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Abstract. Description Logics (DLs) are a family of languages designed to rep-
resent conceptual knowledge in a formal way as a set of ontological axioms. DLs
provide a formal foundation of the ontology language OWL, which is a W3C
standardized language to represent information in Web applications. The main
computational problem in DLs is finding relevant consequences of the informa-
tion stored in ontologies, e.g., to answer user queries. Unlike related techniques
based on keyword search or machine learning, the notion of a consequence is
well-defined using a formal logic-based semantics. This course provides an in-
depth description and analysis of the main reasoning and explanation methods
for ontologies: tableau procedures and axiom pinpointing algorithms.

1 Introduction

It often happens that one needs to find some specific information on the Web. Informa-
tion can be of different kinds: a local weather report, shop opening hours, a cooking
recipe, or some encyclopedic information like the birth place of Albert Einstein. To
search for this information, one usually enters some keywords into Web search en-
gines and inspects Web pages that contain such keywords in the hope that the rele-
vant information can be found there. The modern search engines are a little more ad-
vanced: they can also search for Web pages that use synonyms or related keywords,
they use vocabularies of terms to structure information on the Web (e.g. schema.org1)
or to disambiguate search results, they use some machine learning techniques to rank
Web pages according to their likeliness of containing the relevant information, they use
facts or knowledge (e.g., extracted from Wikipedia or from internal sources such as
Google’s Knowledge Graph2) to answer some queries, and they give direct answers for
certain queries, e.g., Google.com directly answers the question “Who was US president
in 2015?” with a knowledge panel for Barack Obama. In general, however, there is no
guarantee that the searched piece of information can be found, even if a corresponding
Web page exists.

Although an average Web user can live with such limitations, there are some critical
applications in which incorrect or missed results cannot be tolerated. For example, if a
medical patient is misdiagnosed, i.e., a correct diagnosis based on the description of
the patient’s symptoms is not found, the consequences can be severe. Several similar

1https://schema.org/
2https://developers.google.com/knowledge-graph/



examples can be given for other domains ranging from banking to autonomous driv-
ing. Supporting such applications requires representing the knowledge in a precise and
unambiguous way so that it can be correctly processed by automated tools.

Ontology languages, such as OWL [44], offer a solution to this problem by defining
the formal syntax and semantics to describe and interpret expert knowledge. The basic
principle of ontologies is similar to Wikipedia: instead of extracting the knowledge
from general sources, such as Web pages, the knowledge is described and curated in
one place by domain experts. The main difference between Wikipedia and ontologies
is in the way how the knowledge is described. Wikipedia pages provide mostly textual
(natural language) descriptions, which are easy to understand by humans, but difficult
to process by computers. Today Wikipedia is also partly fed from Wikidata,3 which
provides a knowledge base of facts. The Wikidata project was founded in 2012 and
contains, at the time of writing, facts about roughly 60 million entities. Ontologies go
beyond a knowledge base of facts and provide often complex descriptions by means of
formulas; each formula can use a limited set of constructors with well-defined meaning.

The main benefit of formal ontology languages such as OWL is that it is possible
to answer questions by combining several sources of information. For example, if an
ontology knows that ‘Albert Einstein was a physicist who was born in Ulm,’ and that
‘Ulm is a city in Germany,’ the ontology can answer questions like ‘Which physicists
were born in Germany?’ by returning ‘Albert Einstein’ as one of the answers. That is,
an answer to a question may be obtained not only from the explicitly stated information,
but also from the (implicit) consequences.

This course is concerned with logic-based languages called Description Logics
(short: DLs) that provide the formal foundation of the ontology language OWL. DLs
are not just one language but a whole family of languages, designed to offer a great
variety of choices for knowledge-based applications. Each language defines its own set
of constructors that can be used to build the ontological formulas, called axioms. Each
axiom describes a particular aspect of the real world; for example an axiom saying that
‘Ulm is a city in Germany’ describes a relation between the entities ‘Ulm’ and ‘Ger-
many’. The goal of the ontology is to provide axioms that describe (a part of) the real
world as accurately as needed for an application. Since the real world is extremely com-
plex, each of these descriptions are necessarily incomplete, which means that they can
be also satisfied in situations that are different from the real world. The semantics of
DL defines an abstract notion of a model to represent such situations. If an axiom holds
in all such models, it is said to be a logical consequence of the ontology.

Of course, ontologies cannot answer questions on their own; they require special
programs that can analyze and combine axioms to obtain the answers, called ontol-
ogy reasoners. Ontology reasoners are usually able to solve several types of reasoning
problems, such as checking if there are logical contradictions in the ontology or finding
logical consequences of a certain form. To be practically useful, the reasoning algo-
rithms implemented in ontology reasoners need to possess certain formal properties.
An algorithm is sound if any answer that it returns is correct. If the algorithm returns
every correct answer, it is complete. An algorithm might not return any answer if it does
not terminate. If an algorithm always terminates, it is also useful to know how long one

3https://www.wikidata.org



needs to wait for the answer. This can be measured using a notion of algorithmic com-
plexity. Generally, algorithms with lower complexity should be preferred.

Modern ontology reasoners use very sophisticated and highly optimized algorithms
for obtaining reasoning results, and often such results are counter-intuitive or hard to
understand for humans. Reasoning results may also be incorrect, which indicates that
some axioms in the ontology must have errors. In order to improve the user experi-
ence when working with ontologies, and, in particular, facilitate ontology debugging,
ontology development tools include capabilities for explaining reasoning results.

Almost every year since its inception, the Reasoning Web Summer School offered
lectures focused on different topics of reasoning in DLs ranging from overview courses
[2, 49, 50, 65] to more specialized topics such as lightweight DLs [64], query answer-
ing [10, 36, 43], and non-standard reasoning problems [9, 12, 59]. The purpose of this
course is to provide a deeper understanding of the key reasoning and explanation al-
gorithms used in DLs. We provide a detailed account on tableau procedures, which
are the most popular reasoning procedures for DLs, including questions such as sound-
ness, completeness, termination, and complexity. For explaining the reasoning results
we look into general-purpose axiom pinpointing procedures that can efficiently identify
some or all subsets of axioms responsible for a reasoning result. Some of these proce-
dures can be also used to repair unintended entailments by identifying possible subsets
of axioms whose removal breaks the entailment.

This paper is (partly) based on the course “Algorithms for Knowledge Representa-
tion” given at the University of Ulm, and includes full proofs, detailed examples, and
simple exercises. The material should be accessible to students of the general university
(bachelor) level in technical subjects such as, but not limited to, computer science. All
relevant background, such as the basics of the computational complexity theory is intro-
duced as needed. The course should be of particular interest to those who are interested
in developing and implementing (DL) reasoning procedures. Since the duration of this
course is limited to two lectures, we mainly focus on the basic description logic ALC,
to nevertheless provide a detailed account on the topics of DL reasoning and explana-
tion. For this reason, this course does not provide a comprehensive literature survey. For
the latter, we refer the reader to previous overview courses [2, 49, 50, 65], DL textbooks
[4, 6], PhD theses [26, 60] and some recent overviews [45].

2 Description Logics

Description Logics (DLs) are specialized logic-based languages designed to represent
conceptual knowledge in a machine-readable form so that this information can be pro-
cessed by automated tools. Most DLs correspond to decidable fragments of first-order
logic, which is a very expressive general-purpose language, however, with undecid-
able standard reasoning problems. Decidability has been one of the key requirements
for the development of DL languages; to achieve decidability, the languages are often
restricted to contain the features most essential for knowledge representation. For ex-
ample, in natural language, one rarely speaks about more than two objects at a time.
For this reason, DLs usually restrict the syntax to only unary and binary relations and
to constants. Unary relations usually specify types (or classes) of objects and are called



concepts in DLs (and classes in OWL). Binary relations specify how objects are related
to each other, and are called roles in DLs (and properties in OWL). Constants refer
to particular objects by their names. In DLs (and OWL) they are called individuals.
In this paper, we mainly focus on the basic description logic ALC [51], which is re-
garded by some as the smallest sensible language for knowledge representation. This
language traditionally serves not only as the basis of more expressive languages, but
also as a relatively simple example on which the main ideas about reasoning in DLs can
be explained.

2.1 Syntax

The vocabulary of the DLALC consists of countably-infinite setsNC of concept names
(or atomic concepts), NR of role names (or atomic roles), NI of individual names (or
individuals), logical symbols:>,⊥, ¬, u, t, ∀, ∃,v,≡, and structural symbols: ‘(’, ‘)’,
‘.’. These symbols are used to construct formulas that are called DL axioms.

Intuitively, (atomic) concepts are used to describe sets of objects. For example, we
may introduce the following atomic concepts representing the respective sets of objects:

Human – the set of all human beings,

Male – the set of all male (not necessarily human) beings,

Country – the set of all countries.

Likewise, (atomic) roles represent binary relations between objects:

hasChild – the parent-child relation between objects,

hasLocation – a relation between objects and their (physical) locations.

Individuals represent some concrete object, for example:

germany – the country of Germany,

john – the person John.

In our examples, we usually use a convention for writing (atomic) concepts, roles, and
individuals so that one can easily tell them apart: concepts are written starting with
capital letters, while role and individual names start with a lower case letter. In addition,
we reserve single letters (possibly with decorations) A, B for atomic concepts, r and s
for (atomic) roles, a, b, c for individuals, and C, D, E for complex concepts, which are
introduced next.

The logical symbols >,⊥,¬,u,t,∀, and ∃ are used for constructing complex con-
cepts (or just concepts). Just like for atomic concepts, complex concepts represent sets
of objects, but these sets are uniquely determined by the sub-concepts from which they
are constructed. The set of ALC concepts can be defined using the grammar definition:

C,D ::= A | > | ⊥ | C uD | C tD | ¬C | ∃r.C | ∀r.C. (1)



This definition means that the set of concepts (which are named by C and D) is recur-
sively constructed starting from atomic concepts A, top concept >, bottom concept ⊥,
by applying conjunction C uD, disjunction C tD, negation ¬C, existential restriction
∃r.C, and universal restriction ∀r.C. Intuitively, > represents the set of all objects of
the modeled domain,⊥ the empty set of objects, CuD the set of common objects of C
and D, C tD the union of objects in C and D, ¬C all objects that are not in C, ∃r.C
all object that are related by r to some object in C, ∀r.C all objects that are related by
r to only objects in C. For example, one can construct the following ALC-concepts:

Male u Human – the set of all male humans,

Dead t Alive – the union of all dead and all alive things,

¬Male – the set of all non-male things,

(¬Male) u Human – the set of all non-male humans,

∃hasChild.Male – all things that have a male child,

∀hasChild.Female – all things that have only female children,

Male u (∀hasChild.¬Male) – all male things all of whose children are not male.

Once complex concepts are constructed, they can be used to describe various properties
by writing axioms. In the DLALC we consider four possible types of axioms: a concept
inclusion C v D states that every object of the concept C must be an object of the
conceptD, a concept equivalenceC ≡ D states that the conceptsC andD must contain
exactly the same objects, a concept assertion C(a) states that the object represented by
the individual a is an object of the concept C, and a role assertion r(a, b) states that the
objects represented by the individuals a and b are connected by the relation represented
by the role r. Here are some examples of these axioms:

Human v Dead t Alive – every human is either dead or alive,

Parent ≡ ∃hasChild.> – parents are exactly those that have some child,

Male(john) – John is a male,

bornIn(einstein, ulm) – Albert Einstein was born in Ulm.

Axioms are usually grouped together to form knowledge bases (or ontologies). AnALC
ontology O is simply a (possibly empty) set of ALC axioms. The axioms of an ontol-
ogy are usually split into two parts: the terminological part (short: TBox) contains only
concept inclusion and concept equivalence axioms, the assertional part (short: ABox)
contains only concept and role assertion axioms. This distinction is often used to sim-
plify the analysis of algorithms. For example, to answer questions about concepts, in
many cases it is not necessary to consider the ABox, which is usually the larger part of
an ontology.

Example 1. Consider the ontology O consisting of the following axioms:

Parent ≡ ∃hasChild.>,1.



GrandParent ≡ ∃hasChild.Parent,2.
hasChild(john, mary).3.

Then the TBox ofO consists of the first two axioms, and the ABox ofO consists of the
last axiom.

The main application of ontologies is to extract new information from the informa-
tion explicitly stated in the ontologies. For example, from the first two axioms of the
ontology O from Example 1 it follows that each grandparent must be a parent because
each grandparent has a child (who happens to be a parent). This new information can
be formalized using a concept inclusion axiom GrandParent v Parent. Likewise, from
the first and the last axiom of O one can conclude that the object represented by the in-
dividual john must be a parent because he has a child (mary). This piece of information
can be formalized using a concept assertion axiom Parent(john). The two new axioms
are said to be logical consequences of the ontology O.

2.2 Semantics

To be able to calculate (preferably automatically) which axioms are logical conse-
quences of ontologies and which are not, we need to define the semantics of ontologies.
So far we have defined the syntax of ontologies, which describes how axioms in the on-
tologies can be constructed from various symbols. This information is not enough to un-
derstand the meaning of concepts and axioms. In fact, inALC the same information can
be described in many different ways. For example, the concept MaleuHuman describes
exactly the same set of objects as the concept Human u Male. The axiom Human v
DeadtAlive describes exactly the same situation as the axiom Humanu(¬Dead) v Alive.
The formal semantics describes how to determine the meaning of concepts and axioms,
while abstracting from the particular syntactic ways in which they are written down.

Like in many other logic-based formalisms (including propositional and first-order
logic), the semantics of description logics is defined using (Tarski-style set-theoretic)
interpretations. Intuitively, an interpretation describes a possible state of the world mod-
eled by the ontology. Formally, an interpretation is a pair I = (∆I , ·I) where ∆I is a
non-empty set called the domain of I and ·I is an interpretation function that assigns
to each atomic concept A ∈ NC a set AI ⊆ ∆I , to each atomic role r ∈ NR a bi-
nary relation rI ⊆ ∆I × ∆I , and to each individual a ∈ NI an element aI ∈ ∆I .
Intuitively, the domain ∆I represents the objects that can be part of the modeled world;
this can be an infinite (and even an uncountable) set, but it must contain at least one
element because otherwise it is not possible to assign aI ∈ ∆I for a ∈ NI . Although
the interpretation function requires an assignment for every symbol of the vocabulary
(and there are infinitely many available symbols inNC ,NR, andNI ), when defining in-
terpretations for ontologies, we usually provide the values only for the symbols present
in the ontology, assuming that all other symbols are interpreted in an arbitrary way.

Example 2. We can define an interpretation I = (∆I , ·I) of the symbols appearing in
the ontology O from Example 1, for example, as follows:

– ∆I = {a, b, c},



– ParentI = {a, b}, GrandParentI = {a},
– hasChildI = {〈a, b〉, 〈b, c〉},
– johnI = a, maryI = b.

Once the interpretation is fixed, it can be recursively extended to complex ALC
concepts according to the following rules that match the respective cases of the grammar
definition (1). Assuming that the values of CI ⊆ ∆I and DI ⊆ ∆I for concepts C
and D have already been determined, the interpretations of concepts build from C and
D can be computed as follows:

– >I = ∆I ,
– ⊥I = ∅,
– (C uD)I = CI ∩DI ,
– (C tD)I = CI ∪DI ,
– (¬C)I = ∆I \ CI ,
– (∃r.C)I = {x ∈ ∆I | ∃y : 〈x, y〉 ∈ rI & y ∈ CI},
– (∀r.C)I = {x ∈ ∆I | ∀y : 〈x, y〉 ∈ rI ⇒ y ∈ CI}.

The last two cases of this definition probably require some further clarifications.
The interpretation of ∃r.C contains exactly those elements x ∈ ∆I that are connected
to some element y by a binary relation rI (i.e., 〈x, y〉 ∈ rI) such that y ∈ CI . The
interpretation of ∀r.C contains exactly those elements x ∈ ∆I such that every element
y connected from x by rI (i.e., for which 〈x, y〉 ∈ rI holds), is a member of CI (i.e.,
y ∈ CI). In other words, x is rI-connected to only elements of CI . Importantly, if an
element x does not have any rI-successor, i.e., 〈x, y〉 ∈ rI holds for no y ∈ ∆I , then
x /∈ (∃r.C)I but x ∈ (∀r.C)I for every concept C.

Example 3. Consider the interpretation I = (∆I , ·I) from Example 2. Then:

– >I = {a, b, c},
– (Parent u GrandParent)I = {a},
– (Parent t GrandParent)I = {a, b},
– (¬GrandParent)I = {b, c},
– (Parent u ¬GrandParent)I = {b},

– (∃hasChild.>)I = {a, b},
– (∃hasChild.Parent)I = {a},
– (∀hasChild.Parent)I = {a, c}, (!!!)
– (∀hasChild.GrandParent)I = {c}, (!!!)
– (∀hasChild.∀hasChild.⊥)I = {b, c}.

We next define how to interpret ALC axioms. The purpose of axioms in an on-
tology is to describe the characteristics of concepts, roles, and individuals involved in
these axioms. These properties hold in some interpretations and are violated in other
interpretations. For an interpretation I and an axiom α we write I |= α if α holds (or
is satisfied) in I, defined as follows:

– I |= C v D if and only if CI ⊆ DI ,
– I |= C ≡ D if and only if CI = DI ,
– I |= C(a) if and only if aI ∈ CI ,
– I |= r(a, b) if and only if 〈aI , bI〉 ∈ rI .

If it is not the case that I |= α, we write I 6|= α and say that α is violated (or not
satisfied) in I. Table 1 summarizes the syntax and semantics of ALC.



Table 1. The summary of syntax and semantics of the DL ALC

Syntax Semantics
Roles:

atomic role r rI ⊆ ∆I ×∆I (given)
Concepts:

atomic concept A AI ⊆ ∆I (given)
top > ∆I

bottom ⊥ ∅
conjunction C uD CI ∩DI
disjunction C tD CI ∪DI
negation ¬C ∆I \ CI
existential restriction ∃r.C {x | ∃y : 〈x, y〉 ∈ rI & y ∈ CI}
universal restriction ∀r.C {x | ∀y : 〈x, y〉 ∈ rI ⇒ y ∈ CI}

Individuals:
individual a aI ∈ ∆I (given)

Axioms:
concept inclusion C v D CI ⊆ DI
concept equivalence C ≡ D CI = DI

concept assertion C(a) aI ∈ CI
role assertion r(a, b) 〈aI , bI〉 ∈ rI

Example 4. Continuing Example 3, we can determine the interpretation of the follow-
ing axioms in the defined I:

– I |= GrandParent v Parent : GrandParentI = {a} ⊆ ParentI = {a, b},
– I 6|= Parent v GrandParent : ParentI = {a, b} 6⊆ GrandParentI = {a},
– I |= ∃hasChild.GrandParent ≡ ⊥ : (∃hasChild.GrandParent)I = ∅ = ⊥I
– I |= (∃hasChild.Parent)(john) : johnI = a ∈ (∃hasChild.Parent)I = {a},
– I 6|= hasChild(mary, john) : 〈maryI , johnI〉 = 〈b, a〉 /∈ hasChildI = {〈a, b〉},
– I |= (∀hasChild.¬Parent)(mary) : maryI = b ∈ (∀hasChild.¬Parent)I = {b, c}.

As mentioned earlier, an axiom may hold in one interpretation, but may be violated
in another interpretation. For example, the axiom A v B holds in I = (∆I , ·I) with
∆I = {a}, AI = BI = ∅, but is violated in J = (∆J , ·J ) with ∆J = {a},
AJ = {a}, and BJ = ∅. There are, however, axioms that hold in every interpretation.
We call such axioms tautologies.

Example 5. The following ALC axioms are tautologies because they hold in every in-
terpretation I = (∆I , ·I):

– C v C : because CI ⊆ CI ,
– C v > : because CI ⊆ ∆I = >I ,
– C uD v C : because (C uD)I = CI ∩DI ⊆ CI ,
– ∀r.> ≡ > : because

(∀r.>)I = {x ∈ ∆I | ∀y : 〈x, y〉 ∈ rI ⇒ y ∈ >I = ∆I} = ∆I = >I .



– ∃r.C u ∀r.D v ∃r.(C uD): because

(∃r.C u ∀r.D)I = (∃r.C)I ∩ (∀r.D)I

= {x ∈ ∆I | ∃y : 〈x, y〉 ∈ rI & y ∈ CI} ∩
{x ∈ ∆I | ∀y : 〈x, y〉 ∈ rI ⇒ y ∈ DI}

⊆ {x ∈ ∆I | ∃y : 〈x, y〉 ∈ rI & y ∈ CI & y ∈ DI}
= {x ∈ ∆I | ∃y : 〈x, y〉 ∈ rI & y ∈ CI ∩DI = (C uD)I}
= (∃r.(C uD))I .

The following ALC axioms are not tautologies as they do not hold in at least one
interpretation I = (∆I , ·I):

– C v C uD: Take ∆I = {a}, CI = {a}, and DI = ∅. Then CI = {a} 6⊆ ∅ =
{a} ∩ ∅ = CI ∩DI = (C uD)I .

– ∀r.C v ∃r.C: Take ∆I = {a} and CI = rI = ∅. Then (∀r.C)I = {a} 6⊆ ∅ =
(∃r.C)I .

– ∃r.C u ∃r.D v ∃r.(C u D): Take ∆I = {a, c, d}, CI = {c}, DI = {d},
and rI = {〈a, c〉, 〈a, d〉}. Then a ∈ (∃r.C)I because 〈a, c〉 ∈ rI and c ∈ CI .
Similarly, a ∈ (∃r.D)I since 〈a, d〉 ∈ rI and d ∈ DI . But (C u D)I = CI ∩
DI = {c} ∩ {d} = ∅. Thus, (∃r.(C u D))I = ∅. Hence, (∃r.C u ∃r.D)I =
(∃r.C)I ∩ (∃r.D)I = {a} ∩ {a} = {a} 6⊆ ∅ = (∃r.(C uD))I .

Interpretations that satisfy the axioms in an ontology will be of special interest to us,
because these interpretations agree with the requirements imposed by the axioms. These
interpretations are called models. Formally, an interpretation I is a model of an ontology
O (in symbols: I |= O) if I |= α for every α ∈ O. We say that O is satisfiable if O
has at least one model, i.e., if I |= O holds for at least one interpretation I. Otherwise,
we say that O is unsatisfiable.

Example 6. Consider the ontology O containing the first two axioms from Example 1:

Parent ≡ ∃hasChild.>,1.
GrandParent ≡ ∃hasChild.Parent.2.

We can prove that O is satisfiable by presenting a simple model I = (∆I , ·I) of O:

– ∆I = {a},
– ParentI = GrandParentI = hasChildI = ∅,
– johnI = maryI = a.

Note that (∃hasChild.>)I = ∅ and (∃hasChild.Parent)I = ∅ since hasChildI = ∅. Thus,
ParentI = (∃hasChild.>)I and GrandParentI = (∃hasChild.Parent)I , which implies
that I satisfies both axioms in O.

Let us now extend O with the third axiom from Example 1:

hasChild(john, mary).3.



The previous interpretation I is no longer a model ofO since 〈johnI , maryI〉 = 〈a, a〉 /∈
∅ = hasChildI . This does not, however, mean that the ontology O is unsatisfiable since
we can find another interpretation J = (∆J , ·J ) that satisfies all three axioms:

– ∆J = {a},
– ParentJ = GrandParentJ = {a}, hasChildJ = {〈a, a〉},
– johnJ = maryJ = a.

It is easy to verify that (∃hasChild.>)J = (∃hasChild.Parent)J = {a}, which proves
that J still satisfies the first two axioms. Since 〈johnJ , maryJ 〉 = 〈a, a〉 ∈ {〈a, a〉} =
hasChildJ , J now also satisfies the third axiom.

Besides the notion of satisfiability of ontologies, in description logics one also con-
siders a notion of satisfiability of concepts. We say that a concept C is satisfiable if
there exists an interpretation I such that CI 6= ∅. For example, the concept ∀r.⊥ is
satisfiable because (∀r.⊥)I = ∆I 6= ∅ for every interpretation I such that rI = ∅ (and
there is certainly at least one such interpretation). On the other hand, the concept ∃r.⊥
is not satisfiable since ⊥I = ∅ and, consequently, (∃r.⊥)I = ∅ for every I.

Sometimes the interpretation that should satisfy the concept is constrained to be a
model of a given ontology. We say that a concept C is satisfiable with respect to an
ontology O if CI 6= ∅ for some I such that I |= O. Note that if the ontology O is not
satisfiable, then no concept C is satisfiable with respect to this ontology.

Example 7. LetO = {A v ¬A}. Note thatO is satisfiable in any interpretation I such
that AI = ∅ since AI = ∅ ⊆ (¬A)I = ∆I \ ∅ = ∆I . However, the concept A is not
satisfiable w.r.t. O. Indeed, assume that AI 6= ∅ for some I. Then a ∈ AI for some
domain element a ∈ ∆I . But then a /∈ ∆I \AI = (¬A)I . Hence, AI 6⊆ (¬A)I . Thus,
I 6|= A v ¬A. Hence, for each I such that AI 6= ∅, we have I 6|= O.

We are finally ready to formally define the notion of logical entailment. We say that
O entails an axiom α (written O |= α), if every model of O satisfies α. Intuitively this
means that the axiom α should hold in every situation that agrees with the restrictions
imposed by O. Note that according to this definition, if O is unsatisfiable then the
entailment O |= α holds for every axiom α.

Example 8. Consider O = {C v ∃r.D, D v E}. We prove that O |= C v ∃r.E.
Take any I such that I |= O. We show that I |= C v ∃r.E or, equivalently, CI ⊆
(∃r.E)I . Suppose that x ∈ CI . Since I |= C v ∃r.D, we have CI ⊆ (∃r.D)I , so
x ∈ (∃r.D)I . Then there exists some y ∈ ∆I such that 〈x, y〉 ∈ rI and y ∈ DI . Since
I |= D v E, we have y ∈ DI ⊆ EI . Therefore, since 〈x, y〉 ∈ rI and y ∈ EI we
obtain x ∈ (∃r.E)I . Thus, for each x ∈ CI , we have x ∈ (∃r.E)I , which means that
CI ⊆ (∃r.E)I or, equivalently, I |= C v ∃r.E.

2.3 Reasoning Problems

There are many situations in which one is interested in performing logical operations
with ontologies, such as checking consistency or verifying entailments. Just like com-
puter software, ontologies are usually developed manually by humans, and humans tend



to make mistakes. For programming languages, dedicated software tools, such as syn-
tax checkers, compilers, debuggers, testing frameworks, and static analysis tools help
preventing and finding errors. Similar tools also exist for ontology development.

Just like for programming languages, one usually distinguishes several types of er-
rors in ontologies. Syntax errors usually happen when the syntax rules for constructing
concepts and axioms described in Section 2.1 are not used correctly. For example C¬D
is not a correct concept according to grammar (1) since the negation operation is unary.
Syntax errors also include situations where an atomic role is used in the position of an
atomic concept or when the parentheses are not balanced. Syntax errors are relatively
easy to find using parsers, which can verify that the ontology is well-formed.

It can be that the ontology is syntactically well-formed, but some of its axioms do
not make sense. For example, an ontology may contain the axiom Father ≡ Male t
Parent, in which, clearly a disjunction was accidentally used instead of a conjunction.
Although for a human the problem seems obvious, it is hard to detect such an error using
automated tools since computers do not know the meaning of the words involved. From
the computer point of view, this axiom looks like C ≡ D t E, which is a legitimate
axiom. These kinds of errors are usually called semantic or modeling errors.

Although it is not possible to automatically detect modeling errors in general, there
are some common symptoms for such errors. For example, an incorrectly formulated
axiom may cause a logical contradiction with other axioms in the ontology, which
makes the whole ontology unsatisfiable. Another common symptom is unsatisfiabil-
ity of atomic concepts with respect to an ontology. Each atomic concept is usually
introduced to capture a certain non-empty subset of objects in the modeled domain. For
example, the concept Parent was introduced to capture the individuals who are parents
in the real world. If an atomic concept is unsatisfiable, this indicates that the modeled
domain cannot correspond to any model of the ontology. Note that, as shown in Exam-
ple 7, an atomic concept can be unsatisfiable even with respect to a satisfiable ontology.

A modeling error may also result in incorrect entailments of the ontology, which
are sometimes easier to detect than the error itself. For example, the erroneous ax-
iom Father ≡ Male t Parent entails the simpler concept inclusions Male v Father and
Parent v Father, which are also incorrect from the modeling point of view. By ob-
serving the entailed concept inclusions A v B between atomic concepts appearing in
the ontology, an ontology developer can usually quickly identify those incorrect entail-
ments. When the entailment O |= C v D holds, it is often said that the concept C is
subsumed by the concept D (or the concept D subsumes the concept C) w.r.t. O. For
detecting problems involving individuals, one can similarly inspect the entailed concept
assertions A(a) between atomic concepts A and individuals a appearing in the ontol-
ogy. When O |= C(a), it is often said that a is an instance of C (or C is a type of a)
w.r.t. O. Checking subsumptions and instances is not only useful for finding modeling
errors, but also for answering queries, which is usually the main purpose of ontologies
in applications. For example, given a (complex) concept C, it is possible to query for
all atomic concepts A for which the subsumption O |= C v A holds or to query for all
individuals a which are instances of C.

Thus, one can distinguish several standard reasoning problems that are of interest
in ontology-based applications:



1. Ontology satisfiability checking:
– Given: an ontology O,
– Return: yes if O is satisfiable and no otherwise.

2. Concept satisfiability checking:
– Given: an ontology O and a concept C,
– Return: yes if C is satisfiable w.r.t. O and no otherwise.

3. Concept subsumption checking:
– Given: an ontology O and a concept inclusion C v D,
– Return: yes if O |= C v D and no otherwise.

4. Instance checking:
– Given: an ontology O and a concept assertion C(a),
– Return: yes if O |= C(a) and no otherwise.

Example 9. Consider the ontology O from Example 1:

Parent ≡ ∃hasChild.>,1.
GrandParent ≡ ∃hasChild.Parent,2.

hasChild(john, mary).3.

As was shown in Example 6, this ontology has a model J = (∆J , ·J ) with

– ∆J = {a},
– ParentJ = GrandParentJ = {a}, hasChildI = {〈a, a〉},
– johnJ = maryJ = a.

Therefore, the answer to the ontology satisfiability checking problem for O is yes.
The answer to the concept satisfiability checking problem forO and concept Parent

is also yes because J |= O and ParentJ = {a} 6= ∅. The same answer is also obtained
for the inputs O and GrandParent.

We next check which subsumptions hold between these concepts. The subsumption
Parent v GrandParent holds in J since ParentJ = {a} ⊆ {a} = GrandParentJ , but
there is another model I = (∆I , ·I) of O in which this subsumption does not hold:

– ∆I = {a, b},
– ParentI = {a}, GrandParentI = ∅, hasChildI = {〈a, b〉},
– johnI = a, maryI = b.

Indeed, ParentI = {a} = (∃hasChild.>)I . Therefore, I |= Parent ≡ ∃hasChild.>.
We further have I |= GrandParent ≡ ∃hasChild.Parent since GrandParentI = ∅ =
(∃hasChild.Parent)I . Since 〈johnI ,maryI〉 = 〈a, b〉 ⊆ {〈a, b〉} = hasChildI , we have
I |= hasChild(john,mary). Therefore, I |= O. However, ParentI = {a} 6⊆ ∅ =
GrandParentI . Therefore, I 6|= Parent v GrandParent. Since we have found a model
I ofO for which the subsumption Parent v GrandParent does not hold, we have proved
that O 6|= Parent v GrandParent. Therefore, the answer to the concept subsumption
checking problem for O and Parent v GrandParent is no.

The subsumption GrandParent v Parent holds in both J and I, and in fact, in
all models of O. Indeed, assume that I |= O. We will show that GrandParentI ⊆
ParentI . To do this, take any x ∈ GrandParentI . If there is no such x then, trivially,



GrandParentI = ∅ ⊆ ParentI . Since I |= GrandParent ≡ ∃hasChild.Parent, we have
x ∈ GrandParentI = (∃hasChild.Parent)I . Hence, there exists some y such that 〈x, y〉 ∈
hasChildI and y ∈ ParentI ⊆ ∆I = >I . Hence x ∈ (∃hasChild.>)I . Since I |=
Parent ≡ ∃hasChild.>, we have ParentI = (∃hasChild.>)I . Hence, x ∈ ParentI . Since
x ∈ GrandParentI was arbitrary, we proved that GrandParentI ⊆ ParentI , that is, I |=
GrandParent v Parent and so, O |= GrandParent v Parent.

Finally, we check which of the individuals john and mary appearing in O are in-
stances of the atomic concepts Parent and GrandParent. For the model I defined above,
GrandParentI = ∅, hence, I 6|= GandParent(john) and I 6|= GandParent(mary) since
johnI = a /∈ ∅ = GandParentI and maryI = b /∈ ∅ = GandParentI . Also I 6|=
Parent(mary) since mary = b /∈ {a} = ParentI . Hence, the answer to the instance
checking problem forO and each concept assertion GandParent(john), GandParent(mary),
and Parent(mary) is no.

The answer to the instance checking problem forO and the fourth concept assertion
Parent(john) is yes since I |= Parent(john) for each I |= O. Indeed, let x = johnI and
y = maryI . Since I |= hasChild(john,mary), we have 〈x, y〉 ∈ hasChildI . Trivially,
y ∈ ∆I = >I . Hence x ∈ (∃hasChild.>)I . Since I |= Parent ≡ ∃hasChild.>, we
have ParentI = (∃hasChild.>)I . Therefore, x ∈ ParentI . Since x = johnI , we proved
that I |= Parent(john) and, since I was an arbitrary model of O, we proved that O |=
Parent(john).

Exercise 1. Determine which of the individuals john and mary are instances of the
negated concepts ¬Parent and ¬GrandParent for the ontology O in Example 9. Are
there any surprises? Can you explain the unexpected answers you obtained?

In Example 9 we have solved all reasoning problems “by hand” by either provid-
ing counter-models for entailments or proving that entailments hold for all models. Of
course, in practice, it is not expected that the ontology developers or anybody else is
going to solve these tasks manually. It is expected that these tasks are solved by com-
puters automatically and, preferably, quickly. The main focus of the research in DLs,
therefore, was development and analysis of algorithms for solving reasoning problems.

We have listed four standard reasoning tasks for ontologies: (1) ontology satisfia-
bility checking, (2) concept satisfiability checking, (3) concept subsumption checking,
and (4) instance checking. Developing separate algorithms for solving each of these
problems would be too time consuming. Fortunately, it turns out, as soon as we find an
algorithm for solving one of these problems, we can solve the remaining three too using
simple modifications of this algorithm.

2.4 Reductions between Reasoning Problems

In the remainder of this course, we are interested in measuring the computational com-
plexity of problems and algorithms. We also develop polynomial reductions between the
four standard reasoning problems mentioned above. Appendix A.1 provides additional
material for readers who first want to refresh their knowledge about these notions.

Notice the similarities in the formulations of the reasoning problems 1–4 given ear-
lier. All problems are decision problems, i.e., they get some objects as inputs and are



Ontology satisfiability
? ∃ I : I |= O

Concept satisfiability
? ∃ I : I |= O & CI 6= ∅

Concept non-subsumption
?O 6|= C v D

Concept non-instance
?O 6|= C(a)

Lemma 2

Lemma 1

Lemma 3

Lemma 4

Lemma 5

Fig. 1. An overview of reductions between the standard DL reasoning problems

expected to produce either yes or no as the output. We next apply the common approach
of formulating polynomial reductions between these reasoning problems: We first prove
that all problems can be reduced to the ontology satisfiability problem and then show
how to reduce the ontology satisfiability problem to all other problems. The overview
of the reductions is shown in Figure 1. Note that for the concept subsumption and in-
stance checking problems, we provide reductions for their complementary problems,
i.e., where the answers yes and no are swapped.

The following lemma shows how to reduce the concept satisfiability problem to the
ontology satisfiability problem. Intuitively, to check if a conceptC is satisfiable w.r.t.O,
it is sufficient to extend O with a new concept assertion C(a) and check satisfiability
of the resulting ontology. Clearly, the reduction R(〈O, C〉) = {O ∪ C(a)} can be
computed in polynomial time in the size of O plus C.

Lemma 1. Let O be an ontology, C a concept, and a an individual not appearing in
O. Then C is satisfiable w.r.t. O if and only if O ∪ {C(a)} is satisfiable.

Proof. (⇒): To prove the “only if” direction, assume that C is satisfiable w.r.t.O. Then
there exists a model I |= O such thatCI 6= ∅. That is, there exists some x ∈ CI ⊆ ∆I .
Let J = (∆J , ·J ) be a new interpretation defined as follows:

– ∆J = ∆I ,
– AJ = AI and rJ = rI for each atomic concept A and atomic role r,
– bJ = bI for every individual b 6= a,
– aJ = x ∈ CI ⊆ ∆I = ∆J .

Clearly, J |= O since the interpretation of every symbol inO remained unchanged,
and J |= C(a) since aJ = x ∈ CI = CJ . Hence, O ∪ {C(a)} is satisfiable.

(⇐): To prove the “if” directly, assume that O ∪ {C(a)} is satisfiable. Then there
exists an interpretation I such that I |= O and I |= C(a). The last implies aI ∈ CI .
Hence CI 6= ∅. Consequently, C is satisfiable w.r.t. O.



Note that in the proof of the “only if” direction of Lemma 1, it is essential that the
individual a is fresh, i.e., it does not appear in O. If this assumption is dropped, the
lemma does not hold any longer.

Exercise 2. Give an example of anALC ontologyO and a concept assertionC(a), with
individual a appearing in O such that C is satisfiable w.r.t. O but O ∪ {C(a)} is not
satisfiable.

Exercise 3. The reduction described in Lemma 1 introduces a new individual to the
ontology, even if the original ontology did not have any individuals. This may be unde-
sirable if the algorithm for checking ontology satisfiability can work only with TBoxes.
Formulate a different reduction from concept satisfiability to ontology satisfiability that
does not introduce any individuals. Prove that this reduction is correct like in Lemma 1.

Hint 1: Using a concept assertion C(a) one forces the interpretation of C to be
nonempty. Using which other axioms one can force non-emptiness of concepts? Which
concepts are always interpreted by nonempty sets? Hint 2: Similar to fresh individuals,
the reduction can use fresh atomic concepts and roles.

We next show how to reduce the problem of checking concept non-subsumption
to the problem of concept satisfiability, which, in turn, as shown by Lemma 1, can be
reduced to checking ontology satisfiability.

Lemma 2. Let O be an ontology and C, D concepts. Then O 6|= C v D if and only if
C u ¬D is satisfiable w.r.t. O.

Proof. It is easy to see that the following statements are equivalent:

1. O 6|= C v D,
2. There exists a model I |= O such that CI 6⊆ DI ,
3. There exists a model I |= O such CI \DI 6= ∅,
4. There exists a model I |= O such (C u ¬D)I 6= ∅,
5. C u ¬D is satisfiable w.r.t. O.

In particular, 3 and 4 are equivalent because:
(C u ¬D)I = CI ∩ (¬D)I = CI ∩ (∆I \DI) = CI \DI .

The problem of checking concept (non-)subsumption can alternatively be reduced
to checking (non-)entailment of concept instances. The following lemma proves that
to check O |= C v D, one can extend O with a concept assertion C(a) for a fresh
individual a, and check if the resulting ontology entails the concept instance D(a).

Lemma 3. LetO be an ontology, C, D concepts, and a an individual not appearing in
O. Then O |= C v D if and only if O ∪ {C(a)} |= D(a).

Proof. (⇒): To prove the “only if” direction, assume that O |= C v D. To show
that O ∪ {C(a)} |= D(a), take any model I of O ∪ {C(a)}. Since I |= O and
O |= C v D, we have CI ⊆ DI . Then, since I |= C(a), we have aI ∈ CI ⊆ DI .
Hence, I |= D(a). Since I was an arbitrary model such that I |= O∪{C(a)}, we have
shown that O ∪ {C(a)} |= D(a).



(⇐): We prove the “if” direction by showing the contrapositive: if O 6|= C v D
thenO∪{C(a)} 6|= D(a). Assume thatO 6|= C v D. Then there exists a model I ofO
such that I 6|= C v D, or, equivalently, CI 6⊆ DI . This means that there exists x ∈ CI
such that x /∈ DI . Define another interpretation J = (∆J , ·J ), which is identical to I
on all symbols, except for the interpretation of the individual a:

– ∆J = ∆I ,
– AJ = AI and rJ = rI for each atomic concept A and atomic role r,
– bJ = bI for every individual b 6= a,
– aJ = x ∈ CI \DI ⊆ ∆I = ∆J .

Clearly, J |= O since the interpretation of every symbol in O remained unchanged.
Since aJ ∈ CI \ DI = CJ \ DJ , we have J |= C(a) and J 6|= D(a). Thus, we
found J |= O∪{C(a)} such that J 6|= D(a), which proves thatO∪{C(a)} 6|= D(a),
as required.

Exercise 4. Similarly to Exercise 2, show that the condition that the individual a used
in Lemma 3 is fresh cannot be dropped. Give an example where the statement of the
lemma is not true without this condition.

As the next lemma shows, the concept instance checking problem can easily be
reduced to checking ontology satisfiability.

Lemma 4. LetO be an ontology, C a concept, and a an individual. ThenO 6|= C(a) if
and only if O ∪ {(¬C)(a)} is satisfiable.

Proof. It is easy to see that the following statements are equivalent:

1. O 6|= C(a),
2. There exists a model I |= O such that aI /∈ CI ,
3. There exists a model I |= O such that aI ∈ (¬C)I = ∆I \ CI ,
4. O ∪ {(¬C)(a)} is satisfiable.

Finally, we show that the ontology satisfiability problem can easily be reduced to
the other three problems. Specifically, to check if an ontology O is satisfiable, one can
check if the concept > is satisfiable with respect to O (thus, reducing to the concept
satisfiability problem), or check if O does not entail the subsumption > v ⊥ (thus
reducing to the concept non-subsumption problem), or check if O does not entail an
instance >(a) for some individual a (thus, reducing to the concept non-instance prob-
lem).

Lemma 5. Let O be an ontology. Then the following conditions are equivalent:

1. O is satisfiable,
2. > is satisfiable with respect to O,
3. O 6|= > v ⊥,
4. O 6|= ⊥(a) for every individual a,
5. O 6|= ⊥(a) for some individual a.



Proof. Case 1 ⇒ 2: If O is satisfiable then I |= O for some I = (∆I , ·I), then
>I = ∆I 6= ∅ for some I |= O, then > is satisfiable with respect to O.

Case 2 ⇒ 3: If > is satisfiable with respect to O then there exists I |= O such that
>I 6= ∅, then >I 6⊆ ∅ = ⊥I , then I 6|= > v ⊥, then O 6|= > v ⊥ since I |= O.

Case 3 ⇒ 4: If O 6|= > v ⊥, then there exists I |= O (such that >I 6⊆ ⊥I) then, for
every individual a: aI /∈ ∅ = ⊥I , hence I 6|= ⊥(a), hence O 6|= ⊥(a) since I |= O.

Case 4 ⇒ 5: If O 6|= ⊥(a) for every individual a then, trivially, O 6|= ⊥(a) for some
individual a since the set of individuals NI is nonempty.

Case 5 ⇒ 1: If O 6|= ⊥(a) for some individual a, then there exists I |= O (such that
aI /∈ ⊥I), then O is satisfiable.

3 Tableau Procedures

In this section, we introduce the so-called tableau procedures, which are the most popu-
lar procedures for reasoning in DLs, particularly, for very expressive languages. Tableau
procedures or variants thereof have been implemented in many ontology reasoners, such
as HermiT [42], FacT++ [62], Konclude [58], and Pellet [56]. Intuitively, tableau pro-
cedures work by trying to construct ontology models of a particular shape, called the
tree models. To simplify our exposition, in this section we mainly focus on tableau pro-
cedures for TBox reasoning, i.e., we assume that our ontologies do not contain concept
and role assertions.

The construction of a model is governed by a number of rules that incrementally ex-
pand the model by adding new domain elements and requirements that they need to sat-
isfy (e.g., be instances of particular concepts). To describe this process in a convenient
way, in tableau procedures one works with a different representation of interpretations,
which is called a tableau.

Definition 1. A tableau is a tuple T = (V,L), where

– V is a nonempty set of tableau nodes of T ,
– L is a labeling function that assigns:
• to every node v ∈ V a subset L(v) of concepts,
• to every pair of nodes 〈v, w〉 ∈ V × V a subset L(v, w) of roles.

A tableau T is usually drawn as a labeled graph with the set of vertices V and the
set of (directed) edges E = {〈v, w〉 ∈ V × V | L(v, w) 6= ∅}, in which every node
v ∈ V is labeled with L(v) and every edge 〈v, w〉 ∈ E is labeled with L(v, w). In what
follows we assume that if L(v) or L(v, w) were not explicitly assigned for some nodes
{v, w} ⊆ V , then L(v) = L(v, w) = ∅

Example 10. Consider the interpretation I = (∆I , ·I) from Example 2 extended with
HumanI = {a, b}:

– ∆I = {a, b},
– HumanI = {a, b}, ParentI = {a}, GrandParentI = ∅,



– hasChildI = {〈a, b〉},
– johnI = a, maryI = b.

This interpretation can be equivalently represented by a tableau T = (V,L) with:

– V = {a, b},
– L(a) = {Human,Parent},
– L(b) = {Human},
– L(a, b) = {hasChild}.

a
{Human,Parent}

b
{Human}

{hasChild}

This tableau is graphically illustrated on the right.

Note that according to Definition 1, tableau nodes can be labeled with arbitrary
concepts, not necessarily with atomic ones like in Example 10. This is in contrast to
interpretations, which define only the values for atomic concepts and roles. For inter-
pretations, it is not necessary to define how complex concepts are interpreted, since
these values can always be calculated according to the rules given in Section 2.2. For
the tableau procedures, the informationC ∈ L(v) represents a requirement that v ∈ CI
should hold for the constructed model I. The tableau should subsequently be expanded
to satisfy all such requirements. For example, if C u D ∈ L(v) then L(v) should be
expanded by adding the concepts C and D, since v ∈ (C u D)I implies v ∈ CI and
v ∈ DI . This expansion process is governed using dedicated tableau expansion rules.

As we have seen in Section 2.3, all standard reasoning problems can be reduced to
each other in polynomial time. Therefore, an algorithm for solving any of these prob-
lems can easily be modified to solve the other problems. In the next sections, therefore,
we use tableau procedures for solving one of these problems: concept satisfiability.

3.1 Deciding Concept Satisfiability

In this section, we formulate a simplified version of the procedure for checking concept
satisfiability that works without considering the axioms in the ontology. That is, given
anALC conceptC we need to check if there exists an interpretation I such thatCI 6= ∅.
Although this problem is not of much use in ontology-based applications, it allows us
to illustrate the main principles of tableau procedures.

To check satisfiability of a given concept C, we first transform it into a special
normal form, which is easier to work with.

Definition 2. An ALC concept C is in negation normal form (short: NNF) if negation
can appear in C only in the form of ¬A, where A is an atomic concept.

In other words, to construct a concept in NNF, it is permitted to apply negation only
to atomic concepts. Thus, ALC concepts in NNF can be defined by the grammar:

C,D ::= A | > | ⊥ | C uD | C tD | ¬A | ∃r.C | ∀r.C. (6)

Example 11. The concept ∀r.(¬At∃S.¬B) is in NNF; the concepts ¬∃r.A, ∀r.¬(Au
B), and A u ∃r.¬> on the other hand are not in NNF.



Table 2. Tableau expansion rules for checking satisfiability of ALC concepts

Rule Conditions Expansions
u-Rule D u E ∈ L(x), {D,E} 6⊆ L(x) Set L(x) := L(x) ∪ {D,E}.

t-Rule
D t E ∈ L(x),
{D,E} ∩ L(x) = ∅

Set L(x) := L(x) ∪ {D}
or L(x) := L(x) ∪ {E}.

∃-Rule
∃r.D ∈ L(x) and there is no y ∈ V
such that r ∈ L(x, y) and D ∈ L(y)

Extend V := V ∪ {y} for a new y,
set L(x, y) := {r} and L(y) := {D}.

∀-Rule ∀r.D ∈ L(x), r ∈ L(x, y), D /∈ L(y) Set L(y) := L(y) ∪ {D}.
⊥-Rule {A,¬A} ⊆ L(x), ⊥ /∈ L(x) Set L(x) := L(x) ∪ {⊥}.

EachALC conceptC can be converted to an equivalent concept in NNF by applying
simple rules to “push negation inwards” that are reminiscent of De Morgan’s Laws:

¬(C uD) ⇒ (¬C) t (¬D), ¬¬C ⇒ C,

¬(C tD) ⇒ (¬C) u (¬D), ¬> ⇒ ⊥,
¬(∃r.C) ⇒ ∀r.(¬C), ¬⊥ ⇒ >.
¬(∀r.C) ⇒ ∃r.(¬C),

Example 12. Consider the ALC concept (∃r.A) u ¬((∃r.A) u ¬B). This concept can
be converted to NNF as follows:

(∃r.A) u ¬((∃r.A) u ¬B) ⇒ (∃r.A) u (¬(∃r.A) t ¬¬B)

⇒ (∃r.A) u (∀r.(¬A) tB).

Exercise 5. Show that the transformation of concepts to NNF described above pre-
serves satisfiability of concepts. That is, the input concept is satisfiable if and only if
its NNF is satisfiable. Hint: show for each transformation step C ⇒ D that CI = DI

holds for every interpretation I.

To check satisfiability of an ALC concept C in NNF, we create a new Tableau
T = (V,L) with V = {v0} and L(v0) = {C}, and apply the tableau expansion
rules from Table 2. A rule is applicable if all conditions of the rule are satisfied in the
current tableau T for certain choices of rule parameters, such as the values of x, y or
the matching concepts and roles in the labels. For example, the u-Rule is applicable to
a node x ∈ V if some conjunction D uE belongs to the label L(x) of this node, but at
least one of the conjuncts D or E does not belong to L(x). In this case, T is expanded
by adding new nodes or labels as specified in the expansions part of the rules. In this
case we say that the rule is applied (for the specific choice of the rule parameters). For
example, the u-Rule is applied by adding the conjuncts D and E to the label L(x) of
the node x. Note that after applying each rule in Table 2, the rule is no longer applicable
for the same choices of rule parameters. The tableau expansion rules are applied until
no rule is applicable any longer. In this case we say that the T is fully expanded.



v0

(∃r.A) u (∀r.(¬A) tB),
∃r.A, ∀r.(¬A) tB,
∀r.(¬A)

v1 A, ¬A, ⊥

r

v0

(∃r.A) u (∀r.(¬A) tB),
∃r.A, ∀r.(¬A) tB,
B

v1 A

r

Fig. 2. Two possible tableau expansions for the concept C = (∃r.A)u (∀r.(¬A)tB) due to the
non-deterministic t-Rule

Example 13. Consider the concept C = (∃r.A) u (∀r.(¬A) tB) obtained by the con-
version to NNF in Example 12. We check satisfiability of C by applying the tableau
expansion rules from Table 2. Consider first the left-hand side of Figure 2. We initialize
T = (V,L) by setting V = {v0} and L(v0) = {C}. Since C is a conjunction, the
conditions of the u-Rule are satisfied for x = v0, D = ∃r.A, and E = ∀r.(¬A) t B.
Applying this rule adds the conjuncts ∃r.A and ∀r.(¬A) t B to L(v0). Now the con-
ditions of the ∃-Rule are satisfied for x = v0 and ∃r.A ∈ L(v0): note that there is
no v ∈ V such that r ∈ L(v0, v). Applying this rule creates a new node v1, and sets
L(v0, v1) = {r} and L(v1) = {A}. Similarly, since ∀r.(¬A) tB ∈ L(v0), but neither
∀r.(¬A) ∈ L(v0) nor B ∈ L(v0), the t-Rule is applicable. There are two ways this
rule can be applied to T : either we add the first disjunct ∀r.(¬A) to L(v0), or we add
the second disjunct B to L(v0). It is not necessary to add both of them. Let us chose the
first disjunct and see what happens. After we apply the t-Rule in this way, we obtain
∀r.(¬A) ∈ L(v0). Since r ∈ L(v0, v1) and ¬A /∈ L(v1), the ∀-Rule is now applicable
for x = v0, y = v1, and ∀r.(¬A) ∈ L(v0). The application of this rule adds ¬A to
L(v1). Now we have both A and ¬A in L(v1), which satisfies the conditions of the
⊥-Rule since ⊥ /∈ L(v1). The application of the ⊥-Rule, therefore, adds ⊥ to L(v1).
After applying this rule, no further rule is applicable, so the tableau is fully expanded.

If during the application of the t-Rule to ∀r.(¬A) t B ∈ L(v0) we, alternatively,
choose to add the second disjunctB to L(v0), we obtain another fully expanded tableau
without ⊥ ∈ L(v1) shown in the right-hand side of Figure 2.

Remark 1. Note that the tableau edges in Example 13 were labeled by just a single role
r. Although Definition 1 allows for arbitrary sets of roles in edge labels, the tableau
rules for ALC, can only create singleton sets of roles. Indeed, it is easy to see from
Table 2, that the ∃-Rule is the only rule that can modify edge labels, and can only set
them to singleton role sets {r}. More expressive languages, such as the DL ALCH
to be considered in Exercise 10, can have additional rules that can extend edge labels
similarly to node labels, thus resulting in edge labels that contain multiple roles.

As seen from Example 13, the result of applying the tableau expansion rules is not
uniquely determined. If we choose to apply the t-Rule by adding the first disjunct to the
label of v0, we eventually obtain a clash ⊥ ∈ L(v1). We say that a tableau T = (V,L)
contains a clash if ⊥ ∈ L(v) for some v ∈ V . Otherwise, we say that T is clash-free.
A clash means that the tableau cannot correspond to an interpretation since ⊥ ∈ L(v)
corresponds to the requirement v ∈ ⊥I = ∅, which cannot be fulfilled. In our example,



the clash was obtained as a result of the “wrong choice” in the application of thet-Rule.
When, instead, we choose the second disjunct, a clash-free tableau can be produced. We
show next how to construct an interpretation from such a tableau.

Remark 2. Note that a clash ⊥ ∈ L(v) may be produced by other rules than the ⊥-
Rule. For example, if C u ⊥ ∈ L(v), then ⊥ ∈ L(v) can be produced by the u-Rule.
Similarly, if ∃r.⊥ ∈ L(v), then the clash is produced by the ∃-Rule.

Definition 3. A tableau T = (V,L) defines an interpretation I = (∆I , ·I) where:

– ∆I = V ,
– AI = {x ∈ V | A ∈ L(x)} for each atomic concept A ∈ NC ,
– rI = {〈x, y〉 ∈ V × V | r ∈ L(x, y)} for each atomic role r ∈ NR.

Example 14. Consider the first tableau expansion from Example 13 (see the left of
Figure 2). This tableau defines an interpretation I = (∆I , ·I) with ∆I = {v0, v1},
AI = {v1}, BI = ∅, and rI = {〈v0, v1〉}. Let us calculate the values of the other
concepts appearing in the label of the tableau under this interpretation:

– (¬A)I = {v0},
– (∃r.A)I = {v0},
– (∀r.(¬A))I = {v1},

– (∀r.(¬A) tB)I = {v1},
– ((∃r.A) u (∀r.(¬A) tB))I = ∅.

As we can see, the interpretation I does not prove the satisfiability of the concept
C = (∃r.A) u (∀r.(¬A) tB), for which the tableau is constructed, since CI = ∅.

Let us now consider the interpretation J = (∆J , ·J ) defined by the second tableau
expansion from Example 13 (see the right-hand side of Figure 2): ∆J = {v0, v1},
AJ = {v1}, BJ = {v0}, and rJ = {〈v0, v1〉}. It is easy to see that for this interpreta-
tion we have:

– (¬A)J = {v0},
– (∃r.A)J = {v0},
– ∀r.(¬A)J = {v1},

– (∀r.(¬A) tB)J = {v0, v1},
– ((∃r.A) u (∀r.(¬A) tB))J = {v0}.

Since CJ = {v0} 6= ∅, the interpretation J proves that C is satisfiable.

The satisfiability of the concept C proved in Example 14 using the interpretation
for the second tableau expansion is not a coincidence. As we show next, in general, if
the tableau rules can be applied without obtaining a clash, then each concept appearing
in the label of each tableau node is satisfiable in the corresponding model.

Remark 3. Note that each rule in Table 2, with the exception of the ⊥-Rule, can only
add concepts to the labels if they are sub-concepts of some existing concept in the labels
(to which the rule applies). Hence, every concept appearing in the labels of tableau
nodes is a sub-concept of the original concept C for which the tableau is constructed or
⊥. In particular, each such concept is in NNF. Similarly, only roles appearing in C can
be added to the labels of the tableau edges.

Lemma 6. Let T = (V,L) be a clash-free, fully expanded tableau and I = (∆I , ·I)
an interpretation defined by T . Then, for every v ∈ V and C ∈ L(v), we have v ∈ CI .



Proof. By Remark 3, the concept C is in NNF. We prove the lemma by induction on
the construction of C according to the grammar definition (6):

Case C = A ∈ L(v): In this case v ∈ CI = AI = {x | A ∈ L(x)} by definition of I.

Case C = >: Then, trivially v ∈ V = ∆I = >I = CI .

Case C = ⊥ ∈ L(v): Then T has a clash, which is not possible according to the
assumption of the lemma.

Case C = ¬A ∈ L(v): Then A /∈ L(v) since otherwise {A, ¬A} ⊆ L(v) and ⊥ ∈
L(v) since the ⊥-Rule is not applicable to T , which would again mean that T has a
clash. Since A /∈ L(v), we have v /∈ AI by definition of I. Hence, v ∈ ∆I \ AI =
(¬A)I .

Case C = D u E ∈ L(v): Since the u-Rule is not applicable to D u E ∈ L(v), we
have D ∈ L(v) and E ∈ L(v). Then, by induction hypothesis, v ∈ DI and v ∈ EI .
Hence, v ∈ DI ∩ EI = (D u E)I = CI .

Case C = DtE ∈ L(v): Since the t-Rule is not applicable toDtE ∈ L(v), we have
D ∈ L(v) or E ∈ L(v). Then, by induction hypothesis, v ∈ DI or v ∈ EI . Hence,
v ∈ DI ∪ EI = (D t E)I = CI .

Case C = ∃r.D: Since the ∃-Rule is not applicable to ∃r.D ∈ L(v), there exists some
w ∈ V such that r ∈ L(v, w) and D ∈ L(w). From r ∈ L(v, w), by definition of I,
we obtain 〈v, w〉 ∈ rI . From D ∈ L(w), by induction hypothesis, we obtain w ∈ DI .
Hence, from 〈v, w〉 ∈ rI and w ∈ DI we obtain v ∈ (∃r.D)I .

Case C = ∀r.D: In order to prove that v ∈ CI = (∀r.D)I , take any w ∈ ∆I = V
such that 〈v, w〉 ∈ rI . We need to show that w ∈ DI . Since 〈v, w〉 ∈ rI , by definition
of I, we have r ∈ L(v, w). Since the ∀-Rule is not applicable to x = v, y = w
and ∀r.D ∈ L(v) = L(x), we must have D ∈ L(y) = L(w). Hence, by induction
hypothesis, w ∈ DI , as required.

Corollary 1. Let C be an ALC concept in NNF, and T = (V,L) a clash-free, fully
expanded tableau obtained by the tableau procedure for checking satisfiability for C.
Then C is satisfiable.

Proof. Due to the tableau initialization, and since the tableau rules in Table 2 never
remove nodes or labels, we must have C ∈ L(v) for some v ∈ V . Hence, by Lemma 6
v ∈ CI for the interpretation I defined by T . Thus, CI 6= ∅ and C is satisfiable.

Corollary 1 means that if we have managed to apply all tableau rules without pro-
ducing a clash for a concept C in NNF, then we have proved that C is satisfiable. Does
converse of this property also hold? Specifically, if C is satisfiable, is it always possible
to apply the tableau rules without producing a clash? We prove that it is indeed the case
by showing that if CI 6= ∅ for some interpretation I, then we can always construct a
tableau that mimics this interpretation in a certain way.

Definition 4. We say say that a tableau T = (V,L) mimics an interpretation I =
(∆I , ·I) if there exists a mapping τ : V → ∆I such that:



(1) for each v ∈ V and each C ∈ L(v), we have τ(v) ∈ CI , and
(2) for each 〈v, w〉 ∈ V × V and each r ∈ L(v, w), we have 〈τ(v), τ(w)〉 ∈ rI .

The mapping τ is called a mimic of T in I.

For example, if T = (V,L) is a clash-free fully expanded tableau, then T mimics
the interpretation I defined by T (cf. Definition 3) since the identity mapping τ(v) =
v ∈ V = ∆I satisfies the requirements of Definition 4. Indeed, by Lemma 6, for every
C ∈ L(v), we have τ(v) = v ∈ CI , and, by Definition 3, for every 〈v, w〉 ∈ V × V
and r ∈ L(v, w), we have 〈τ(v), τ(w)〉 = 〈v, w〉 ∈ rI . However, a tableau T can also
mimic other interpretations.

Example 15. Consider the interpretation I = (∆I , ·I) with ∆I = {a}, AI = BI =
{a} and rI = {〈a, a〉} and the tableau T = (V,L) obtained after the second expansion
in Example 13 (see the right-hand side of Figure 2). Then the mapping τ : V → ∆I

defined by τ(v0) = τ(v1) = a is a mimic of T in I. Indeed, it is easy to see that
AI = BI = (∃r.A)I = (∀r.(¬A)tB)I = ((∃r.A)u (∀r.(¬A)tB))I = {a}, hence,
τ(v) = a ∈ CI for every v ∈ V and every C ∈ L(v). Also, since 〈τ(v0), τ(v1)〉 =
〈a, a〉 ∈ rI , Condition (2) of Definition 4 holds for r ∈ L(v0, v1).

Note that if a tableau T = (V,L) contains a clash ⊥ ∈ L(v) for some v ∈ V , then
T cannot mimic any interpretation I, since, otherwise τ(v) ∈ ⊥I = ∅. Note also that
T can have a mimic even if it is not fully expanded. For example, if CI 6= ∅ for some
concept C and interpretation I = (∆I , ·I), then the initial tableau T = (V,L) with
V = {v0} and L(v0) = {C} mimics I since for each a ∈ CI 6= ∅ and τ : V → ∆I

defined by τ(v0) = a, we have τ(v0) ∈ CI . We will next show that in such a case T
can always be expanded so that it still mimics I.

Lemma 7. Let T = (V,L) be a tableau that mimics an interpretation I = (∆I , ·I)
andR be some tableau rule from Table 2 that is applicable to T . ThenR can be applied
in such a way that the resulting tableau also mimics I.

Proof. Suppose that τ : V → ∆I is a mimic of T in I. We show how to apply R and
extend τ to a mimic of the expanded tableau by considering all possible cases for R:

Case u-Rule: If the u-Rule is applicable to T , then D u E ∈ L(v) for some v ∈ V .
Since τ is a mimic of T in I, we have τ(v) ∈ (D uE)I . The application of the u-Rule
only adds D and E to L(v). To show that T still mimics I after this rule application,
it is sufficient to prove that τ(v) ∈ DI and τ(v) ∈ EI . This, clearly, follows from
τ(v) ∈ (D u E)I = DI ∩ EI .

Case t-Rule: If the t-Rule is applicable to T , then D t E ∈ L(v) for some v ∈ V .
Since τ is a mimic of T in I, we have τ(v) ∈ (DtE)I = DI∪EI . Hence, τ(v) ∈ DI
or τ(v) ∈ EI . We show that in each of these two cases one can apply the t-Rule so
that the resulting tableau still mimics I. Indeed, if τ(v) ∈ DI , we can apply the t-Rule
by adding D to L(v). Since τ(v) ∈ DI , τ is still a mimic of T in I after this rule
application. Similarly, if τ(v) ∈ EI , we can apply the t-Rule by adding E to L(v).
Since τ(v) ∈ EI , τ remains a mimic of T in I.



Algorithm 1: A tableau algorithm for checking satisfiability ALC concepts
CSat(C): Checking satisfiability of a concept C
input : an ALC concept C
output : yes if CI 6= ∅ for some interpretation I and no otherwise

1 C ← NNF(C);
2 V ← {v0}, L← {v0 7→ {C}};
3 T ← (V,L);
4 while not FullyExpanded(T ) do
5 R← ChooseApplicableRule(T );
6 T ← ApplyRule(T,R);
7 if ⊥ ∈

⋃
v∈V L(v) then

8 return no;
9 else

10 return yes;

Case ∃-Rule: If the ∃-Rule is applicable to T , then ∃r.D ∈ L(v) for some v ∈ V .
Since τ is a mimic of T in I, we have τ(v) ∈ (∃r.D)I . The application of the ∃-Rule
adds a new node w to V with L(v, w) = {r} and L(w) = {D}. To show that T still
mimics I after this rule application, we define τ(w) such that Conditions (1) and (2)
of Definition 4 hold for the two added labels. Specifically, since τ(v) ∈ (∃r.D)I , there
exists some d ∈ DI such that 〈τ(v), d〉 ∈ rI . Define τ(w) := d. Then, since τ(w) =
d ∈ DI , Condition (1) of Definition 4 holds for D ∈ L(v). Since 〈τ(v), τ(w)〉 =
〈τ(v), d〉 ∈ rI , Condition (2) of Definition 4 holds for r ∈ L(v, w).

Case ∀-Rule: If the ∀-Rule is applicable to T , then ∀r.D ∈ L(v) for some v ∈ V and
r ∈ L(v, w) for some w ∈ V . Since τ is a mimic of T in I, we have τ(v) ∈ (∀r.D)I

and 〈τ(v), τ(w)〉 ∈ rI . The application of the ∀-Rule adds D to L(w). To show that T
still mimics I after the rule application, it is sufficient to prove that τ(w) ∈ DI , which
clearly follows from τ(v) ∈ (∀r.D)I and 〈τ(v), τ(w)〉 ∈ rI .

Case ⊥-Rule: If the ⊥-Rule is applicable to T , then {A, ¬A} ⊆ L(v) for some v ∈ V .
Since τ is a mimic of T in I, we have τ(v) ∈ AI and τ(v) ∈ (¬A)I = ∆I \ AI .
Clearly, this is not possible, which means that this case cannot occur.

Algorithm 1 summarizes our tableau procedure for checking satisfiability of ALC
concepts. After converting the input concept to NNF (Lines 1) and initializing the
tableau (Line 2–3), the algorithm continuously applies the tableau rules from Table 2
until the tableau is fully expanded (Lines 4–6). If the resulting tableau contains a clash
(Line 7) the algorithm returns no; if not, the algorithm returns yes.

Note that due to the t-Rule, the result of applying a rule (Line 6) is not uniquely
determined. Hence, Algorithm 1 is non-deterministic. We next show that this algorithm
solves the concept satisfiability problem for ALC, i.e., it is correct. Recall (see Ap-
pendix A.1) that a non-deterministic algorithm A solves a problem P : X → {yes, no}
if, for each x ∈ X such that P (x) = no, each run of A terminates with the result no,



and for each x ∈ X such that P (x) = yes, there exists at least one run for which
the algorithm terminates and produces yes. Proving correctness of a (non-deterministic)
algorithm is usually accomplished by proving several properties: (1) Soundness: if for
an input x ∈ X , A returns yes then P (x) = yes, (2) Completeness: if P (x) = yes
then A returns yes for at least one run, and (3) Termination: A terminates for every
input. Soundness of Algorithm 1 follows from Lemma 6 since the algorithm returns
yes only if a clash-free fully expanded tableau is computed. Completeness follows from
Lemma 7 since, for a satisfiable concept, one can always apply the rules such that a
clash is avoided. It is thus remains to prove that Algorithm 1 always terminates.

Remark 4. It may seem that a run of Algorithm 1 is determined not only by the choice
of a possible expansion of the non-deterministic t-Rule (Line 6), but also by the choice
of which next rule to apply in case there are several applicable rules (Line 5). However,
since Lemma 7 holds for any applicable rule, the latter choice does not have any impact
on the completeness of the algorithm. In other words, we may assume that the function
ChooseApplicableRule(T ) is deterministic, i.e., it always returns the same value for
the same input (unlike function ApplyRule(T,R) for which different values need to be
considered in different runs). The choice of which next rule to apply is usually referred
to as don’t care non-determinism of the algorithm, whereas the choice of how a rule is
applied (the t-Rule in our case) is referred to as a don’t know non-determinism.

Exercise 6. The function ChooseApplicableRule(T ) of Algorithm 1 can be defined
in many different ways. If several rules are applicable to a node, e.g., the u-Rule and
the t-Rule, the function may determine which of these rules should be applied first
by specifying a rule precedence. If the same rule is applicable to different nodes, the
function, likewise, can choose to which node the rule should be applied first. Discuss,
which of these choices are more likely to result in fewer and/or shorter runs of the
tableau procedure?

In order to prove termination of Algorithm 1, we show that the size of the tableau
T that is constructed for a concept C at each step of the algorithm is bounded by an
exponential function in the size of C (the number of symbols in C). This implies that
every run of Algorithm 1 terminates after at most exponentially many rule applications
since each rule application increases the size of the tableau. By Remark 3, each node
label can contain only concepts that are sub-concepts of C or ⊥, and each edge label
can contain only roles that appear in C. Therefore, the maximal size of the label for
each node and edge for each pair of nodes is bounded by a linear function in the size of
C. We next show that the number of different nodes of a tableau is at most exponential
in the size of C.

Definition 5. For each node v ∈ V of a tableau T = (V,L), we define its level `(v) by
induction on the rule application of the tableau procedure:

– For the node v0 created during tableau initialization we set `(v0) = 0;
– For a node w created by an application of the ∃-Rule to a node v ∈ V , we set
`(w) = `(v) + 1.

The following lemma gives a bound on the number of nodes at each level of a
tableau:



Lemma 8. Let T = (V,L) be a (possibly not fully expanded) tableau obtained for a
concept C of size n. Then for each k ≥ 0, the number of nodes v with `(v) = k is
bounded by nk.

Proof. The proof is by induction over k ≥ 0.

Case k = 0: There exists only one node v = v0 ∈ V with `(v) = 0 since all other
nodes are constructed by the ∃-Rule.

Case k > 0: Take any node w ∈ V with `(w) = k. Since k > 0, w can only be
constructed by an application of the ∃-Rule to some node v with `(v) = k − 1. This
rule has been applied to some concept ∃r.D ∈ L(v) and, after this rule application,
the ∃-Rule can no longer be applied to ∃r.D ∈ L(v). Hence, each w with `(v) = k is
uniquely associated with a pair 〈∃r.D, v〉 where ∃r.D is a sub-concept of the original
concept C and `(v) = k − 1. Since the number of sub-concepts of C is bounded by n
and, by the induction hypothesis, the number of nodes v with `(v) = k − 1 is bounded
by nk−1, the number of nodes w with `(v) = k is bounded by n · nk−1 = nk.

Finally, we prove that the level of a tableau node cannot exceed the quantifier depth
of the input concept.

Definition 6. The quantifier depth of an ALC concept C is a number qd(C) that is
defined inductively over (1) as follows:

– qd(>) = qd(⊥) = qd(A) = 0 for each A ∈ NC ,
– qd(C uD) = qd(C tD) = max(qd(C), qd(D)),
– qd(¬C) = qd(C),
– qd(∃r.C) = qd(∀r.C) = qd(C) + 1.

Example 16.

qd(∃r.((¬A) u ∀r.B)) = qd((¬A) u ∀r.B) + 1

= max(qd(¬A), qd(∀r.B)) + 1

= max(qd(A), qd(B) + 1) + 1

= max(0, 0 + 1) + 1 = 2.

Note that qd(C) is not greater than the number of quantifier symbols (∃ or ∀) in C,
which is not greater than the length of C.

Lemma 9. Let T = (V,L) be a (possibly not fully expanded) tableau obtained for a
concept C with qd(C) = q, and v ∈ V a node with `(v) = k. Then for each D ∈ L(v),
we have qd(D) ≤ q − k.

Proof. We prove the lemma by induction on the size (i.e., on the construction) of T .
If T is created during the tableau initialization, then D = C, v = v0, and k = 0.

Hence qd(D) = qd(C) = q = q − k as required.
Otherwise, T was created by applying one of the tableau expansion rules in Table 2.

If D ∈ L(v) was not added by this rule, we can apply the induction hypothesis to the



(smaller) tableau before the rule application. Otherwise, we consider all possible cases
of such a rule that can add D ∈ L(v):

Case u-Rule: IfD was added by the u-Rule, then, before this rule application,DuE ∈
L(v) or E u D ∈ L(v) for some E. By applying the induction hypothesis for this
concept, we obtain qd(D) ≤ qd(D u E) ≤ q − k or qd(D) ≤ qd(E uD) ≤ q − k.

Case t-Rule: IfD was added by the t-Rule, then, before this rule application,DtE ∈
L(v) or E t D ∈ L(v) for some E. By applying the induction hypothesis for this
concept, we obtain qd(D) ≤ qd(D t E) ≤ q − k or qd(D) ≤ qd(E tD) ≤ q − k.

Case ∃-Rule: If D was added by the ∃-Rule, then the node v was also created by this
rule and the rule was applied to some w ∈ V with ∃r.D ∈ L(w) for some role r. Then
`(v) = `(w)+1 and, by induction hypothesis, qd(∃r.D) ≤ q−`(w) = q−(`(v)−1) =
q − k + 1. Since qd(∃r.D) = qd(D) + 1, we obtain qd(D) = qd(∃r.D)− 1 ≤ q − k.

Case ∀-Rule: If D was added by the ∀-Rule, then this rule was applied to some w ∈ V
with ∀r.D ∈ L(w) and r ∈ L(w, v). Since r ∈ L(w, v) could be only added by
the ∃-Rule, `(v) = `(w) + 1. By induction hypothesis for ∀r.D ∈ L(w), we obtain
qd(∀r.D) ≤ q − `(w) = q − (`(v) − 1) = q − k + 1. Since qd(∀r.D) = qd(D) + 1,
we obtain qd(D) = qd(∀r.D)− 1 ≤ q − k.

Case⊥-Rule: IfD = ⊥was added by the⊥-Rule, then, before this rule application, we
have {A, ¬A} ⊆ L(v) for some atomic concept A. By induction hypothesis, qd(A) ≤
q − k. Hence qd(⊥) = 0 = qd(A) ≤ q − k.

Let T = (V,L) be a tableau constructed during a run of the tableau procedure for
a concept C with size n and qd(C) = q ≤ n. Since every node v ∈ V of a tableau
T = (V,L) always contains at least one concept D in the label, by Lemma 9 it follows
that 0 ≤ qd(D) ≤ q− `(v). Hence `(v) ≤ q holds for every v ∈ V . Since, by Lemma 8
the number of nodes at level k is bounded by nk, the total number of nodes in the
tableau is bounded by

∑
0≤k≤q n

k ≤ nq+1 = 2(log2 n)·(q+1) ≤ 2n
2

.
Essentially we have shown that the tableau procedure constructs a special kind of

interpretation (represented by the tableau). The interpretations have a tree shape: each
node except for the initial node (the root of the tree) is connected by an edge to ex-
actly one predecessor node from which this node was created (by an application of the
∃-Rule). The depth of the tree is bounded by the quantifier depth of the concept C for
which the tableau was constructed. The branching degree of the tree (the maximal num-
ber of successor nodes of each node) is bounded by the number of existential concepts
occurring in C. Hence the size of the tree is bounded exponentially in the size of C.

Exercise 7. Show that the exponential upper bound on the size of the tableau cannot be
improved. Specifically, for each n ≥ 0 construct a concept Cn of polynomial size in n
(i.e., the number of symbols in Cn is bounded by p(n) for some polynomial function p)
such that the fully expanded tableau for Cn contains at least 2n nodes. Hint: the tableau
rules should create a binary tree of depth n. Hence by Lemma 9, qd(Cn) ≥ n. The label
of each non-leaf node should contain two different concepts of the form ∃R.D.

The exponential bound on the tableau size implies the following complexity result:



Theorem 1. Algorithm 1 solves the concept satisfiability problem in ALC in non-
deterministic exponential time.

Remark 5. It is possible to make some further improvements to Algorithm 1 to prove
better complexity bounds. First note that to check satisfiability of a concept C, it is not
necessary to keep the whole tableau in memory. Once all tableau expansion rules are
applied to a node (and the node is checked for the presence of a clash), the node can
be completely deleted. By processing nodes in a depth-first manner it is, therefore, pos-
sible to store at most linearly many nodes in memory at any given time (because the
tableau has a linear depth). This gives a non-deterministic polynomial space algorithm
solving this problem. A well-known result from complexity theory called Savitch’s the-
orem then implies that there is a deterministic polynomial-space algorithm solving this
problem, which is now an optimal complexity bound for checking concept satisfiability
in ALC (see, e.g., [6, Section 5.1.1]).

3.2 TBox Reasoning

In this section, we extend the tableau procedure presented earlier to also take into ac-
count TBox axioms of the ontology. Given an ALC concept C and an ALC TBox O,
our goal now is to check the satisfiability of C w.r.t. O, i.e., to check if there exists a
model I of O such that CI 6= ∅.

As in the case of the previous procedure, before applying the tableau rules, we first
need to convert the input into a suitable normal form. We say that a TBox axiom is in
normal form (or is normalized) if it is a concept inclusion axiom of the form > v D
where D is a concept in NNF. Every TBox axiom can be converted into the normal
form by applying the following simple rewriting rules:

C ≡ D ⇒ C v D, D v C,
C v D ⇒ > v ¬C tD if C 6= >,
> v D ⇒ > v NNF(D) if D is not in NNF.

Exercise 8. Similarly to Exercise 5, show that TBox normalization preserves concept
satisfiability w.r.t. the TBox. That is, a concept C is satisfiable w.r.t. a TBox O if and
only if C is satisfiable w.r.t. the normalization of O. Hint: show that for each rewrite
step α⇒ β above and each interpretation I we have I |= α if and only if I |= β.

To take the resulting axioms into account in our tableau procedure, we need to
add an additional tableau expansion rule shown in Table 3. We can now use a simple
modification of Algorithm 1, where, in addition to a (normalized) concept C, the input
also contains a (normalized) ontology O and, in addition to the rules in Table 2, a new
rule from Table 3 can be chosen and applied at Steps 5 and 6.

Example 17. Consider C = A and O = {A u ∀r.B v ∃r.A}. We check satisfiability
of C w.r.t.O using the tableau procedure. The concept C is already in NNF. The axiom
in O is normalized as follows:

A u ∀r.B v ∃r.A ⇒ > v ¬(A u ∀r.B) t ∃r.A,
⇒ > v ((¬A) t ∃r.¬B) t ∃r.A.



Table 3. The additional tableau expansion rule for handling (normalized) TBox axioms

Rule Conditions Expansions
>-Rule > v D ∈ O, D /∈ L(x) Set L(x) := L(x) ∪ {D}.

v0
A, ((¬A) t ∃r.¬B) t ∃r.A
(¬A) t ∃r.¬B, ∃r.¬B

v1
¬B, ((¬A) t ∃r.¬B) t ∃r.A
(¬A) t ∃r.¬B, ¬A

r

Fig. 3. A possible tableau expansion for C = A and O = {> v (¬A t ∃r.¬B) t ∃r.A}

The tableau is initialized to T = (V,L) with V = {v0} and L(v0) = {A}, and
expanded by the following rule applications:

1. >-Rule: L(v0) := L(v0) ∪ {((¬A) t ∃r.¬B) t ∃r.A},
2. t-Rule: L(v0) := L(v0) ∪ {(¬A) t ∃r.¬B},
3. t-Rule: L(v0) := L(v0) ∪ {∃r.¬B},
4. ∃-Rule: L(v0, v1) := {r}, L(v1) := {¬B},
5. >-Rule: L(v1) := L(v1) ∪ {((¬A) t ∃r.¬B) t ∃r.A},
6. t-Rule: L(v1) := L(v1) ∪ {(¬A) t ∃r.¬B},
7. t-Rule: L(v1) := L(v1) ∪ {¬A}.

Figure 3 shows the resulting tableau expansion. Note that the new>-Rule is applied
for both nodes v0 and v1 (Steps 1 and 5). Without applying this rule, no other rule would
be applicable. Note that at Step 3 we have applied the t-Rule by adding the second
disjunct ∃r.¬B to L(v0) because adding the first disjunct ¬A would result in a clash
since A ∈ L(v0). The same disjunction also appears in L(v1), but since A /∈ L(v1), we
could apply the t-Rule by adding the first disjunct ¬A to L(v1) (Step 7).

Since after Step 7 the tableau is fully expanded and does not contain a clash, we
conclude that C is satisfiable w.r.t. O.

Intuitively, the new >-Rule ensures that the interpretation I = (∆I , ·I) defined
by T = (V,L) (see Definition 3) satisfies all axioms in the (normalized) ontology
O once all tableau rules are applied. Indeed, Lemma 6 still holds for the extended
tableau procedure, since the proof of the lemma is by induction on the construction of
a concept C ∈ L(v) and we did not add any new concept constructors. Now, since T
is fully expanded, for every normalized axiom > v D ∈ O and every v ∈ V , we have
D ∈ L(v) due to the >-Rule. Hence, by Lemma 6, v ∈ DI for every v ∈ V = ∆I .
Consequently, I |= > v D for each > v D ∈ O. This implies that the extended
Algorithm 1 remains sound.

Completeness of the extension of Algorithm 1 can also easily be shown. If C is
satisfiable w.r.t. O, then there exists a model I |= O such that CI 6= ∅. We extend the
proof of Lemma 7 to show that in this case, one can apply the tableau rules in such a



Table 4. An additional expansion rule to handle TBox axioms of the form C v D

Rule Conditions Expansions
v-Rule C v D ∈ O, C ∈ L(x), D /∈ L(x) Set L(x) := L(x) ∪ {D}.

way that T always mimics I, thus, avoiding the production of a clash. For this we just
need to update the proof with the case for the newly added rule:

Case >-Rule: If the >-Rule is applicable to T , then D /∈ L(v) for some v ∈ V and
some> v D ∈ O. The application of the>-Rule adds only D to L(v). To show that T
still mimics I after this rule application, it is sufficient to prove that τ(v) ∈ DI . Since
> v D ∈ O and I |= O we have >I = ∆I ⊆ DI . Hence τ(v) ∈ ∆I ⊆ DI .

Exercise 9. In order to understand why the TBox axioms require a transformation to
the form> v D, suppose we generalize the normal form to also permit axioms C v D
where both C and D are in NNF, and formulate a new v-Rule to handle axioms of
this form as given in Table 4. Does the modified tableau algorithm remain sound and
complete? Which of the lemmas cannot be proved any longer?

What happens if we only allow normalized axioms of the form > v D and A v D
where A is an atomic concept and D is a concept in NNF. Is the tableau algorithm with
the >-Rule and the v-Rule sound and complete for this case?

Exercise 10. Description logic ALCH is an extension of the description logic ALC, in
which ontologies can contain role inclusion axioms of the form r v s, where r and s
are roles. An interpretation I satisfies r v s if rI ⊆ sI .

Extend the tableau procedure by adding a new rule to handle role inclusion axioms.
Prove that this procedure is sound and complete. Use this procedure to show that the
concept C = A u ¬∃s.(A uB) u ∀r.B is unsatisfiable w.r.t. O = {A v ∃r.A, r v s}.

We have shown that the tableau algorithm extended with the >-Rule remains sound
and complete. In order to show that it solves the concept satisfiability problem w.r.t.
TBoxes, it remains to show that it terminates for every input. Unfortunately, the latter is
not the case as shown in the next example. Intuitively, since the >-Rule adds a concept
to every node label, this new concept can, in particular, trigger an application of the
∃-Rule, which, in turn, creates new nodes, for which the >-Rule is applicable again.

Example 18. Consider C = A and O = {A v ∃r.A}. We check the satisfiability of C
w.r.t. O using the extended tableau procedure. The concept C is already in NNF, so we
just need to normalize the axiom in O:

A v ∃r.A ⇒ > v (¬A) t ∃r.A.

The tableau is initialized to T = (V,L) with V = {v0} and L(v0) = {A}, and ex-
panded as shown in Figure 4. Notice that unlike in Example 17, if we were to apply the
t-Rule for (¬A) t ∃r.A ∈ L(v1) by choosing the first disjunct ¬A, we would trigger
a clash since L(v1) also contains A (added by ∃-Rule). Hence, the creation of infinitely
many tableau nodes cannot be avoided.



1. >-Rule: L(v0) := L(v0)∪{(¬A)t∃r.A},
2. t-Rule: L(v0) := L(v0) ∪ {∃r.A},
3. ∃-Rule: L(v0, v1) := {r}, L(v1) := {A},
4. >-Rule: L(v1) := L(v1)∪{(¬A)t∃r.A},
5. t-Rule: L(v1) := L(v1) ∪ {∃r.A},
6. ∃-Rule: L(v1, v2) := {r}, L(v2) := {A},
7. >-Rule: . . .

v0
A, (¬A) t ∃r.A
∃r.A

v1
A, (¬A) t ∃r.A
∃r.A

r

v2
A, (¬A) t ∃r.A
∃r.A

r

Fig. 4. The only clash-free tableau expansion for C = A and O = {> v (¬A) t ∃r.A}

As discussed in Remark 5, to check satisfiability of a concept (also, with respect
to an ontology), it is not necessary to keep the whole tableau in memory. We just need
to verify that a clash-free tableau exists. This idea can be developed further to regain
termination of the tableau algorithm with TBoxes. Notice that in Example 18, all nodes
contain identical concepts in the labels. This means that if a rule is applicable to one
node then it can be applied in exactly the same way to any other node with the same
content. Hence, if a clash is obtained in this node, it is also obtained in the other node.
Consequently, it is not necessary to apply the tableau rules to all nodes in order to verify
that there exists a clash-free tableau expansion. Some rule applications can be blocked.

Definition 7. A blocking condition is a function that assigns to every tableau T =
(V,L) a nonempty subset W ( V of active nodes such that for every node v1 ∈ W
and every node v2 /∈ W such that L(v1, v2) 6= ∅, there exists a node w ∈ W with
L(v2) ⊆ L(w). In this case we say that a node v2 is (directly) blocked by node w. Each
node in V \W is called a blocked node.

Example 19. Let T = (V,L) be the tableau obtained after Step 6 in Example 18, i.e.,
V = {v0, v1, v2}, L(v0) = L(v1) = {A, (¬A) t ∃r.A, ∃r.A}, L(v2) = {A}, and
L(v0, v1) = L(v1, v2) = {r}. Then a blocking condition for T can be defined by
setting W = {v0} since for 〈v0, v1〉 ∈ E we have L(v1) ⊆ L(v0).

We leave it open, how exactly the set of active nodes of a tableau is determined, so
that different blocking strategies can be used in different algorithms. We show next that
one can restrict the tableau algorithm to apply rules only to active nodes.

Definition 8. Let T = (V,L) be a tableau with a subset W ⊆ V of active nodes. We
say that a tableau rule from Table 2 or 3 is applicable to a node v ∈ V if the conditions
of this rule are satisfied for a mapping x 7→ v. We say that a tableau T is fully expanded
up to blocking if no tableau rule is applicable to any active node w ∈W .

Example 20. It is easy to see that the tableau T from Example 19 with W = {v0} is
fully expanded up to blocking since no tableau rule (for the ontology O from Exam-
ple 18) is applicable to v0.

Algorithm 2 is a modification of Algorithm 1 for checking satisfiability of concepts
w.r.t. ontologies. Apart from a new step for normalization of the input ontology (Line 1),



Algorithm 2: A tableau algorithm for checking satisfiability ofALC concepts
with respect to ALC ontologies

COSat(C, O): Checking satisfiability of a concept C w.r.t. an ontology O
input : an ALC concept C, an ALC ontology O
output : yes if CI 6= ∅ for some model I of O and no otherwise

1 C ← NNF(C);
2 O ← Normalize(O);
3 V ← {v0}, L← {v0 7→ {C}};
4 T ← (V,L);
5 while not FullyExpandedUpToBlocking(T ) do
6 R← ChooseApplicableRule(T );
7 T ← ApplyRule(T,R);
8 if ⊥ ∈

⋃
v∈V L(v) then

9 return no;
10 else
11 return yes;

the algorithm uses a blocking condition to verify if the tableau is fully expanded up to
blocking according to Definition 8 (Line 5), and to select a rule applicable to an active
node (Line 6). We assume that the initial node v0 always remains active.

We next show that the updated algorithm remains sound and complete. The intro-
duction of a blocking condition does not have any impact on completeness: the proof of
Lemma 7 (including the new case for the >-Rule) remains as before. Soundness of the
new algorithm is, however, nontrivial: if the tableau is fully expanded with blocking,
it does not mean that it is fully expanded without blocking. To prove soundness, we
modify Definition 3 by taking the blocking condition into account:

Definition 9. A tableau T = (V,L) and a subset of active nodes W ⊆ V define an
interpretation I = (∆I , ·I) such that:

– ∆I =W ,
– AI = {x ∈W | A ∈ L(x)} for each atomic concept A ∈ NC ,
– rI = {〈x, y〉 ∈W ×W | ∃z ∈ V : r ∈ L(x, z) and z = y or z is blocked by y}

for each atomic role r ∈ NR.

A few comments about Definition 9 are in order. First note that this definition coin-
cides with Definition 3 whenW = V . The definition of rI can be explained as follows:
if r ∈ L(x, z) and both nodes x and z are active, then 〈x, z〉 ∈ rI . This corresponds to
the case ‘z = y’ of the definition for rI . If x active but z is not, then, since L(x, z) 6= ∅,
z should be blocked by some y ∈W . In this case, rI contains all such pairs 〈x, y〉. This
corresponds to the case ‘z is blocked by y’ of the definition for rI . If x not active then
the label r ∈ L(x, z) is ignored.

Example 21. Consider the tableau T = (V,L) illustrated on the left-hand side of Fig-
ure 5:



v0 A,C

v2 A,Bv1 C

v3 A

r r

r

I = (∆I , ·I), where:

– ∆I = {v0, v2},
– AI = {v0, v2}, BI = {v2}, CI = {v0},
– rI = {〈v0, v0〉, 〈v0, v2〉, 〈v2, v2〉, 〈v2, v0〉}.

Fig. 5. A tableau with blocking (v0 and v2 are are active nodes, v1 and v3 are blocked nodes) and
the interpretation defined by this tableau

– V = {v0, v1, v2, v3},
– L(v0) = {A,C}, L(v1) = {C}, L(v2) = {A,B}, L(v3) = {A},
– L(v0, v1) = L(v0, v2) = L(v2, v3) = {r}.

Suppose that the set of active nodes is W = {v0, v2}. Note that v1 is blocked by v0
since L(v1) = {C} ⊆ {A,C} = L(v0), v3 is blocked by v2 since L(v3) = {A} ⊆
{A,B} = L(v2), and v3 is blocked by v0 since L(v3) = {A} ⊆ {A,C} = L(v0).
Then T and W define an interpretation shown in the right of Figure 5.

Let T = (V,L) be a tableau obtained by applying the tableau expansion rules for
a concept C and an ontology O. Suppose that T is fully expanded up to blocking for
W ⊆ V and does not contain a clash. Let I be the interpretation defined by T and W
according to Definition 9. Our goal is to show that I |= O and CI 6= ∅, which implies
that C is satisfiable w.r.t. O. To do this, we prove an analog of Lemma 6 for our new
interpretation I.

Lemma 10. Let T = (V,L) be a clash-free, fully expanded tableau up to blocking
for W ⊆ V and I = (∆I , ·I) an interpretation defined by T and W according to
Definition 9. Then for every v ∈W and every C ∈ L(v), we have v ∈ CI .

Proof. Just like for Lemma 6, we prove this lemma by induction on the construction of
C according to the grammar definition (6). The only changes compared to the previous
proof are those cases where the definition of rI was used:

Case C = ∃r.D: Since the ∃-Rule is not applicable to ∃r.D ∈ L(v), there exists some
w ∈ V such that r ∈ L(v, w) andD ∈ L(w). Define an active nodew′ ∈W as follows.
If w ∈ W , we set w′ = w. Otherwise, w must be blocked by some w′ ∈ W . Then, by
the definition of rI , we have 〈v, w′〉 ∈ rI . Note also that D ∈ L(w) ⊆ L(w′). Since
w′ ∈W , by induction hypothesis w′ ∈ DI . From 〈v, w′〉 ∈ rI and w′ ∈ DI we obtain
v ∈ (∃r.D)I .

Case C = ∀r.D: In order to prove that v ∈ CI = (∀r.D)I , take any w′ ∈ ∆I = W
such that 〈v, w′〉 ∈ rI . We prove that w′ ∈ DI . Since 〈v, w′〉 ∈ rI , by definition of
rI , there exists some w ∈ V such that r ∈ L(v, w) and either w = w′ or w is blocked
by w′. In both cases L(w) ⊆ L(w′). Since the ∀-Rule is not applicable to ∀r.D ∈ L(v)
and r ∈ L(v, w), we must have D ∈ L(w) ⊆ L(w′). Since w′ ∈ W , from D ∈ L(w′)
by induction hypothesis, we obtain w′ ∈ DI , as required.



Exercise 11. Identify the places where the properties of a blocking condition (Defini-
tion 7) have been used in the proof of Lemma 10. Can the blocking condition be relaxed
in such a way that more nodes of a tableau can potentially be blocked, but the proof of
Lemma 10 can be still repeated? For example, do we really need that all concepts of
L(v2) are contained in L(w)?

Finally, we consider the question of termination of Algorithm 2. Clearly, the algo-
rithm does not terminate for every blocking condition. For example, as shown in Exam-
ple 18, the algorithm does not terminate if all nodes are active, i.e., W = V . Hence, we
need to make some further assumptions about the blocking condition in order to show
termination.

Definition 10. The eager blocking condition (for a root node w0) assigns to every
tableau T = (V,L) a minimal (w.r.t. set inclusion) set of active nodes W ⊆ V contain-
ing w0 that satisfies the condition of Definition 7.

Intuitively, the eager blocking condition for T = (V,L) can be implemented as
follows. We first set W = {w0}. Then, repeatedly for every v1 ∈ W and v2 ∈ V \W
such that L(v1, v2) 6= ∅, check if there exists w ∈ W such that L(v2) ⊆ L(w). If there
is no such element, we add v2 to W . This process continues until no further nodes can
be added. Note that the resulting set W depends on the order in which the nodes v2 are
processed. In practice, the set W can dynamically be updated when applying tableau
rules. The eager blocking condition is related to the notion of anywhere blocking [42].

Lemma 11. Let C and O be inputs of Algorithm 2 with the combined size n (i.e., the
total number of symbols). Then each run of Algorithm 2 terminates in at most doubly
exponential time in the size of n provided an eager blocking condition is used.

Proof. Without loss of generality, we may assume that C and O are normalized since
this step can be performed in linear time. Let T = (V,L) be a tableau obtained during
the run of the algorithm. For each node v ∈ V of the tableau, we define its level `(n) as
in Definition 5. We will prove that `(v) ≤ 2n for each node v ∈ V .

Assume to the contrary that there exists w ∈ V with `(w) = 2n + 1. Then w must
have been created by the ∃-Rule from some v ∈W with `(v) = `(w)− 1 = 2n, where
W ⊆ V is the set of active nodes of the tableau at the moment of this rule application.
Since `(v) = 2n, there must exist nodes v0, v1, . . . , v2n = v such that L(vi−1, vi) 6= ∅
(1 ≤ i ≤ 2n). It is easy to see that vi ∈W for all i with 0 ≤ i ≤ 2n. Indeed, otherwise
there exists a maximal such i such that vi /∈W (0 ≤ i ≤ 2n). Since v2n = v ∈W , then
i < 2n and v0 6= vi+1 ∈ W . But then one can remove vi+1 from W without violating
the conditions of Definition 7 since L(w, vi+1) = ∅ for all w ∈ W . This contradicts
our assumption that W is a minimal set of active nodes containing v0.

Now consider the sets of concepts Si = L(vi) in the labels of vi (0 ≤ i ≤ 2n). Since
each node label can contain only concepts that appear either in C or in O (possibly as
sub-concepts) and the number of such concepts is bounded by the total combined length
n of the input, there can be at most 2n different subsets among Si (0 ≤ i ≤ 2n). By the
pigeonhole principle, there exist some indexes i and j (0 ≤ i < j ≤ 2n) such that Si =
Sj . But then node vj 6= v0 can be removed from W without violating the conditions



of Definition 7 since for each v ∈ W with L(v, vj) 6= ∅, there exists w = vi ∈ W
such that L(vi) ⊆ L(w) because L(w) = L(vi) = L(vj). This again contradicts
our assumption that W is a minimal set of active nodes. The obtained contradiction,
therefore, proves that `(v) ≤ 2n for every v ∈ V .

Now, by Lemma 8, the total number of tableau nodes is bounded by
∑

0≤k≤2n n
k ≤

n2
n+1 = 2(log2 n)·(2

n+1) ≤ 22
n2

. Since each node contains at most n concept labels
and every application of a tableau rule introduces at least one of them, each run of
Algorithm 2 terminates after at most double exponentially many steps.

Theorem 2. Algorithm 2 solves the concept satisfiability problem with respect to on-
tologies expressed in ALC in non-deterministic doubly exponential time.

As with Algorithm 1, the complexity bound provided by Algorithm 2 is not optimal
and can be improved to deterministic exponential time (see, e.g., [6, Section 5.1.2]).

Note that the requirements about the blocking condition used in Lemma 11 can
be relaxed. Indeed, in the proof of the lemma we only used that a node vj is directly
blocked by an ancestor node vi, i.e., a node from which vj was created by a sequence
of ∃-Rule applications.

Exercise 12 (Advanced). Is it possible to improve the upper bound shown in the proof of
Lemma 11 to single exponential time? Which additional assumptions about the block-
ing condition are necessary for this? Hint: for every tableau T = (V,L) used in the
computation, consider the set of all subsets of the labels of the nodes: P = {S ⊆
L(v) | v ∈ V }. How can this set change after a tableau rule application? How many
times can this set change during the tableau run? What is the maximal possible number
of consequent rule applications that do not change this set?

4 Axiom Pinpointing

In Section 2.3, we have discussed several ontology reasoning problems and how they
can help in detecting modeling errors in ontologies. For example, inconsistency of an
ontology indicates that the modeled domain cannot match any model of the ontology
since the ontology does not have models. In Section 3 we have shown how to check on-
tologies for consistency and solve other reasoning problems using tableau procedures.
Knowing that an ontology is inconsistent, however, does not tell much about what ex-
actly causes the inconsistency let alone how to repair it.

Recall from Section 2.3, that all reasoning problems can be reduced to concept
subsumption checking. For example, by Lemma 5, an ontologyO is unsatisfiable if and
only if O |= > v ⊥. Axiom pinpointing methods can help the user to identify the exact
axioms that are responsible for this or any other entailment.

Definition 11. A justification for an entailment O |= α is a subset of axioms J ⊆ O
such that J |= α and for every J ′ ( J , we have J ′ 6|= α.

In other words, a justification for an entailment O |= α is a minimal set of axioms
of the ontology that entails α. Note that since O |= α, at least one justification for the



entailment exists. Indeed, either J0 = O satisfies the condition of Definition 11, or there
exits J1 ( J0 such that J1 |= α. Similarly, either J1 is a justification or there exists
some J2 ( J1 such that J2 |= α, etc. At some point this process stops sinceO contains
only finitely many axioms and Ji (i ≥ 0) gets smaller with every step. Therefore, the
last set Jk will be a justification for O |= α.

Note that we say a justification instead of the justification. Indeed, Definition 11
does not imply that a justification must be unique as the following example shows.

Example 22. Consider the following entailment:

O = {A v B, B v C, A v C, A uB v ⊥} |= α = A v C.

This entailment has three different justifications:

– J1 = {A v B, B v C},
– J2 = {A v C},
– J3 = {A v B, A uB v ⊥}.

Indeed, it is easy to see that Ji |= α for 1 ≤ i ≤ 3. For example, J3 |= A v C because
for every model I |= J3 we have AI ⊆ AI ∩ BI ⊆ ⊥I = ∅ ⊆ CI . We can show
that each Ji satisfies the remaining condition of Definition 11 by enumerating all proper
subsets of Ji (1 ≤ i ≤ 3):

– J1 has only the proper subsets M0 = ∅, M1 = {A v B} and M2 = {B v C},
– J2 has only the proper subset M0 = ∅,
– J3 has only the proper subsetsM0 = ∅,M1 = {A v B}, andM3 = {AuB v ⊥}.

We can show that none of these subsets Mi entails α by presenting the corresponding
counter-models Ii = (∆Ii , ·Ii) such that Ii |=Mi but Ii 6|= α (0 ≤ i ≤ 3):

– For M0 = ∅ take I0 = (∆I0 , ·I0) with ∆I0 = {a}, AI0 = {a} and CI0 = ∅.
Clearly, I0 |=M0 but I0 6|= A v C since AI0 = {a} 6⊆ ∅ = CI0 .

– For M1 = {A v B} take I1 = (∆I1 , ·I1) with ∆I1 = {a}, AI1 = BI1 = {a},
and CI1 = ∅. Clearly, I1 |= M1 because AI1 = {a} ⊆ {a} = BI1 but I1 6|=
A v C similarly as for I0.

– For M2 = {B v C} take I2 = (∆I2 , ·I2) with ∆I2 = {a}, AI2 = {a}, and
BI2 = CI2 = ∅. Clearly, I2 |= M2 because BI2 = ∅ ⊆ ∅ = CI2 but I2 6|=
A v C similarly as for I0 and I1.

– For M3 = {A u B v ⊥} take I3 = I2 from the previous case. Clearly, I2 |= M3

because (A uB)I2 = AI2 ∩BI2 = {a} ∩ ∅ = ∅ ⊆ ⊥I2 = ∅ but I2 6|= A v C.

How many justifications may an entailment have? The following example shows
that the number of justifications can be exponential in the size of the ontology.

Example 23. Consider the following ontology O and α = A0 v An:

O = {Ai−1 v B uAi, Ai−1 v C uAi | 1 ≤ i ≤ n},

where Ai (0 ≤ i ≤ n), B, and C are atomic concepts. Note that, for each i with
1 ≤ i ≤ n, we have O |= Ai−1 v Ai because Ai−1 v B u Ai |= Ai−1 v Ai (or



Algorithm 3: Minimizing entailment
Minimize(O, α): compute a justification for O |= α
input : an ontology O and an axiom α such that O |= α
output : a minimal subset J ⊆ O such that J |= α (cf. Definition 11)

1 J ← O;
2 for β ∈ O do
3 if J \ {β} |= α then
4 J ← J \ {β};

5 return J ;

Ai−1 v C u Ai |= Ai−1 v Ai). Consequently, O |= α = A0 v An. However, there
are 2n minimal subsets J ⊆ O such that J |= α. Indeed, since each axiom Ai−1 v Ai
follows from two different axioms, J must include one of them for each i (1 ≤ i ≤ n).
Hence, there are 2n possible variants for each J .

Specifically, let S ⊆ {i | 1 ≤ i ≤ n} be any subset of indexes between 1 and n.
There are in total 2n such subsets. For each such subset S, define

JS = {Ai−1 v B uAi | i ∈ S} ∪ {Ai−1 v C uAi | i /∈ S} ⊆ O.

Clearly, JS1
6= JS2

for each S1 6= S2. Furthermore, note that for each i with 1 ≤ i ≤ n,
we have JS |= Ai−1 v Ai: if i ∈ S then J 3 Ai−1 v B u Ai |= Ai−1 v Ai; if i /∈ S
then J 3 Ai−1 v C uAi |= Ai−1 v Ai. Hence JS |= α.

To show that each JS is a justification for O |= α, it remains to show that J ′ 6|= α
for every J ′ ( JS . Indeed, if J ′ ( JS then for some k with 1 ≤ k ≤ n, we have
Ak−1 v BuAk /∈ JS andAk−1 v CuAk /∈ JS . Let I = (∆I , ·I) be an interpretation
with∆I = {a},AIi = BI = CI = {a} for 0 ≤ i < k, andAIi = ∅ for k ≤ i ≤ n. It is
easy to see that I |= Ai−1 v BuAi and I |= Ai−1 v CuAi for each iwith 1 ≤ i < k
or with k < i ≤ n. Indeed, if 1 ≤ i < k, thenAIi−1 = {a} ⊆ {a}∩{a} = (BuAi)I =
(C uAi)I . If k < i ≤ n, then AIi−1 = ∅ ⊆ {a}∩∅ = (B uAi)I = (C uAi)I . Hence,
I |= J ′. Since AI0 = {a} 6⊆ ∅ = AIn, we have I 6|= α. Consequently, J ′ 6|= α.

Assuming we have an algorithm for testing entailment of axioms, e.g., the tableau
procedure described in Section 3, we are now concerned with the question of how to
compute justifications in particular for the entailment of concept inclusions.

4.1 Computing One Justification

Computing one justification for O |= α is relatively easy. Starting from J = O, we
repeatedly remove axioms from J if this does not break the entailment J |= α. At a
certain point, no axioms can be removed without breaking the entailment, which implies
that J is justification for O |= α. Algorithm 3 summarizes this idea.

Example 24. The following table shows a run of Algorithm 3 on the input O and α
from Example 22. Each row of the table shows the value of the variables J and β in



the beginning of each for-loop iteration (Lines 2-4). The last column shows the result
of the evaluation of the if-statement in Line 3. The last line shows the (returned) value
of J after the last iteration of the loop.

J β J \ {β} |=? α = A v C
{A v B, B v C, A v C, A uB v ⊥} A v B yes
{B v C, A v C, A uB v ⊥} B v C yes
{A v C, A uB v ⊥} A v C no
{A v C, A uB v ⊥} A uB v ⊥ yes

{A v C} − −

As we can see, the algorithm returns the justification J2 = {A v C}.

The correctness of Algorithm 3 relies on the fact that the entailment relationO |= α
between an ontology O and an axioms α is monotonic over axiom additions to O:

Lemma 12. Let J1 and J2 be two sets of ALC axioms such that J1 ⊆ J2, and α an
ALC axiom. Then J1 |= α implies J2 |= α.

Proof. It is equivalent to show that J2 6|= α implies J1 6|= α. If J2 6|= α then there exists
a model I |= J2 such that I 6|= α. Since J1 ⊆ J2 and I |= J2, we have I |= J1. Since
I |= J1 and I 6|= α, we obtain J1 6|= α, as required.

Note that in the proof of Lemma 12 we did not rely on any specific constructors
of ALC. We have only used that the entailment relation J |= α is defined by means
of interpretations, i.e., J |= α iff I |= α for every I |= J and I |= J iff I |= β for
every β ∈ J . Although most standard DLs (including those that underpin the OWL
standard) have such a classical semantics, there are some non-monotonic DLs in which
the entailment relation is defined in other ways, e.g., as a result of performing certain
operations [11, 14, 18]. From now on we assume that we deal only with monotonic
(classical) entailment relations. We show that Algorithm 3 is correct in such cases.

Theorem 3. Let J be the output of Algorithm 3 for the inputO and α such thatO |= α.
Then J is a justification for O |= α.

Proof. Clearly, J |= α since we only assign subsets that entail α to the variable J (in
Lines 1 and 4). If J is not a justification for O |= α, by Definition 11 there exists some
J ′ ( J such that J ′ |= α. Since J ′ ( J , there exists some β ∈ J \ J ′ ⊆ O. Let J ′′ be
the value of the variable J of Algorithm 3 at the beginning of the for-loop (Line 2) when
β ∈ O was processed. Since β /∈ J ′ ⊆ J ⊆ J ′′, we have J ′ ⊆ J \ {β} ⊆ J ′′ \ {β}.
Since J ′ |= α, by Lemma 12, J ′′ \ {β} |= α. Hence β must have been removed from
J ′′ at Line 4, and consequently, β /∈ J . This contradicts β ∈ J \ J ′, which proves that
there is no J ′ ( J such that J ′ |= α. Hence J is a justification for O |= α.

Finally, observe that a run of Algorithm 3 requires exactly n subsumption tests.
Hence, the complexity of computing one justification is bounded by a linear function
over the complexity of entailment checking. In particular, one justification for concept
subsumptions in ALC can be computed in exponential time.



4.2 Computing All Justifications

A justification for O |= α contains axioms that are responsible for one reason for the
entailment. As we have seen in Examples 22 and 23, there can be several different
justifications. To repair an unwanted entailment O |= α, it is, therefore, necessary to
change an axiom in every justification ofO |= α. How do we compute all justifications?

Note that the output of Algorithm 3 depends on the order in which the axioms in
O are enumerated in the for-loop (Line 2). Different orders of the axioms can result in
different removals and, consequently, different justifications.

Example 25. Consider the run of Algorithm 3 on the input O and α from Example 22,
where the axioms in O are enumerated in the reverse order as in Example 24.

J β J \ {β} |=? α = A v C
{A uB v ⊥, A v C, B v C, A v B} A uB v ⊥ yes

{A v C, B v C, A v B} A v C yes
{B v C, A v B} B v C no
{B v C, A v B} A v B no
{B v C, A v B} − −

In this case, the algorithm returns the justification J1 = {A v B, B v C}.

Exercise 13. For which order of axioms in O does Algorithm 3 return the justification
J3 = {A v B, A uB v ⊥} from Example 22?

Exercise 14. Prove that for each justification J of an entailment O |= α there exists
some order of axioms in O for which Algorithm 3 with the input O and α returns J .

The property stated in Exercise 14 means that for computing all justifications of
O |= α, it is sufficient to run Algorithm 3 for all possible orders of axioms in O. Since
the number of permutations of elements in an n-element set is n!,4 the algorithm termi-
nates after exactly n · n! entailment tests; since n · n! ≤ nn+1 = 2(log2n)·(n+1) ≤ 2n

2

,
this value is bounded by an exponential function in n. As shown in Example 23, the
number of justifications can be exponential in n, so the exponential behavior of an al-
gorithm for computing all justifications cannot be avoided, in general. Unfortunately,
the described algorithm is not very practical since it performs exponentially many sub-
sumption tests for all inputs, even if, e.g., O |= α has just one justification, which is O
itself. This is because this algorithm is not goal-directed: the computation of each next
justification does not depend on the justifications computed before.

How can we find a more goal-directed algorithm? Suppose that we have computed
a justification J1 using Algorithm 3. The next justification J2 must be different from
J1, so J2 should miss at least one axiom from J1. Hence the next justification J2 can
be found by finding β1 ∈ J1 such that O \ {β1} |= α and calling Algorithm 3 for the
input O \ {β1} and α. The next justification J3, similarly, should miss something from
J1 and something from J2, so it can be found by finding some β1 ∈ J1 and β2 ∈ J2
such that O \ {β1, β2} |= α and calling Algorithm 3 for the input O \ {β1, β2} and

4n! = n · (n− 1) · (n− 2) · · · 2 · 1, there are n possibilities to choose the first element, n− 1
to choose the second element from the remaining ones, n− 2 to choose the third one, etc.



J1 = {A v B, B v C}

J2 = {A v C}

⊥

A v C

A v B

J2 = {A v C}

J3 = {A v B, A uB v ⊥}

⊥

A v B

⊥

A uB v ⊥

A v C

B v C

J2 = {A v C}

J3 = {A v B, A uB v ⊥}

⊥

A v B

J1 = {A v B, B v C}

⊥

A v B

⊥

B v C

A uB v ⊥

A v C

Fig. 6. Two HS-trees for O = {A v B, B v C, A v C, A uB v ⊥} |= α = A v C

α. In general, when justifications Ji (1 ≤ i ≤ k) are computed, the next justification
can be found by calling Algorithm 3 for the input O \ {βi | 1 ≤ i ≤ k} and α such
that βi ∈ Ji (1 ≤ i ≤ k) and O \ {βi | 1 ≤ i ≤ k} |= α. Enumeration of subsets
O \ {βi | 1 ≤ i ≤ k} can be organized using a data structure called a hitting set tree.

Definition 12. A hitting set tree (short: HS-tree) for the entailmentO |= α is a labeled
tree T = (V,E,L) with V 6= ∅ such that:

1. each non-leaf node v ∈ V is labeled with a justification L(v) = J for O |= α and,
for each β ∈ J , v has an outgoing edge 〈v, w〉 ∈ E with label L(v, w) = β

2. each leaf node v ∈ V is labeled by a special symbol L(v) = ⊥.

For each v ∈ V let H(v) be the set of edge labels appearing on the path from v to the
root node of H . Then the following properties should additionally hold:

3. for each non-leaf node v ∈ V we have L(v) ∩H(v) = ∅,
4. for each leaf node v ∈ V we have O \H(v) 6|= α.

Figure 6 shows an example of two different HS-trees for the entailment from Ex-
ample 22. Note that the justification J2 labels two different nodes of the left tree. We
next prove that every HS-tree must contain every justification at least once.

Lemma 13. Let T = (V,E, L) be an HS-tree for the entailment O |= α. Then, for
each justification J for O |= α, there exists a node v ∈ V such that L(v) = J .

Proof. Let v ∈ V be a node with a maximal (w.r.t. set inclusion) set H(v) (see Defini-
tion 12) such that H(v)∩J = ∅, i.e., for every other node w ∈ V either H(w) ⊆ H(v)
or H(w) ∩ J 6= ∅. We prove that L(v) = J .

Observe that sinceH(v)∩J = ∅ and J ⊆ O, we have J ⊆ O\H(v). Since J |= α,
by monotonicity of entailment, we obtain O \H(v) |= α. Therefore, by Condition 4 of
Definition 12, v cannot be a leaf node. Hence, L(v) = J ′ for some justification J ′ of
O |= α. If J = J ′ we have proved what is required. Otherwise, since J is a justification



for O |= α and J ′ |= α, we have J ′ 6⊆ J . Hence, there exists some β ∈ J ′ \ J . By
Condition 1 of Definition 12, there exists 〈v, w〉 ∈ E with L(v, w) = β. Furthermore,
by Condition 3 of Definition 12, J ′ ∩ H(v) = ∅. Hence, β /∈ H(v) since β ∈ J ′.
Hence, H(w) = H(v) ∪ {β} 6⊆ H(v) and, since β /∈ J and H(v) ∩ J = ∅, we have
H(w) ∩ J = ∅. This contradicts our assumption that H(v) is a maximal set such that
H(v) ∩ J = ∅. This contradiction proves that L(v) = J is the only possible case.

We next show that each HS-tree T = (V,E,L) for an entailment O |= α has at
most exponentially many nodes in the number of axioms in O. Take any 〈v, w〉 ∈ E.
Then v is not a leaf node. Hence, by Condition 1 of Definition 12, L(v) = J for
some justification J for O |= α and L(v, w) ∈ J . By Condition 3, J ∩ H(v) = ∅.
Hence L(v, w) /∈ H(v). This implies that for each node v ∈ V each axiom β ∈ H(v)
appears on the path from v to the root node exactly once. Hence the depth of H is
bounded by the maximal number of axioms in H(v), which is bounded by the number
of axioms in O. Similarly, since each non-leaf node v has exactly one successor for
every β ∈ L(v) ⊆ O, the branching factor of H is also bounded by the number of
axioms in O. This analysis gives us the following bound on the size of T :

Lemma 14. Every HS-tree T forO |= α has at most
∑

0≤k≤n n
k nodes where n is the

number of axioms in O.

Exercise 15. Prove that T has at most (n+ 1)! nodes. Hint: show that every path of T
from the root to the leaf has a unique sequence of axioms on the labels of edges. Is this
bound better than the bound from Lemma 14?

An HS-tree T = (V,E,L) for an entailment O |= α can be constructed as follows.
We start by creating the root node v0 ∈ V . Then we repeatedly assign labels of nodes
and edges as follows. For each v ∈ V , if L(v) was not yet assigned, we calculate H(v).
If O \ H(v) 6|= α, we label L(v) = ⊥ according to Condition 4 of Definition 12.
Otherwise, we compute a justification J for O \H(v) |= α using Algorithm 3 and set
L(v) = J . Note that J satisfies Condition 3 of Definition 12 since J ⊆ O \ H(v).
Next, for each β ∈ J , we create a successor node w of v and label L(v, w) = β. This
ensures that Condition 1 of Definition 12 is satisfied for v. Since, by Lemma 14,H has a
bounded number of nodes, this process eventually terminates. The described algorithm
is known as Reiter’s Hitting Set Tree algorithm (or short: HST-algorithm) [22, 46].

Exercise 16. Construct an HS-tree for the entailment O |= α from Example 23 for the
parameter n = 2 using the HST-algorithm.

Note that we call Algorithm 3 exactly once per node. Then Lemma 14 gives us the
following bound on the number of entailment tests performed by the HST-algorithm:

Lemma 15. An HS-tree for an entailment O |= α can be constructed using at most∑
1≤k≤n+1 n

k entailment tests, where n is the number of axioms in O.

Note that unlike the algorithm sketched in Exercise 14, the input for each call of
Algorithm 3 depends on the results returned by the previous calls.



Algorithm 4: Computing all justifications by the Hitting Set Tree algorithm
ComputeJustificationsHST(O, α): compute all justifications for O |= α
input : an ontology O and an axiom α such that O |= α
output : the set of all minimal subsets J ⊆ O such that J |= α

1 S ← ∅;
2 Q← {∅};
3 while Q 6= ∅ do
4 H ← choose H ∈ Q;
5 Q← Q \ {H};
6 if O \H |= α then
7 J ← Minimize(O \H,α);
8 S ← S ∪ {J};
9 for β ∈ J do

10 Q← Q ∪ {H ∪ {β}};

11 return S;

Exercise 17. Suppose that an entailment O |= α has a single justification J = O. How
many entailment tests will be performed by the HST-algorithm ifO contains n axioms?

The HST-algorithm can further be optimized in several ways. First, it is not neces-
sary to store the complete HS-tree in memory. For computing a justification J at each
node v, it is sufficient to know just the set H(v). For each successor w of v associated
with some β ∈ H(v), the set H(w) can be computed as H(w) = H(v) ∪ {β}. Hence,
it is possible to compute all justifications by recursively processing and creating the sets
H(v) as shown in Algorithm 4. The algorithm saves all justifications in a set S, which
is initially empty (Line 1). The justifications are computed by processing the setsH(v);
the sets that are not yet processed are stored in the queue Q, which initially contains
H(v0) = ∅ for the root node v0 (Line 2). The elements of Q are then repeatedly pro-
cessed in a loop (Lines 3–10) until Q becomes empty. First, we choose any H ∈ Q
(Line 4) and remove it from Q (Line 5). Then, we test whether O \ H |= α (Line 6).
If the entailment holds, this means that the corresponding node v of the HS-tree with
H(v) = H is not a leaf node. We then compute a justification J using Algorithm 3 and
add it to S (Lines 7–8). Further, for each β ∈ J , we create the set H(w) = H(v)∪{β}
for the corresponding successor node w of v and add H(w) to Q for later processing
(Lines 9–10). If the entailment O \ H |= α does not hold, this means that we have
reached a leaf of the HS-tree and no further children of this node should be created.

Exercise 18. Prove directly that Algorithm 4 returns all justifications for the given en-
tailment O |= α. For this, show that the following invariant always holds in the main
loop (Lines 3–10): if J is a justification for O |= α, then either J ∈ S or there exists
H ∈ Q such that J ⊆ O \H .

Note that it is not specified in which order the elements should be taken from Q
in Line 4 of Algorithm 4. Indeed, correctness of the algorithm does not depend on the



order in which the sets H ∈ Q are processed. However, performance of the algorithm
may depend on this order. If the elements of Q are processed according to the first-
in-first-out (short: FIFO) strategy, i.e., we take elements in the order in which they
were inserted to the queue, this means that the nodes of the HS-tree are processed in a
breadth-first way, so the queue may contain exponentially many unprocessed sets H at
some point in time. If the elements of Q are processed according to the last-in-first-out
(short: LIFO) strategy, i.e., we remove elements in the reversed order in which they
were inserted, this means that the nodes of the HS-tree are processed in a depth-first
way, so the queue always contains at most n2 sets (at most n sets for nodes of some
tree path plus at most n − 1 other successors for each of these nodes). Consequently,
the LIFO strategy should be more memory efficient. This optimization is related to the
optimization discussed in Remark 5, which allows for executing a tableau procedure in
polynomial space.

A few further optimizations can be used to improve the running time of Algorithm 4
in certain cases. Note that some justifications can be computed multiple times as shown
for the example on the left-hand side of Figure 6. It is possible to detect such repetitions
by checking if any justification J ∈ S computed so far is a subset of O \ H for the
currently processed set H . In this case, a (potentially expensive) call of Algorithm 3 in
Line 7 of Algorithm 4 can be avoided by reusing J . Of course, testing J ⊆ O\H for all
J ∈ S can also be expensive since S may contain exponentially many justifications. In
practice, it makes sense to perform this test only for small J , for which the test is more
likely to succeed. Another possible repetition is when some H ∈ Q, which was already
processed before, is processed again. In this case, not only the previously computed
justification J ⊆ O\H can be reused, but it is also not necessary to create the successor
setsH∪{β} for β ∈ J since also those sets should have been created before. Of course,
to check if a set H was processed before, we need to save all previously processed sets
H , which is not done in the base version of Algorithm 4 since this information can
increase the memory consumption of the algorithm. Hence, this is an example of an
optimization that trades memory consumption for potentially improving the running
time. Another optimization is to test if H is a superset of some set H ′ for which the test
O \H ′ |= α was negative. Clearly, in this case, the test O \H |= α is negative as well
by monotonicity of the entailment, so such H can immediately be disregarded by the
algorithm without performing this test.

4.3 Computing All Repairs

The main idea of the HST-algorithm is to systematically compute two kinds of sets:
(1) justifications J for the entailment O |= α and (2) sets H that contain one element
from each justification J on a branch. The name of the algorithm comes from the notion
of a hitting set, which characterizes the latter sets.

Definition 13. Let P be a set of sets of some elements. A set H is a hitting set for P if
H ∩ S 6= ∅ for each S ∈ P . A hitting set H for P is minimal if every H ′ ( H is not a
hitting set for P .

Intuitively, a hitting set for P is a setH that contains at least one element from every
set S ∈ P . An HS-tree is then a tree T = (V,E, L) such that for each v ∈ V , H(v) is a



hitting set of the set of justifications on the path from v to the root of T . The leaf nodes
v of T are labeled by hitting sets H(v) such O \H(v) 6|= α. Intuitively, the set H(v)
represents a set such that the removal of H(v) from O breaks the entailment O |= α.

Definition 14. A set R is a repair for the entailment O |= α if O \ R 6|= α. A minimal
repair for O |= α is a repair R such that for every R′ ( R we have O \R |= α.

Notice some similarities between the notion of a minimal repair and the notion of a
justification (cf. Definition 11): justifications are minimal subsets ofO which entail the
conclusion α, whereas minimal repairs are complements of the maximal subsets of O
which do not entail α. Notice that each repair R for O |= α should contain one axiom
from every justification J forO |= α. Indeed, if J ∩R = ∅ for some justification J and
repair R, then J ⊆ O \ R, which violates the conditions J |= α and J ⊆ O \ R 6|= α
due to monotonicity of the entailment. This means that every justification must be a
minimal hitting set of the set of all minimal repairs and, likewise, every minimal repair
is a minimal hitting set of the set of all justifications. This property is known as the
hitting set duality (between justifications and minimal repairs).

The HTS-algorithm can easily be extended to compute repairs in addition to justifi-
cations. Indeed, as mentioned above, if v ∈ V is a leaf node, then H(v) is a repair for
O |= α since O \H(v) 6|= α by Condition 4 of Definition 12.

Example 26. The leaf nodes of the HS-tree on the left-hand side of Figure 6 correspond
to the repairs:

R1 = {A v B, A v C},
R2 = {B v C, A v C, A v B},
R3 = {B v C, A v C, A uB v ⊥}.

Notice that the repair R2 is not minimal since R1 ( R2.

A natural question is whether all repairs for the entailment will be computed by
the described extension of the HST-algorithm. This is not true for arbitrary repairs:
indeed, the whole ontology O from Example 22 is clearly a repair for the entailment
O |= α = A v C, since O \ O = ∅ 6|= α because A v C is not a tautology. However,
as shown in Example 26, the repair O was not computed. It turns out, however, that the
extended HST-algorithm computes all minimal repairs.

Exercise 19. Prove an analogy of Lemma 13 showing that if R is a minimal repair for
O |= α then each HS-tree T = (V,E, L) for O |= α contains a leaf node v ∈ V such
that H(v) = R. Hint: take a node v ∈ V with a maximal H(v) such that H(v) ⊆ R
and prove that H(v) = R for this node. Use the property that J ∩ R 6= ∅ for every
justification J for O |= α.

To compute repairs using Algorithm 4, it is sufficient to add an else-block for the
test in Line 6, in which the set H for which this test fails, is added to the set of repairs.



Algorithm 5: Maximizing non-entailment
Maximize(O,M, α): compute a maximal subset N ⊆ O such that M ⊆ N

and N 6|= α
input : an ontology O, a subset M ⊆ O, and an axiom α such that M 6|= α
output : N ⊆ O such that M ⊆ N 6|= α but N ′ |= α for every N ′ with

N ( N ′ ⊆ O
1 N ←M ;
2 for β ∈ O \M do
3 if N ∪ {β} 6|= α then
4 N ← N ∪ {β};

5 return N ;

4.4 Computing Justifications and Repairs using SAT Solvers

In the previous section, we have discussed the hitting set duality property between justi-
fications and repairs: every justification is a hitting set for the set of all minimal repairs
and every minimal repair is a hitting set of the set of all justifications. Hitting set duality
takes a prominent place in the HST-algorithm, but we can use this property as the basis
of a direct algorithm for computing justifications and minimal repairs.

Suppose that we have already computed some set S of justifications and some set
P of minimal repairs for the entailment O |= α. How can we find a new justification
or a minimal repair? As mentioned, each new justification must be a hitting set for P ,
i.e., it should contain one axiom from every repair R ∈ P . Furthermore, it should be
different from any of the previously computed justifications, i.e., it should miss one
axiom from every J ∈ S. Suppose we have found a subset M ⊆ O satisfying these two
requirements:

∀R ∈ P :M ∩R 6= ∅, (7)
∀J ∈ S : J \M 6= ∅. (8)

If M |= α, then, using Algorithm 3, we can extract a minimal subset J ′ ⊆ M such
that J ′ |= α. Note that J ′ still misses at least one axiom from each J ∈ S since (8)
is preserved under removal of axioms from M . Therefore, J ′ is a new justification
for O |= α. If M 6|= α, then, similarly, by adding axioms β ∈ O to M preserving
M 6|= α, we can find a maximal superset N of M (M ⊆ N ⊆ O) such that N 6|= α:
see Algorithm 5. Note that (7) is preserved under additions of elements to M , hence,
R′ = O \N is a new minimal repair for O |= α. Thus, using any set M satisfying (7)
and (8) we can find either a new justification or a new minimal repair.

How to find a set M satisfying Conditions (7) and (8)? These conditions require
solving a rather complex combinatorial problem. Propositional (SAT) solvers, offer a
convenient and effective way of solving such problems. In the following, we describe a
propositional encoding of Conditions (7) and (8). The interested reader can find some
background information on Propositional Logic and SAT in Appendix A.2.



To formulate the propositional encoding, we assign to each axiom β ∈ O a fresh
propositional variable pβ . Then, every interpretation I determines a set M =M(I) =
{β ∈ O | pIβ = 1} of axioms whose corresponding propositional variable is true. We
construct a propositional formula F such that F I = 1 if and only if M(I) satisfies (7)
and (8) for the given sets S of justifications and P of minimal repairs. Thus, to find
a subset M satisfying (7) and (8), it is sufficient to find a model I of F and compute
M(I). We define F as follows:

F = F (S, P ) =
∧
J∈S

∨
β∈J

¬pβ ∧
∧
R∈P

∨
β∈R

pβ . (9)

Example 27. Let O be the ontology from Example 22. We assign propositional vari-
ables to axioms from O as follows:

– A v B  p1,
– B v C  p2,

– A v C  p3,
– A uB v ⊥  p4.

Let S be the set of justifications J1 and J2 from Example 22 and P a set containing
only repair R1 from Example 26. Then according to (9) we have:

F = F (S, P ) = (¬p1 ∨ ¬p2) ∧ (¬p3) ∧ (p1 ∨ p3).

F has a model I with pI1 = 1 and pI2 = pI3 = pI4 = 0, which gives M(I) = {A v B}.
Once the set M determined by a model I of F is found, we can extract either a

new justification J or a new repair R from M by minimizing entailment using Algo-
rithm 3 or maximizing non-entailment using Algorithm 5. After that, we can update F
according to (9) and compute a new model of F , if there exist any.

Example 28. Continuing Example 27, observe thatM(I) = {A v B} 6|= α = A v C.
By running Algorithm 5 for O, M =M(I) and α we compute N as follows:

N β M ∪ {β} |=? α = A v C
{A v B} B v C yes
{A v B} A v C yes
{A v B} A uB v ⊥ yes
{A v B} − −

Hence, R = O \ N = {B v C, A v C, A u B v ⊥} is a new minimal repair for
O |= α (repair R3 from Example 26). After we add this repair to P and re-compute F
according to (9), we obtain a formula with an additional conjunct:

F = F (S, P ) = (¬p1 ∨ ¬p2) ∧ (¬p3) ∧ (p1 ∨ p3) ∧ (p2 ∨ p3 ∨ p4).

The interpretation I from Example 27 is no longer a model for F , but we can find a
new model I of F with pI1 = pI4 = 1 and pI2 = pI3 = 0. For this model, we have
M(I) = {A v B, AuB v ⊥} |= α. By running Algorithm 3 for M and α, we obtain
a new justification J = {A v B, AuB v ⊥} (justification J3 from Example 22). The
new justification, when added to S, gives us another conjunct for F :

F = F (S, P ) = (¬p1 ∨ ¬p2) ∧ (¬p3) ∧ (¬p1 ∨ ¬p4) ∧ (p1 ∨ p3) ∧ (p2 ∨ p3 ∨ p4).

This formula F is now unsatisfiable.



Algorithm 6: Computing all justifications using a SAT solver
ComputeJustificationsSAT(O, α): compute all justifications for O |= α
input : ontology O and axiom α such that O |= α
output : the set of all minimal subsets J ⊆ O such that J |= α

1 S ← ∅;
2 F ← >;
3 while ∃ I : F I = 1 do
4 I ← choose I : F I = 1;
5 M ← {β | pIβ = 1};
6 if M |= α then
7 J ← Minimize(M,α);
8 S ← S ∪ {J};
9 F ← F ∧

∨
{¬pβ | β ∈ J};

10 else
11 N ← Maximize(O,M, α);
12 F ← F ∧

∨
{pβ | β ∈ O \N};

13 return S;

Note that if F is unsatisfiable, then S already contains all justifications for O |= α
and P contains all minimal repairs. Indeed, if S does not contain some justification J for
O |= α then M = J clearly satisfies (7) and (8), hence, the interpretation I = I(M)
defined by pIα = 1 if and only if α ∈ M , is a model of F . Similarly, if P does not
contain some minimal repair R for O |= α, then M = O \ R satisfies (7) and (8),
hence, the interpretation I = I(M) is likewise a model of F . To conclude, either F is
satisfiable and from its model we can compute a new justification or a minimal repair
and extend F with the corresponding conjunct or F is unsatisfiable, in which case we
have computed all justifications and minimal repairs.

Algorithm 6 summarizes the described procedure for computing all justifications
using a SAT solver. We start by creating an empty set S of justifications (Line 1) and
a formula F that is always true (Line 2). Then, in a loop (Lines 3–12), as long as F is
satisfiable (which is checked using a SAT solver), we take any model I of F (Line 4),
extract the corresponding set M = M(I) that it defines (Line 5), and check the entail-
ment M |= α. If the entailment holds, using Algorithm 3 we compute a justification
for M |= α (Line 7), which, by monotonicity of entailment, is also a justification for
O |= α. This justification is then added to S (Line 8) and F is extended with a new
conjunct for this justification according to (9) (Line 9). If the entailment does not hold,
we compute a maximal superset N of M such that N 6|= α using Algorithm 5 (Line 11)
and extend F with the corresponding conjunct for the new repair R = O\N according
to (9) (Line 12). As soon as F becomes unsatisfiable, we return the set S of computed
justifications (Line 13).

Example 29. Consider the entailment O |= α from Example 22 and propositional en-
coding of axioms in O from Example 27. The following table shows a run of Algo-



rithm 6 for the inputs O and α. Every row in this table corresponds to one iteration of
the while-loop (Lines 3–12). The first column gives the value of the interpretation I
for F computed in this iteration. The second column shows the value of M computed
for this interpretation and whether the entailment M |= α holds. The third column
shows the result of minimizing the entailment or maximizing the non-entailment using
Algorithms 3 and 5. The last column shows the conjunct that is added to F for the
corresponding justification or repair.

pI1 p
I
2 p
I
3 p
I
4 M |=? α min(M) |=α/max(M) 6|=α C

0 0 0 0 ∅ 6|= α {A v B} 6|= α p2 ∨ p3 ∨ p4
0 1 0 0 {B v C} 6|= α {B v C, A uB v ⊥} 6|= α p1 ∨ p3
1 1 0 0 {A v B, B v C} |= α {A v B, B v C} |= α ¬p1 ∨ ¬p2
0 0 1 1 {A v C, A uB v ⊥} |= α {A v C} |= α ¬p3
1 0 0 1 {A v B, A uB v ⊥} |= α {A v B, A uB v ⊥} |= α ¬p1 ∨ ¬p4

Algorithm 6 can be easily turned into an algorithm for computing repairs (in addi-
tion or instead of justifications), by saving the repairsO\N forN computed in Line 11.

Let us briefly discuss similarities and differences between Algorithm 4 and Algo-
rithm 6. Both algorithms work by systematically exploring subsets of O and minimiz-
ing entailments from such subset to compute justifications. Algorithm 4 constructs such
subsets (O\H) manually by removing one axiom appearing in the previously computed
justification (if there is any) in all possible ways. Algorithm 6 enumerates such subsets
M with a help of a SAT solver. The main difference is that Algorithm 4 may encounter
the same subsets many times (on different branches), whereas the propositional encod-
ing used in Algorithm 6 ensures that such subsets never repeat. The following example
shows a situation where Algorithm 4 performs exponentially many iterations of the
while-loop, whereas Algorithm 6 has only quadratically many iterations.

Example 30. Consider axioms βi = A v B u Di, γi = B v C u Di (1 ≤ i ≤ n),
and the ontology O = {βi, γi | 1 ≤ i ≤ n}, where A, B, C, and Di (1 ≤ i ≤ n)
are atomic concepts. Clearly O |= α = A v C. Furthermore, there are exactly n2

justifications for O |= α: Jij = {βi, γj} (1 ≤ i, j ≤ n) and exactly 2 minimal
repairs: R1 = {βi | 1 ≤ i ≤ n}, R2 = {γj | 1 ≤ j ≤ n}. Hence Algorithm 6 will
perform exactly n2 + 2 + 1 calls to a SAT solver with a formula F of the size at most
c · (n2 · 2+ 2 · n) for some constant c.5 On the other hand, each HS-tree T = (V,E,L)
forO |= α has at least 2n nodes. Indeed, every non-leaf node v ∈ V must be labeled by
some L(v) = Jij with 1 ≤ i, j ≤ n, which contains two axioms. Hence every non-leaf
node of v ∈ V must have two successor nodes (see Condition 1 of Definition 12). For
every leaf node v ∈ V , the value H(v) must be a repair for O |= α, so H(v) must be
a super-set of either R1 or R2. Hence H(v) contains at least n elements, which means
that the path from v to the root of T has at least n edges. Therefore, T is a binary tree
whose leafs have the level n or higher. Hence T has at least 2n nodes.

Of course, an iteration of Algorithm 4 cannot be directly compared to an iteration of
Algorithm 6. Both iterations use at most one call to Algorithm 3, but Algorithm 6 may

5The conjuncts for Jij in F consist of two negated propositional variables, the conjunct for
R1 and R2 in F consist of n propositional variables.



also require a call to Algorithm 5, as well as checking satisfiability of F . The latter re-
quires solving an NP-compete problem, for which no polynomial algorithm is known so
far. In order to check satisfiability of F , a SAT solver usually tries several (in worst-case
exponentially many) propositional interpretations until a model of F is found. As each
such interpretation I corresponds to a subset M(I) ⊆ O, this process can be compared
to the enumeration of subsets in Algorithm 4. However, a SAT solver usually imple-
ments a number of sophisticated optimizations, which make the search for models very
efficient in practice, whereas the subset enumeration strategy used Algorithm 4 is rather
simplistic. Hence Algorithm 6 is likely to win in speed. On the other hand, Algorithm 6
requires saving all justifications (and minimal repairs) in the propositional formula F ,
which might result in a formula of exponential size, if the number of such justifications
or repairs is exponential. In this regard, Algorithm 4 could be more memory efficient
since saving (all) justifications is optional (see the discussion at the end of Section 4.2).
Hence both algorithms have their own advantages and disadvantages.

5 Summary and Outlook

In this course, we have looked in-depth into the most common algorithms for reasoning
and explanation in Description Logics. We have seen that the development of such al-
gorithms is a complicated process already for the relatively simple DL ALC. To show
correctness of algorithms, one usually needs to prove several theoretical properties,
such as soundness, completeness and termination. The algorithmic complexity analysis
is helpful to understand the worst-case behavior of algorithms and to compare differ-
ent algorithms across several dimensions such as (non-deterministic) time and space
complexity. Identifying the exact computational complexity for various DLs and rea-
soning problems has, therefore, been one of the central research topics in DLs. The DL
Complexity Navigator6 provides an interactive overview of many of these results.

Proving correctness and complexity results often requires understanding of model-
theoretic properties of the languages. As we have seen in Section 3, for reasoning with
ALC ontologies, it is sufficient to restrict the search to a special kind of tree model
represented by tableaux. This so-called tree model property was argued to be one of the
main reasons for decidability and the relatively low complexity of Modal Logics, the
siblings of Description Logics [66]. For pure ALC concept satisfiability, i.e., without
background ontologies, it is sufficient to consider tree models of a bounded depth (Sec-
tion 3.1). With additional background ontologies, the tree models are no longer finite
and special blocking techniques are required to ensure termination of tableau algorithms
(Section 3.2). When moving to very expressive DLs, such as SROIQ [29] (the lan-
guage underpinning the OWL 2 Direct Semantics), eventually the tree model property
is lost and proving termination of tableau procedures, while still ensuring soundness
and completeness, becomes increasingly difficult. It is not very surprising that when
increasing the expressivity of languages, i.e., when adding new ways to construct con-
cepts and axioms, the complexity of the reasoning problems increases as well. For ex-
ample, the time complexity of all standard reasoning problems in SROIQ becomes

6http://www.cs.man.ac.uk/~ezolin/dl/



non-deterministic doubly exponential [31], whereas it is “only” deterministic exponen-
tial for ALC (see the remark after Theorem 2).

The theoretical analysis of algorithms does not always give an accurate prediction
about their practical performance. Often a situation that triggers the worst-case behav-
ior of an algorithm represents some corner case, which rarely appears in practice. When
it comes to practical efficiency, some other properties of algorithms become more im-
portant. For example, despite a relatively high algorithmic complexity (see Theorems 1
and 2), tableau algorithms remain among the fastest DL reasoning algorithms to date.
This phenomenon can be explained by a range of optimization techniques that have
been developed for tableau algorithms in the past two decades.

All state-of-the-art tableau reasoners, e.g., FaCT++ [62], HermiT [42], Konclude
[58], MoRE [48], and Pellet [56], apply a significant range of optimizations. The op-
timizations can be categorized into those for preprocessing, consistency checking, and
for higher level reasoning tasks. Examples of higher level reasoning tasks are classifi-
cation, where one computes all subsumption relationships between atomic concepts or
materialization, where one extends the ontology, for each individual (pair of individu-
als), with assertions to capture the atomic concepts (roles) of which the individual (the
pair of individuals) is an instance.

Most reasoning systems preprocess the input ontologies. The simplest form of pre-
processing is the presented conversion into negation normal form (Definition 2 in Sec-
tion 3), which is not used for improving performance, but rather to allow for using fewer
tableau rules. Other standard preprocessing optimizations include lexical normalization
and simplification, which aim at identifying syntactic equivalences, contradictions and
tautologies [4, Section 9.5]. A well-known and very important optimization for im-
proving performance is absorption, which aims at rewriting general concept inclusion
axioms to avoid non-determinism in the tableau algorithm. For example, here we sug-
gested to convert an axiom of the form AuB v C into> v ¬At¬BtC to allow for
handling them with the >-Rule. This introduces, however, a non-deterministic decision
for each axiom and each node. Instead, practical tableau systems use a variant of thev-
Rule introduced in Table 3.2 restricted to atomic concepts on the left-hand side, i.e., for
an axiom of the form A v C in the ontology, a node with A in its label, but C not in its
label, the node’s label is extended with C. With this rule, one can transformAuB v C
into A v ¬B t C, which already reduces the amount of non-determinism. Binary ab-
sorption [30] further allows for a conjunction of (two) atomic concepts on the left-hand
side of a general concept inclusion, i.e., one can completely avoid the non-deterministic
decisions for our example axiom A u B v C. Further absorption techniques include
role absorption [61], nominal absorption [55], and partial absorption [57].

As outlined in Section 3, consistency checking is the core reasoning task of a
tableau-based reasoner. Since these checks typically occur very often, many optimiza-
tions are known including model merging techniques [24], lazy unfolding, semantic
branching, boolean constraint propagation, dependency directed backtracking and back-
jumping, and caching. We refer interested readers to the DL Handbook [4, Section 9]
for a more detailed descriptions of the latter optimizations. The HermiT reasoner further
tries to reduce non-determinism by combining hypertableau [8] and hyper-resolution



[47] techniques. In order to reduce the size of the tableau, modern DL reasoners several
blocking strategies such as anywhere blocking [42] or core blocking [19].

Higher level reasoning tasks are usually reduced to a multitude of consistency
checks such that they benefit from the optimizations of this task as much as possible.
Many OWL reasoners, solve the classification problem using an Enhanced Traversal
(ET) classification algorithm [5] similar to the one used in early description logic rea-
soners. To construct a concept hierarchy, the algorithm starts with the empty hierarchy
and then iteratively inserts each concept from the ontology into the hierarchy. Each
insertion step typically requires one or more subsumption tests—checks whether a sub-
sumption relationship holds between two concepts—in order to determine the proper
position of a class in the hierarchy constructed thus far. A more recent alternative to the
ET algorithm is the known/possible set classification approach [20].

Despite the wide range of implemented optimization techniques, the reasoning per-
formance might not be sufficient for some applications. The OWL 2 standard addresses
this by introducing so-called OWL profiles [41], which are fragments of OWL 2 that
restrict the allowed constructors in order to allow for tractable reasoning procedures.
For example, the OWL 2 EL profile (based on the Description Logic EL, a fragment
of ALC) allows for a one-pass classification of ontologies, i.e., repetitive subsumption
tests are not needed. Some reasoners, e.g., Konclude, combine tableau procedures with
tractable algorithms for handling those parts of an ontologies that are in the OWL 2
EL profile. Similarly, MoRe combines the (hyper-)tableau reasoner HermiT with the
specialized OWL 2 EL reasoner ELK [34].

Many optimizations try to avoid unnecessary operations by making algorithms more
goal-directed and thus reducing the search space. We have seen several examples of
such optimizations in Section 4 when considering algorithms for computing justifica-
tions and repairs. Such optimizations typically do not reduce the worst case complexity
of algorithms but they can significantly improve their behavior in typical cases. For ex-
ample, Algorithm 3 for computing one justification, in practice, does not start with the
whole ontology J = O (Line 3), but with a subset J ⊆ O such that J |= α. If a small
subset J like this is found, the number of subsequent entailment tests performed by the
algorithm can significantly be reduced. The initial subset J can be found, for example,
by starting with J = ∅ and repeatedly adding to J axioms from O until J |= α. This
part of the algorithm, called the expansion phase, requires additional entailment tests.
To find a J that is as small as possible, one usually tries to first add axioms that are most
likely to cause the entailment J |= α, e.g., the axioms β ∈ O that contain symbols from
α or from the previously added axioms in J . The initial subset J ⊆ O such that J |= α
can also be found using algorithms for computing modules of ontologies. A (logical)
module ofO for a set of symbols Σ is a subset M ⊆ O such that for every axiom β for-
mulated using only symbols in Σ, ifO |= β then M |= β. In our case we are interested
in Σ consisting of all symbols in α. Some types of modules, e.g., locality-based mod-
ules can be computed in polynomial time without performing any subsumption tests
[16]. It is also possible to reduce the number of entailment tests when minimizing the
entailment J |= α by removing several axioms at a time instead of one axiom like in
Algorithm 3. Further details of optimization techniques for computing justifications can
be found in the PhD thesis of Horridge [26].



Another way to optimize an algorithm is to use an existing “off-the-shelf” tool that
is already optimized for solving a certain class of problems. One of the most popu-
lar examples of such tools are SAT solvers. In Section 4.4 we have shown how SAT
solvers can be used for computing justifications and repairs (see Algorithm 6). This al-
gorithm or variations thereof are implemented in several tools such as EL+SAT [53, 67],
EL2MUS [1], and SATPin [39]. The SAT solvers used in these tools are not only only
used to find new candidate subsets M for justifications or complements of repairs,
but also to check the entailments O |= α. This has been possible by using different,
consequence-based algorithms for reasoning with ontologies. In contrast to tableau al-
gorithms, consequence-based algorithms do not construct (representations of) models,
but instead derive logical consequence of axioms using a number of dedicated inference
rules. Thus, to prove the entailmentO |= α, it is sufficient to show how the axiom α can
be derived using these rules and the axioms in O. Each inference step α1, . . . , αn ` α
used in this derivation can be encoded as a propositional formula pα1 ∧· · ·∧pαn → pα,
thus reducing DL entailment to propositional (Horn) entailment. Consequence-based
procedures have been first formulated for the simple DL EL to show that entailment
in this language can be solved in polynomial time [13]. The above mentioned tools for
computing justifications are targeted to this language. Since then, consequence-based
procedures have also been extended to more expressive (even non-polynomial) DLs
[3, 7, 15, 32, 54].

One of the benefits of consequence-based algorithms is that they can be used to pro-
vide better explanations for the obtained reasoning results. Justification for entailments
O |= α tell which axioms of the ontology are responsible for the entailment, but not
how the entailed axiom was obtained from them. This limitation has been mainly due
to the black-box nature of the tableau-based reasoning algorithms: since tableau algo-
rithms are based on constructing models, they cannot provide information supporting
positive entailment testsO |= α since in such cases no counter-model for the entailment
O |= α exists (see Lemma 2). In contrast, consequence-based algorithms can provide
explanations for entailment in the form of derivations (or proofs). In practice, comput-
ing derivations for a given subsumption has not been an easy task because if in addition
to computing all consequences, we also save all inference steps by which they were
produced, the amount of memory required to store all this information can double. A
goal-directed procedure for generation of inferences [33] can be used to mitigate this
problem. The (black-box) algorithms for computing justifications have also been ex-
tended to provide some inference steps that derive (simple) intermediate conclusions,
which can improve understanding of explanations [27, 28].

Ontologies and the reasoning techniques described in this course are successfully
employed in many domains, e.g., to reason over the environment of (autonomous) cars
[17, 68], in information integration tasks [35, 38], or, most prominently, in medicine,
life sciences, and bio-informatics [21, 25, 63]. The standardization efforts of the World
Wide Web Consortium (W3C) for the DL-based Web Ontology Language OWL have
certainly helped in promoting the use of logic-based knowledge representation and rea-
soning. While modern search engines have picked up the ideas of using structured or
formal knowledge, this is often not in the form OWL (or DL) ontologies. For exam-
ple, Google’s knowledge graph and Facebook’s Social Graph are based on proprietary



formats. The same holds for Wikidata, although Semantic Web standards are also sup-
ported (e.g., a SPARQL [23] query interface and data dumps in the Resource Descrip-
tion Format (RDF) [52] are available). We attribute this to several reasons: While large
companies such as Google recognized the importance of structured knowledge, they
rather use their proprietary formats, possibly for business reasons. A contributing chal-
lenge is also that even the tractable fragments of DLs do not offer the performance
required at Web scale. Furthermore, the knowledge in the Web is inherently inconsis-
tent, which is challenging for logic-based approaches. DLs and OWL also lack features
that are important for some applications. For example, Wikidata captures when a fact
was true, e.g., the former German chancellor Helmut Kohl was married to Hannelore
Kohl from 1960 to 2001. This is difficult to model using DLs since roles can only re-
late two elements, but research to address these issues is on-going [37, 40]. Summing
up, it is widely accepted today that structuring and formalizing knowledge is important
and that significant advances were made in the last years; nevertheless, research is still
needed in several directions.
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A Appendix

For the convenience of interested readers, in this appendix we recap some background
material used used in this course, such as the basic notions for describing the (theoreti-
cal) complexity of algorithms, and the propositional satisfiability problem.

A.1 Computational Complexity

A decision problem (for an input set X) is simply a mapping P : X → {yes, no}. Note
that X can be an arbitrary set of objects. For example, for the concept subsumption
problem, X consists of all possible pairs 〈O, C v D〉 where the first component is an
ontologyO and the second component is a concept subsumption C v D. An algorithm
A solves (or decides) a decision problem P for X , if A accepts each value x ∈ X as
input, terminates for all these values, and returns the (correct) result A(x) = P (x).

There are several dimensions according to which one can measure the computa-
tional complexity of problems and algorithms. We say that an algorithm A has an (up-
per) time complexity f(n) if for each input x ∈ X with the size (e.g., the number of
symbols) n, the algorithm A terminates after at most f(n) steps. A problem P for X is
solvable in time f(n) if there exists an algorithm A that solves P and has the time com-
plexity f(n). We say that a problem P is solvable in polynomial time if there exists a
polynomial function f(n) such that P is solvable in time f(n). A problem P is solvable
in exponential time (doubly exponential time, . . . ) if there exists a polynomial function
f(n) such that P is solvable in time 2f(n) (22

f(n)

, . . . ). Analogously to the algorithmic
time complexity, one can define the algorithmic space complexity: a problem P for X
is solvable in space f(n) if there exists an algorithm A that solves P such that for each
input x ∈ X with the size n, the algorithm A uses at most f(n) units of memory at
every step of the computation.

Another dimension of the computational complexity is based on the notion of a
non-deterministic computation. An algorithm A is said to be non-deterministic if the
result of some operations that it can perform is not uniquely determined. Thus, the
algorithm can produce different results for different runs even with the same input.
A non-deterministic algorithm A solves a problem P for X if, for each x ∈ X such
that P (x) = no, each run of A terminates with the result no, and for each x ∈ X
such that P (x) = yes, there exists at least one run for which the algorithm terminates
and produces yes. The intuition is that, if one has an unlimited number of identical
computers, then one can solve the problem P by starting the algorithm A in parallel on
all of these computers; if P (x) = yes, one of them is guaranteed to return yes (provided
the results of all non-deterministic instructions are chosen at random).

The time and space complexity measures are also extended to non-deterministic al-
gorithms. For example, a non-deterministic algorithmA has the (upper) time complexity
f(n) if, for every input x ∈ X of the size n, every run of A terminates after at most
f(n) steps. We say that a problem P forX is solvable in non-deterministic time f(n) if
there exists a non-deterministic algorithm A that solves P and has the time complexity
f(n). Thus, a problem P is solvable in non-deterministic polynomial (exponential, dou-
bly exponential, . . . ) time if P is solvable in non-deterministic time f(n), where f(n) is



a polynomial (exponential, doubly exponential) function. The non-deterministic space
complexity is defined similarly.

A common way to solve a problem is to reduce it to another problem, for which a
solution is known. A decision problem P1 : X → {yes, no} is (many-one) reducible to
a decision problem P2 : Y → {yes, no} if there exists an algorithm R : X → Y (that
takes an input from X and produces an output from Y ) such that for every x ∈ X , we
have P1(x) = P2(R(x)). In this case the algorithm R is called a reduction from P1 to
P2. Depending on the time or space complexity of the algorithm R (i.e., the maximal
number of steps or memory units consumed for inputs of size n), the complexity bounds
of the problems are also transferred by the reduction. Usually one is interested in poly-
nomial reductions, where the number of steps for computing each R(x) is bounded by
a polynomial function in the size of x. In this case, if the complexity of P2 is polyno-
mial, exponential, or doubly exponential (for deterministic or non-deterministic, time
or space complexity), then P1 has the same complexity as P2.

A.2 Propositional Logic and SAT

The vocabulary of Propositional Logic consists of a countably infinite set P of propo-
sitional variables, Boolean constants: > (Verum), ⊥ (Falsum), and Boolean operators:
∧ (conjunction), ∨ (disjunction), ¬ (negation) and→ (implication). Propositional for-
mulas are constructed from these symbols according to the grammar:

F,G ::= p | > | ⊥ | F ∧G | F ∨G | ¬F | F → G, (10)

where p ∈ P . A propositional interpretation I assigns to each propositional variable
p ∈ P a truth value pI ∈ {1, 0} (1 means ‘true’, 0 means ‘false’) and is extended to
other propositional formulas by induction over the grammar definition (10) as follows:

– >I = 1 and ⊥I = 0 for each I,
– (F ∧G)I = 1 if and only if F I = 1 and GI = 1,
– (F ∨G)I = 1 if and only if F I = 1 or GI = 1,
– (¬F )I = 1 if and only if F I = 0,
– (F → G)I = 1 if and only if F I = 0 or GI = 1.

If F I = 1 then we say that I is a model of F (or F is satisfied in I). We say that F
is satisfiable if F has at least one model; otherwise F is unsatisfiable. A propositional
satisfiability problem (short: SAT) is the following decision problem:

– Given: a propositional formula F ,
– Return: yes if F is satisfiable and no otherwise.

SAT is a classical example of a non-deterministic polynomial (short: NP) problem:
it can be solved using an algorithm that non-deterministically choses a propositional
interpretation I, computes (in polynomial time) the value F I and returns yes if F I = 1
and no if F I = 0. It can be shown that each problem solvable by a non-deterministic
polynomial algorithm has a polynomial reduction to SAT, which means that SAT is
actually an NP-complete problem. Currently, the most efficient algorithms for solving
SAT are based on (extensions of) the Davis-Putnam-Logemann-Loveland (short: DPLL)



procedure, which systematically explores interpretations in a goal-directed way. A pro-
gram that implements an algorithm for solving SAT is called a SAT-solver. Usually a
SAT-solver not only decides satisfiability of a given propositional formula F , but can
also output a model of F in case F is satisfiable.


