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Abstract

Planning systems usually operate on grounded representa-
tions of the planning problems during search. Further, plan-
ners that use translations into other combinatorial problems
also often perform their translations based on a grounded
model. Planning models, however, are commonly defined in a
lifted formalism. As such, one of the first preprocessing steps
a planner performs is to generate a grounded representation.
In this paper we present a new approach for grounding HTN
planning problems that produces smaller groundings than the
previously published method. We expect this decrease in size
to lead to more efficient planners.

1 Introduction

Most modelling languages for planning problems (such as
PDDL (McDermott 2000)) allow for specifying planning
problems in a lifted fashion, e.g. by allowing the modeller
to specify actions with parameters whose preconditions and
effects are specified using literals referring to these param-
eters. Using a lifted representation, a modeller can easily
write models with a large number of instantiated actions
without the need to enumerate them explicitly. More im-
portantly, a lifted representation of the planning problem
enables the modeller to specify a single planning domain
that can be used in multiple planning problems without any
change to the model. In a grounded formalism, the domain
(e.g. the set of actions) changes depending on the planning
problem at hand, while it does not in a lifted representation.

Unfortunately, to plan directly using only the lifted model
is rather difficult, which is witnessed by the absence of a
large body of work e.g. on lifted heuristics. Most planners
transform the lifted representation of the planning problem
they receive as an input into a grounded representation be-
fore planning. Planning is then performed on the grounded
representation, for which heuristics are readily available.
Naively grounding the lifted representation by simply in-
stantiating all its elements is seldom feasible due to the huge
size of the naively grounded model. Instead, the grounding
procedure aims to remove as many unnecessary instantia-
tions as possible. Smaller groundings are generally advanta-
geous to planners, as their per-search-node effort decreases
and the quality of heuristics can improve. Even small de-
creases in the size of the grounding can have a huge impact

on the efficiency of the planner. As such, grounding is a crit-
ical step in the process of planning.

For Hierarchical Task Network (HTN) planning (Bercher,
Alford, and Holler 2019), there is — as far as we know
— only a single paper explicitly concerned with grounding
HTN planning domains (Ramoul et al. 2017). Several other
HTN planners plan in a grounded way (e.g. FAPE (Dvorak
et al. 2014) and PANDA (Bercher, Keen, and Biundo 2014;
Bercher et al. 2017)), but there is no published work about
their grounding procedures.

In this paper we report on the grounding procedure used
in a variety of systems based on the PANDA framework,
e.g. the plan-space-based system (Bercher, Keen, and Bi-
undo 2014; Bercher et al. 2017), the progression-based sys-
tem (Holler et al. 2018; Holler et al. 2019b), the SAT-
based system for totally and partially ordered HTN planning
(Behnke, Holler, and Biundo 2018a; 2018b; 2019a; 2019b),
and the SAT-based HTN plan verifier (Behnke, Holler, and
Biundo 2017). PANDA and its grounder have also already
been used in practical applications where a fast grounding
procedure is necessary. Notably, we have used it to create
plans instructing novice users on how to use electronic tools
for DIY home-improvement projects (Behnke et al. 2018;
2019). We start by describing the lifted HTN planning for-
malism, then give an overview of grounding in planning,
describe the grounding procedure used by PANDA, and
lastly compare our grounding against the grounding found
by GTOHP (Ramoul et al. 2017).

2 Lifted HTN Planning Formalism

Before explaining our HTN grounding procedure, we start
by briefly describing the formalism of lifted HTN planning.
We have based our formalism on the lifted one by Alford,
Bercher, and Aha (2015), which in turn is based on the for-
malism by Geier and Bercher (2011).

Assume that £ = (P,T,V,C) is a quantifier- and
function-free first-order predicate logic with the following
elements. P is a finite set of predicate symbols. A predi-
cate’s arity defines its number of parameter variables (taken
from V'), each having a certain type (defined in 7). T is a
finite set of fype symbols. V is a finite set of typed variable
symbols to be used by the parameters of the predicates in P.
C is a finite set of typed constants. Based on the predicate
logic £, we denote with .S the power set of all ground facts



pay-toll(?s, ?f) pay-toll(?f, ?t)

load(?p, ?f) unload(?p, ?t)

navigate(?f, 2t)
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Figure 1: A task network in a simple transportation domain.
If performed, it will transport a package from its initial lo-
cation to its target location. We assume that there is just one
transporter. The variables ?s (start location), f (initial pack-
age location), and 7t (target package location) are of type
location. The variable ?p is of type package. Parallelism be-
tween the pay-toll and navigate tasks models that the toll can
be paid at any time while the transporter is on its way from
the one location to another.

over L.

The most basic data structure in HTN planning is a task
network. It represents a partially ordered multi-set of tasks.
HTN planning distinguishes two types of tasks: primitive
and abstract ones. Task networks can contain both primitive
and abstract tasks. Each task is identified by its task name
and a parameter sequence. For instance, a (primitive) task
for driving from a source location ?/s' to a destination loca-
tion ?ld is denoted by the first-order atom drive(?ls, ?ld). We
do not differentiate between the expressions task and task
names — both are used synonymously.

Definition 1 (Task Network). A task network tn over a set

of task names X (first-order atoms) is a tuple (I, <, o, VC)

with the following elements:

1. 1 is a finite (possibly empty) set of task identifiers.

2. < is a strict partial order over 1.

3. a: I — X XV maps task symbols to task names and
their parameter variables

4. VC is a set of variable constraints. Each constraint can
bind two task parameters to be (non-)equal or it can con-
strain a task parameter to be (non-)equal to a constant.

For simplicity, we only allow variables as arguments for
tasks. If it is desired that an argument of a task should be a
constant, one can simply introduce a new variable and bind
it to the value of the constant in VC. As an example for a
task network consider the one shown in Fig. 1.

Task networks can contain primitive and abstract tasks.
Primitive tasks are identical to actions in classical planning.
They are identified via first-order atoms like drive(?f, 7t) and
are specified via their preconditions pre and effects eff. For
the purposes of this paper, we assume that pre is a conjunc-
tion of positive first-order literals over L’s predicates and eff’
is a conjunction of (positive and negative) first-order literals.
The variables occurring in pre and eff must be parameters of
name. Note that for more complex preconditions and effects,
this normal form can be achieved via compilation into (po-

"'We adopt the convention of PDDL (McDermott 2000) to de-
note variables with a prefixed question mark. L.e. ?a is a variable,
while a denotes a constant.

tentially) multiple new actions. However a native approach
for handling them is usually more efficient.

Abstract tasks are identified by their name and arguments,
e.g. navigate(?f, ?t). Their semantics is given in terms of
pre-defined means for performing them, which are described
by decomposition methods M. A decomposition method
m € M is a tuple (c,tn, VC') consisting of an abstract
task name ¢, a task network tn, and a set of variable con-
straints VC'. The variable constraints VC' allow to specify
(co)designations between the parameters of ¢ and either the
variables in the task network ¢n or constants.

An HTN planning problem consists of the problem’s
primitive and abstract tasks, all available decomposition
methods, the initial state and the initial task network.

Definition 2 (Planning Problem). A lifted HTN planning

problem P is a tuple (L, Tp, T, M, s1,tnr), where:

e L is a quantifier- and function-free first-order predicate
logic.

e T'p and T¢ are finite sets of primitive and abstract tasks.

o M is a finite set of decomposition methods with abstract
tasks from T and task networks over the names Tp UT¢.

e s; € S is the initial state, i.e., a ground conjunction
of positive literals over the predicates assuming closed
world assumption.

e inj is the initial task network, not necessarily ground.

An HTN planning problem is called ground if all predi-
cates of its predicate logic have arity zero (i.e. they have no
parameters).

The aim in an HTN planning problem is to refine a given

initial abstract task s; into an executable, ground, primitive
task network. A task network is primitive if all tasks in it are
primitive. It is ground if all variables are assigned to con-
stants via variable constraints. It is further executable if there
is a linearisation of its tasks that is executable in the ini-
tial state. The refinement of the initial task network is per-
formed via repeatedly applying decomposition methods to
the abstract tasks contained in it and the resulting task net-
works. Applying a decomposition method (¢, tn., VC) to a
task network ¢n means to replace an occurrence of the task ¢
in tn by the contents of the task network tn. and to add the
variable constraints VC' to the resulting task network. In ad-
dition we have to add variable constraints that co-designate
the parameter variables of the abstract task in the method
with the actual parameters of the task c that is decomposed
inside tn.
Definition @3  (Decomposition). Let m =
(c(?z1,. .., 2p), thy) with tny, = (In, <m, Qm, VCm))
be a decomposition method, tny = (I, <1, a1, VC1) a task
network. We assume that I, N Iy = () and that the sets of
variables occurring in tny and tn,, are disjunct, which can
be achieved by renaming. Then, m decomposes a task iden-
tifier i € I into a task network tny = (I2, <2, an, VCs) if
and only if a1 (i) = c(?y1, ..., 7yn) and

L, =L\ {iHhUl,

<2 = (=1U=pU
{(il,ig) S Il X Im ‘ (Zl,Z) S <1} U
{(il,ig) S InL X [1 ‘ (’L,ZQ) S <1})



’ navigate(?f, ?t) }—»’ unload(?p, ?t) ‘

’navigate(?a,?c)‘ — ]dn've(?a, ?b) H navigate(?b, ?c)\

’ drive(?f, ?b) }—){ navigate(?b, ?t) H unload(?p, ?t) ‘

Figure 2: The first row shows a task network ¢n;. The sec-
ond row shows a method for the navigate task. The result of
applying this method to the navigate task in ¢n; results in
the task network shown in the third row.

\{(@, 7" e, x I | ' =iori" =i}

az = (a1 Uam) \ {(i,c(?y1,- .-, 7yn))}
VCy = VO U VCyU {22, =27y; | 1 < i <n}

Instead of introducing additional equality constraints over
the variables, we could also replace all occurrences of 7x;
in tny with ?y;, which is more useful in practice as it in-
troduces variables only if necessary. Further, variable con-
straints are simply added and not propagated. This elimi-
nates the necessity for handling constraints between propa-
gated variables. Of course, an implementation would always
propagate variable constraints as far as possible.

In Def. 1, we allowed a task network to contain no tasks at
all, i.e. we allowed for I to be the empty set. Thus methods
may decompose abstract tasks into such task networks. This
is sensible and occurs (somewhat) frequently in practice.
Consider the abstract task navigate(? f, 7t) where 7 f =7t.
Such a task can be achieved without doing anything, i.e. by
the empty task network. All ordering constraints relating to
it are not lost, as their transitive implications are kept during
decomposition. Similarly, the parameter variables of the de-
composed abstract task remain variables of the decomposed
task network, i.e. no constraints can be lost.

As an example for applying a decomposition method,
consider the task networks and the method shown in Fig. 2.

3 Grounding Planning Problems

As in classical planning, both theoretical reserach (see e.g.
(Holler et al. 2014; Behnke, Holler, and Biundo 2015; Holler
et al. 2016; Behnke et al. 2016; Bercher et al. 2016; Al-
ford et al. 2016)) and practical research (Behnke et al. 2018;
2019) on hierarchical planning is usually done on grounded,
i.e. variable-free models instead of lifted models. Especially
newer search-based HTN planners like FAPE (Dvorak et al.
2014), GTOHP (Ramoul et al. 2017), or PANDA (Bercher,
Keen, and Biundo 2014; Bercher et al. 2017) ground a given
lifted planning problem prior to search. A grounded model
allows for both a more efficient implementation of the search
itself and for easier to compute and more concise heuristics.
In contrast, the translation technique by Alford et al. (2016)
is executed on the lifted model — grounding is only per-
formed on the resulting classical model.

In theory, computing a grounded model based on a given
lifted model is easy. One has to compute all possible in-
stantiations of lifted predicates, primitive and abstract tasks,

and methods and replace their lifted versions appropriately
by them. For details regarding the full grounding process
we refer to the work of Alford, Bercher, and Aha (2015).
Naturally such a grounding will be exponential in size with
respect to the original domain. As such, a fully grounded
model is not useful in many practical cases, as handling it
within given memory and time limits is hard or even impos-
sible.

In many planning problems, computing all instantiations
of all predicates, tasks, and methods is not necessary. For ex-
ample, it is not necessary to create a grounding drive(ly, ls)
of the drive action if there is no road between the locations
Iy and l5. For such an instantiation drive(ly,l2), we know
a priori that its precondition can never be fulfilled>. Thus
this action cannot be part of any plan. Ideally, we would like
to compute only those groundings of predicates, tasks, and
methods that occur in some solution to the planning prob-
lem. Determining (exactly) whether this is the case is unfor-
tunately undecidable. This is caused by the fact that deciding
whether a given HTN planning problem has a solution or not
is undecidable (Erol, Hendler, and Nau 1996). If determin-
ing that a task occurs in no solution would (in general) be
decidable, we would have a finite-time procedure for testing
whether a given HTN planning problem is solvable: simply
run the test on all its primitive tasks. A solution exists if
and only if at least one of them is contained in any solution
(excluding the detectable case of a possible empty solution,
which can be tested in advance in polynomial time).

Instead, we aim at computing an approximation of this
property. L.e. we are looking for a subset of all ground
instances of predicates, tasks, and methods such that all
ground instances not included in that set are not contained
in any solution. As such, we do not include a grounding if
we can prove that it cannot be contained in a solution.

This technique of approximate grounding is widely used
in classical planning. In general, an action is not included in
the grounding if it cannot be part of any executable plan in
the delete-relaxation of the problem. The delete-relaxation
of a planning problem is a copy of the problem in which all
negative effect literals are removed. For a given action one
can determine in polynomial time whether it is part of any
delete-relaxed plan (Bylander 1994). The set of these actions
is usually computed via a planning graph (Blum and Furst
1997). Often, this reduction leads to a significant decrease in
the size of the grounded problem. Some planning systems,
like FF (Hoffmann and Nebel 2001) first compute the full
grounding and subsequently prune actions®. This, however,
does not eliminate the bottle-neck of grounding, but makes
the grounding smaller for the planning process itself. An ef-
ficient implementation based on DATALOG was proposed
by Helmert (2009), which does not have this bottle-neck of
a full instantiation.

To the best of our knowledge there is currently only
one publication in the field of HTN planning devoted

2 Assuming that there is no means to build new roads.

*Note that FF uses the concept of inertia (Koehler and Hoff-
mann 2000) to simplify the preconditions and effects before full
grounding.



to grounding in more detail, which is the grounder of
GTOHP (Ramoul et al. 2017). It uses a grounding proce-
dure similar to that of FF (Hoffmann and Nebel 2001) and
similarly uses the concept of inertia (Koehler and Hoff-
mann 2000). Inertia of a predicate describes the ways its
truth value can change while a plan is executed — not at
all, only from negative to positive (or vice versa), or in both
directions. In inertia-based simplification, a primitive task
whose precondition evaluates to false under the computed
inertia values is removed from the planning problem, as it
can never become executable. Subsequently, all methods it
is contained in are removed as well. If an abstract task has
no applicable method remaining it is likewise removed.

Note that the procedure used by GTOHP removes effect-
less actions from the methods they are contained in (Ramoul
et al. 2017). The respective methods are not pruned after-
wards (which would be incorrect), but considered part of the
correct grounding without the removed effectless actions.
According to the formalisation of HTN planning, these ac-
tions can however be contained in plans — and pose con-
straints in them. As such as it makes any found solution (po-
tentially) invalid as it may not adhere to the solution criteria
of HTN planning. As a notable example, a state-based goal
description (like used in classical planning) can be encoded
in an HTN planning problem as an additional effectless ac-
tion, which would be pruned by GTOHP. As such, the plan-
ner would not be obliged to reach a goal state. Also “mov-
ing” the preconditions of these effectless actions to other ac-
tions within the same method is not correct (i.e. equivalent
transformation). Moving the precondition would require it to
hold in conjunction with the precondition of another action,
which is not required in the original problem, as another ac-
tion could be ordered in between. Secondly, the implemen-
tation of GTOHP does not allow for two parameters of one
action or method to be instantiated with the same constant.
Consider as an example a method that paints two wooden
boards ?b; and 7b, in colours ?c¢; and ?co. GTOHP enforces
that 7c; and 7co are different without this constraint being
a part of the domain. This leads to an invalid grounding,
this time when the (only) solution uses the method where
both colours are, e.g. red, as we only have red paint. For our
evaluation (Sec. 5), we have fixed both issues in the code of
GTOHP.

4 Grounding HTNs

Our grounding procedure includes three steps: a lifted do-
main simplification, computing delete-relaxed reachability,
and a hierarchical reachability analysis based on a graph
called the Task Decomposition Graph (TDG) (Elkawkagy
et al. 2012; Bercher et al. 2017).

4.1 Parameter Splitting

As a first step, we perform simplification operations on the
lifted model. For example, we compile disjunctions in pre-
conditions into additional actions, and compile away nega-
tive preconditions. Similarly, we compile away variables oc-
curring in preconditions and effects (i.e. those that are con-
tained in quantified expressions) into additional parameters.

Beside these common simplifications known from classi-
cal planning, our grounder performs an HTN-specific sim-
plification operation on the lifted model with the aim of
reducing the size of the grounding. In some HTN plan-
ning domains, lifted decomposition methods contain vari-
ables that are (1) used only as parameters of a single or very
few subtasks and (2) which are not parameters of the ab-
stract task. As an example, consider an abstract task A(?z)
with a method decomposing it into the tasks B(?z, ?y) and
C(?z,7z). Further assume that all variables have the same
type ¢ which contains the constants C' = {c1, ..., ¢, }. If we
ground this method, it has n® ground instances. Notably, we
have to ground every possible combination of the otherwise
independent parameters 7y and ?7z.

We can equivalently represent this method by three new
methods while introducing two new abstract tasks. Let these
abstract tasks be B*(?z) and C*(?x). The three decompo-
sition methods are A(?z) — B*(?x),C*(?x)*, B*(?z)
B(?z,?y), and C*(?x) — C(?x, ?z). For these three meth-
ods, there are 2n2 +n groundings plus an additional 2n new
groundings of abstract tasks (B* and C*), which is a signif-
icant improvement over the original model.

In general, we can perform this operation whenever there
is a variable 7z in a method that is only a parameter of one
of the subtasks A and its variable constraints connect it only
to the other parameters of A. We can sometimes also per-
form this splitting of parameters into additional methods if
the variable occurs in multiple subtasks Ay, ..., Ak. Since
we have to equivalently transform the model, we have to as-
sure that by applying multiple decompositions, the original
method is still correctly represented in the model. As such,
we only split away a group of actions Ay, ..., Ay if all of
them have the same relative ordering against the other tasks
in the method. We then replace them by a new single abstract
task A* with this relative order and a method for A* decom-
posingitinto Ay, ..., Ay with their internal order. By apply-
ing the method for A* to the instance of A* in the changed
main decomposition method, we obtain the original method.
Note that A* can have more parameter variables than the in-
dividual actions, i.e. it can increase the number of abstract
tasks significantly. Their number is however limited by the
number of ground methods. Thus we assume that this com-
pilation is not an issue in practice.

4.2 Delete-Relaxed Reachability

After the initial simplification of the domain, we perform
a delete-relaxed reachability analysis to determine which
groundings of primitive tasks can possibly occur in any exe-
cutable task network. Our implementation is succinct in the
sense that it never considers groundings that are not delete-
relaxed reachable, similar to the DATALOG-based imple-
mentation by Helmert (2009). We have opted for a native
implementation of the planning graph algorithm.

4.3 TDG-based Hierarchical Reachability

Our hierarchical reachability analysis is based on a data-
structure called the Task Decomposition Graph (TDG).

“To remain correct, B* and C* have the order of B and C.



We first introduce the definition as given by Bercher et
al. (2017). After introducing the declarative definition, we
describe how it is built algorithmically (in the next section).

Definition 4 (Task Decomposition Graph (TDG)). Let P =
(L, Tp,Tc, M, sy, tnr) be an HTN planning problem. With-
out loss of generality, we assume that tny contains just a sin-
gle ground abstract task TOP for which there is exactly one
method in M >

The bipartite graph G = (Vpr, Vg, Er— a1, Eni—1), con-
sisting of a set of task vertices Vi, method vertices Vi, and
edges Ep_n and Eyp_,1 is called the TDG of P if it holds:

1. Base Case (task vertex for the given task)
TOP € Vp, the TDG’s root.

2. Method Vertices (derived from task vertices)
Let ¢ € Vr and there is a method (c,tn, VC') € M. Then,
for all groundings v,, that satisfy the variable constraints
in VC' it holds that:
o vy, € Vi
o (vt,vm) € Er_ .

3. Task Vertices (derived from method vertices)
Let vy, € Vi with vy, = (c,tn, VC) and tn =
(I,<,«a, VC). Then, for all tasks i € I with (i) = v
the following holds:
® U € VT
o (U, ;) € Eppor.

4. Tightness
G is minimal, such that 1. to 3. hold.

A TDG is a directed graph. Nodes represent either ground
tasks or ground methods. A task node has outgoing edges to
each applicable ground method, and each method has outgo-
ing edges to its ground subtasks. This means the graph is a
representation of hierarchical reachability, i.e. which ground
tasks and methods can possibly be reached via decomposi-
tion. As can be seen from the definition, it is bound linearly
in the number of ground methods. It can be constructed in
linear time in case the planning problem P is ground and in
exponential time in case P is lifted.

Note that the TDG can represent HTN planning problems
that contain cyclic methods. A cyclic decomposition is a se-
quence of decompositions of a grounded task c that results
in a task network containing c again. If the planning problem
contains such a cycle, the edge representing the method that
produces the recursive occurrence of ¢ simply points back to
the vertex created for the first occurrence of c.

TDGs constructed based on the definition contain only
those groundings reachable from the initial task by decom-
position. As proposed by Elkawkagy, Schattenberg, and Bi-
undo (2010) one can delete those method nodes that con-
tain a primitive task not reachable in a state-based reach-
ability analysis like the planning graph. As a consequence
of removing those methods®, there may be abstract tasks in
the TDG that cannot be decomposed into a task network

SIf the problem specifies an initial partial plan tn; we can ob-
tain the required form by adding a new artificial (parameter-free)
abstract task TOP that decomposes exactly into tn;.

%0r in rare cases by a mistake of the modeller.

containing only primitive actions any more. For example,
removing a method containing a not delete-relaxed reach-
able action might remove the only option to exit a recursive
method structure. If such an abstract task occurs in a task
network during decomposition, we know that it is impossi-
ble to refine that task network into a solution. We can thus
prune the abstract task — and consequently all methods it is
contained it. Removing these methods may again allow us to
remove other abstract tasks, thus one can repeat this process
until convergence (Def. 2b). These tasks can be identified
in polynomial time by relying on a bottom-up reachability
analysis (Alford et al. 2014, proof of Thm. 3.1).

We parametrize the previous definition of a TDG by spec-
ifying an additional set of primitive ground tasks: these are
the actions that are (supposed to be) reachable (like, e.g. the
actions reachable in the planning graph).

Definition 5 (Pruned TDG). Letr P = (L, Tp, Tc,
M, sy, tny) be an HTN planning problem and G =
(Vir, Ve, Er—s mr, Eni— 1) the respective TDG according to
Def. 4. Let X be the set of actions as given above.

Then, the pruned TDG Gx = (V, Vi Eroar Evior)
that exploits the reachability information for the actions in
X is given as the minimal connected subgraph containing
TOP such that:

1. Remove Useless Method Vertices
A method vertex vy, = (c,tn, VC) € Vi with tn =
(I,=,a, VC) is in V{; if and only if I does not contain
a task i with (i) ¢ X in case (i) is primitive or with
«(1) being useless, in case it is abstract (see below).

2. Identify Useless Abstract Task Vertices
An abstract task vertex v, € V. is called useless if one of
the following holds:

(a) the pruned TDG Gx does not contain children for vy
(i.e., all successors of vy were pruned)

(b) there is no acyclic connected subgraph of the pruned
TDG Gx with root vy, in which every abstract method
vertex has exactly one outgoing edge and no vertex is
useless (i.e., the task vy cannot be decomposed into a
set of primitive tasks)

Whereas the parameter splitting described before is pro-
posed in this paper the very first time, the TDG-based
grounding procedure in contrast has a rather long history.
Initial ideas were first proposed by Elkawkagy, Schatten-
berg, and Biundo (2010) showing how to compute a pruned
decomposition tree (TDT), which was exploited during
search. They described the key ideas of deleting actions that
cannot be reached by a delete-relaxed reachability analysis,
triggering further deletions of methods and possibly abstract
tasks. The TDT was subsequently extended to a graph (Elka-
wkagy et al. 2012), but without altering the deployed reach-
ability analysis. Later, we extended the reachability analysis
to also prune those abstract tasks from the TDG that cannot
be refined into a primitive task network (Bercher et al. 2017).
However, we did not yet provide a formal, declarative defini-
tion of the resulting pruned TDG there. Furthermore, similar
to the work by Elkawkagy, Schattenberg, and Biundo (2010;
2012) we only explained that this pruned TDG may be used



as a basis for heuristics. Here we explain how it also serves
the purpose of obtaining a ground model. The following sec-
tion is another yet unpublished contribution that is essential
for the efficiency of the grounding/TDG construction proce-
dure.

4.4 Avoiding the Bottleneck

Beside the final size of the grounding, it is — in practice — cru-
cial to avoid large sets of intermediate groundings during the
computation process. A naive idea would be to compute the
full TDG and prune it afterwards. This corresponds to com-
puting a full instantiation of all actions in classical planning
and performing a reachability analysis on them. Both the full
TDG and the full instantiation of actions usually contain un-
necessary groundings that will be pruned afterwards. In this
section we describe how the pruned TDG can be computed
(somewhat) efficiently, without the need to compute the full
TDG first.

When building the TDG in a top-down manner, it will
initially include the initial task and is iteratively extended
by adding nodes for each applicable method and its sub-
tasks. To handle cyclic decompositions, we keep a set of
created task groundings. Whenever we add a new decom-
position method, we check for all its subtasks whether they
are contained in the set of already created task groundings.
If so, we use that already existing node to add the respective
edge implied by the method to the graph and don’t recurse
through that grounding — as it has already been (or is in the
process of being) fully expanded. This way, the procedure
terminates also on cyclic HTN planning problems and it is
ensured that tasks that are not reachable via the hierarchy are
never included. However, when primitive tasks are added to
the graph, it has to be checked whether these are reachable
via state transition, and given that they are not, the graph has
to be pruned as given in Def. 5.

Alternatively, one could construct a superset of the pruned
TDG in a bottom-up manner. We start with nodes for the
primitive tasks that are reachable under delete-relaxation.
Then, for each method where all subtasks are included in
the graph, nodes for the method and for the task the method
decomposes are included. Methods and tasks are added until
convergence. We again use a set of created task groundings
to handle cyclic decompositions in the planning problem.
That way, the graph never includes tasks that would need
to be pruned based on state-based reachability information.
However, it might include tasks and methods that are not
reachable from the initial task. These can be removed by a
depth-first search afterwards.

When using both the top-down and the bottom-up compu-
tation, state-based and hierarchical reachability analysis in-
fluence each other. The hierarchy might e.g. exclude actions
that are necessary to fulfil other actions’ preconditions. An
action a; pruned due to state-based reachability may exclude
a method that has been the only source of reachability of an-
other action as. This means that the two analyses should be
iterated until the grounding converged. PANDA’s grounding
does so.

The question is now if a system should rely on the
top-down or the bottom-up building process. There is no
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Figure 3: Number of primitive tasks in groundings computed
by GTOHP and our grounder. Green indicates that PANDA
finds the smaller grounding, red that GTOHP does and blue
indicates that both groundings have equal size.

(domain-independent) answer to this question. It is easy to
construct planning problems that result in large intermediate
graphs for both ways of construction. Which one works bet-
ter depends on the specific structure of the problem at hand.
We do not yet know how to determine which algorithm will
perform better a priori. Therefore we developed a way of
construction that combines the benefits of both procedures.
We start with a top-down construction, but instead of cre-
ating the grounded nodes directly, it maintains for each pa-
rameter of each task and method a list of all constants that
might be assigned to the parameter. This avoids the cre-
ation of all combinations of constants, to the cost of los-
ing the information which parameter combinations are valid.
When primitive tasks are reached, the constant set is fur-
ther reduced via state-based reachability, and this reduction
is propagated through the graph. In a second step, top-down
grounding is performed using the reduced constant sets.

5 Evaluation

The implementation of the described grounding procedure is
included in the PANDA planner. It is primarily implemented
in Scala. The grounder accepts HTN planning problems for-
mulated in HDDL as its input (Holler et al. 2019a).

In this preliminary evaluation we do not compare the run-
time of the different approaches (top-down, bottom-up, two-
way), but compare the size of the resulting grounding with a
system from related work. We are currently re-implementing
the grounder and will present runtime results in a follow-up
paper.

We have compared our grounding procedure against
GTOHP (Ramoul et al. 2017), which is the so-far only pub-
lished grounding procedure for HTN planning. In the evalu-
ation, we have included all 202 instances used in the recent
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Figure 4: Number of decomposition methods in groundings
computed by GTOHP and our grounder. Green indicates that
PANDA finds the smaller grounding, red that GTOHP does
and blue indicates that both groundings have equal size.
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Figure 5: Number of abstract tasks in groundings computed
by GTOHP and our grounder. Green indicates that PANDA
finds the smaller grounding, red that GTOHP does and blue
indicates that both groundings have equal size.

evaluation of Tree-Rex (Schreiber et al. 2019), which uses
the GTOHP grounder.

Except for one domain (TRANSPORT), we always found
at most as many primitive tasks in the grounding as GTOHP.
In TRANSPORT, we usually needed a few more ground
instances, as its actions contain disjunctive preconditions
which we compile away while GTOHP handles them na-
tively. A scatter plot of the results is shown in Fig. 3. We
find smaller groundings in 96 instances, larger ones in 5, and
101 groundings of equal size. On average our groundings
are 26.19% smaller with a maximum of 90.64% or 205.913
tasks reduction.

For the number of methods, results are shown in Fig. 4.
We find smaller groundings in 132 instances, larger ones in
18, and 52 groundings of equal size. On average our ground-
ings are 37.38% smaller with a maximum of 98.22% or
249.828 methods reduction.

For the number of abstract tasks, results are shown in
Fig. 5. We find smaller groundings in 113 instances, larger
ones in 80, and 8 groundings of equal size. On average our
groundings are 24.02% smaller with a maximum of 98.59%
or 11.980 abstract tasks reduction. As we can see from the
scatter plot, if we produce a larger grounding, it is usu-
ally not significantly larger. At the maximum, our grounding
contains 381 more abstract tasks due to our parameter split-
ting, which produces significantly fewer methods in several
instances.

6 Conclusion

Most recent systems in HTN planning realise the planning
process in a fully grounded way. A smaller grounding usu-
ally improves the performance of the planner. For example,
a smaller grounding allows for heuristics to be computed
faster — and for them to be more precise. Further, the search
mechanics of the planner is faster the smaller the ground-
ing is, as fewer actions and methods have to be considered.
Lastly, a smaller grounding also reduces the size of encod-
ings, e.g. into propositional logic, which makes the trans-
lated problem (potentially) easier to solve. Despite these ad-
vantages, little work has been published on grounding tech-
niques especially for HTN planning. We present our ground-
ing procedure and discuss how to compute it efficiently. Our
empirical evaluation shows that it leads to smaller ground-
ings than related work.
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