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Abstract 
User-friendly Companion Systems require Artificial Intelligence planning to take into account 
human planning behavior. We conducted a qualitative exploratory study of human planning in 
a knowledge rich, real-world scenario. Participants were tasked with setting up a home theater. 
The effect of strategy knowledge on problem solving was investigated by comparing the per-
formance of two groups: one group (n = 23) with strategy instructions for problemsolving and 
a control group without such instructions (n = 16). We inductively identify behavioral patterns 
for human strategy use through Markov matrices. Based on the results, we derive implications 
for the design of planning-based assistance systems. 
 
Kurzzusammenfassung 
Zur Berücksichtigung menschlichen Planungsverhaltens in Companion Systemen – eine 
qualitative Analyse menschlicher Planungsstrategien 
In nutzerfreundlichen Companion Systemen muss die Künstliche Intelligenz in ihrer Planung 
auch menschliches Verhalten berücksichtigen. Daher untersuchten wir in einer qualitativen Stu-
die explorativ menschliches Planungsverhalten in einer wissensreichen, realistischen Anwen-
dungsdomäne. In einem Experiment sollten die Teilnehmenden eine Heimkinoanlage aufbauen. 
Dabei wurde der Effekt des Strategiewissens auf Problemlöseverhalten über zwei Gruppen un-
tersucht: Eine Gruppe mit Instruktionen einer Problemlösestrategie (n = 23) und eine Gruppe 
ohne (n = 16). Durch Induktion wurden aus Markovnetzen Muster im menschlichen Planungs-
verhalten identifiziert und entsprechend Implikationen für die Gestaltung von planbasierten As-
sistenzsystemen abgeleitet. 
 
Keywords 
ill-defined problem solving, human-computer interaction, plan linearization, planning 
 
1 Assisting Humans in Action Planning  
Digital personal assistants become more and 
more present in today's society. There is a 
wide range of such systems, e.g. personal as-

sistants running on smartphones or control en-
gines for smart homes. But most everyday 
technical devices give us support that still 
needs to be adopted or transferred to the cur-
rent situation at hand. Companion Technology 
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aims at utilizing cognitive technical systems 
that assist its users in an individualized and 
user- and situation-adaptive way [Biu16b]. At 
the heart of many Companion Systems is Arti-
ficial Intelligence (AI) planning [Biu16a]. It 
allows to reason about complex courses of ac-
tion, i.e. what actions need to be applied in 
which order to achieve a certain goal.  
When assisting humans in action planning 
based on AI planning technology, several 
challenges arise: Which planning decisions 
should be made by the user and which ones by 
the AI planning component, and in what order 
should alternative options be presented? The 
knowledge about human planning behavior 
might thus help the system in circumventing 
misunderstandings with human users by es-
tablishing a common understanding of the 
problem and its solution. After a plan has been 
generated, i.e., a set of actions that achieves 
the user's goals, there are usually several or-
derings (also called linearizations) of the ac-
tions that can be applied. These are generated 
explicitly when using Partial-Order Causal-
Link (POCL) planners; when using state-
based planners, they can be easily obtained via 
post-processing. Some of the linearizations 
may be more intuitive for humans than others; 
and a most suitable order in which they are 
presented has to be found. While there has 
been done ample research on human planning 
behavior (see e.g. Morris and Ward [Mor05], 
the integration of psychological findings with 
AI planning for automatic decision support 
has not received much attention. In order to 
address the research gap, we have conducted 
an exploratory study of human planning be-
havior in a knowledge-rich, ill-defined real-
world scenario as a first attempt. The aim of 
our research was to show a difference in strat-
egy use across available instructions as a ma-
nipulation of information availability or exist-
ing knowledge. We investigated behavioral 
patterns of planning strategies which might 
serve as cues indicating the reasoner's mental 
representation of the plan through inductive 
qualitative analysis of transition diagrams. 
With our findings we aim to provide support 

for the decision-making processes of Com-

panion Systems with psychological insights 
and, thereby, to improve their overall func-
tionality and usefulness.  
In the following section, we provide an over-
view of related psychological perspectives as 
well as AI concepts, before describing the ex-
perimental study and its results. We close with 
a discussion of our findings with respect to 
psychological planning research and implica-
tions for AI planning technology. 
 
2 Planning in Psychology and AI 
2.1 Human Planning Behavior 
According to Mumford et al. [Mum01] plan-
ning is a mental simulation of single actions in 
a dynamic environment, which is a goal-
driven and resource-intensive activity. In or-
der to reduce costs, humans use heuristics to 
overcome limitations in working memory ca-
pacity or the lack of knowledge in long-term 
memory. This is especially the case when the 
problem is ill-defined with an unknown prob-
lem space and a dynamic and uncertain envi-
ronment as found in real-world settings.  
In studies with well-defined or well-structured 
puzzle problems [Dav05], where the initial 
state, the goal state, and operators (= rules 
how moves can be made) are given, models 
have been proposed suggesting that problem-
solving takes place in a rational, systematic, 
top-down manner. For well-defined problem 
spaces, heuristics such as hill-climbing or 
means-end analysis are used including a sys-
tematic solution search. With such strategies, 
the difference between the current state and a 
goal state is assessed and operators are used 
that minimize that difference. 
In ill-defined real-world tasks, parameters 
such as the final goal state or some operators 
may not be known and planning behavior is 
thus different from the systematic approach to 
well-defined problems. In many real-world, 
knowledge-rich tasks, human planning was 
found to be mostly of opportunistic nature 
[Hay79] or in other words bottom-up. That 
means that plans are continuously changed 
and evolve as environmental cues trigger op-
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portunities for plan refinement. Human plan-
ning occurs in partial order and non-hierarchi-
cally online during task implementation (= 
concurrent planning). Planning steps are con-
tinuously formulated as the solution evolves 
[Dav05].  In ill-defined problems, only little is 
known about the problem space, which makes 
the above mentioned process of difference 
evaluation such as means-end analysis diffi-
cult [Orm05]. Ormerod [Orm05] gives an 
overview of several human strategies. The us-
age depends highly on the task type, the task 
complexity, and the level of expertise of the 
problem solver. 
Most strategies share an approach similar to 
means-end analysis, where a goal is decom-
posed into smaller subgoals until a known op-
erator is applicable, but not in a purely system-
atic manner. Humans formulate partial plans, 
but environmental cues might trigger a reeval-
uation of the plan resulting in changing the 
plan opportunistically. The planning behavior 
is thus rather non-hierarchical, especially 
when confronted with ill-defined problems.  
Therefore, planning can include structured or 
unstructured (= opportunistic) aspects. For 
``creative'' problem tasks with no single best 
outcome, Ormerod [Orm05] proposes a mixed 
strategy. An example of such a ``creative'' 
problem may be the design of a novel educa-
tional task [Orm05] or planning a dinner 
[Beh17]: Several courses have to be matched 
and constraints such as allergies have to be 
considered, but there is no single best out-
come. 
 
2.2 Mixed-Initiative AI Planning 
AI planning is concerned with finding so-
called plans to solve a given planning prob-

lem, i.e., to find a (maybe partially ordered) 
sequence of actions that transforms an initial 
world state into a state that satisfies all goals, 
which are specified in the problem descrip-
tion. These goals do not need to describe a 
complete world state. Consider a problem 
where a user wants to set up a home theater 
consisting of various HiFi devices by means 
of several cables and adapters. Here, the goals 
do not need to mention which cables are 

plugged into which devices; instead, the plan-
ning goals only specify the signals required by 
the respective devices. In fact, there are vari-
ous possibilities which cables will be used and 
where - and the planner will find one solution 
on its own. Usually, planning systems do this 
without a user taking part in this selection pro-
cess. In contrast, in mixed-initiative planning 
(MIP), the planning process is done collabora-
tively with the user and certain decisions are 
taken by her or him [All96, Bur96]. 
There are various challenges yet unsolved in 
MIP [Smi12, Beh17]. One of them is deciding 
in which situations the planner should take in-
itiative (i.e., solve the problem, or parts of it, 
fully autonomously), and in which ones the 
user should do so by her- or himself. 
After a planning problem has been solved, i.e., 
the steps that need to be carried out to reach 
the user's goals are known, the respective so-
lution is usually communicated to the user 
step by step to be carried out by her or him 
[Ber17]. 
In previous work [Höl14], we proposed tech-
niques to find user-friendly plan lineariza-
tions, i.e., we try to find the most appropriate 
order in which the plan's actions are commu-
nicated to the user. Our strategies are based on 
a POCL plan - a partially ordered plan incor-
porating causal links, i.e., annotations that ex-
plicitly state which action fulfills the precon-
ditions (the conditions necessary to execute 
the action) of another action; the former is 
called the producer, the later the consumer. 
This plan linearization has nothing to do with 
solving the task, as any linearization of the so-
lution's actions adhering the present con-
straints solves the problem. When using 
POCL planners, the result of the planning pro-
cess is already in that representation. When 
using state-based planners, it can easily be ob-
tained via post-processing in polynomial time. 
Some of the linearizations might be more in-
tuitive than others to human users. We have 
developed various domain-independent strat-
egies to prioritize the different possibilities in 
a way that deemed plausible [Höl14, Ber17], 
but that had not yet been evaluated in a study:  
Two of our strategies are based on information 
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present in any POCL plan: The first one is 
based on the structure of causal links. It finds 
a linearization ensuring that the producer and 
the consumer of a causal link are close to-
gether. Consider our home theater domain: 
When the action of open the case of a DVD 
fulfills a precondition of taking the DVD, they 
should be close to each other in the plan 
(though from a technical view, one could re-
assemble the whole home theater in the mean-
time). The second strategy exploits the fact 
that most planning models are given in a lifted 
fashion (though planning is often done 
grounded). As a consequence, a plan has par-
ametrized actions, e.g., 〈openCase(dvd1), 

take(dvd1), putInto (dvd1, player1)〉. We use 
this representation to group actions that in-
clude the same constants. \label{linCon-
stants} Our third strategy is applicable when 
planning in a hierarchical way, i.e., decom-
posing an abstract overall task into subtasks 
until an executable plan is found. Here, ac-
tions that are introduced by the same decom-
position step are grouped together since they 
contribute to the achievement of the same task 
at a more abstract layer. 
Closely related is also the task of generating 
so-called plan explanations [See12, Ber17]. 
Instead of only presenting a plan's actions to 
the user, additional explanations about the re-
spective steps can also convey the purpose of 
that step. That is, it is not just shown what 
needs to be done by the user, but why this 
should be done. So far, these explanations are 
only provided upon user request. Providing 
such explanations pro-actively might be one 
way to establish a common ground. 
 
3 Qualitative Pilot Study 
In our exploratory study we took the home 
theater setup task proposed by Bercher et al. 
[Ber14, Ber15] as a real-world scenario and 
analyzed human planning strategies. We used 
a between-subject design with two groups var-
ying in strategical background knowledge. 
One group received further instructions about 
a useful strategy and one group got no such 
instructions. Differences in planning behavior 

were analyzed as dependent variable qualita-
tively through observations of the order of ac-
tions. We expected to find more strategy use 
in the instruction group compared to the no-
instruction group in all scenarios. Therefore 
we expected to find cues of opportunistic be-
havior rather than any use of the proposed 
strategies as systematic behavior in the non-
instruction group. 
 
3.1 Methods 
3.1.1 Research Design 
In our experiment, experience was manipu-
lated as independent variable with two groups 
(between-factor), with one group receiving in-
structions on a successful problem solving 
strategy (experimental group; description be-
low) and the other group receiving no such in-
structions (control group). To increase relia-
bility the task was presented to each partici-
pant in three different scenarios. Problem 
solving success was assessed as dependent 
variable. Furthermore, domain knowledge, 
working memory capacity, need for cognition, 
and technology commitment were assessed as 
control variables. 
 
3.1.2 Task: Setting Up a Home Theater 
We have chosen the task of setting up a home 
theater as proposed by Bercher et al. [Ber14, 
Ber15] because of the knowledge-rich and re-
alistic nature and because an AI planning-
based assistant was available for that task. For 
this task, different technical devices have to be 
connected so that every HiFi component re-
ceives the required audio/video signals. For 
example, the television has to receive the 
video signals of a blu-ray player and a satellite 
receiver, and the audio/video receiver has to 
receive the respective audio signals. For the 
connections, several cables and adapters are 
available with different characteristics. For in-
stance, not all of the cables transfer the same 
signal types or can be used for every device. 
The advantage of choosing this task compared 
to others is the possibility of systematically 
varying the difficulty by varying the availabil-
ity of different cables.  
 



Dritte Transdisziplinäre Konferenz 

„Technische Unterstützungssysteme, die die Menschen wirklich wollen“ 2018 
 

93 
 

The task was carried out in a virtual desktop 
environment where devices and cables could 
be moved, connected, and disconnected via 
mouse input. An example of the task is pic-
tured in Fig. 1. 
 
3.1.3 Measurements 
Because the described setup task is a 
knowledge-rich task, domain knowledge of 
participants was assessed. For this purpose, a 
performance test had been developed and pre-
tested in a pilot run with 29 participants.  
One such question was What signal(s) is/are 

transmitted by a HDMI cable? with possible 
answers a. video only, b. audio only, c. both 

audio and video, and d. there are different 

HDMI types with different signal transmis-

sions. 
In addition, two other methods measuring do-
main experience other than domain-specific 
knowledge were used, namely a self-report  
with 4 items  
(e.g., How would you estimate your practical 

skills in setting up a home theater?);  
and a retrospective questionnaire, also with 4 
items (e.g., How often have you set up a sound 

system in a room?).  
Furthermore, other cognitive and personality 
constructs were assessed (working memory 
capacity, need for cognition and technology 
commitment), but analyses and results are not 
reported here. All items were phrased in Ger-
man and can be obtained from the authors 
upon request. 
 
3.1.4 Participants 
In total N = 39 German-speaking psychology, 
biology, and medical students of Ulm Univer-
sity participated in the experiment. 26 identi-
fied themselves as female, 13 as male, and no 
person as any other gender. The age ranged 
from 18 to 49 years with an average of  M = 
25.1 (SD = 5.3). The participants were split 
into groups with 23 being in the experimental 
group with strategy instructions and 16 being 
in the control group with no instructions. 
 
 
 

3.1.5 Procedure 
In the experiment, both groups started with a 
session of filling out the questionnaires and 
performing the cognitive tests mentioned 
above. Afterwards, both groups received writ-
ten instructions about the task and overview 
sheets about the cables and devices. Partici-
pants had access to these instructions and 
overviews throughout the experiment. Also, 
after reading the material, participants were 
able to ask questions in case of misunder-
standings, followed by test scenario as a train-
ing. Subsequently, the experimental group re-
ceived further information on a useful strat-
egy. They were instructed to follow the signal 
flow beginning from the source devices (blu-
ray player, satellite receiver) to the output de-
vices (television, audio/video receiver). For 
example following this instruction a partici-
pant can transfer the video signal by plugging 
in a video cinch cable at the respective port of 
the satellite receiver first and then at the tele-
vision afterwards. The control group received 
no further strategy instructions and continued 
directly with the main task. It was carried out 
by both groups and consisted of three different 
scenarios (A, B, C) varying in cable availabil-
ity. Fig. 1 shows scenario C. In the other sce-
narios signals had to be transferred with other 
sets of cables or adapters and thus other solu-
tions, but the devices and signal types stayed 
the same. 
 
 
 

 
Figure 1: Task “Setting Up A Home Thea-

ter“ in a virtual desktop environment 
showing scenario C of the experiment. 

The participant already made connections 
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3.2 Results 
For the statistical data analysis, the statistic 
software R [Dev12] was used. For the explor-
atory analysis of planning behavior, sequence 
analyses were performed using the “mar-
kovchain“ package [Spe17]. 
 
3.2.1 Descriptive Results 
In Table 1 the percentage of users solving the 
scenarios can be found for every scenario of 
the task, separately for each group or in sum. 
It shows that participants in the instruction 
group seem to perform better in every task, 
although because of the small sample size and 
thus low statistical power, statistical inference 
does not seem legit and this observation needs 
to be interpreted with caution. It can also be 
seen that scenarios seem to vary in difficulty. 
The newly developed knowledge test with 6 
items in total had a mean difficulty of M = .45 
(SD = .29). 4 of these items were close to the 
chance level (≤  .29) and 2 items showed a low 
difficulty above ≥ .79. Participants were found 
to recognize an HDMI cable and knew its 
functions, but had no or very low knowledge 
about other cables (S/PDIF) or devices (blu-
ray player). Also 64% of the participants rated 
their ability to set up a home theater as “very 
low“, “low“, and “rather low“.  
In the retrospective questionnaire 59% of the 
participants reported that they had never set up 
a home theater.  
In sum data suggests that participants are ra-
ther novices than experts in the domain of set-
ting up a home theater. 
 
Table 1: Percentage of correctly solved tasks 

for each group and scenario 

Group 
 

Scenario 

A B C 

Instruction Group .61 .48 .78 

Control Group .31 .25 .50 

Sum .49 .38 .67 
 
 
 

3.2.2 Strategy Usage 
The actual planning behavior and the usage of 
potential strategies were investigated through 
qualitative log file analysis. All actions (con-
nections and disconnections of cables) were 
automatically saved by the computer while the 
participants were solving the problem in the 
virtual environment. For qualitative sequence 
analysis, Markov models were calculated in-
dicating the probability with which one action 
followed another during the tasks. Markov 
chains are examples of stochastic processes 
referring to a sequence of random variables 
X0, X1, X2… evolving over time (Xn with a 
discrete state at time n) and the assumption 
that the future state is solely conditional on the 
current state and independent of the history of 
past events. The transition probability from 
state i to state j is qij with (P(Xn+1 = j | Xn = i, 
Xn-1 = in-1 = in-2,…, X0 = i0) = P(Xn+1 = j | Xn = 
i) = qij. To analyze which actions were taken 
after another, transition probabilities were cal-
culated for each experimental group sepa-
rately and for each scenario A, B, and C. The 
transition probabilities were calculated for 
every action (what cable was connected with 
which device?), for the devices (which device 
was used after another?), and cables (which 
cable was used after another?).  
The main results are reported in the following. 
 
For the devices, it was found that participants 
in the experimental group started with devices 
defined as source devices (blu-ray player or 
satellite receiver) with a higher probability (q 

= .74) than output devices (television and au-
dio/video receiver; q = .26) in scenario A. This 
was also true for scenario B (q = .87 for start-
ing with a source device compared to q = .13 
for starting with an output device). In scenario 
C the percentage was still higher for using 
source devices first, but was closer to the 
chance level (q = .50) and the distribution 
looks more balanced than in the other scenar-
ios (q = .61 for using a source device first 
compared to q = .39 for using an output device 
first). Participants in the control group, how-
ever, did not start the problem solving with a 
particular source device - the probabilities are 
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more balanced (cf. Table 2). 
The transition probabilities for cable use show 
higher values for reusing the same cable again 
than using another one for most cables. E.g., 
the state diagram of the experimental group of 
scenario C is shown in Fig. 2. The probabili-
ties for cable reuse are about q ≈ .5 - even for 
the cinch stereo cable because “Cinch Stereo 
Red“ and “Cinch Stereo White“ only describe 
the differently colored cable parts of the same 
cable and thus the transitions between these 
parts q = .45 and q = .67 describe the reuse of 
the same cable as well. 
 
Table 2: Transition probabilities for partici- 

ants using a certain device as a first 
action. Probabilities qij for Xn = i ≡ 

start state and Xn+1 = j ≡ device usage; 
in cells transition probabilities for the 
experimental group/control group are 

shown in comparison 
Device 

 
Scenario 

A B C 

Blue-ray player .44/.38 .35/.31 .22/.19 
Satellite rec. .30/.06 .52/.19 .39/.12 
Television .04/.31 .04/.38 .17/.38 
A/V receiver .22/.25 .09/.13 .22/.31 
 

 
Figure 2: State diagram of cable usage in sce-
nario C. The cables are depicted as states and 
the transitions as arrows with the probabili-
ties attached. Only transition probabilities  

q ≥ .16 are shown 
 
Furthermore, the cable that the participants 
used most after the start state was the HDMI 
and Cinch Video Cable in scenario A and B for 

both groups (except in scenario B, where for 
the experimental group the Cinch Stereo was 
used most with q < .22) with a transition prob-
ability higher than q < .25 besides others. 
These were the same cables the participants 
already knew from the training scenario or 
even from existing domain knowledge (as 
85% of the participants already knew the 
HDMI cable according to the knowledge test). 
Other (unknown) cables had not been used af-
ter the start state with a probability higher than 
q < .15. This is not true for scenario C, where 
in both groups the S/PDIF cable was used by 
q = .35 in the experimental group and by q = 
.44 in the control group. But this cable was 
known from scenario A. Furthermore, this ca-
ble was very easy to handle because it fitted 
only in two slots in the entire task (and thus 
only one connection is possible) whereas 
other cables could be used at different slots 
(and therefore different connections are imag-
inable). According to the knowledge test, only 
23% of the participants knew the S/PDIF ca-
ble before the experiment and thus it was not 
used directly after the start state (only q = .19 
in the control and only q = .13 in the experi-
mental group) in scenario A, where it was in-
troduced the first time 
 
4 Discussion 
In our study, we analyzed human planning be-
havior in an exploratory manner in order to 
derive implications for an AI planning system 
and to specify further research need. 
 
4.1 Experimental Findings and Limitations 
The descriptive results suggest that the partic-
ipants in our experiments were rather novices 
and had limited knowledge of the task do-
main. The knowledge test showed high diffi-
culty. The self-report and the retrospective 
questionnaire indicated that conclusion, too. 
 
In the analysis of the transition probabilities it 
was found that people tend to reuse a cable 
with a higher probability than using another 
cable. They seem to decompose problems thus 
cable-wise instead of device-wise because the 
reuse of the same device was not found to be 
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more probable than the usage of another de-
vice. Thus it was possible to identify a favored 
parameter of decomposition above others in 
this specific task. Furthermore, we found indi-
cators of the influence of instruction on prob-
lem-solving behavior. First of all, a difference 
between the two groups could be observed. 
The group with the strategy instructions 
tended to start at source devices first com-
pared to the control group with no strategy in-
structions, where device usage was more bal-
anced. Another indicator of the influence of 
domain-specific knowledge was the observa-
tion that humans tended to use already known 
cables first before the usage of new cables. For 
example, in the first test scenario, the HDMI 
cable was used first in many cases, which was 
already known by most participants as the 
knowledge test showed. In the last scenario, 
the S/PDIF cable was used in many cases at 
the beginning, which most participants did not 
know before the experiment, but got familiar 
with through another scenario they solved be-
fore. This finding points to the opportunistic 
manner of human problem solving [Hay79] in 
knowledge-rich problem domains.  
These results are certainly not applicable to 
other types of problems such as “creative“ 
tasks [Orm05]. 
As in every experiment, there are limitations 
of this study, which should be taken into ac-
count in the interpretation of the results. First, 
the sample was homogeneous as all the partic-
ipants were students and technological layper-
sons. Therefore, the knowledge test was also 
found to be too difficult and had low selectiv-
ity. Second, the sample size was small result-
ing in low robustness of results. Hence, the re-
sults have to be interpreted with caution. 
Third, the scenarios were presented in fixed 
order. So it is not clear if differences in human 
behavior or outputs between scenarios were 
due to differences in the scenario characteris-
tics such as complexity, or due to order ef-
fects. Fourth, because of the exploratory na-
ture of this study, the results are data-driven 
and consequently of inductive nature with 
post-hoc explanations of behavior rather than 
a strictly deductive test of a priori hypotheses. 

Fifth, we decided to study problem-solving in 
ill-defined domains and choose a specific task 
with a specific domain, thus generalization of 
these results to other domains is limited. The 
abstract principles need to be shown across 
other tasks and domains and integrated in a 
model of planning for deeper understanding of 
mechanisms. 
 
4.2 Implications for AI Planning 
In our experiment, we have observed that the 
participants tended to use known cables be-
fore trying different solutions. This planning 
behavior can be exploited in several ways. 
When a MIP system assists the user in solving 
a subproblem by presenting a set of possible 
solutions for it and letting the user choose, our 
finding can be exploited by ranking the differ-
ent options, by grouping them together, or 
even by excluding certain options. Such strat-
egies are especially important in case there are 
many options to be presented to the user, be-
cause, up to now, there are no empirically jus-
tified strategies that address the issue of pre-
senting the available options to a user.In case 
the planner solves a subproblem on its own, it 
seems reasonable to prefer those solutions that 
are known to the user. That is, the planner re-
gards solutions containing subsolutions 
known to the user of higher quality compared 
to solutions without that property. This im-
plies that a different quality metric is opti-
mized compared to standard planning metrics 
such as number of actions. Finally, in situa-
tions where the planner chooses a solution to 
a subproblem that is not known to the user alt-
hough a known one might seem applicable, 
the system could explain why the known so-
lutions have not been selected or are not pos-
sible. Consider the case where the planner first 
connects two devices with a cable known to 
the user, say HDMI, and then, for connecting 
the next two devices, it does not choose the 
other HDMI cable although this had techni-
cally been possible. Then the system could of-
fer an explanation stating why a different ca-
ble was chosen instead of another one of the 
same sort. A possible reason might be that 
there is only one HDMI cable remaining that 
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has to be used somewhere else due to missing 
alternatives there. 
The causal dependencies in the given problem 
allow for a wide range of possible plan linear-
izations, i.e. even when committing to one 
specific set of actions to solve the problem, 
there are many possibilities of how to order 
them. Based on the planning behavior ob-
served in our study, we can first judge whether 
one of our linearization strategies given in 
Section 2.2 can actually be used to generate 
linearizations that are intuitive for human us-
ers, i.e. that adhere their expectations. 
Especially Strategy 2.2 (based on constant 

similarity) seems promising: It leads to linear-
izations where actions including similar con-
stants are ordered close to each other (where 
constants are the formal representation of ob-
jects such as cables). This enables a cable-
wise completion of the overall task and thus 
reproduces the strategy observed in the exper-
iments, i.e.\ it is possible to mime the human 
planning behavior. This enables an expecta-
tion-conforming system behavior and thus im-
proves the system's general user-friendliness. 
 
5 Outlook 
In our experiment, we focused on planning be-
havior of non-creative nature. However, plan-
ning seems to be different in other domains 

with other characteristics [Orm05]. For exam-
ple, planning behavior in more creative tasks 
such as planning a dinner [Beh17] could be in-
vestigated and compared. In our study, plan-
ning was analyzed without the interaction 
with an AI planning system. Therefore, AI 
systems need to be implemented and the im-
plications evaluated. In addition, further re-
search should be conducted to investigate un-
der which circumstances and in which form 
explanations by an AI planner are needed or 
requested by a human when collaboratively 
solving a problem with a companion system. 
Furthermore, our approach was restricted and 
contextual aspects as well as multi-user situa-
tions had not been considered. These factors 
make the whole task more complex and dy-
namic. In a next step these factors should also 
be addressed in order to be even more realis-
tic. 
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