:

orderings:

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

deliver(P2,D)

≺ ≺
ppick-up(T1,A,P1, t2),
pget-to(T1,B, t3),
pdrop(T1,B,P1, t5),
pdeliver(P2,D, t4),
before(t2 , t3), before(t3 , t5)

pick -up(T1,A,P1, t2)
pre :precs from domain,

ppick -up(T1,A,P1, t2),
∀ti ∈ {t0 . . . tb} : ¬before(ti , t2)

eff :effects from domain,
¬ppick-up(T1,A,P1, t2), free(t2)
∀ti ∈ {t0 . . . tb} : ¬before(t2 , ti)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

m-deliver(P2,C,D, T2)

m-deliver(P2,C,D, T2, t4, t1, t6, t7)
pre :pdeliver(P2,D, t4)

∀ti ∈ {t0 . . . tb} : ¬before(ti , t4)
free(t1), free(t6), free(t7)

eff :¬pdeliver(P2,D, t4)
pget-to(T2,C, t1)
ppick-up(T2,C,P2, t6)
pget-to(T2,D, t7)
pdrop(T2,D,P2, t4)
before(t1, t6), . . .¬free(t1), . . .

Solving Techniques Heuristics Excursion

Compilation to STRIPS/ADL

HTN to STRIPS/ADL – Example

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 22 / 62

Introduce id variables: t0, t1, . . . , tb

Introduce new predicate for every task,
represent current tn in the state

Modify existing actions

Add new actions simulating methods

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

deliver(P2,D)

≺ ≺
ppick-up(T1,A,P1, t2),
pget-to(T1,B, t3),
pdrop(T1,B,P1, t5),
pdeliver(P2,D, t4),
before(t2 , t3), before(t3 , t5)pick -up(T1,A,P1, t2)

pre :precs from domain,
ppick -up(T1,A,P1, t2),
∀ti ∈ {t0 . . . tb} : ¬before(ti , t2)

eff :effects from domain,
¬ppick -up(T1,A,P1, t2), free(t2)
∀ti ∈ {t0 . . . tb} : ¬before(t2 , ti)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

m-deliver(P2,C,D, T2)

m-deliver(P2,C,D, T2, t4, t1, t6, t7)
pre :pdeliver(P2,D, t4)

∀ti ∈ {t0 . . . tb} : ¬before(ti , t4)
free(t1), free(t6), free(t7)

eff :¬pdeliver(P2,D, t4)
pget-to(T2,C, t1)
ppick-up(T2,C,P2, t6)
pget-to(T2,D, t7)
pdrop(T2,D,P2, t4)
before(t1, t6), . . .¬free(t1), . . .

Solving Techniques Heuristics Excursion

Compilation to STRIPS/ADL

HTN to STRIPS/ADL – Example

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 22 / 62

Introduce id variables: t0, t1, . . . , tb

Introduce new predicate for every task,
represent current tn in the state

Modify existing actions

Add new actions simulating methods

pick -up(T1,A,P1) get-to(T1,B) drop(T1,B,P1)

deliver(P2,D)

≺ ≺
ppick-up(T1,A,P1, t2),
pget-to(T1,B, t3),
pdrop(T1,B,P1, t5),
pdeliver(P2,D, t4),
before(t2 , t3), before(t3 , t5)pick -up(T1,A,P1, t2)

pre :precs from domain,
ppick -up(T1,A,P1, t2),
∀ti ∈ {t0 . . . tb} : ¬before(ti , t2)

eff :effects from domain,
¬ppick -up(T1,A,P1, t2), free(t2)
∀ti ∈ {t0 . . . tb} : ¬before(t2 , ti)

deliver(P2,D)

get-to(T2,C) pick -up(T2,C,P2) get-to(T2,D) drop(T2,D,P2)

m-deliver(P2,C,D, T2)

m-deliver(P2,C,D, T2, t4, t1, t6, t7)
pre :pdeliver(P2,D, t4)

∀ti ∈ {t0 . . . tb} : ¬before(ti , t4)
free(t1), free(t6), free(t7)

eff :¬pdeliver(P2,D, t4)
pget-to(T2,C, t1)
ppick-up(T2,C,P2, t6)
pget-to(T2,D, t7)
pdrop(T2,D,P2, t4)
before(t1, t6), . . .¬free(t1), . . .

Solving Techniques Heuristics Excursion

Compilation to STRIPS/ADL

Translating HTN Problems to STRIPS/ADL

Benefits:

Sophisticated planning system(s) available

Large portfolio of heuristics available

Challenges:

How to represent the task network? (example was simplified)
To get a compact state
To get a small set of actions
To break symmetry
To preserve information when using available classical heuristics
(e.g. delete-relaxation)

How many ids are sufficient?
Only computable for subclasses of HTN planning problems

Approach for general HTN planning problems:
Incrementally increase it like in SAT-based classical planning
But there is no upper bound, so only stop when a plan was found

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 23 / 62

Solving Techniques Heuristics Excursion

Compilation to STRIPS/ADL

Translating HTN Problems to STRIPS/ADL

Benefits:

Sophisticated planning system(s) available

Large portfolio of heuristics available

Challenges:
How to represent the task network? (example was simplified)

To get a compact state
To get a small set of actions
To break symmetry
To preserve information when using available classical heuristics
(e.g. delete-relaxation)

How many ids are sufficient?
Only computable for subclasses of HTN planning problems

Approach for general HTN planning problems:
Incrementally increase it like in SAT-based classical planning
But there is no upper bound, so only stop when a plan was found

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 23 / 62

Solving Techniques Heuristics Excursion

Compilation to STRIPS/ADL

Translating HTN Problems to STRIPS/ADL

Benefits:

Sophisticated planning system(s) available

Large portfolio of heuristics available

Challenges:
How to represent the task network? (example was simplified)

To get a compact state
To get a small set of actions
To break symmetry
To preserve information when using available classical heuristics
(e.g. delete-relaxation)

How many ids are sufficient?
Only computable for subclasses of HTN planning problems

Approach for general HTN planning problems:
Incrementally increase it like in SAT-based classical planning
But there is no upper bound, so only stop when a plan was found

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 23 / 62

Solving Techniques Heuristics Excursion

Compilation to STRIPS/ADL

Translating HTN Problems to STRIPS/ADL

Benefits:

Sophisticated planning system(s) available

Large portfolio of heuristics available

Challenges:
How to represent the task network? (example was simplified)

To get a compact state
To get a small set of actions
To break symmetry
To preserve information when using available classical heuristics
(e.g. delete-relaxation)

How many ids are sufficient?
Only computable for subclasses of HTN planning problems
Approach for general HTN planning problems:

Incrementally increase it like in SAT-based classical planning
But there is no upper bound, so only stop when a plan was found

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 23 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Overview Part II

Solving HTN Planning Problems

Search-based Approaches
Plan Space Search
Progression Search

Compilation-based Approaches
Compilations to STRIPS/ADL
Compilations to SAT

Heuristics for Heuristic Search
TDG-based Heuristics
Relaxed Composition Heuristics

Excursion

Further Hierarchical Planning Formalisms

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 24 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

HTN to SAT Compilations

Basic idea:

Translate HTN planning problem to a propositional formula

Solve it with a standard SAT solver

Formula represents solution to the HTN

Similar to approach in classical planning:

Encodings of state transition can be re-used

Translation to a series of increasing problems (instead of a
single one)

Challenges:

How to represent decomposition?

What is the best way to bound the problem?

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 25 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

HTN to SAT Compilations

Basic idea:

Translate HTN planning problem to a propositional formula

Solve it with a standard SAT solver

Formula represents solution to the HTN

Similar to approach in classical planning:

Encodings of state transition can be re-used

Translation to a series of increasing problems (instead of a
single one)

Challenges:

How to represent decomposition?

What is the best way to bound the problem?

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 25 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

HTN to SAT Compilations

Basic idea:

Translate HTN planning problem to a propositional formula

Solve it with a standard SAT solver

Formula represents solution to the HTN

Similar to approach in classical planning:

Encodings of state transition can be re-used

Translation to a series of increasing problems (instead of a
single one)

Challenges:

How to represent decomposition?

What is the best way to bound the problem?

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 25 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Representing Decomposition

We have already seen a structure to represent decomposition:
Decomposition Trees (in the proof for TIHTN problems)

But: There are (double-exponentially) many trees for a single
planning problem

→ Compact representation of all possible decompositions of the
initial task network: Path Decomposition Trees (PDTs)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 26 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Representing Decomposition

We have already seen a structure to represent decomposition:
Decomposition Trees (in the proof for TIHTN problems)

But: There are (double-exponentially) many trees for a single
planning problem

→ Compact representation of all possible decompositions of the
initial task network: Path Decomposition Trees (PDTs)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 26 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Representing Decomposition

We have already seen a structure to represent decomposition:
Decomposition Trees (in the proof for TIHTN problems)

But: There are (double-exponentially) many trees for a single
planning problem

→ Compact representation of all possible decompositions of the
initial task network: Path Decomposition Trees (PDTs)

⊕ =

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 26 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Representing Decomposition

We have already seen a structure to represent decomposition:
Decomposition Trees (in the proof for TIHTN problems)

But: There are (double-exponentially) many trees for a single
planning problem

→ Compact representation of all possible decompositions of the
initial task network: Path Decomposition Trees (PDTs)

⊕ =

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 26 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Representing Decomposition

We have already seen a structure to represent decomposition:
Decomposition Trees (in the proof for TIHTN problems)

But: There are (double-exponentially) many trees for a single
planning problem

→ Compact representation of all possible decompositions of the
initial task network: Path Decomposition Trees (PDTs)

⊕ =

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 26 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Representing Decomposition

We have already seen a structure to represent decomposition:
Decomposition Trees (in the proof for TIHTN problems)

But: There are (double-exponentially) many trees for a single
planning problem

→ Compact representation of all possible decompositions of the
initial task network: Path Decomposition Trees (PDTs)

⊕ =

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 26 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Path Decomposition Trees

All Decomposition Trees can not be represented

⇒ bound the height of represented trees

cI → ABC and cI → ACp and cI → Ar
{A} {B,C} {C, p, r}

Also possible: {A} {A,B,C} {C, p, r}
Also possible: {A} {B} {C} {p, r}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 27 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Path Decomposition Trees

All Decomposition Trees can not be represented
⇒ bound the height of represented trees

cI → ABC and cI → ACp and cI → Ar
{A} {B,C} {C, p, r}

Also possible: {A} {A,B,C} {C, p, r}
Also possible: {A} {B} {C} {p, r}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 27 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Path Decomposition Trees

All Decomposition Trees can not be represented
⇒ bound the height of represented trees

cI → ABC and cI → ACp and cI → Ar
{A} {B,C} {C, p, r}

Also possible: {A} {A,B,C} {C, p, r}
Also possible: {A} {B} {C} {p, r}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 27 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Path Decomposition Trees

All Decomposition Trees can not be represented
⇒ bound the height of represented trees

cI → ABC and cI → ACp and cI → Ar

{A} {B,C} {C, p, r}
Also possible: {A} {A,B,C} {C, p, r}
Also possible: {A} {B} {C} {p, r}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 27 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Path Decomposition Trees

All Decomposition Trees can not be represented
⇒ bound the height of represented trees

cI → ABC and cI → ACp and cI → Ar
{A} {B,C} {C, p, r}

Also possible: {A} {A,B,C} {C, p, r}
Also possible: {A} {B} {C} {p, r}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 27 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Path Decomposition Trees

All Decomposition Trees can not be represented
⇒ bound the height of represented trees

cI → ABC and cI → ACp and cI → Ar
{A} {B,C} {C, p, r}

Also possible: {A} {A,B,C} {C, p, r}
Also possible: {A} {B} {C} {p, r}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 27 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Path Decomposition Trees

All Decomposition Trees can not be represented
⇒ bound the height of represented trees

cI → ABC and cI → ACp and cI → Ar
{A} {B,C} {C, p, r}

Also possible: {A} {A,B,C} {C, p, r}
Also possible: {A} {B} {C} {p, r}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 27 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Path Decomposition Trees

All Decomposition Trees can not be represented
⇒ bound the height of represented trees

cI → ABC and cI → ACp and cI → Ar
{A} {B,C} {C, p, r}

Also possible: {A} {A,B,C} {C, p, r}
Also possible: {A} {B} {C} {p, r}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 27 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Path Decomposition Trees

All Decomposition Trees can not be represented
⇒ bound the height of represented trees

cI → ABC and cI → ACp and cI → Ar
{A} {B,C} {C, p, r}

Also possible: {A} {A,B,C} {C, p, r}

Also possible: {A} {B} {C} {p, r}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 27 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Path Decomposition Trees

All Decomposition Trees can not be represented
⇒ bound the height of represented trees

cI → ABC and cI → ACp and cI → Ar
{A} {B,C} {C, p, r}

Also possible: {A} {A,B,C} {C, p, r}
Also possible: {A} {B} {C} {p, r}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 27 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Generating PDTs

PDTs can be generated by locally deciding on how to assign
sub-tasks to children

Difficult question: How does an optimal PDT look like?

Least amount of leafs?
Fewer tasks per leaf?
Fewer tasks per inner node?

⇒ Locally optimizing #children does not lead to global minimum!

Current work tries greedily to put as few tasks as possible to each
child

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 28 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Generating PDTs

PDTs can be generated by locally deciding on how to assign
sub-tasks to children
Difficult question: How does an optimal PDT look like?

Least amount of leafs?
Fewer tasks per leaf?
Fewer tasks per inner node?

⇒ Locally optimizing #children does not lead to global minimum!

Current work tries greedily to put as few tasks as possible to each
child

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 28 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Generating PDTs

PDTs can be generated by locally deciding on how to assign
sub-tasks to children
Difficult question: How does an optimal PDT look like?

Least amount of leafs?

Fewer tasks per leaf?
Fewer tasks per inner node?

⇒ Locally optimizing #children does not lead to global minimum!

Current work tries greedily to put as few tasks as possible to each
child

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 28 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Generating PDTs

PDTs can be generated by locally deciding on how to assign
sub-tasks to children
Difficult question: How does an optimal PDT look like?

Least amount of leafs?
Fewer tasks per leaf?

Fewer tasks per inner node?

⇒ Locally optimizing #children does not lead to global minimum!

Current work tries greedily to put as few tasks as possible to each
child

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 28 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Generating PDTs

PDTs can be generated by locally deciding on how to assign
sub-tasks to children
Difficult question: How does an optimal PDT look like?

Least amount of leafs?
Fewer tasks per leaf?
Fewer tasks per inner node?

⇒ Locally optimizing #children does not lead to global minimum!

Current work tries greedily to put as few tasks as possible to each
child

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 28 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Generating PDTs

PDTs can be generated by locally deciding on how to assign
sub-tasks to children
Difficult question: How does an optimal PDT look like?

Least amount of leafs?
Fewer tasks per leaf?
Fewer tasks per inner node?

⇒ Locally optimizing #children does not lead to global minimum!

Current work tries greedily to put as few tasks as possible to each
child

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 28 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

Generating PDTs

PDTs can be generated by locally deciding on how to assign
sub-tasks to children
Difficult question: How does an optimal PDT look like?

Least amount of leafs?
Fewer tasks per leaf?
Fewer tasks per inner node?

⇒ Locally optimizing #children does not lead to global minimum!

Current work tries greedily to put as few tasks as possible to each
child

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 28 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

What are PDTs good for?

A PDT contains every
Decomposition Tree of
height ≤ K as a sub-graph

Let the valuation of a SAT
formula describe such a tree
The formula then asserts
that it is a valid
Decomposition Tree

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 29 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

What are PDTs good for?

A PDT contains every
Decomposition Tree of
height ≤ K as a sub-graph
Let the valuation of a SAT
formula describe such a tree

The formula then asserts
that it is a valid
Decomposition Tree

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 29 / 62

Solving Techniques Heuristics Excursion

Compilation to SAT

What are PDTs good for?

A PDT contains every
Decomposition Tree of
height ≤ K as a sub-graph
Let the valuation of a SAT
formula describe such a tree
The formula then asserts
that it is a valid
Decomposition Tree

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 29 / 62

Solving Techniques Heuristics Excursion

Overview Part II

Solving HTN Planning Problems

Search-based Approaches
Plan Space Search
Progression Search

Compilation-based Approaches
Compilations to STRIPS/ADL
Compilations to SAT

Heuristics for Heuristic Search
TDG-based Heuristics
Relaxed Composition Heuristics

Excursion

Further Hierarchical Planning Formalisms

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 30 / 62

Solving Techniques Heuristics Excursion

Possible Heuristic Estimates

What do we want to estimate?

Number of missing actions (or their costs, resp.) or

Number of missing modifications, i.e.,
decompositions,
task insertions (if allowed),
causal link and ordering insertions (in plan space-based search), and
action applications (in progression-based search)

→ To be used for the selection of a search node (task network/partial
plan) out of the fringe

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 31 / 62

Solving Techniques Heuristics Excursion

Possible Heuristic Estimates

What do we want to estimate?

Number of missing actions (or their costs, resp.) or
Number of missing modifications, i.e.,

decompositions,
task insertions (if allowed),
causal link and ordering insertions (in plan space-based search), and
action applications (in progression-based search)

→ To be used for the selection of a search node (task network/partial
plan) out of the fringe

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 31 / 62

Solving Techniques Heuristics Excursion

Possible Heuristic Estimates

What do we want to estimate?

Number of missing actions (or their costs, resp.) or
Number of missing modifications, i.e.,

decompositions,
task insertions (if allowed),
causal link and ordering insertions (in plan space-based search), and
action applications (in progression-based search)

→ To be used for the selection of a search node (task network/partial
plan) out of the fringe

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 31 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Overview Part II

Solving HTN Planning Problems

Search-based Approaches
Plan Space Search
Progression Search

Compilation-based Approaches
Compilations to STRIPS/ADL
Compilations to SAT

Heuristics for Heuristic Search
TDG-based Heuristics
Relaxed Composition Heuristics

Excursion

Further Hierarchical Planning Formalisms

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 32 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Problem Relaxations for Heuristic Calculation

How to calculate such an estimate, given that the HTN plan existence
problem is in general undecidable?

Perform task insertion

Perform delete relaxation

→ This makes the (TI)HTN plan existence problem decidable in P

We introduce the Task Decomposition Graph (TDG) – which bases
upon task insertion and delete relaxation – as a means to represent
the task hierarchy.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 33 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Problem Relaxations for Heuristic Calculation

How to calculate such an estimate, given that the HTN plan existence
problem is in general undecidable?

Perform task insertion

Perform delete relaxation

→ This makes the (TI)HTN plan existence problem decidable in P

We introduce the Task Decomposition Graph (TDG) – which bases
upon task insertion and delete relaxation – as a means to represent
the task hierarchy.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 33 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Problem Relaxations for Heuristic Calculation

How to calculate such an estimate, given that the HTN plan existence
problem is in general undecidable?

Perform task insertion

Perform delete relaxation

→ This makes the (TI)HTN plan existence problem decidable in P

We introduce the Task Decomposition Graph (TDG) – which bases
upon task insertion and delete relaxation – as a means to represent
the task hierarchy.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 33 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Problem Relaxations for Heuristic Calculation

How to calculate such an estimate, given that the HTN plan existence
problem is in general undecidable?

Perform task insertion

Perform delete relaxation

→ This makes the (TI)HTN plan existence problem decidable in P

We introduce the Task Decomposition Graph (TDG) – which bases
upon task insertion and delete relaxation – as a means to represent
the task hierarchy.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 33 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Problem Relaxations for Heuristic Calculation

How to calculate such an estimate, given that the HTN plan existence
problem is in general undecidable?

Perform task insertion

Perform delete relaxation

→ This makes the (TI)HTN plan existence problem decidable in P

We introduce the Task Decomposition Graph (TDG) – which bases
upon task insertion and delete relaxation – as a means to represent
the task hierarchy.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 33 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

TDG-based Heuristics

A TDG represents the decomposition structure:

t0

m1

t1

m3 m4

t5 t6

t2

m2

t3

m5 m6

t7 t8

t4

A TDG is a (possibly cyclic) bipartite
graph G = 〈NT ,NM ,E(T ,M),E(M,T)〉 with

NT , the task nodes,

NM , the method nodes,

E(T ,M), the task edges,

E(M,T), the method edges.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 34 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

TDG-based Heuristics

A TDG represents the decomposition structure:

t0

m1

t1

m3 m4

t5 t6

t2

m2

t3

m5 m6

t7 t8

t4

A TDG is a (possibly cyclic) bipartite
graph G = 〈NT ,NM ,E(T ,M),E(M,T)〉 with

NT , the task nodes,

NM , the method nodes,

E(T ,M), the task edges,

E(M,T), the method edges.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 34 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

TDG-based Heuristics

A TDG represents the decomposition structure:

t0

m1

t1

m3 m4

t5 t6

t2

m2

t3

m5 m6

t7 t8

t4

A TDG is a (possibly cyclic) bipartite
graph G = 〈NT ,NM ,E(T ,M),E(M,T)〉 with

NT , the task nodes,

NM , the method nodes,

E(T ,M), the task edges,

E(M,T), the method edges.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 34 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

TDG-based Heuristics

A TDG represents the decomposition structure:

t0

m1

t1

m3 m4

t5 t6

t2

m2

t3

m5 m6

t7 t8

t4

A TDG is a (possibly cyclic) bipartite
graph G = 〈NT ,NM ,E(T ,M),E(M,T)〉 with

NT , the task nodes,

NM , the method nodes,

E(T ,M), the task edges,

E(M,T), the method edges.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 34 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

TDG-based Heuristics

A TDG represents the decomposition structure:

t0

m1

t1

m3 m4

t5 t6

t2

m2

t3

m5 m6

t7 t8

t4

A TDG is a (possibly cyclic) bipartite
graph G = 〈NT ,NM ,E(T ,M),E(M,T)〉 with

NT , the task nodes,

NM , the method nodes,

E(T ,M), the task edges,

E(M,T), the method edges.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 34 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

TDG-based Heuristics

A TDG represents the decomposition structure:

t0

m1

t1

m3 m4

t5 t6

t2

m2

t3

m5 m6

t7 t8

t4

How to use the TDG to calculate an
heuristic estimate?

Step 1:
Calculate the TDG in a preprocessing
step.

Step 2:
Calculate heuristic h(t) for each task t in
TDG (still via preprocessing).

Step 3:
For a search node (partial plan) P and its
task identifiers T , calculate
h(P) :=

∑
t∈T h(t).

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 34 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Cost-aware heuristic TDG-c

Let 〈NT ,NM ,ET→M ,EM→T 〉 be a TDG.

The estimates of the TDG are defined as follows:

hT (nt) :=

cost(nt) if nt primitive

min
(nt ,nm)∈ET→M

hM(nm) else

For method nodes nm = 〈T ,≺, α〉:

hM(nm) :=
∑

(nm,nt)∈EM→T

hT (nt)

For a given partial plan P = (T ,≺, α,CL), i.e, a search node,
its heuristic is h(P) :=

∑
t∈T h(t) to estimate the cost of the

cheapest reachable plan.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 35 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Cost-aware heuristic TDG-c

Let 〈NT ,NM ,ET→M ,EM→T 〉 be a TDG.

The estimates of the TDG are defined as follows:

hT (nt) :=

cost(nt) if nt primitive

min
(nt ,nm)∈ET→M

hM(nm) else

For method nodes nm = 〈T ,≺, α〉:

hM(nm) :=
∑

(nm,nt)∈EM→T

hT (nt)

For a given partial plan P = (T ,≺, α,CL), i.e, a search node,
its heuristic is h(P) :=

∑
t∈T h(t) to estimate the cost of the

cheapest reachable plan.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 35 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Cost-aware heuristic TDG-c

Let 〈NT ,NM ,ET→M ,EM→T 〉 be a TDG.

The estimates of the TDG are defined as follows:

hT (nt) :=

cost(nt) if nt primitive

min
(nt ,nm)∈ET→M

hM(nm) else

For method nodes nm = 〈T ,≺, α〉:

hM(nm) :=
∑

(nm,nt)∈EM→T

hT (nt)

For a given partial plan P = (T ,≺, α,CL), i.e, a search node,
its heuristic is h(P) :=

∑
t∈T h(t) to estimate the cost of the

cheapest reachable plan.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 35 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Cost-aware heuristic TDG-c (Example)

A TDG represents the decomposition structure:

t0

m1

t1

m3 m4

t5 t6

t2

m2

t3

m5 m6

t7 t8

t4

How to use the TDG to calculate an
heuristic estimate?

Step 1:
Calculate the TDG in a preprocessing
step.

Step 2:
Calculate heuristic h(t) for each task t in
TDG (still via preprocessing).

Step 3:
For a search node (partial plan) P and its
task identifiers T , calculate
h(P) :=

∑
t∈T h(t).

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 36 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Cost-aware heuristic TDG-c (Example)

A TDG represents the decomposition structure:

t0

m1

t1

m3 m4

t5 t6

t2

m2

t3

m5 m6

t7 t8

t4

Example:

hT (t0) = min {hM(m1), hM(m2)}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 36 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Cost-aware heuristic TDG-c (Example)

A TDG represents the decomposition structure:

t0

m1

t1

m3 m4

t5 t6

t2

m2

t3

m5 m6

t7 t8

t4

Example:

Method m1 = (t0, tn) with task
network tn:

t2

t1

t3

<

<

hM(m1) =
∑

ti∈{t1,t2,t3}

hT (ti)

= hT (t1) + cost(t2) + hT (t3)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 36 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Cost-aware heuristic TDG-c (Example)

A TDG represents the decomposition structure:

t0

m1

t1

m3 m4

t5 t6

t2

m2

t3

m5 m6

t7 t8

t4

Example:

hT (t1) = min {hM(m3), hM(m4)}

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 36 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Cost-aware heuristic TDG-c (Example)

A TDG represents the decomposition structure:

t0

m1

t1

m3 m4

t5 t6

t2

m2

t3

m5 m6

t7 t8

t4

Example:

Method m4 = (t1, tn) with task
network tn:

t5 t6

<

hM(m4) =
∑

ti∈{t5,t6}

hT (ti)

= hT (t5) + hT (t6)

= cost(t5) + cost(t6)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 36 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Modification-aware heuristic TDG-m

Let 〈NT ,NM ,ET→M ,EM→T 〉 be a TDG.

The estimates of the TDG are defined as follows:

hT (nt) :=

|pre(nt)| if nt primitive

1 + min
(nt ,nm)∈ET→M

hM(nm) else

For method nodes nm = 〈T ,≺, α〉:

hM(nm) :=
∑

(nm,nt)∈EM→T

hT (nt)

For a given partial plan P = (T ,≺, α,CL), i.e, a search node,
its heuristic is h(P) :=

∑
t∈T h(t)− |CL| to estimate the least

number of required modifications to turn P into a plan.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 37 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Modification-aware heuristic TDG-m

Let 〈NT ,NM ,ET→M ,EM→T 〉 be a TDG.

The estimates of the TDG are defined as follows:

hT (nt) :=

|pre(nt)| if nt primitive

1 + min
(nt ,nm)∈ET→M

hM(nm) else

For method nodes nm = 〈T ,≺, α〉:

hM(nm) :=
∑

(nm,nt)∈EM→T

hT (nt)

For a given partial plan P = (T ,≺, α,CL), i.e, a search node,
its heuristic is h(P) :=

∑
t∈T h(t)− |CL| to estimate the least

number of required modifications to turn P into a plan.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 37 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Modification-aware heuristic TDG-m

Let 〈NT ,NM ,ET→M ,EM→T 〉 be a TDG.

The estimates of the TDG are defined as follows:

hT (nt) :=

|pre(nt)| if nt primitive

1 + min
(nt ,nm)∈ET→M

hM(nm) else

For method nodes nm = 〈T ,≺, α〉:

hM(nm) :=
∑

(nm,nt)∈EM→T

hT (nt)

For a given partial plan P = (T ,≺, α,CL), i.e, a search node,
its heuristic is h(P) :=

∑
t∈T h(t)− |CL| to estimate the least

number of required modifications to turn P into a plan.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 37 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Summary

TDG-c and TDG-m are admissible estimates of:

The costs of still missing actions – or

The number of still missing decompositions and causal link
insertions (the latter is specific for plan space-based planners)

Further properties:

Both can be calculated in polynomial time (also for the general,
undecidable case)

Both rely on task insertion and delete relaxation (for the
construction process of the TDG)

Only tasks within the the TDG account for the heuristic estimate,
so task insertion is not reflected within the estimates (→ room for
improvement; but this guarantees admissibility)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 38 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Summary

TDG-c and TDG-m are admissible estimates of:

The costs of still missing actions – or

The number of still missing decompositions and causal link
insertions (the latter is specific for plan space-based planners)

Further properties:

Both can be calculated in polynomial time (also for the general,
undecidable case)

Both rely on task insertion and delete relaxation (for the
construction process of the TDG)

Only tasks within the the TDG account for the heuristic estimate,
so task insertion is not reflected within the estimates (→ room for
improvement; but this guarantees admissibility)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 38 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Summary

TDG-c and TDG-m are admissible estimates of:

The costs of still missing actions – or

The number of still missing decompositions and causal link
insertions (the latter is specific for plan space-based planners)

Further properties:

Both can be calculated in polynomial time (also for the general,
undecidable case)

Both rely on task insertion and delete relaxation (for the
construction process of the TDG)

Only tasks within the the TDG account for the heuristic estimate,
so task insertion is not reflected within the estimates (→ room for
improvement; but this guarantees admissibility)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 38 / 62

Solving Techniques Heuristics Excursion

Decomposition Graph-based Heuristics

Summary

TDG-c and TDG-m are admissible estimates of:

The costs of still missing actions – or

The number of still missing decompositions and causal link
insertions (the latter is specific for plan space-based planners)

Further properties:

Both can be calculated in polynomial time (also for the general,
undecidable case)

Both rely on task insertion and delete relaxation (for the
construction process of the TDG)

Only tasks within the the TDG account for the heuristic estimate,
so task insertion is not reflected within the estimates (→ room for
improvement; but this guarantees admissibility)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 38 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Overview Part II

Solving HTN Planning Problems

Search-based Approaches
Plan Space Search
Progression Search

Compilation-based Approaches
Compilations to STRIPS/ADL
Compilations to SAT

Heuristics for Heuristic Search
TDG-based Heuristics
Relaxed Composition Heuristics

Excursion

Further Hierarchical Planning Formalisms

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 39 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Classical Heuristics in HTN Planning

We have seen two search-based approaches that can be
instantiated as heuristic search

We need to sort the fringe (according to what?)

In a first step, estimate goal distance (→ Satisficing Planning)

Using Techniques from Classical Planning – Challenges:

More expressive formalism→ techniques not applicable directly
Hierarchy has huge impact on valid solutions

Which actions are reachable?
What is the objective, the “goal”?
→ usually no state-based goal given

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 40 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Classical Heuristics in HTN Planning

We have seen two search-based approaches that can be
instantiated as heuristic search

We need to sort the fringe (according to what?)

In a first step, estimate goal distance (→ Satisficing Planning)

Using Techniques from Classical Planning – Challenges:

More expressive formalism→ techniques not applicable directly
Hierarchy has huge impact on valid solutions

Which actions are reachable?
What is the objective, the “goal”?
→ usually no state-based goal given

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 40 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Classical Heuristics in HTN Planning

We have seen two search-based approaches that can be
instantiated as heuristic search

We need to sort the fringe (according to what?)

In a first step, estimate goal distance (→ Satisficing Planning)

Using Techniques from Classical Planning – Challenges:

More expressive formalism→ techniques not applicable directly
Hierarchy has huge impact on valid solutions

Which actions are reachable?

What is the objective, the “goal”?
→ usually no state-based goal given

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 40 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Classical Heuristics in HTN Planning

We have seen two search-based approaches that can be
instantiated as heuristic search

We need to sort the fringe (according to what?)

In a first step, estimate goal distance (→ Satisficing Planning)

Using Techniques from Classical Planning – Challenges:

More expressive formalism→ techniques not applicable directly
Hierarchy has huge impact on valid solutions

Which actions are reachable?
What is the objective, the “goal”?
→ usually no state-based goal given

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 40 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Classical Heuristics in HTN Planning

Approach:
1. Relax HTN to a classical planning problem

Search is done in an HTN planning system on the original model
This model is only used for heuristic calculation

2. Apply classical heuristics to that problem
For some search node, the “heuristic model” is adapted
Goal distance is estimated

3. Use heuristic value in HTN planning
The fringe of the HTN planning system is sorted according to the
heuristic value

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 41 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Classical Heuristics in HTN Planning

Approach:
1. Relax HTN to a classical planning problem

Search is done in an HTN planning system on the original model
This model is only used for heuristic calculation

2. Apply classical heuristics to that problem
For some search node, the “heuristic model” is adapted
Goal distance is estimated

3. Use heuristic value in HTN planning
The fringe of the HTN planning system is sorted according to the
heuristic value

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 41 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Classical Heuristics in HTN Planning

Approach:
1. Relax HTN to a classical planning problem

Search is done in an HTN planning system on the original model
This model is only used for heuristic calculation

2. Apply classical heuristics to that problem
For some search node, the “heuristic model” is adapted
Goal distance is estimated

3. Use heuristic value in HTN planning
The fringe of the HTN planning system is sorted according to the
heuristic value

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 41 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Simulating Composition

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 42 / 62

Introduce new state features

Modify actions

Introduce new action for every method

Goal is to reach current task network

A 4

B

ö C D

deliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

1

2 3 4 5

6 7 8 9

10 11

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Simulating Composition

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 42 / 62

Introduce new state features

Modify actions

Introduce new action for every method

Goal is to reach current task network

A 4

B

ö C D

deliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

1

2 3 4 5

6 7 8 9

10 11

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Simulating Composition

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 42 / 62

Introduce new state features

Modify actions

Introduce new action for every method

Goal is to reach current task network

A 4

B

ö C D

deliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

1

2

3 4 5

6 7 8 9

10 11

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Simulating Composition

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 42 / 62

Introduce new state features

Modify actions

Introduce new action for every method

Goal is to reach current task network

A 4

B

ö C D

deliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

1

2 3

4 5

6 7 8 9

10 11

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Simulating Composition

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 42 / 62

Introduce new state features

Modify actions

Introduce new action for every method

Goal is to reach current task network

A 4

B

ö C D

deliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

1

2 3 4 5

6 7 8 9

10 11

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Simulating Composition

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 42 / 62

Introduce new state features

Modify actions

Introduce new action for every method

Goal is to reach current task network

A 4

B

ö C D

deliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

1

2 3 4 5

6 7 8 9

10 11

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Simulating Composition

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 42 / 62

Introduce new state features

Modify actions

Introduce new action for every method

Goal is to reach current task network

A 4

B

ö C D

deliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

1

2 3 4 5

6 7 8 9

10 11

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Simulating Composition

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 42 / 62

Introduce new state features

Modify actions

Introduce new action for every method

Goal is to reach current task network

A 4

B

ö C D

deliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

1

2 3 4 5

6 7 8 9

10 11

drive(v , l1, l2)
at(v , l1)

road(l1, l2)
at(v , l2)
¬at(v , l1)

pick -up(v , l, p)
at(v , l)
at(p, l)

¬at(p, l)
in(p, v)

drop(v , l, p)
at(v , l)
in(p, v)

at(p, l)
¬in(p, v)

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Simulating Composition

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 42 / 62

Introduce new state features

Modify actions

Introduce new action for every method

Goal is to reach current task network

A 4

B

ö C D

deliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

1

2 3 4 5

6 7 8 9

10 11

drive(v , l1, l2)
at(v , l1)

road(l1, l2)

at(v , l2)
¬at(v , l1)

b-drive(v, l1, l2)
pick -up(v , l, p)

at(v , l)
at(p, l)

¬at(p, l)
in(p, v)
b-pick -up(v, l, p)

drop(v , l, p)
at(v , l)
in(p, v)

at(p, l)
¬in(p, v)

b-drop(v, l, p)

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Simulating Composition

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 42 / 62

Introduce new state features

Modify actions

Introduce new action for every method

Goal is to reach current task network

A 4

B

ö C D

deliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

1

2 3 4 5

6 7 8 9

10 11

drive(v , l1, l2)
at(v , l1)

road(l1, l2)

at(v , l2)
¬at(v , l1)

b-drive(v, l1, l2)

pick -up(v , l, p)
at(v , l)
at(p, l)

¬at(p, l)
in(p, v)
b-pick -up(v, l, p)

drop(v , l, p)
at(v , l)
in(p, v)

at(p, l)
¬in(p, v)

b-drop(v, l, p)

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Simulating Composition

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 42 / 62

Introduce new state features

Modify actions

Introduce new action for every method

Goal is to reach current task network

A 4

B

ö C D

deliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

1

2 3 4 5

6 7 8 9

10 11

drive(v , l1, l2)
at(v , l1)

road(l1, l2)

at(v , l2)
¬at(v , l1)

b-drive(v, l1, l2)

pick -up(v , l, p)
at(v , l)
at(p, l)

¬at(p, l)
in(p, v)
b-pick -up(v, l, p)

drop(v , l, p)
at(v , l)
in(p, v)

at(p, l)
¬in(p, v)

b-drop(v, l, p)

get-to(v , l2)

drive(v , l1, l2)

m-direct(v , l1, l2)

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Simulating Composition

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 42 / 62

Introduce new state features

Modify actions

Introduce new action for every method

Goal is to reach current task network

A 4

B

ö C D

deliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

1

2 3 4 5

6 7 8 9

10 11

drive(v , l1, l2)
at(v , l1)

road(l1, l2)

at(v , l2)
¬at(v , l1)

b-drive(v, l1, l2)

pick -up(v , l, p)
at(v , l)
at(p, l)

¬at(p, l)
in(p, v)
b-pick -up(v, l, p)

drop(v , l, p)
at(v , l)
in(p, v)

at(p, l)
¬in(p, v)

b-drop(v, l, p)

get-to(v , l2)

drive(v , l1, l2)

m-direct(v , l1, l2)

→ am-direct(v , l1, l2)b-drive(v , l1, l2) b-get-to(v , l2)

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Simulating Composition

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 42 / 62

Introduce new state features

Modify actions

Introduce new action for every method

Goal is to reach current task network

A 4

B

ö C D

deliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

1

2 3 4 5

6 7 8 9

10 11

drive(v , l1, l2)
at(v , l1)

road(l1, l2)

at(v , l2)
¬at(v , l1)

b-drive(v, l1, l2)

pick -up(v , l, p)
at(v , l)
at(p, l)

¬at(p, l)
in(p, v)
b-pick -up(v, l, p)

drop(v , l, p)
at(v , l)
in(p, v)

at(p, l)
¬in(p, v)

b-drop(v, l, p)

deliver(p, l2)

get-to(v , l1) pick -up(v , l1, p) get-to(v , l2) drop(v , l2, p)

m-deliver(p, l1, l2, v)

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Simulating Composition

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 42 / 62

Introduce new state features

Modify actions

Introduce new action for every method

Goal is to reach current task network

A 4

B

ö C D

deliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

1

2 3 4 5

6 7 8 9

10 11

drive(v , l1, l2)
at(v , l1)

road(l1, l2)

at(v , l2)
¬at(v , l1)

b-drive(v, l1, l2)

pick -up(v , l, p)
at(v , l)
at(p, l)

¬at(p, l)
in(p, v)
b-pick -up(v, l, p)

drop(v , l, p)
at(v , l)
in(p, v)

at(p, l)
¬in(p, v)

b-drop(v, l, p)

deliver(p, l2)

get-to(v , l1) pick -up(v , l1, p) get-to(v , l2) drop(v , l2, p)

m-deliver(p, l1, l2, v)

→ am-deliver(p, l1, l2, v)

b-get-to(v , l1)
b-pick -up(v , l1, p)

b-get-to(v , l2)
b-drop(v , l2, p)

b-deliver(p, l2)

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Simulating Composition

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 42 / 62

Introduce new state features

Modify actions

Introduce new action for every method

Goal is to reach current task network

A 4

B

ö C D

deliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

1

2 3 4 5

6 7 8 9

10 11

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Simulating Composition

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 42 / 62

Introduce new state features

Modify actions

Introduce new action for every method

Goal is to reach current task network
A 4

B

ö C D

deliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

1

2 3 4 5

6 7 8 9

10 11

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Simulating Composition – Resulting Model

drive(v , l1, l2)
at(v , l1)

road(l1, l2)

at(v , l2)
¬at(v , l1)

b-drive(v, l1, l2)

no-op() b-no-op()

pick -up(v , l, p)
at(v , l)
at(p, l)

¬at(p, l)
in(p, v)
b-pick -up(v, l, p)

drop(v , l, p)
at(v , l)
in(p, v)

at(p, l)
¬in(p, v)

b-drop(v, l, p)

am-deliver(p, l1, l2, v)

b-get-to(v , l1)
b-pick -up(v , l1, p)

b-get-to(v , l2)
b-drop(v , l2, p)

b-deliver(p, l2)

am-direct(v , l1, l2)b-drive(v , l1, l2) b-get-to(v , l2)

am-via(v , l1, l2)
b-get-to(v , l1)

b-drive(v , l1, l2)
b-get-to(v , l2)

am-noop(v , l)b-no-op() b-get-to(v , l)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 43 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Planning in the Transformed Model

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 44 / 62

A

B

C D

4

ö
deliver(P,D)

m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)}

drive(T ,A,B)
{at(T ,B),
at(P,C),

b-drive(T ,A,B)}
am-direct(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B)}

drive(T ,B,C)

{at(T ,C),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C)}

pick -up(T ,C,P)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P)}

am-via(T ,B,C)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C)}

drive(T ,C,B)

{at(T ,B),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B)}

drive(T ,B,D)

{at(T ,D),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D)}

drop(T ,D,P)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P)}

am-via(T ,B,D)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D)}

am-deliver(P,C,D, T)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D),

b-deliver(P,D)}

Heuristic value: 10

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Planning in the Transformed Model

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 44 / 62

A

B

C D

4

ö
deliver(P,D)

m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)} drive(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B)}

am-direct(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B)}

drive(T ,B,C)

{at(T ,C),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C)}

pick -up(T ,C,P)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P)}

am-via(T ,B,C)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C)}

drive(T ,C,B)

{at(T ,B),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B)}

drive(T ,B,D)

{at(T ,D),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D)}

drop(T ,D,P)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P)}

am-via(T ,B,D)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D)}

am-deliver(P,C,D, T)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D),

b-deliver(P,D)}

Heuristic value: 10

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Planning in the Transformed Model

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 44 / 62

A

B

C D

4

ö
deliver(P,D)

m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)} drive(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B)}
am-direct(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B)}

drive(T ,B,C)

{at(T ,C),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C)}

pick -up(T ,C,P)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P)}

am-via(T ,B,C)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C)}

drive(T ,C,B)

{at(T ,B),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B)}

drive(T ,B,D)

{at(T ,D),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D)}

drop(T ,D,P)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P)}

am-via(T ,B,D)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D)}

am-deliver(P,C,D, T)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D),

b-deliver(P,D)}

Heuristic value: 10

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Planning in the Transformed Model

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 44 / 62

A

B

C D4 ö
deliver(P,D)

m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)} drive(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B)}
am-direct(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B)}

drive(T ,B,C)

{at(T ,C),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C)}

pick -up(T ,C,P)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P)}

am-via(T ,B,C)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C)}

drive(T ,C,B)

{at(T ,B),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B)}

drive(T ,B,D)

{at(T ,D),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D)}

drop(T ,D,P)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P)}

am-via(T ,B,D)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D)}

am-deliver(P,C,D, T)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D),

b-deliver(P,D)}

Heuristic value: 10

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Planning in the Transformed Model

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 44 / 62

A

B

C D4
deliver(P,D)

m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)} drive(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B)}
am-direct(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B)}

drive(T ,B,C)

{at(T ,C),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C)}

pick -up(T ,C,P)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P)}

am-via(T ,B,C)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C)}

drive(T ,C,B)

{at(T ,B),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B)}

drive(T ,B,D)

{at(T ,D),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D)}

drop(T ,D,P)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P)}

am-via(T ,B,D)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D)}

am-deliver(P,C,D, T)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D),

b-deliver(P,D)}

Heuristic value: 10

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Planning in the Transformed Model

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 44 / 62

A

B

C D4
deliver(P,D)

m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)} drive(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B)}
am-direct(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B)}

drive(T ,B,C)

{at(T ,C),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C)}

pick -up(T ,C,P)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P)}

am-via(T ,B,C)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C)}

drive(T ,C,B)

{at(T ,B),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B)}

drive(T ,B,D)

{at(T ,D),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D)}

drop(T ,D,P)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P)}

am-via(T ,B,D)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D)}

am-deliver(P,C,D, T)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D),

b-deliver(P,D)}

Heuristic value: 10

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Planning in the Transformed Model

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 44 / 62

A

B

C D

4

deliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)} drive(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B)}
am-direct(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B)}

drive(T ,B,C)

{at(T ,C),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C)}

pick -up(T ,C,P)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P)}

am-via(T ,B,C)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C)}

drive(T ,C,B)

{at(T ,B),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B)}

drive(T ,B,D)

{at(T ,D),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D)}

drop(T ,D,P)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P)}

am-via(T ,B,D)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D)}

am-deliver(P,C,D, T)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D),

b-deliver(P,D)}

Heuristic value: 10

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Planning in the Transformed Model

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 44 / 62

A

B

C D 4
deliver(P,D)

m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)} drive(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B)}
am-direct(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B)}

drive(T ,B,C)

{at(T ,C),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C)}

pick -up(T ,C,P)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P)}

am-via(T ,B,C)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C)}

drive(T ,C,B)

{at(T ,B),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B)}

drive(T ,B,D)

{at(T ,D),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D)}

drop(T ,D,P)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P)}

am-via(T ,B,D)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D)}

am-deliver(P,C,D, T)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D),

b-deliver(P,D)}

Heuristic value: 10

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Planning in the Transformed Model

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 44 / 62

A

B

C D 4ö
deliver(P,D)

m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)} drive(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B)}
am-direct(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B)}

drive(T ,B,C)

{at(T ,C),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C)}

pick -up(T ,C,P)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P)}

am-via(T ,B,C)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C)}

drive(T ,C,B)

{at(T ,B),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B)}

drive(T ,B,D)

{at(T ,D),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D)}

drop(T ,D,P)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P)}

am-via(T ,B,D)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D)}

am-deliver(P,C,D, T)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D),

b-deliver(P,D)}

Heuristic value: 10

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Planning in the Transformed Model

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 44 / 62

A

B

C D 4ö
deliver(P,D)

m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)} drive(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B)}
am-direct(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B)}

drive(T ,B,C)

{at(T ,C),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C)}

pick -up(T ,C,P)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P)}

am-via(T ,B,C)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C)}

drive(T ,C,B)

{at(T ,B),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B)}

drive(T ,B,D)

{at(T ,D),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D)}

drop(T ,D,P)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P)}

am-via(T ,B,D)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D)}

am-deliver(P,C,D, T)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D),

b-deliver(P,D)}

Heuristic value: 10

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Planning in the Transformed Model

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 44 / 62

A

B

C D 4ö
deliver(P,D)

m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)} drive(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B)}
am-direct(T ,A,B)

{at(T ,B),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B)}

drive(T ,B,C)

{at(T ,C),
at(P,C),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C)}

pick -up(T ,C,P)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P)}

am-via(T ,B,C)

{at(T ,C),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C)}

drive(T ,C,B)

{at(T ,B),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B)}

drive(T ,B,D)

{at(T ,D),
in(P, T),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D)}

drop(T ,D,P)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P)}

am-via(T ,B,D)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D)}

am-deliver(P,C,D, T)

{at(T ,D),
at(P,D),

b-drive(T ,A,B),
b-get-to(T ,B),

b-drive(T ,B,C),
b-pick -up(T ,C,P),

b-get-to(T ,C),
b-drive(T ,C,B),
b-drive(T ,B,D),
b-drop(T ,D,P),
b-get-to(T ,D),

b-deliver(P,D)}Heuristic value: 10

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Heuristic Calculation (Delete Relaxed)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 45 / 62

A

B

C D

4

ödeliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)}

drive(T ,A,B)

{at(T ,A),
at(T ,B),
at(P,C),

b-drive(T ,A,B)}

am-direct(T ,A,B) . . . drive(T ,B,C) . . . pick -up(T ,C,P) . . . am-via(T ,B,C)

. . . drive(T ,B,D) . . . drop(T ,D,P) . . . am-via(T ,B,D) . . . am-deliver(P,C,D, T)
. . . ,

b-deliver(P,D)

Using delete-relaxed classical heuristic: 9

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Heuristic Calculation (Delete Relaxed)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 45 / 62

A

B

C D

4

4

ödeliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)} drive(T ,A,B)

{at(T ,A),
at(T ,B),
at(P,C),

b-drive(T ,A,B)}

am-direct(T ,A,B) . . . drive(T ,B,C) . . . pick -up(T ,C,P) . . . am-via(T ,B,C)

. . . drive(T ,B,D) . . . drop(T ,D,P) . . . am-via(T ,B,D) . . . am-deliver(P,C,D, T)
. . . ,

b-deliver(P,D)

Using delete-relaxed classical heuristic: 9

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Heuristic Calculation (Delete Relaxed)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 45 / 62

A

B

C D

4

4

ödeliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)} drive(T ,A,B)

{at(T ,A),
at(T ,B),
at(P,C),

b-drive(T ,A,B)}

am-direct(T ,A,B) . . .

drive(T ,B,C) . . . pick -up(T ,C,P) . . . am-via(T ,B,C)

. . . drive(T ,B,D) . . . drop(T ,D,P) . . . am-via(T ,B,D) . . . am-deliver(P,C,D, T)
. . . ,

b-deliver(P,D)

Using delete-relaxed classical heuristic: 9

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Heuristic Calculation (Delete Relaxed)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 45 / 62

A

B

C D

4

4

4 ödeliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)} drive(T ,A,B)

{at(T ,A),
at(T ,B),
at(P,C),

b-drive(T ,A,B)}

am-direct(T ,A,B) . . . drive(T ,B,C) . . .

pick -up(T ,C,P) . . . am-via(T ,B,C)

. . . drive(T ,B,D) . . . drop(T ,D,P) . . . am-via(T ,B,D) . . . am-deliver(P,C,D, T)
. . . ,

b-deliver(P,D)

Using delete-relaxed classical heuristic: 9

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Heuristic Calculation (Delete Relaxed)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 45 / 62

A

B

C D

4

4

4 ödeliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)} drive(T ,A,B)

{at(T ,A),
at(T ,B),
at(P,C),

b-drive(T ,A,B)}

am-direct(T ,A,B) . . . drive(T ,B,C) . . . pick -up(T ,C,P) . . .

am-via(T ,B,C)

. . . drive(T ,B,D) . . . drop(T ,D,P) . . . am-via(T ,B,D) . . . am-deliver(P,C,D, T)
. . . ,

b-deliver(P,D)

Using delete-relaxed classical heuristic: 9

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Heuristic Calculation (Delete Relaxed)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 45 / 62

A

B

C D

4

4

4 ödeliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)} drive(T ,A,B)

{at(T ,A),
at(T ,B),
at(P,C),

b-drive(T ,A,B)}

am-direct(T ,A,B) . . . drive(T ,B,C) . . . pick -up(T ,C,P) . . . am-via(T ,B,C)

. . .

drive(T ,B,D) . . . drop(T ,D,P) . . . am-via(T ,B,D) . . . am-deliver(P,C,D, T)
. . . ,

b-deliver(P,D)

Using delete-relaxed classical heuristic: 9

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Heuristic Calculation (Delete Relaxed)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 45 / 62

A

B

C D

4

4

4 4ödeliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)} drive(T ,A,B)

{at(T ,A),
at(T ,B),
at(P,C),

b-drive(T ,A,B)}

am-direct(T ,A,B) . . . drive(T ,B,C) . . . pick -up(T ,C,P) . . . am-via(T ,B,C)

. . . drive(T ,B,D) . . .

drop(T ,D,P) . . . am-via(T ,B,D) . . . am-deliver(P,C,D, T)
. . . ,

b-deliver(P,D)

Using delete-relaxed classical heuristic: 9

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Heuristic Calculation (Delete Relaxed)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 45 / 62

A

B

C D

4

4

4 4ö ödeliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)} drive(T ,A,B)

{at(T ,A),
at(T ,B),
at(P,C),

b-drive(T ,A,B)}

am-direct(T ,A,B) . . . drive(T ,B,C) . . . pick -up(T ,C,P) . . . am-via(T ,B,C)

. . . drive(T ,B,D) . . . drop(T ,D,P) . . .

am-via(T ,B,D) . . . am-deliver(P,C,D, T)
. . . ,

b-deliver(P,D)

Using delete-relaxed classical heuristic: 9

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Heuristic Calculation (Delete Relaxed)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 45 / 62

A

B

C D

4

4

4 4ö ödeliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)} drive(T ,A,B)

{at(T ,A),
at(T ,B),
at(P,C),

b-drive(T ,A,B)}

am-direct(T ,A,B) . . . drive(T ,B,C) . . . pick -up(T ,C,P) . . . am-via(T ,B,C)

. . . drive(T ,B,D) . . . drop(T ,D,P) . . . am-via(T ,B,D) . . .

am-deliver(P,C,D, T)
. . . ,

b-deliver(P,D)

Using delete-relaxed classical heuristic: 9

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Heuristic Calculation (Delete Relaxed)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 45 / 62

A

B

C D

4

4

4 4ö ödeliver(P,D)
m-deliver(P,C,D, T)

get-to(T ,C)
m-via(T ,B,C)

pick -up(T ,C,P) get-to(T ,D)
m-via(T ,B,D)

drop(T ,D,P)

get-to(T ,B)
m-direct(T ,A,B)

drive(T ,B,C) get-to(T ,B)
m-direct(T ,C,B)

drive(T ,B,D)

drive(T ,A,B) drive(T ,C,B)

{at(T ,A),
at(P,C)} drive(T ,A,B)

{at(T ,A),
at(T ,B),
at(P,C),

b-drive(T ,A,B)}

am-direct(T ,A,B) . . . drive(T ,B,C) . . . pick -up(T ,C,P) . . . am-via(T ,B,C)

. . . drive(T ,B,D) . . . drop(T ,D,P) . . . am-via(T ,B,D) . . . am-deliver(P,C,D, T)
. . . ,

b-deliver(P,D)

Using delete-relaxed classical heuristic: 9

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

General Characteristics

Simulates task composition

X Incorporates hierarchical reachability information

X Combines it with information on state-based executability

X Solves the problem of a missing state-based goal

The transformation from HTN to classical problem is a relaxation

→ The set of valid solutions increases

Heuristic function is allowed to do
Task sharing (every task must be proceeded only once)
Task insertion (e.g. to fulfill preconditions)
HTN ordering relations are relaxed

Heuristic function may only insert tasks that lie within the
decomposition hierarchy (not given here)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 46 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

General Characteristics

Simulates task composition

X Incorporates hierarchical reachability information

X Combines it with information on state-based executability

X Solves the problem of a missing state-based goal

The transformation from HTN to classical problem is a relaxation

→ The set of valid solutions increases

Heuristic function is allowed to do
Task sharing (every task must be proceeded only once)
Task insertion (e.g. to fulfill preconditions)
HTN ordering relations are relaxed

Heuristic function may only insert tasks that lie within the
decomposition hierarchy (not given here)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 46 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

General Characteristics

Simulates task composition

X Incorporates hierarchical reachability information

X Combines it with information on state-based executability

X Solves the problem of a missing state-based goal

The transformation from HTN to classical problem is a relaxation

→ The set of valid solutions increases

Heuristic function is allowed to do
Task sharing (every task must be proceeded only once)
Task insertion (e.g. to fulfill preconditions)
HTN ordering relations are relaxed

Heuristic function may only insert tasks that lie within the
decomposition hierarchy (not given here)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 46 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

General Characteristics

Simulates task composition

X Incorporates hierarchical reachability information

X Combines it with information on state-based executability

X Solves the problem of a missing state-based goal

The transformation from HTN to classical problem is a relaxation

→ The set of valid solutions increases

Heuristic function is allowed to do
Task sharing (every task must be proceeded only once)
Task insertion (e.g. to fulfill preconditions)
HTN ordering relations are relaxed

Heuristic function may only insert tasks that lie within the
decomposition hierarchy (not given here)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 46 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

General Characteristics

Simulates task composition

X Incorporates hierarchical reachability information

X Combines it with information on state-based executability

X Solves the problem of a missing state-based goal

The transformation from HTN to classical problem is a relaxation

→ The set of valid solutions increases

Heuristic function is allowed to do
Task sharing (every task must be proceeded only once)
Task insertion (e.g. to fulfill preconditions)
HTN ordering relations are relaxed

Heuristic function may only insert tasks that lie within the
decomposition hierarchy (not given here)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 46 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Computational Aspects

Size is linear in the input HTN domain, but the model is large

State and action set are extended

Most parts of the model are static during search, one needs to
update

Initial state
Goal

→ Efficient update of the “heuristic model” possible

→ Classical heuristic combined with the encoding should be able to
deal with changed goal efficiently

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 47 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Computational Aspects

Size is linear in the input HTN domain, but the model is large

State and action set are extended
Most parts of the model are static during search, one needs to
update

Initial state
Goal

→ Efficient update of the “heuristic model” possible

→ Classical heuristic combined with the encoding should be able to
deal with changed goal efficiently

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 47 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Computational Aspects

Size is linear in the input HTN domain, but the model is large

State and action set are extended
Most parts of the model are static during search, one needs to
update

Initial state
Goal

→ Efficient update of the “heuristic model” possible

→ Classical heuristic combined with the encoding should be able to
deal with changed goal efficiently

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 47 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Resulting Heuristic Values

Perfect HTN solution (in terms of modifications) corresponds to a
classical plan in the transformation with equal costs

Perfect classical heuristic on the transformation has less or
equal costs

When the used classical heuristic has one of the following
properties, the resulting HTN heuristic has it too:

Safety
Goal-awareness
Admissibility

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 48 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Resulting Heuristic Values

Perfect HTN solution (in terms of modifications) corresponds to a
classical plan in the transformation with equal costs

Perfect classical heuristic on the transformation has less or
equal costs
When the used classical heuristic has one of the following
properties, the resulting HTN heuristic has it too:

Safety
Goal-awareness
Admissibility

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 48 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Discussion

Can be combined with many classical heuristics

In principle applicable in both – plan space or progression search
→ Progression search provides more precise state information

Comparison to “HTN to STRIPS/ADL translation”
This transformation is a relaxation (set of solutions changes)
It is smaller
It is easier to compute

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 49 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Discussion

Can be combined with many classical heuristics
In principle applicable in both – plan space or progression search
→ Progression search provides more precise state information

Comparison to “HTN to STRIPS/ADL translation”
This transformation is a relaxation (set of solutions changes)
It is smaller
It is easier to compute

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 49 / 62

Solving Techniques Heuristics Excursion

Using Classical Heuristics to Guide HTN Search

Discussion

Can be combined with many classical heuristics
In principle applicable in both – plan space or progression search
→ Progression search provides more precise state information

Comparison to “HTN to STRIPS/ADL translation”
This transformation is a relaxation (set of solutions changes)
It is smaller
It is easier to compute

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 49 / 62

Solving Techniques Heuristics Excursion

Overview Part II

Solving HTN Planning Problems

Search-based Approaches
Plan Space Search
Progression Search

Compilation-based Approaches
Compilations to STRIPS/ADL
Compilations to SAT

Heuristics for Heuristic Search
TDG-based Heuristics
Relaxed Composition Heuristics

Excursion

Further Hierarchical Planning Formalisms

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 50 / 62

Solving Techniques Heuristics Excursion

Overview

Overview of Hierarchical Planning Variants

Which variants of HTN planning and further hierarchical planning
problem classes exist?

HTN planning with task insertion (TIHTN planning)

Task sharing

Hybrid planning (i.e., HTN + POCL Planning)

Decompositional planning (i.e., hybrid without initial plan)

GTN planning (decompose goals, not tasks)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 51 / 62

Solving Techniques Heuristics Excursion

Overview

Overview of Hierarchical Planning Variants

Which variants of HTN planning and further hierarchical planning
problem classes exist?

HTN planning with task insertion (TIHTN planning)

Task sharing

Hybrid planning (i.e., HTN + POCL Planning)

Decompositional planning (i.e., hybrid without initial plan)

GTN planning (decompose goals, not tasks)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 51 / 62

Solving Techniques Heuristics Excursion

Overview

Overview of Hierarchical Planning Variants

Which variants of HTN planning and further hierarchical planning
problem classes exist?

HTN planning with task insertion (TIHTN planning)

Task sharing

Hybrid planning (i.e., HTN + POCL Planning)

Decompositional planning (i.e., hybrid without initial plan)

GTN planning (decompose goals, not tasks)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 51 / 62

Solving Techniques Heuristics Excursion

Overview

Overview of Hierarchical Planning Variants

Which variants of HTN planning and further hierarchical planning
problem classes exist?

HTN planning with task insertion (TIHTN planning)

Task sharing

Hybrid planning (i.e., HTN + POCL Planning)

Decompositional planning (i.e., hybrid without initial plan)

GTN planning (decompose goals, not tasks)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 51 / 62

Solving Techniques Heuristics Excursion

Overview

Overview of Hierarchical Planning Variants

Which variants of HTN planning and further hierarchical planning
problem classes exist?

HTN planning with task insertion (TIHTN planning)

Task sharing

Hybrid planning (i.e., HTN + POCL Planning)

Decompositional planning (i.e., hybrid without initial plan)

GTN planning (decompose goals, not tasks)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 51 / 62

Solving Techniques Heuristics Excursion

Overview

Overview of Hierarchical Planning Variants

Which variants of HTN planning and further hierarchical planning
problem classes exist?

HTN planning with task insertion (TIHTN planning)

Task sharing

Hybrid planning (i.e., HTN + POCL Planning)

Decompositional planning (i.e., hybrid without initial plan)

GTN planning (decompose goals, not tasks)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 51 / 62

Solving Techniques Heuristics Excursion

TIHTN Planning

Problem Definition

In HTN planning with task insertion, TIHTN planning, tasks may be
added arbitrarily to task networks (not just via decomposition):

Let P? = (V ,P, δ,C,M, sI , cI) be a TIHTN planning problem.

Then, a task network tn is a solution if and only if:

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 52 / 62

Solving Techniques Heuristics Excursion

TIHTN Planning

Problem Definition

In HTN planning with task insertion, TIHTN planning, tasks may be
added arbitrarily to task networks (not just via decomposition):

Let P? = (V ,P, δ,C,M, sI , cI) be a TIHTN planning problem.

Then, a task network tn is a solution if and only if:

There is a sequence of decomposition methods m and task
insertions that transforms cI into tn,

tn contains only primitive tasks, and

the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 52 / 62

Solving Techniques Heuristics Excursion

TIHTN Planning

Problem Definition

In HTN planning with task insertion, TIHTN planning, tasks may be
added arbitrarily to task networks (not just via decomposition):

Let P? = (V ,P, δ,C,M, sI , cI) be a TIHTN planning problem.

Then, a task network tn is a solution if and only if:

There is a sequence of decomposition methods m that
transforms cI into tn′,

tn ⊇ tn′ contains all tasks and orderings of tn′,

tn contains only primitive tasks, and

the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 52 / 62

Solving Techniques Heuristics Excursion

TIHTN Planning

Motivation

Benefits of allowing task insertion:

Task insertion plus goal description fully subsumes classical
planning (while allowing task hierarchies as well)

Task insertion makes the modeling process easier: certain parts
can be left to the planner

Task insertion makes the problem computationally easier (can be
exploited for heuristics)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 53 / 62

Solving Techniques Heuristics Excursion

TIHTN Planning

Motivation

Benefits of allowing task insertion:

Task insertion plus goal description fully subsumes classical
planning (while allowing task hierarchies as well)

Task insertion makes the modeling process easier: certain parts
can be left to the planner

Task insertion makes the problem computationally easier (can be
exploited for heuristics)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 53 / 62

Solving Techniques Heuristics Excursion

TIHTN Planning

Motivation

Benefits of allowing task insertion:

Task insertion plus goal description fully subsumes classical
planning (while allowing task hierarchies as well)

Task insertion makes the modeling process easier: certain parts
can be left to the planner

Task insertion makes the problem computationally easier (can be
exploited for heuristics)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 53 / 62

Solving Techniques Heuristics Excursion

Task Sharing

Problem Definition

Task sharing allows unconstrained tasks to be merged:

Let P? = (V ,P, δ,C,M, sI , cI) be an HTN problem with task sharing.

Then, a task network tn is a solution if and only if:

There is a sequence of decomposition methods m and task
mergings that transform cI into tn (two tasks can be merged if
they are identical and not ordered with respect to another),

tn contains only primitive tasks, and

the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 54 / 62

Solving Techniques Heuristics Excursion

Task Sharing

Problem Definition

Task sharing allows unconstrained tasks to be merged:

Let P? = (V ,P, δ,C,M, sI , cI) be an HTN problem with task sharing.

Then, a task network tn is a solution if and only if:

There is a sequence of decomposition methods m and task
mergings that transform cI into tn (two tasks can be merged if
they are identical and not ordered with respect to another),

tn contains only primitive tasks, and

the (still partially ordered) task network tn admits an executable
linearization t̄ of its tasks.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 54 / 62

Solving Techniques Heuristics Excursion

Task Sharing

Motivation

Benefits of allowing task sharing:

Allows to eliminate duplicates that might just be modeling artifacts

connect(DVD-
player,Adapter)

connect(Adapter,TV)
<

←− actions come from some method

connect(Blu-ray-
player,Adapter)

connect(Adapter,TV)
<

←− actions come from another method

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 55 / 62

Solving Techniques Heuristics Excursion

Task Sharing

Motivation

Benefits of allowing task sharing:

Allows to eliminate duplicates that might just be modeling artifacts

connect(DVD-
player,Adapter)

connect(Adapter,TV)
<

←− actions come from some method

connect(Blu-ray-
player,Adapter)

connect(Adapter,TV)
<

←− actions come from another method

task sharing

connect(DVD-
player,Adapter)

connect(Blu-ray-
player,Adapter)

connect(Adapter,TV)

<

<

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 55 / 62

Solving Techniques Heuristics Excursion

Hybrid Planning

Problem Definition

Hybrid planning fuses HTN planning with Partial-Order Causal-Link
(POCL) Planning.

pick(?obj,?from)

¬handopen

holding(?obj)

¬at(?obj,?from)

at(?obj,?from)

handopen
place(?obj,?to)

handopen

¬holding(?obj)

at(?obj,?to)

holding(?obj)
<

move(?obj, ?from, ?to)

move(?obj, ?from, ?to)
at(?obj,?to)
¬at(?obj,?from)at(?obj,?from)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 56 / 62

Solving Techniques Heuristics Excursion

Hybrid Planning

Problem Definition

Hybrid planning fuses HTN planning with Partial-Order Causal-Link
(POCL) Planning.

Core differences to standard HTN planning:
Compound tasks can have preconditions and effects as well

Decomposition methods must adhere certain criteria (so that they
are implementations of their compound tasks)
Rather than task networks, we have partial plans that may
contain causal links
In solution plans, all linearizations must be executable

pick(?obj,?from)

¬handopen

holding(?obj)

¬at(?obj,?from)

at(?obj,?from)

handopen
place(?obj,?to)

handopen

¬holding(?obj)

at(?obj,?to)

holding(?obj)
<

move(?obj, ?from, ?to)

move(?obj, ?from, ?to)
at(?obj,?to)
¬at(?obj,?from)at(?obj,?from)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 56 / 62

Solving Techniques Heuristics Excursion

Hybrid Planning

Problem Definition

Hybrid planning fuses HTN planning with Partial-Order Causal-Link
(POCL) Planning.

Core differences to standard HTN planning:
Compound tasks can have preconditions and effects as well
Decomposition methods must adhere certain criteria (so that they
are implementations of their compound tasks)

Rather than task networks, we have partial plans that may
contain causal links
In solution plans, all linearizations must be executable

pick(?obj,?from)

¬handopen

holding(?obj)

¬at(?obj,?from)

at(?obj,?from)

handopen
place(?obj,?to)

handopen

¬holding(?obj)

at(?obj,?to)

holding(?obj)
<

move(?obj, ?from, ?to)

move(?obj, ?from, ?to)
at(?obj,?to)
¬at(?obj,?from)at(?obj,?from)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 56 / 62

Solving Techniques Heuristics Excursion

Hybrid Planning

Problem Definition

Hybrid planning fuses HTN planning with Partial-Order Causal-Link
(POCL) Planning.

Core differences to standard HTN planning:
Compound tasks can have preconditions and effects as well
Decomposition methods must adhere certain criteria (so that they
are implementations of their compound tasks)
Rather than task networks, we have partial plans that may
contain causal links

In solution plans, all linearizations must be executable

pick(?obj,?from)

¬handopen

holding(?obj)

¬at(?obj,?from)

at(?obj,?from)

handopen
place(?obj,?to)

handopen

¬holding(?obj)

at(?obj,?to)

holding(?obj)
<

move(?obj, ?from, ?to)

move(?obj, ?from, ?to)
at(?obj,?to)
¬at(?obj,?from)at(?obj,?from)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 56 / 62

Solving Techniques Heuristics Excursion

Hybrid Planning

Problem Definition

Hybrid planning fuses HTN planning with Partial-Order Causal-Link
(POCL) Planning.

Core differences to standard HTN planning:
Compound tasks can have preconditions and effects as well
Decomposition methods must adhere certain criteria (so that they
are implementations of their compound tasks)
Rather than task networks, we have partial plans that may
contain causal links
In solution plans, all linearizations must be executable

pick(?obj,?from)

¬handopen

holding(?obj)

¬at(?obj,?from)

at(?obj,?from)

handopen
place(?obj,?to)

handopen

¬holding(?obj)

at(?obj,?to)

holding(?obj)
<

move(?obj, ?from, ?to)

move(?obj, ?from, ?to)
at(?obj,?to)
¬at(?obj,?from)at(?obj,?from)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 56 / 62

Solving Techniques Heuristics Excursion

Hybrid Planning

Problem Definition

Hybrid planning fuses HTN planning with Partial-Order Causal-Link
(POCL) Planning.

pick(?obj,?from)

¬handopen

holding(?obj)

¬at(?obj,?from)

at(?obj,?from)

handopen
place(?obj,?to)

handopen

¬holding(?obj)

at(?obj,?to)

holding(?obj)
<

move(?obj, ?from, ?to)

move(?obj, ?from, ?to)
at(?obj,?to)
¬at(?obj,?from)at(?obj,?from)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 56 / 62

Solving Techniques Heuristics Excursion

Hybrid Planning

Problem Definition

Hybrid planning fuses HTN planning with Partial-Order Causal-Link
(POCL) Planning.

pick(?obj,?from)

¬handopen

holding(?obj)

¬at(?obj,?from)

at(?obj,?from)

handopen
place(?obj,?to)

handopen

¬holding(?obj)

at(?obj,?to)

holding(?obj)

move(?obj, ?from, ?to)move(?obj, ?from, ?to)
at(?obj,?to)
¬at(?obj,?from)at(?obj,?from)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 56 / 62

Solving Techniques Heuristics Excursion

Hybrid Planning

Problem Definition

Hybrid planning fuses HTN planning with Partial-Order Causal-Link
(POCL) Planning.

pick(?obj,?from)

¬handopen

holding(?obj)

¬at(?obj,?from)

at(?obj,?from)

handopen
place(?obj,?to)

handopen

¬holding(?obj)

at(?obj,?to)

holding(?obj)

move(?obj, ?from, ?to)move(?obj, ?from, ?to)
at(?obj,?to)
¬at(?obj,?from)at(?obj,?from)

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 56 / 62

Solving Techniques Heuristics Excursion

Hybrid Planning

Motivation

Benefits of hybrid planning:

Modeling support due to preconditions and effects of compound
tasks and legality criteria for their methods

In combination with task insertion: compound tasks can be
inserted easier due to their preconditions and effects

Solution criteria (all linearizations are executable) is more
practical than the classical one (there exist an executable
linearization)

Plan explanation and visualization becomes more natural

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 57 / 62

Solving Techniques Heuristics Excursion

Hybrid Planning

Motivation

Benefits of hybrid planning:

Modeling support due to preconditions and effects of compound
tasks and legality criteria for their methods

In combination with task insertion: compound tasks can be
inserted easier due to their preconditions and effects

Solution criteria (all linearizations are executable) is more
practical than the classical one (there exist an executable
linearization)

Plan explanation and visualization becomes more natural

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 57 / 62

Solving Techniques Heuristics Excursion

Hybrid Planning

Motivation

Benefits of hybrid planning:

Modeling support due to preconditions and effects of compound
tasks and legality criteria for their methods

In combination with task insertion: compound tasks can be
inserted easier due to their preconditions and effects

Solution criteria (all linearizations are executable) is more
practical than the classical one (there exist an executable
linearization)

Plan explanation and visualization becomes more natural

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 57 / 62

Solving Techniques Heuristics Excursion

Hybrid Planning

Motivation

Benefits of hybrid planning:

Modeling support due to preconditions and effects of compound
tasks and legality criteria for their methods

In combination with task insertion: compound tasks can be
inserted easier due to their preconditions and effects

Solution criteria (all linearizations are executable) is more
practical than the classical one (there exist an executable
linearization)

Plan explanation and visualization becomes more natural

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 57 / 62

Solving Techniques Heuristics Excursion

Decompositional Planning

Problem Definition

Decompositional planning is defined just as hybrid planning with task
insertion – with the exception that there is no initial partial plan.

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 58 / 62

Solving Techniques Heuristics Excursion

Decompositional Planning

Motivation

Benefits of decompositional planning:

Everything like in hybrid planning, except:

lower expressivity (identical to non-hierarchical, classical
planning), because the hierarchy does not induce constraints

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 59 / 62

Solving Techniques Heuristics Excursion

Hierarchical Goal Network (HGN) planning

Problem Definition

Hierarchical Goal Network (HGN) planning is concerned with the
decomposition of goals instead of tasks.

Core differences to HTN planning:

There is only one kind of tasks, i.e., (primitive) actions

Instead of task networks, HGN planning uses goal networks:
partially ordered sets of goals (each being a formula over state
variables)

Decomposition methods refine/substitute goals rather than tasks

The hierarchy induced on goals does not partition them into
primitive and non-primitive goals

All actions can be applied to the current state, as long as
they achieve a possibly first goal

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 60 / 62

Solving Techniques Heuristics Excursion

Hierarchical Goal Network (HGN) planning

Problem Definition

Hierarchical Goal Network (HGN) planning is concerned with the
decomposition of goals instead of tasks.

Core differences to HTN planning:

There is only one kind of tasks, i.e., (primitive) actions

Instead of task networks, HGN planning uses goal networks:
partially ordered sets of goals (each being a formula over state
variables)

Decomposition methods refine/substitute goals rather than tasks

The hierarchy induced on goals does not partition them into
primitive and non-primitive goals

All actions can be applied to the current state, as long as
they achieve a possibly first goal

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 60 / 62

Solving Techniques Heuristics Excursion

Hierarchical Goal Network (HGN) planning

Problem Definition

Hierarchical Goal Network (HGN) planning is concerned with the
decomposition of goals instead of tasks.

Core differences to HTN planning:

There is only one kind of tasks, i.e., (primitive) actions

Instead of task networks, HGN planning uses goal networks:
partially ordered sets of goals (each being a formula over state
variables)

Decomposition methods refine/substitute goals rather than tasks

The hierarchy induced on goals does not partition them into
primitive and non-primitive goals

All actions can be applied to the current state, as long as
they achieve a possibly first goal

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 60 / 62

Solving Techniques Heuristics Excursion

Hierarchical Goal Network (HGN) planning

Problem Definition

Hierarchical Goal Network (HGN) planning is concerned with the
decomposition of goals instead of tasks.

Core differences to HTN planning:

There is only one kind of tasks, i.e., (primitive) actions

Instead of task networks, HGN planning uses goal networks:
partially ordered sets of goals (each being a formula over state
variables)

Decomposition methods refine/substitute goals rather than tasks

The hierarchy induced on goals does not partition them into
primitive and non-primitive goals

All actions can be applied to the current state, as long as
they achieve a possibly first goal

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 60 / 62

Solving Techniques Heuristics Excursion

Hierarchical Goal Network (HGN) planning

Problem Definition

Hierarchical Goal Network (HGN) planning is concerned with the
decomposition of goals instead of tasks.

Core differences to HTN planning:

There is only one kind of tasks, i.e., (primitive) actions

Instead of task networks, HGN planning uses goal networks:
partially ordered sets of goals (each being a formula over state
variables)

Decomposition methods refine/substitute goals rather than tasks

The hierarchy induced on goals does not partition them into
primitive and non-primitive goals

All actions can be applied to the current state, as long as
they achieve a possibly first goal

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 60 / 62

Solving Techniques Heuristics Excursion

Hierarchical Goal Network (HGN) planning

Problem Definition

Hierarchical Goal Network (HGN) planning is concerned with the
decomposition of goals instead of tasks.

Core differences to HTN planning:

There is only one kind of tasks, i.e., (primitive) actions

Instead of task networks, HGN planning uses goal networks:
partially ordered sets of goals (each being a formula over state
variables)

Decomposition methods refine/substitute goals rather than tasks

The hierarchy induced on goals does not partition them into
primitive and non-primitive goals

All actions can be applied to the current state, as long as
they achieve a possibly first goal

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 60 / 62

Solving Techniques Heuristics Excursion

Hierarchical Goal Network (HGN) planning

Motivation

Benefits of HGN planning?

The application of state-based heuristics is more directly
applicable than in HTN planning

In some domains, defining a hierarchy on state features might be
easier than defining a hierarchy on tasks

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 61 / 62

Solving Techniques Heuristics Excursion

Hierarchical Goal Network (HGN) planning

Motivation

Benefits of HGN planning?

The application of state-based heuristics is more directly
applicable than in HTN planning

In some domains, defining a hierarchy on state features might be
easier than defining a hierarchy on tasks

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 61 / 62

Solving Techniques Heuristics Excursion

Hierarchical Goal Network (HGN) planning

Thank You for Your Attention!

Thank you for your attention!

Are there questions?

Tutorial: An Introduction to Hierarchical Task Network (HTN) Planning June 25th, ICAPS 2018 (Delft) 62 / 62

	Solving HTN Planning Problems
	HTN Plan Space Search
	HTN Progression Search
	Compilation to STRIPS/ADL
	Compilation to SAT

	Heuristics for Search-based HTN Planning
	Decomposition Graph-based Heuristics
	Using Classical Heuristics to Guide HTN Search

	Excursion: Further Hierarchical Planning Formalisms
	Overview
	TIHTN Planning
	Task Sharing
	Hybrid Planning
	Decompositional Planning
	Hierarchical Goal Network (HGN) planning

