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Abstract
Over the last years, several new approaches to Hier-
archical Task Network (HTN) planning have been
proposed that increased the overall performance of
HTN planners. However, the focus has been on
agile planning – on finding a solution as quickly
as possible. Little work has been done on finding
optimal plans. We show how the currently best-
performing approach to HTN planning – the trans-
lation into propositional logic – can be utilised to
find optimal plans. Such SAT-based planners usu-
ally bound the HTN problem to a certain depth of
decomposition and then translate the problem into
a propositional formula. To generate optimal plans,
the length of the solution has to be bounded instead
of the decomposition depth. We show the relation-
ship between these bounds and how it can be han-
dled algorithmically. Based on this, we propose an
optimal SAT-based HTN planner and show that it
performs favourably on a benchmark set.

1 Introduction
In Hierarchical Task Network (HTN) planning [Bercher et
al., 2019], a given abstract task has to be divided (decom-
posed) into other tasks until only tasks are left that can be
executed directly. These tasks are identical to actions in clas-
sical planning. They are described by state-based precondi-
tions and effects. The combination of a decomposition-based
structure with state-based execution of actions forms a sepa-
rate class of planning problems that can express much harder
problems [Erol et al., 1996; Höller et al., 2014] than classical
planning alone. This even includes un-decidable problems
such as the Grammar Intersection Problem of Context-free
Languages or Post’s Correspondence Problem.

Several new approaches to solve HTN planning problems
have been introduced over the last years and increased the
overall performance of the systems in that field. These new
techniques range from heuristic search in plan space [Bercher
et al., 2017; Bercher et al., 2014], heuristic progression
search [Höller et al., 2018; Höller et al., 2019], over the trans-
lation into classical planning problems [Alford et al., 2016],
to translations into propositional logic [Behnke et al., 2019a;
Behnke et al., 2018b; Behnke et al., 2018a; Schreiber et al.,

2019]. Both translation-based approaches bound the original
problem to be able to translate the undecidable HTN planning
problem into a decidable one. Currently, the SAT-based ap-
proach shows the best performance. It bounds the planning
problem to a certain decomposition depth and translates the
resulting problem into a propositional formula.

In many practical settings, it is not only important to find
a plan that reaches a given goal, but to find an optimal one.
For example in transport and delivery domains, optimality is
desired to save costs. Especially when interacting with human
users optimality is often required. Non-optimal plans will
often contain additional actions that humans can easily spot as
superfluous, which is problematic when the generated plan is
used to assist or instruct humans [Behnke et al., 2019b]. For
plan explanations in the form of model reconciliation, optimal
plans are necessary as well [Sreedharan et al., 2018].

Despite progress in HTN planning, little work has been
done to find optimal plans. Only one system [Bercher et al.,
2017] is able to find such plans, while Höller et al. [2018]
proposed an admissible heuristic, but did not experiment with
it. Optimal search-based HTN planners face a problem not
present in classical forward search (though known from Par-
tial Order Causal Link planning): Due to the decompositions
performed during search, the goal distance in the search space
is not equal to the length of the solution, as the latter only
contains actions. To find length-optimal plans, an admissible
heuristic has to estimate the length of the plan and not the
distance in the search space, leading to poor search guidance.

We introduce the first SAT-based approach for optimal
HTN planning. In it, the length of the solution has to be
bounded instead of the decomposition depth. We have pre-
viously preposed techniques for computing such bounds in
the context of HTN plan verification Behnke et al. [2017].
In this paper, we show that our previous bounds were unnec-
essarily high. The new bound computation improves them
by up to three magnitudes. Our new depth bound compu-
tation can even show that no plan of a given length can ex-
ist, which was not recognised by previous methods. We dis-
cuss three different algorithms to find optimal solutions with
the new bounding method. We compare our new planner
against the optimal planner from the literature [Bercher et
al., 2017], a progression-based planner with an admissible
heuristic [Höller et al., 2018], and modify the planner by Al-
ford et al. [2016] to find optimal solutions.



2 HTN Planning
In this section we introduce the HTN formalism by Geier
and Bercher [2011] that is used throughout the paper. In
HTN planning, two types of tasks are distinguished: primi-
tive tasks (also called actions) and abstract tasks. Let P and
C be the set of primitive and abstract tasks. Abstract tasks
represent courses of action that can not be executed directly.
They need to be divided into more concrete tasks until ex-
ecutable tasks are reached. These are the primitive tasks.
World states are described using a set of propositional state
variables V . Each primitive task is associated with a set of
preconditions pre(p) ⊆ V that need to hold for it to be appli-
cable and effects del(p), add(p) ⊆ V defining state variables
that are deleted and added when the action is applied. Tasks
are organised in task networks, partially ordered sets of tasks.
Formally a task network is a triple (I,≺, α) where I is a –
potentially empty – set of IDs, ≺ is a partial order on I , and
α : I → P ∪ C labels each ID with a task. Using IDs is nec-
essary as a task network might contain the same task twice.

The objective in HTN planning is given in terms of a single
abstract task AI – the initial task. A solution to the problem
is a decomposition of AI into actions that are executable in
the initial state s0. A task t is decomposed by replacing it
with the contents of one of its applicable methods. A method
is a pair (A, tn) where A is an abstract task and tn a task
network. Formally, we always decompose a task within a task
network and start the process with the task network tnI =
({l1}, ∅, {(l1, AI)}), i.e. one containing only the initial task.
The application of decomposition methods is akin to applying
derivation rules in formal grammars – with the difference that
we don’t handle sequences of tasks, but partially-ordered sets.
Definition 1. Let tn = (I,≺, α) be a task network, i ∈ I an
ID with α(i) = A with A ∈ C and m = (A, (Im,≺m, αm))
with Im ∩ I = ∅ a decomposition method. Decomposing i
in tn using the method m results in the task network tn′ =
(I ′,≺′, α′) = D(tn, i,m) with I ′ = (I ∪ Im) \ {i}, α′ =
(α ∪ αm) \ {(i, A)}, and ≺′= (≺ ∪ ≺m ∪ ≺I) ∩ (I ′ × I ′)
where ≺I is the set of ordering constraints relative to i that
are inherited to the newly added tasks, i.e.

≺I={(j, i∗) | (j, i) ∈ I, i∗ ∈ Im} ∪
{(i∗, j) | (i, j) ∈ I, i∗ ∈ Im}

Let D(tn) be the set of all decompositions of a task network
tn and D∗ the transitive closure of D, i.e. tn′ ∈ D∗(tn) iff tn′
can be obtained from tn via a sequence of decompositions.

LetM be the set of all methods. Many HTN planners allow
for specifying method preconditions. A method with such a
precondition can only be used if its precondition is fulfilled in
some state before the first action resulting from it is executed,
but after all actions preceding this task in the final task net-
works partial order are. Commonly, a method precondition
prec is compiled into an additional action aprec whose pre-
condition is prec and which does not have effects. This action
precedes all other tasks in that method [Nau et al., 2003].
Definition 2. A solution to an HTN planning problem P =
(V, P,C,M, s0, AI) is a sequence of actions π ∈ P ∗ that is
executable in s0 such that there exists a task network tn ∈
D∗(tnI) and π is a linearisation of the tasks in tn.

A sequence of applied decomposition methods leading
from the task network containing the initial task AI to a task
network tn is called tn’s decomposition. A practically im-
portant structural measure for the complexity of this decom-
position is its depth. Intuitively, the depth of a decomposition
is the maximum number of methods that have to be applied
to tasks in order to create the tasks contained in tn out of
them. Formally, consider a decomposition of AI into a task
network tn, which consists of a sequence of task networks
tnI = tn1, . . . , tnn = tn such that tni ∈ D(tni−1). The de-
composition depth d(j, tni) of a task ID j in any task network
tni is defined as: (1) d(j, tnI) = 0 if i is contained in tnI ,
(2) d(j, tni) = d(j, tni−1) if j was not decomposed in tni−1,
and (3) d(j, tni) = 1 + d(k, tni−1) if k was decomposed in
tni−1 and k was inserted into tni via this decomposition. The
decomposition depth of tn under the given decomposition is
then the maximum decomposition depth of any task in tn.
Another way to describe the decomposition depth is the fol-
lowing. Any decomposition can be viewed as a tree – the
Decomposition Tree [Geier and Bercher, 2011] whose nodes
are all the task IDs occurring during decomposition. Edges
connect two IDs i and j if the decomposition of i inserted
j into a task network. The decomposition depth is then the
maximum depth of the Decomposition Tree.

Several methods have been proposed to solve HTN plan-
ning problems. Next, we briefly review these techniques.

Plan-space search. The first HTN planning systems, like
SIPE [Wilkins, 2000] and UMCP [Erol et al., 1994], used
plan-space search. In addition UMCP used simple heuris-
tics to speed-up the search. Even in its Breath-First-Search
configuration UMCP was not optimal in the sense that it pro-
duced the shortest plan. Instead it found the solution with the
smallest number of modifications required. PANDA [Bercher
et al., 2017] uses plan-space search in combination with
the admissible TDG heuristic, which comes in two variants
TDG-m and TDG-c. The former estimates the number of
modifications needed to turn the current plan into a solution,
while the latter estimates the number of additional actions that
will be present in a solution. PANDA with A∗ search and the
TDG-c heuristic constitutes the – to the best of our knowledge
– first length-optimal HTN planner.

Progression search. Next to plan-space search, early HTN
planners also used progression-based algorithms, e.g. SHOP
and SHOP2 [Nau et al., 1999; Nau et al., 2003]. These plan-
ners generally used some form of depth-first search, which is
not optimal with respect to the plan length. Recently, Höller
et al. [2018] introduced an improved progression algorithm
and a means to transform any heuristic for classical planning
into one for HTN progression search. This is done via en-
coding a relaxed version of the HTN problem into a classi-
cal planning problem and subsequently applying a classical
heuristic to it. The translation is admissible in the sense that
if an admissible classical heuristic is applied to the encoded
model, its estimate will be admissible for the HTN planning
problem [Höller et al., 2018]. The translation evaluated in the
paper is only admissible with respect to number of modifica-
tions, as costs are associated with both actions and methods.



Transformation into classical planning. Since HTN plan-
ning is undecidable [Erol et al., 1996], there can be no trans-
lation of HTN planning problems into other decidable prob-
lems. However, it is possible to bound the problem and to
translate the bounded problem into another decidable prob-
lem, like classical planning. To achieve completeness, one
needs to increment this bound until a solution has been found.
Alford et al. [2016] proposed a translation that simulates a
progression search in a classical planning problem. The en-
coding bounds the number of tasks in intermediate task net-
works – called the progression bound. Bercher et al. [2017]
used this translation as a comparison for their optimal plan-
space planner PANDA. They used the optimal classical plan-
ner SymBA∗ [Torralba et al., 2016] to solve the classical
planning problems. At this time we assumed that such a com-
bination is optimal for the HTN planning problem – although
this is not explicitly stated in the paper. This assumption was
however incorrect. Consider an HTN planning problem with
the abstract tasks A,B,C,D,X, Y , Z where AI = A and
primitive tasks a, b, c, d. The decomposition methods are:
A → aB1, B → bC, C → cD, D → d, A → XYZ ,
X → a, Y → b, Z → c. For progression bound 2, the only
possible plan is abcd of length 4 using the first four meth-
ods. For progression bound 3, the plan abc of length 3 can be
derived through the last four methods. Consequently, simply
using an optimal classical planner does not yield an optimal
HTN planner.
Transformation into propositional logic We recently pro-
posed a translation of HTN problems into propositional logic,
bounding the decomposition depth of the problem [Behnke et
al., 2018a; Behnke et al., 2018b; Behnke et al., 2019a]. We
construct a formula for a given HTN planning problem P and
a depth bound K that is satisfiable if and only if P has a
solution with a decomposition depth ≤ K. As this formula
represents exactly all plans with decompositions depth ≤ K,
it accounts for plans up to the maximum length achievable
by decompositions of depth ≤ K. While heuristic search-
based techniques have to consider the interaction between
constraints imposed via the actions’ state-transition semantics
and the decompositional structure of the problem explicitly, a
SAT-based approach translates the whole problem into a sin-
gle homogeneous representation. This allows SAT solvers to
reason about the whole problem, making it a promising can-
didate for an efficient planner.

3 Optimal SAT-based HTN Planning
To test whether a given plan of length ` is optimal, we have to
show that there is no plan of length ≤ `− 1. For a SAT-based
planner, this means to construct a propositional formula that
is satisfiable if and only if there is a solution of length≤ `−1.
In SAT-based classical planning, this is (somewhat) trivial
as formulae are constructed based on a plan-length bounded
problem2. The propositional encoding for HTN planning lim-
its the decomposition depth instead. Given a depth limit K,

1A → ω denotes a method decomposing A into a task network
containing the tasks ω as a sequence.

2The construction becomes more complicated if we use an en-
coding allowing for parallelism, like ∃-step [Rintanen et al., 2006].

we can easily derive a length limit `(K) by extracting the
longest reachable plan via decomposition up to that depth.
This limit does not conversely imply that all plans of length
`(K) have a depth of at most K, but only that plans longer
than `(K) have a depth of at least `(K)+1. As a counter ex-
ample, consider an HTN planning problem with the abstract
tasks A and B and three actions a, b, and c. Let there be three
methods: A → abc, A → aB, and B → b. For the depth
limit K = 1 the length bound `(K) is 3, but it is not possible
to represent the plan ab of length two with that depth bound.

For optimal planning, we have to determine a depth bound
K(`) such that all decompositions leading to any plan of
length ≤ ` have a decomposition depth of at most K(`).

Definition 3 (Maximum Decomposition Depth – Preliminary
Definition). Let P be an HTN planning problem and ` be an
integer. K(`) is the minimum depth such that all decomposi-
tion trees with at most ` leafs have a depth of at most K(`).

This definition could be modified to ask for the minimum
depth such that all decomposition trees whose leafs can be ex-
ecuted (i.e. those representing solutions) with at most ` leafs
have a depth of at mostK(`). Even approximating this bound
is however quite complicated. We instead focus on the given
definition, which is an upper bound for the stricter one.

Unfortunately, the value of the depth bound in this defini-
tion might be infinite for some HTN planning problems. This
is caused by specific structures occurring in a problem’s de-
compositions. We will describe and tackle those issues later
on in the paper (Sec. 3.2). For the time being, we will discuss
computing K(`) only for HTN planning problems with the
following restrictions:

1. All decomposition methods contain at least one subtask.
2. If a decomposition method contains only a single sub-

task, it is primitive.
These restrictions are a sufficient condition ensuring that
K(`) – as defined in Def. 3 – is finite. We will start by de-
scribing an algorithm that computes K(`). Thereafter, we
will show how K(`) can be defined for problems containing
the two types of excluded methods. Lastly, we will extend
the base algorithm so that it can compute K(`) in general,
i.e. unrestricted, planning problems.

3.1 Computing K for Benign Problems
We have previously (in the context of HTN plan verification)
proposed three different methods to compute approximations
for the depth bound K(`) based on a given plan length `. Of
them, one can always use the minimum of them [Behnke et
al., 2017]. We will briefly describe these methods.
K1: The first method is based on a theoretical result3 from

HTN plan verification [Behnke et al., 2015]. Their approx-
imation of the bound is solely based on the considered plan
length ` and the number of abstract tasks |C|. It is defined as
K1(`) = 2 · (`− 1) · (|C|+1). Its value is often far too high.
K2: The second method is based on the Task Schema Tran-

sition Graph (TSTG) [Behnke et al., 2017]. A TSTG T de-
scribes an abstraction to the possible decompositions in an

3Note that the lemma in the paper erroneously states a bound that
is half the size of the bound given here.



Algorithm 1 Calculate K4(`) – base algorithm

global K(A, `) =∞
function compute K4(`max )

compute SCCs S of the problem’s TSTG
for SCC S ∈ S in reverse topological order do

if |S| = 1 and for p ∈ S holds that p ∈ P then
K(p, 1) = 0

else
for ` = 1 to `max do

updateSCC(`, S)
end for

end if
end for

function updateSCC(`, S)
for A ∈ S and m = (A, (I,≺, α)) ∈M do

for φ : I → N with
∑
i∈I φ(i) = ` do

K∗ = 1 +maxi∈I K(α(i), φ(i))
K(A, `) = max{K(A, `),K∗}

end for
end for

HTN planning problem. T ’s vertices are the abstract tasks.
There is a directed edge A→ B between two vertices A and
B iff there is a method decomposing A that contains B in its
task network [Behnke et al., 2017]. If the TSTG T is acyclic4,
the length of its longest path is a bound to the depth of any
possible decomposition tree [Behnke et al., 2017].
K3: The last method is only applicable to HTN planning

problems in which every decomposition method has at least
two subtasks. In them, the size of the current task network
grows with each decomposition by at least one. Let δ be the
minimum number of subtasks in any method. Then, K3(`) =
`

δ−1 is an upper bound [Behnke et al., 2017].
Only method K1 is applicable to arbitrary planning prob-

lems, which however tends to compute overly high bounds
(see Sec. 5). K2 and K3 require additional structure in the
planning problem to be applicable. We will show in our eval-
uation that the bounds computed with these three methods are
far too high. A propositional encoding based on these bounds
could not be constructed in practice. Thus all three methods
are not well suited to optimal planning.

We propose a new method to compute the bound K4,
which (1) strictly dominates all the other methods and (2)
leads to significantly smaller bounds. It is described in terms
of pseudo-code in Alg. 1. We start the description of our algo-
rithm with the assumption of a restricted HTN planning prob-
lem, namely one fulfilling the two conditions stated above.

Our method is based on computing an individual bound
K4(A, `) for each abstract taskA and plan length `. As a gen-
eralisation of K(`), K4(A, `) shall be the maximum decom-
position depth starting from A (and not specifically AI ) into
a task network containing exactly ` primitive actions. Since
K4(A, `) accounts only for the decompositions into exactly `
primitive actions, we return K4(`) = mink≤`K4(AI , k).

Definition 4. Let P be an HTN planning problem, ` an inte-

4This is equivalent with the planning problem being acyclic.

ger, and A ∈ P ∪ C a task. K4(A, `) is the minimum depth
such that all decomposition trees with at most ` leafs whose
root task is A have a depth of at most K(`).

Trivially K4(p, `) = 0 for any primitive task p if ` = 1
and −∞, else. The latter represents that it is impossible to
decompose primitive tasks.

To compute K4(A, `), we process the abstract tasks A “up
the hierarchy”. For this, we use the TSTG T , which repre-
sents a relaxed version of the problem’s decomposition hier-
archy. Note that the value of K4(A, `) for an abstract task
A depends only on the values of K4(B, `) of all its direct
successors in T . This is due to the fact that a decomposi-
tion tree starting at A must apply some method applicable to
A which can only result in tasks which are successors of A
in T (and potentially further primitive actions). If the TSTG
T is acyclic, we can compute K4(A, `) for the abstract tasks
in reverse topological order – as the value K4(A, `) depends
only on the successorsB – for which the valuesK(B, ·) have
already been computed.

Unfortunately, HTN planning problems do not always
have an acyclic TSTG. If T contains cycles, we process its
Strongly Connected Components (SCCs) in reverse topologi-
cal order. As for acyclic TSTGs, whenever we process a SCC
S of T , theK4(A, `) values for all tasks occurring in methods
for tasks in S have already been computed – except for those
that are members of S. Thus we have to compute the values
of K4(A, `) for a single SCC S at a time.

To do so, we propose an iterative algorithm, which iterates
over the depth of the considered decompositions. In each it-
eration, we consider the decompositions of every A starting
with a methodm = (A, tn = (I,≺, α)) applicable to it anew.
For each subtask B in tn we either know its correct K4(B, `)
values (if B 6∈ S) or a current estimate (if B ∈ S). We
can then try to obtain a new lower bound K∗ for the value
of K4(A, `). In this decomposition, we first apply m and
then continue with decompositions of depth ≤ K∗ − 1 for
each of the tasks in tn, where at least one decomposition has
the depth K∗ − 1. These decompositions together must pro-
duce ` actions, i.e. a (potential) plan of length `. Each of the
tasks (identifiers) i in tn will be decomposed into a number
of primitive actions, which we will denote with φ(i). These
decompositions lead to ` actions in total if

∑
i∈I φ(i) = `.

Note that φ(i) has to be at least 1 for every subtask, as there
are no empty decomposition methods in the planning prob-
lem. Consequently K4(A, 0) will always be infinity.

Given such a distribution φ of primitive actions to subtasks
on m, we can compute a new lower bound K∗ for K4(A, `).
The currently known maximum decomposition depth for each
subtask i and associated length φ(i) can be retrieved via a ta-
ble lookup. K∗ is then 1+maxi∈I K4(α(i), φ(i)). This com-
position of length bounds is depicted in Fig. 1. As we have
found a new decomposition of A, we can update K4(A, `)
to the maximum of its old value and the just computed K∗,
i.e. we can set K4(A, `) = max{K∗,K4(A, `)}. To obtain
completeness, we have to consider all possible distributions
φ such that

∑
i∈I φ(i) = `. Since explicitly enumerating all

these distributions is impossible, we use dynamic program-
ming to speed-up the computation.



K4(A, `) = 1 + max{K4(B, `1), K4(C, `2), K4(D, `3)}

K4(B, `1) K4(C, `2) K4(D, `3)

`1 + `2 + `3 = `

Decomposition MethodA→ B,C,D

. . . . . . . . .
`1 `2 `3

Figure 1: Consideration of a new decomposition method, which in-
creases the considered decomposition depth by one.

To fully compute theK4(A, `) values, we iterate the update
` times. Initially, we set all the K4(A, `) for A ∈ S to −∞.

Lemma 1. After the jth iteration, we have computed the en-
tries K4(A, `) for ` ≤ j correctly.

Proof. This can be shown via induction. For plan length
` = 1, any decomposition method must not contain tasks in
S, else we have to assign zero primitive tasks to any task in
S Thus the values for K4(A, 1) are computed correct after
one update. At the jth iteration with j ≥ 2, consider the de-
composition with maximum depth of a taskA into j primitive
tasks. This decomposition starts with a method m = (A, tn)
and assigns φ(i) primitive tasks to each of the subtasks of tn.
tn must contain at least two subtasks (else the single subtask
must be primitive which is incompatible with having j ≥ 2
primitive tasks after all decompositions). Next, φ can assign
at most `−1 primitive tasks to any task in S, else there would
be some subtask assigned zero primitives, which is not possi-
ble. By induction allK4(i, φ(i)) have already been computed
correctly, making the computed value K4(A, `) correct.

3.2 Handling Empty Cycles
So far, the algorithm has been designed for HTN planning
problems without methods that decompose an abstract task
into either an empty task network or a task network contain-
ing only a single abstract task. Such decomposition meth-
ods do, however, occur frequently in HTN planning prob-
lems. Further, handling them allows our bound computation
method K4 to cover all HTN planning problems – without
requiring any additional structure in it.

The reason for excluding the mentioned types of methods
is that their presence allows for a structure in decompositions
that we call an empty cycle. An empty cycle is a non-empty
sequence of decompositions for an abstract task A resulting
in a task network containing only the abstract task A. I.e. we
can apply a sequence of decompositions that does not change
the task network. These empty cycles allow for arbitrarily
deep decompositions resulting in the same task network. As
an example, consider the three methods decomposing A into
B and C, B into A, and C into an empty task network. One
might consider removing these cycles from the HTN planning
problem, as they do not contribute any relevant structure; but
the individual decompositions might still be necessary. We
might e.g. have to apply the method decomposing A into B
and C and then decompose C into a and B into b. Another
idea would be to replace sets of abstract tasks S that can be
transformed into each other via empty cycles by a single new

abstract task. This would remove the need for methods that
are part of empty cycles allowing to remove them. This is
also incorrect since decomposition methods inside the cycle
might be associated with method preconditions – and thus we
have to track how the transformation between these “equiva-
lent” tasks takes place. They do not add new tasks to a task
network, but impose constraints for decompositions. Simply
ignoring them via this construction would remove the con-
straints posed by them.

Thus, we have to explicitly consider the methods that may
lead to empty cycles in a planning problem. As a result, the
depth bound definition given above (Def. 3) is not usably any
more: If the planning problem allows for empty cycles K(`)
(as defined before) would be infinity. As a consequence, we
have to adapt the definition explicitly considering only depths
of those decomposition trees that do not contain empty cycles.

Definition 5 (Maximum Decomposition Depth – Final Def-
inition). Let P be an HTN planning problem and ` be an
integer. K(`) is the minimum depth such that all decomposi-
tion trees T with at most ` leafs have a depth of at mostK(`),
such that there are no two nodes t1, t2 in T where:

1. α(t1) = α(t2) and
2. t2 is an (indirect) successor of t1 in T and
3. the decompositions between t1 and t2 could be removed,

including t2, without altering the yield of T , i.e. the de-
compositions between t1 and t2 form an empty cycle.

Intuitively spoken K4 is – for a given length bound ` – the
maximum decomposition depth K(` − 1) such that all plans
of length ≤ ` − 1 have a decomposition depth of at most
K(` − 1), excluding those that contain empty cycles. Note
that we will retain completeness as whenever we exclude a
decomposition because it contains an empty cycle, there will
be a decomposition for the same plan with equal or lower
depth that does not contain that empty cycle. Removing these
decompositions will also remove their method preconditions.
Since removing them only loosens restrictions, but does not
alter or add any other restriction, we preserve any solution,
i.e. executable linearisation of leafs.

As did the previous algorithm for restricted domains plan-
ning problems, we will not compute K(`) directly, but we
will compute a depth bound K4(A, `) for every abstract task
A. Further, we do not aim at computing these values exactly.
Instead we aim only at computing an approximation of the
actual value of K4(A, `), i.e. a value that is not lower than
the correct value. The proposed algorithm is shown in Alg. 2.

As a basis, we re-use the algorithm described in the pre-
vious section: Treat the SCCs S of the TSTG in reverse
topological order and update the estimates for K4(A, `) in-
side each component iteratively. This is done via consider-
ing every applicable decomposition method and distributing
the ` primitive tasks to produce between the subtasks of the
method. If the problem – as was the case in the previous
section – does not contain any method with empty task net-
work, at least one primitive task must be assigned to every
subtask, as it is not possible to decompose any task into a
solely primitive task network containing less than one primi-
tive task. In the general case we are considering now, assign-
ing plan length zero to an (abstract) subtask of a method is in



Algorithm 2 Calculate K4(`)

global K(A, `) =∞
function compute K4(`max )

compute SCCs S of the problem’s TSTG
for SCC S ∈ S in reverse topological order do

if |S| = 1 and for p ∈ S: p ∈ P then
K(p, 1) = 0

else
computeSCC(`max , S)

end if
end for

function computeSCC(`max , S)
for round1 = 1 to |S|+ 1 do

updateSCC(`max , S,false)
for round2 = 1 to |S| − 1 do

updateSCC(`max , S,true)
end for

end for
function updateSCC(`max , S, considerEmpty)

for ` = 0 to `max do
for A ∈ S and m = (A, tn = (I,≺, α)) ∈M do

for do
for φ : I → N with

∑
i∈I φ(i) = ` do

ε-decomposition :=
∃i∗∈I:α(i∗) ∈ S and ∀i∈I\{i∗} :φ(i)=0

if considerEmpty 6= ε-decomposition then
continue

end if
K∗ = 1 +maxi∈I K(α(i), φ(i))
K(A, `) = max{K(A, `),K∗}

end for
end for

end for
end for

principle possible. Such assignments would allow for empty
cycles. Specifically, an empty cycle contains decompositions
where φ assigns the whole plan length ` to a single task i∗ in
tn that is a member of S and 0 to all other subtasks. Since
we only want to consider decompositions without empty cy-
cles, we exclude such assignments from the computation of
the base algorithm. Apart from this exclusion, we start by
applying the updateSCC function in an unaltered form.

When running the (modified) base algorithm, we exclude
methods containing only a single abstract task that is con-
tained in S and assignments φ that assign the whole plan
length ` to an abstract task in S. We will call these decompo-
sitions ε-type decompositions, as they could lead to an empty
cycle. When computing the depth bound K4(A, `) we cannot
exclude these methods fully, as they can e.g. provide the only
means to obtain a primitive plan. To integrate them, we use
the same update-mechanism as we did in the first step of the
algorithm. Instead of considering all non-ε-type decomposi-
tions, we will here consider only such decompositions. We
iterate until any further iteration will solely account for de-
compositions containing empty cycles. This is the case if we
have executed the computation |S| − 1 times.

Lemma 2. After |S| − 1 iterations with ε-type decomposi-
tion, every additional update only accounts for decomposi-
tions containing empty cycles.

Proof. Consider the |S|th iteration of the computation and as-
sume that there is a non-cyclic decomposition that is new to
consideration at this step. Let m be the first applied method
and A the respective abstract task. Consider the path in the
decomposition that, starting from the rootA decomposes only
tasks in S. Since this decomposition was new to considera-
tion after |S| steps, this path starts with |S| ε-type decompo-
sitions, else it would have been considered in a previous step.
As it contains |S| steps, i.e. individual applications of decom-
positions of the ε-type, the path contains |S|+1 abstract tasks
from S, i.e. at least one twice. Since we only considered ε-
type methods, this constitutes an empty cycle.

If we have executed the second step of the algorithm, we
have still excluded some decompositions from consideration.
This is the case if we, e.g. first apply decompositions of the
ε-type, then one non-ε decomposition and then again ε-type
decompositions. An example would be a problem with the
abstract tasks A,B,C,D and methods A → B (1), B → C
(2), C → D (3), D → A (4), C → Da (5), and B → b
(6). In order to obtain a plan of length two from A we would
have to use the following decomposition methods: (1), (2),
(5), (4), (1), (6). Applying steps one and two of the algorithm
accounts only for decompositions, which – viewed from the
root task – first use only ε-type methods and then methods
of non-ε type and subsequently leave S. To consider any in-
terleaving of ε and non-ε methods we repeat steps one and
two of the algorithm. We have to iterate these two steps un-
til we are sure that only decompositions containing an empty
cycle are newly considered by the iteration. This is the case
after |S|+ 1 iterations. Each application of a method of non-
ε type decreases the number of actions to be produced by
the abstract task remaining in the SCC by one. I.e. we can
only apply |S| such methods where the last one might assign
length 0 to a task in the SCC. To consider this case, we need
an additional round of the algorithm.

3.3 The Overall System
For the overall planner, we can use the same iteration tech-
nique as in classical planning: start with length bound ` = 1
and increase by one if no plan exists. For each length bound `,
we compute the depth bound K(`) and construct the proposi-
tional formula used for non-optimal planning [Behnke et al.,
2019a]. The formula however also permits solutions that con-
tain more actions than the current length bound. As such, we
have to bound the number of actions in the plan represented
by a valuation of the formula. In the formula, the plan is rep-
resented as a sequence of timesteps. For each timestep t and
for each action a there is an atom a@t representing that ac-
tion a is executed at time t. Note that, since the encoding
uses the ∃-step encoding [Rintanen et al., 2006] for primitive
executability, more than one a@t atom can be true for every
timestep. To restrict the plan to a length of at most ` actions,
we have to ensure that at most ` of the a@t atoms are true.
This type of constraint is common in propositional encodings,
so compact and efficient encodings are readily available. We



use the sequential encoding [Sinz, 2005]. As we have noted
in Sec. 2, HTN planning problems often also include method
preconditions, which are translated into additional actions in
the model. These actions do not contribute to the length of
the plan as they are artificial helper actions. We can account
for this by not considering them for the at-most-` restriction.

For classical planning, this simple incrementing strategy
has already shown significant drawbacks. We will call this
strategy INC(rement). It is identical to the strategy S of Rin-
tanen et al. [2006]. The issue with it is that if the optimal so-
lution has length L, the planner will test for all ` ≤ Lwhether
a plan of length ` exists. Theoretically, it is only necessary to
test L and L − 1, thus INC/S perform far to many checks.
Furthermore, the runs for lengths ` slightly lower than L are
generally difficult for SAT solvers (see Fig. 4).

Therefore several strategies have been developed to im-
prove the performance of the overall algorithm. Rintanen et
al. [2006] proposed the strategies A, B, and C, which paral-
lelise the calls for different lengths `. These strategies are pri-
marily designed for satisficing, i.e. non-optimal, planning and
abort the search process as soon as a first solution is found.
They do not address the issue of determining the optimal so-
lution. Gocht and Balyo [2017] and Schreiber et al. [2019]
proposed to use an incremental SAT solver to use the search
performed for ` to speed up the search for `+1. We have not
yet integrated our encoding with an incremental SAT solver,
thus we have not considered such speed-ups. Streeter and
Smith [2007] present bound-iteration strategies for optimal
planning. They consider both the order in which bounds are
tested as well as the time-limit for these tests. Their overall
goal is not to find guaranteed optimal plans, but to narrow the
interval in which an optimal plan lies as much as possible,
explaining why they consider time-limits for individual runs.
For simplicity, we do not consider such time-limits.

In addition to INC, we have tested two strategies:
DEC(recment) and BIN(ary). BIN is – if we assume a
time-limit of ∞ identical to the strategy S2 of Streeter and
Smith [2007]. We start by running the planner in non-optimal
mode to find any solution as quickly as possible. Once a so-
lution has been found, its length `∗ is an upper bound for the
length of the optimal plan. For this non-optimal run, we use
the incrementing strategy. We could speed it up further using
any of the strategies by Rintanen et al. [2006], but have not
done so. If the planner has found the first solution of length
`∗ at depth K∗, we know that there is no solution with depth
K∗−1 or lower. Thus we can choose the highest length `− as
the lower bound such that K(`−) ≤ K∗ − 1. We use binary
search to find the length of the optimal solution between the
upper and lower bounds and hence call the strategy BIN(ary).

Lastly, DEC starts off identical to BIN, but does not use
binary search to find the optimal answer. Instead it simply
decrements the upper bound on the plan length by one until
no solution is found any more.

4 Making Other Systems Optimal
To ensure a fair competition against the state of the art in
HTN planning, we considered how two approaches for HTN
planning can be used to find optimal solutions.

Progression-based Planning
To make the progression-based approach by Höller et
al. [2018] optimal, we have to make three changes: (1) use
an A∗ search where the current path cost is the number of
progressed actions, (2) set the costs of method actions in the
heuristic model to zero, and (3) use an admissible classical
heuristic to compute the heuristic value on the model. We
use LM-Cut [Helmert and Domshlak, 2009] and denote the
planner with “Progr. LM-Cut”.

Translation into Classical Planning
The approach of Alford et al. [2016] suffers from the same
problem as the SAT-based planner: its translations do not re-
strict the plan length but another measure, in this case the
progression bound. As shown in Sec. 2 it is possible to find
shorter solutions with a higher progression bound. For tail-
recursive planning problems, we know that an upper limit P+

to their progression bound exists, meaning that no plan re-
quires a larger progression bound [Alford et al., 2016]. If so,
we can use the translation with the bound P+ and solve the
resulting problem with an optimal classical planner. We used
SymBA∗, winner of the IPC 2014 and still one of the best
optimal classical planners [Torralba et al., 2016]. We denote
this planner with “HTN2STRIPS maxPB”. This method leads
to a very poor performance due to high maximum progres-
sion bounds in may instances. For most instances with high
progression bounds, the planner cannot complete grounding
within the time-limit.

We propose to use a technique similar to that for the
SAT-based planner. We first run the encoding of Alford et
al. [2016] in satisficing mode (with jasper [Xie et al., 2014])
to find an upper bound ` to the length of an optimal solution.
We then compute the depth-bound K(`− 1) required for any
shorter plan. Next, we modify the HTN planning problem
such that it is acyclic with a maximum decomposition depth
of K(`− 1) by replacing every abstract task A with tasks Ad
for d ∈ [1,K(` − 1)] and change the methods accordingly.
This new problem is acyclic and thus has a finite progression
bound P [Alford et al., 2016]. Any solution to the original
encoding with a decomposition depth of at most K(` − 1)
will have a progression bound of at most P . We then run the
translation on with original, i.e. non-altered model, the bound
P and SymBA∗. We don’t use the compiled acyclic planning
problem as in it every abstract task is duplicated K(` − 1)
times – which would thus lead to significant performance de-
creases for the classical planner. This new bound is smaller
than P+ and exists even for non-tail-recursive problems. We
denote this planner with “HTN2STRIPS bounded maxPB”.

5 Evaluation
We implemented the given techniques within the PANDA
planning framework using its implementation of a proposi-
tional encoding for HTN planning [Behnke et al., 2019a;
Behnke et al., 2018b; Behnke et al., 2018a]. The code can
be downloaded at https://www.uni-ulm.de/en/in/ki/panda/.

We use the 144 instances from the most recent evalu-
ations of satisficing HTN planners [Behnke et al., 2019a;
Höller et al., 2018]. HTN2STRIPS max PB was only run

https://www.uni-ulm.de/en/in/ki/panda/


on the 109 tail-recursive instances, as it can only find opti-
mal solution on them. Each planner was given 10 minutes
of runtime and 4 GB of RAM on an Intel E5-2660. For the
propositional encoding, we used three SAT solvers: crypto-
minisat (cms) 5.5 [Soos, 2018], expMV [Chowdhury et al.,
2018], and MapleLCM [Ryvchin and Nadel, 2018], some of
the best performing SAT solvers in the 2018 SAT race.

Results
The number of optimally solved planning problems for each
planner is shown in Tab. 1. The runtime behaviour is shown
in Fig. 2. Both the SAT-based techniques described in this
paper and progression search with the LM-Cut heuristic out-
perform the previously only existing optimal HTN plan-
ner PANDA. The SAT-based techniques solve between 19
and 26 more instances than the progression-based planner.
Solely HTN2STRIPS lacks behind severely in performance,
although our modifications improved its coverage. There is
no pronounced difference between the algorithms INC, DEC,
and BIN. INC and DEC are on par, while BIN solves ≈ 2
additional instances. We can see a significant difference be-
tween domains. INC is better in ROVER, while DEC and BIN
perform better in TRANSPORT. Fig. 3 a) shows for DEC the
relation between the length of satisficing and optimal solu-
tions. The difference between INC and DEC on ROVER is
caused by the quality of the initial non-optimal solution. The
non-bounded SAT-encoding tends to produce longer plans on
ROVER, resulting in additional calls for DEC. For the instance
with the longest known optimal plan, the optimal solution has
length 19, but the non-optimal planner’s plan had length 43.
This also causes the improvement for BIN – it required fewer
futile runs. The converse is true for TRANSPORT, where non-
optimal solutions tend to be almost optimal.

In Fig. 3 b), we show a comparison between the three older
methods to compute depth bounds K1, K2, and K3 and our
new K4. While never being worse, K4 computes far lower
depth bounds – up to three magnitudes lower. There were
37 cases (red dots), where the old methods computed a depth
bound, while K4 returned −∞, i.e. showing that no plan of
length ≤ ` can be derived via decomposition. For DEC, this
led to instances in which we could show that the satisficing
plan was already optimal. This is the case if for a satisfic-
ing plan of length `, K4(` − 1) is −∞. For SAT-DEC with
cryptominisat 5.5, there were 34 such instances (19 UM-
TRANSLOG, 6 WOODWORKING, 1 SMARTPHONE, 2 PCP,
6 TRANSPORT). In Fig. 4, we show the time needed to solve
each individual propositional formula in the INC and DEC
strategies relative to the optimal plan length. We can clearly
see that unsolvable instances near to the optimal solution are
the most difficult formulae motivating the BIN strategy.
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Table 1: Coverage of all evaluated planners on the benchmark set.
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