
Absorption-Based Query Answering
for Expressive Description Logics

Andreas Steigmiller? and Birte Glimm

Ulm University, Ulm, Germany, <first name>.<last name>@uni-ulm.de

Abstract. Conjunctive query answering is an important reasoning task for logic-
based knowledge representation formalisms, such as Description Logics, to query
for instance data that is related in certain ways. Although many knowledge bases
use language features of more expressive Description Logics, there are hardly
any systems that support full conjunctive query answering for these logics. In
fact, existing systems usually impose restrictions on the queries or only compute
incomplete results.
In this paper, we present a new approach for answering conjunctive queries that
can directly be integrated into existing reasoning systems for expressive Descrip-
tion Logics. The approach reminds of absorption, a well-known preprocessing
step that rewrites axioms such that they can be handled more efficiently. In this
sense, we rewrite the query such that entailment can dynamically be checked in
the dominantly used tableau calculi with minor extensions. Our implementation
in the reasoning system Konclude outperforms existing systems even for queries
that are restricted to the capabilities of these other systems.

1 Introduction

A distinguished feature of logic-based knowledge representation formalisms, such as
Description Logics (DLs), is the ability to use automated reasoning techniques to ac-
cess implicit knowledge of explicitly stated information. In particular, a DL knowledge
base can be seen as a collection of explicitly stated information that describes a do-
main of interest, i.e., individuals/entities and their features. Roles are used to state the
relationship between individuals, concepts represent sets of individuals with common
characteristics, and axioms relate concepts or roles to each other, e.g., by specifying
sub-concept relationships, or state facts about an individual/a pair of individuals. Since
the DL SROIQ [10] is the logical underpinning of the second and current iteration
of the well-known Web Ontology Language (OWL), its language features are often
used in practice for modelling ontologies. Consequently, reasoning systems that support
SROIQ are required to work with these ontologies. So far, most reasoners for expres-
sive DLs, such as SROIQ, are based on variants of tableau algorithms since they are
easily extensible and adaptable to the expressive language features. Moreover, many
developed optimisation techniques allow these systems to efficiently handle standard
reasoning tasks (e.g., consistency checking, classification, instance retrieval, etc.) for

? Funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) in
project number 330492673



2 Andreas Steigmiller and Birte Glimm

many real-world ontologies. To satisfy all user demands, more sophisticated reasoning
tasks such as conjunctive query answering are also often required. Such queries consist
of a conjunction of concept and role facts, where variables may be used in place of
individuals. Such variables may be existentially quantified (aka non-distinguished vari-
ables) or answer variables (aka distinguished variables). For the answer variables, the
reasoner has to deliver bindings to named individuals of the knowledge base such that
the query, instantiated with the bindings, is entailed by the knowledge base. For existen-
tial variables, it is only required that there exists a binding to any, possibly anonymous
individual in each model.

To the best of our knowledge, current reasoning systems support conjunctive queries
for expressive DLs only with limitations. This is due to several reasons. First, decidabil-
ity of conjunctive query entailment, to which query answering is typically reduced, is
still open in SROIQ. Second, while the decidability and the worst-case complexity
has been shown for many sub-languages (e.g., [3,15,18]), the used techniques are often
not directly suitable for practical implementations. For the DLs SHIQ and SHOQ,
approaches have been developed that reduce conjunctive query answering to instance
checking (e.g, [5,7,11]), which is not goal-directed and often requires many unneces-
sary entailment checks. Moreover, some of these reduction techniques require language
features (e.g., role conjunctions) which are not available in OWL 2 and, hence, usually
not supported by reasoning systems.

Even for queries with only answer variables (conjunctive instance queries), existing
approaches (e.g., [9,13,19]) are often impractical since they are based on the above de-
scribed reduction to instance checking. Moreover, by only using existing reasoning sys-
tems as black-boxes, the possibility to optimise conjunctive query answering is limited.
Recently, query answering has been improved by lower and upper bound optimisations
that utilise model abstractions built by a reasoner [6] or delegate work to specialised
procedures [16,25]. Furthermore, it is possible to determine for which queries the an-
swers from specialised systems can be complete although not all used language features
are completely handled [23]. However, the specialised procedures are still used as a
black-box and delegating all work to them is not possible in general. Hence, practical
conjunctive query answering techniques for expressive DLs are still needed.

In this paper, we present an approach that encodes the query such that entailment
can efficiently be detected in the model construction process with minor extensions to
the tableau calculus. The encoding serves to identify individuals involved in satisfy-
ing the query and guides the search for a model where the query is not entailed. We
refer to this technique as absorption-based query answering since it reminds of the ab-
sorption technique for nominal schemas [21]. The approach is correct and terminates
for DLs for which decidability of conjunctive query answering is known (e.g., SHIQ,
SHOQ). For the challenging combination of nominals, inverse roles, and number re-
strictions, termination is only guaranteed if a limited number of new nominals is gen-
erated. The technique seems well-suited for practical implementations since (i) it only
requires minor extensions to tableau algorithms, (ii) can easily be combined with other
well-known (query answering) optimisation techniques, and (iii) real-world ontologies
hardly require the generation of (many) new nominals. In fact, we implemented the
proposed technique in the reasoning system Konclude [22] with encouraging results.



Absorption-Based Query Answering for Expressive Description Logics 3

Table 1. Core features of SROIQ (#M denotes the cardinality of the set M)

Syntax Semantics
Individuals: individual a aI ∈ ∆I

Roles: atomic role r rI ⊆ ∆I × ∆I

inverse role r− {〈γ, δ〉 | 〈δ, γ〉 ∈ rI}
Concepts: atomic concept A AI ⊆ ∆I

nominal {a} {aI}
top > ∆I

bottom ⊥ ∅

negation ¬C ∆I \CI

conjunction C u D CI ∩ DI

disjunction C t D CI ∪ DI

existential restriction ∃R.C {δ | ∃γ ∈ CI : 〈δ, γ〉 ∈ RI}
universal restriction ∀R.C {δ | 〈δ, γ〉 ∈ RI → γ ∈ CI}
number restriction, ./ ∈ {6 ,>} ./ n R.C {δ | #{〈δ, γ〉 ∈ RI and γ ∈ CI} ./ n}

Axioms: general concept inclusion C v D CI ⊆ DI

role inclusion R v S RI ⊆ S I

role chains R1 ◦ . . . ◦ Rn v S RI1 ◦ . . . ◦ RIn ⊆ S I

concept assertion C(a) aI ∈ CI

role assertion R(a, b) 〈aI, bI〉 ∈ RI

equality assertion a ≈ b aI = bI

The paper is organised as follows: Section 2 gives a brief introduction into DLs and
reasoning. Section 3 describes the absorption-based query entailment checking tech-
nique, for which reductions from query answering are sketched in Section 4. Section 5
discusses the implementation and evaluation results. Additional explanations, exam-
ples, and evaluation results can be found in an accompanying technical report [20].

2 Preliminaries

Due to space restrictions, we only give a brief introduction into DLs and reasoning
techniques (see, e.g., [1], for more details).

2.1 Description Logics and Conjunctive Queries

The syntax of DLs is defined using a vocabulary consisting of countably infinite pair-
wise disjointed sets NC of atomic concepts, NR of atomic roles, and NI of individuals.
A role is either atomic or an inverse role r−, r ∈ NR. The syntax and semantics of com-
plex concepts and axioms are defined in Table 1. Note that we omit the presentation of
some features (e.g., datatypes) and restrictions (e.g., number restrictions may not use
“complex roles”, i.e., roles that occur on the right-hand side of role chains) for brevity.
A knowledge base/ontology K is a finite set of axioms. An interpretation I = (∆I, ·I)
consists of a non-empty domain ∆I and an interpretation function ·I. We say that I
satisfies a general concept inclusion (GCI) CvD, written I |= CvD, if CI ⊆ DI (anal-
ogously for other axioms as shown in Table 1). If I satisfies all axioms of a knowledge
base K , I is a model of K and K is consistent/satisfiable if it has a model.



4 Andreas Steigmiller and Birte Glimm

A conjunctive query Q(X,Y) consists of a set of query terms q1, . . . , qk, where X
denotes the tuple of answer variables, Y the tuple of existential variables (disjoint to
X), and each qi is either a concept term C(z) or a role term r(z1, z2) with z, z1, z2 ∈

vars(Q), where vars(Q) is the set of variable names occurring in Q(X,Y). A Boolean
query Q(〈〉,Y), short Q, is a query without answer variables. To simplify the handling
of inverse roles, we consider r(x, y) as equivalent to r−(y, x). For an interpretation I =

(∆I, ·I) and a total function π : vars(Q) 7→ ∆I, we say that π is a match for I and Q
if, for every C(z) ∈ Q, π(z) ∈ CI and, for every r(z1, z2) ∈ Q, 〈π(z1), π(z2)〉 ∈ rI. We
say that an n-ary tuple of the form 〈a1, . . . , an〉 with a1, . . . , an individuals of K is an
answer for Q(〈x1, . . . , xn〉,Y) w.r.t.K if, for every model I = (∆I, ·I) ofK , there exists
a match π for I and Q with π(xi) = aIi for 1 ≤ i ≤ n. If a query Q(X,Y) (Q(〈〉,Y)) has
an answer (the empty answer 〈〉) w.r.t. K , then we say that K entails Q and with query
answering (query entailment checking) we refer to the reasoning task that computes all
answers (the entailment of the empty answer). W.l.o.g. we use individual names only in
nominal concepts and we assume that all variables are connected via role terms.

2.2 Tableau Algorithm

A tableau algorithm decides the consistency of a knowledge base K by trying to con-
struct an abstraction of a model for K , a so-called completion graph. A completion
graph G is a tuple (V, E,L, ,̇), where each node v ∈ V (edge 〈v,w〉 ∈ E) represents
one or more (pairs of) individuals. Each node v (edge 〈v,w〉) is labelled with a set of
concepts (roles), L(v) (L(〈v,w〉)), which the individuals represented by v (〈v,w〉) are
instances of. The relation ,̇ records inequalities between nodes. We call C ∈ L(v)
(r ∈ L(〈v,w〉)) a concept (role) fact, which we write as C(v) (r(v,w)). A node v is a
nominal node if {a} ∈ L(v) for some individual a and a blockable node otherwise.

A completion graph is initialised with one node for each individual in the input
knowledge base. Concepts and roles are added to the node and edge labels as specified
by concept and role assertions. Complex concepts are then decomposed using expansion
rules, where each rule application can add new concepts to node labels and/or new
nodes and edges, thereby explicating the structure of a model. The rules are applied
until either the graph is fully expanded (no more rules are applicable), in which case the
graph can be used to construct a model that is a witness to the consistency of K , or an
obvious contradiction (called a clash) is discovered (e.g., a node v with C,¬C ∈ L(v)),
proving that the completion graph does not correspond to a model.K is consistent if the
rules (some of which are non-deterministic) can be applied such that they build a fully
expanded, clash-free completion graph. Cycle detection techniques such as pairwise
blocking [10] prevent the infinite generation of new nodes.

For handling axioms of the form A v C, where A is atomic, one typically uses
special lazy unfolding rules in the tableau algorithm, which add C to a node label if
it contains the concept A. Axioms of the form C v D, where C is not atomic, cannot
directly be handled with lazy unfolding rules. Instead, they are internalised to > v
¬CtD. Given that > is satisfied at each node, the disjunction is then present in all node
labels. To avoid the non-determinism introduced by internalisation, one typically uses
a preprocessing step called absorption to rewrite axioms into (possibly several) simpler
concept inclusion axioms that can be handled by lazy unfolding. Binary absorption



Absorption-Based Query Answering for Expressive Description Logics 5

w

x

y

z

t r

ss
w x, z y

t, s− r, s−
x

w, y

z

t−, r

s−, s

Fig. 1. Visualisation of the query of Example 1 and two possible foldings

[12] utilises axioms of the form A1 u A2 v C for absorbing more complex axioms. This
requires a binary unfolding rule that adds C to node labels if A1 and A2 are present.

3 Absorption-Based Query Entailment Checking

Since query answering is typically reduced to query entailment checking, we first focus
on a decision procedure for the latter. With the exception of role relationships between
nominals/individuals, DLs allow only for expressing tree-shaped structures [8,24]. Even
with nominals/individuals, forest-shaped models exists [18]. Hence, we can check query
entailment by “folding” the relational structure of (parts of) the query into a tree-shaped
form by identifying variables. The resulting queries (query parts), called foldings, can
then be expressed as DL concepts (possibly using role conjunctions). Such query con-
cepts can be used to check query entailment: we have that a query (part) is not entailed
if a completion graph exists that satisfies none of its foldings.

Example 1. Consider the cyclic Boolean query Q1 = {t(w, x), r(x, y), s(y, z), s(z,w)} (cf.
Figure 1, left-hand side). There are different (tree-shaped) foldings of the query, e.g., by
identifying x and z or w and y (cf. Figure 1, middle and right-hand side). The foldings
can be expressed as ∃(t u s−).∃(r u s−).> and ∃(t− u r).∃(s− u s).>, respectively.

If we add, for each concept C that represents a folding of the query, the axiom
C v⊥ to the knowledge base, then consistency checking reveals query entailment. Note
that the tableau algorithm decides for each node whether (sub-)concepts of the fold-
ings are satisfied (due to the internalisation to > v ¬C t ⊥) and adds corresponding
(sub-)concepts or their negations to the node labels and, hence, the expansion of nodes
is not blocked too early w.r.t. deciding query entailment. Unfortunately, state-of-the-art
reasoners do not support role conjunctions and there can be many foldings of a query
(especially if the query has several nested cycles or uses role terms with complex roles).

Here we propose to dynamically match and fold the query onto the completion
graph. This is achieved by ‘absorbing’ a query into several simple axioms that can
efficiently be processed, where intermediate states encode the parts of the query that are
already satisfied. The intermediate states are tracked in the form of so-called query state
concepts (written S, possibly with sub-/super-scripts), which can be seen as fresh atomic
concepts with a set of associated bindings of query variables to nodes in the completion
graph. To realise this, we extend the tableau algorithm to create variable bindings (to
match a variable to a node in the completion graph), to propagate variable bindings
in the process of folding the query onto the completion graph, and to join variable
bindings. Creating and propagating variable bindings according to the role terms of a
query ultimately allows us to detect when cycles are closed.



6 Andreas Steigmiller and Birte Glimm

> v ↓w.Sw Sw v ∀t.Sw
t Sw

t v ↓x.S
x

Sw
t u Sx v Swx Swx v ∀r.Swx

r Swx
r v ↓y.S

y

Swx
r u Sy v Swxy Swxy v ∀s.Swxy

s Swxy
s v ↓z.Sz

Swxy
s u Sz v Swxyz Swxyz v ∀s.Swxyz

s Swxyz
s u Sw v Swxyzw Swxyzw v ⊥

Fig. 2. The axioms for absorbing the query Q1 of Example 2

For the creation of variable bindings, we borrow the ↓ binders from Hybrid Logics
[2]. Informally, a concept of the form ↓x.C in the label of a node v instructs the tableau
algorithm to create a binding {x 7→ v}, which binds x to the node v, and to store the
binding for the sub-concept C. For the propagation of bindings, we extend the ∀-rule of
the tableau algorithm. For example, if ∀r.C is in the label of a node v and the variable
binding {x 7→ v} is associated with it, then the tableau algorithm associates {x 7→v} with
C for all r-successors of v. Additionally, propagation can happen within node labels,
e.g., if S ∈ L(v) with the associated binding {x 7→ v} and the knowledge base contains
S vC, we add C to L(v) and associate it with {x 7→v}. Finally, for joining bindings, we
extend the binary unfolding rule. For example, for an axiom S1uS2vC and S1, S2 ∈ L(v)
associated with {x 7→ v, y 7→ w} and {x 7→ v, z 7→ w}, respectively, we add C associated
with the joined bindings {x 7→ v, y 7→ w, z 7→ w} to L(v). With these basic adaptations,
we can capture the query in several simple types of axioms: S1 v ↓x.S2 for creating
bindings, S1 v S2 and S1 v ∀r.S2 for propagating bindings, and S1uS2 v S3 for joining
bindings, where S(i) are query state concepts and r is a role. The resulting axioms can
usually be processed quite efficiently.

3.1 Query Absorption

Before presenting a formal algorithm, we demonstrate how the concepts and axioms for
a query are obtained by means of an example. We call this process absorbing a query.

Example 2 (Example 1 cont.). Consider again Q1 = {t(w, x), r(x, y), s(y, z), s(z,w)}.
We first pick a starting variable, say w, and introduce the axiom > v ↓w.Sw, which
triggers, for all nodes, that a binding for w is created. We use the (fresh) query state
concept Sw to indicate that w is bound. Since it is convenient to continue with a role
term containing w, we choose t(w, x) and propagate the bindings for w to t-successors
using the axiom Sw v∀t.Sw

t (again Sw
t is fresh and indicates the state that bindings for w

have been propagated via t). Nodes to which Sw
t (with the bindings for w) is propagated

are suitable bindings for x. This is captured by the axiom Sw
t v ↓x.S

x. Since Sw
t may be

propagated from different nodes, we join the propagated bindings for w and the newly
created bindings for x using the axiom Sw

t u Sx v Swx, for which the extended tableau
algorithm attaches the joined bindings to the fresh concept Swx. We proceed analogously
for r(x, y), s(y, z), and s(z,w) (see Figure 2 for all created axioms). Nodes to which
the concept Swxyz

s is propagated, potentially close the cycle in the query. The axiom
Swxyz

s u Sw v Swxyzw checks whether a join is possible. In case it is, the query is satisfied



Absorption-Based Query Answering for Expressive Description Logics 7

Algorithm 1 absorbQ(Q,K)
Input: A query Q and a knowledge base K

that is extended via side effects
1: z← choose one variable from vars(Q)
2: Sz ← fresh query state concept
3: K ← K ∪ {> v ↓z.Sz}

4: VLS (z)← Sz

5: for each q ∈ Q do
6: if q = C(x) or q = r(x, y), z , x then
7: choose q1, q2, . . . , qn ∈ Q with

q1 = r1(z, y1), q2 = r2(y1, y2),
. . . , qn = rn(yn−1, x)

8: for 1 ≤ i ≤ n do
9: absorbRT(qi,VLS ,K)

10: end for
11: end if
12: if q = C(x) then
13: absorbCT(C(x),VLS ,K)
14: z← x
15: end if
16: if q = r(x, y) then
17: absorbRT(r(x, y),VLS ,K)
18: z← y
19: end if
20: end for
21: Sz1 ...zmz ← VLS (z)
22: K ← K ∪ {Sz1 ...zmz v ⊥}

Algorithm 2 absorbCT(C(x),VLS ,K)
1: Sx1 ...xn x ← VLS (x)
2: F x

C ← fresh atomic concept
3: Sx1 ...xn x

C ← fresh query state concept
4: K ← K ∪ {Sx1 ...xn x v ¬C t F x

C}

5: K ← K ∪ {Sx1 ...xn x u F x
C v Sx1 ...xn x

C }

6: VLS (x)← Sx1 ...xn x
C

Algorithm 3 absorbRT(r(x, y),VLS ,K)
1: Sx1 ...xn x ← VLS (x)
2: Sx1 ...xn x

r ← fresh query state concept
3: K ← K ∪ {Sx1 ...xn x v ∀r.Sx1 ...xn x

r }

4: if VLS (y) is undefined then
5: Sy ← fresh query state concept
6: K ← K ∪ {Sx1 ...xn x

r v ↓y.Sy}

7: VLS (y)← Sy

8: end if
9: Sy1 ...ymy ← VLS (y)

10: Sz1 ...zk ← fresh query state concept with
z1 . . . zk = x1 . . . xn x y1 . . . ymy

11: K ← K∪
{Sx1 ...xn x

r u Sy1 ...ymy v Sz1 ...zk }

12: VLS (y)← Sz1 ...zk

and a clash is triggered by the axiom Swxyzwv⊥. In this case, backtracking is potentially
triggered to try other non-deterministic choices which might yield a complete and clash-
free completion graph that is a counter example for the query entailment.

The next example demonstrates how concept terms in the query are handled.

Example 3 (Example 2 cont.). Let Q2 = Q1 ∪ {C(x)}. We again pick w as starting node
and then process t(w, x), which (again) yields the first four axioms in Figure 2. Assume
we next process C(x). At the state Swx, the tableau algorithm can either satisfy ¬C
(which indicates that the query is not satisfied with the bindings for w and x) or we
have to assume a query state where also C(x) is satisfied. This is achieved by adding the
axiom Swxv¬CtF x

C , where F x
C is a fresh concept. Note that we want to keep the number

of modified tableau rules minimal. Hence, when applied to ¬CtF x
C , the t-rule does not

propagate bindings. In case, the disjunct F x
C is chosen, we join its empty set of variable

bindings with those for Swx using the axiom Swx u F x
C v Swx

C , which is handled by the
extended binary unfolding rule. For the next role term r(x, y), we then add Swx

C v ∀r.Swx
r

and continue as in Example 2.

Algorithm 1 formalizes the query absorption process and extends the given knowl-
edge base K via side effects. The functions absorbCT (Algorithm 2) and absorbRT



8 Andreas Steigmiller and Birte Glimm

Table 2. Tableau rule extensions for creating and propagating variable mappings

↓-rule: if ↓x.C ∈ L(v), v not indirectly blocked, and C < L(v) or {x 7→ v} <M(C, v)
then L(v) = L(v) ∪ {C} andM(C, v) =M(C, v) ∪ {{x 7→ v}}

∀-rule: if ∀r.C ∈ L(v), v not indirectly blocked, there is an r-neighbour w of v with
C < L(w) orM(∀r.C, v) *M(C,w)

then L(w) = L(w) ∪ {C} andM(C,w) =M(C,w) ∪M(∀r.C, v)
v1-rule: if Sx1 ...xn v C ∈ K , Sx1 ...xn ∈ L(v), v not indirectly blocked, and C < L(v) or

M(Sx1 ...xn , v) *M(C, v)
then L(v) = L(v) ∪ {C} andM(C, v) =M(C, v) ∪M(Sx1 ...xn , v)

v2-rule: if Sx1 ...xn u A v C ∈ K , {Sx1 ...xn , A} ⊆ L(v), v not indirectly blocked, and
M(Sx1 ...xn , v) *M(C, v)

then L(v) = L(v) ∪ {C} andM(C, v) =M(C, v) ∪M(Sx1 ...xn , v)
v3-rule: if Sx1 ...xn

1 u Sy1 ...ym
2 v C ∈ K , {Sx1 ...xn

1 , Sy1 ...ym
2 } ⊆ L(v), v not indirectly blocked, and

(M(Sx1 ...xn
1 , v) 1M(Sy1 ...ym

2 , v)) *M(C, v)
then L(v) = L(v) ∪ {C} andM(C, v) =M(C, v) ∪ (M(Sx1 ...xn

1 , v) 1M(Sy1 ...ym
2 , v))

(Algorithm 3) handle concept and role terms, respectively. The functions use a map-
ping VLS from variables to the last query state concepts, i.e., each variable in the query
is mapped to the last introduced query state concept for that variable such that we can
later continue or incorporate the propagation for that variable. In the examples, we al-
ways chose an adjacent next query term that contained the current variable z. In case a
non-adjacent term is chosen, Lines 6–11 ensure the connection to the current variable
(which exists as we consider connected queries, see Section 2). In our example, if we
were to choose s(y, z) as first term in Line 5 (with w as starting variable), Lines 6–11 en-
sure that we process, for example, t(w, x) and r(x, y) before we process s(y, z) in Line 17.
Clearly, the presented algorithm can further be optimised, e.g., by not creating binder
concepts for variables that are not required in joins, but it is already quite convenient to
show the principle of the approach.

3.2 Tableau Rules and Blocking Extensions

As outlined in the previous sections, minor extensions and adaptations of the tableau
algorithm are required for creating, propagating, and joining bindings as well as for
ensuring a correct blocking. First, we discuss the required rule extensions and define
the notion of variable mappings:

Definition 1 (Variable Mapping). A variable mapping µ is a (partial) function from
variable names to nodes and we refer to the set of elements on which µ is defined as
the domain, written dom(µ), of µ. We say that two variable mappings µ1 and µ2 are
compatible if µ1(x) = µ2(x) for all x ∈ dom(µ1) ∩ dom(µ2).

For an extended completion graph G = (V, E,L, ,̇,M) and v ∈ V, we denote with
M(C, v) the sets of variable mappings that are associated with a concept C in L(v).

The ↓-rule creates and associates variable mappings with concept facts in the com-
pletion graph, which we then propagate to other concept facts w.r.t. the axioms from
the query absorption by using the extensions of expansion rules depicted in Table 2.



Absorption-Based Query Answering for Expressive Description Logics 9

va

v1

v2

v3

t, s−

r, s−

. . .

L(va) =

 >, A,∃t.B, ↓w.Sw, S w {{w7→va}},∀t.S w
t
{{w7→va}},

S wxyz
s

{{w7→va ,x 7→v1 ,y7→v2 ,z 7→v1}}, S wxyzw {{w7→va ,x 7→v1 ,y7→v2 ,z7→v1}},⊥


L(v1) =


>, B,∃r.A, ↓w.Sw, S w {{w7→v1}},∀t.S w

t
{{w7→v1}}, S w

t
{{w7→va}}, ↓x.Sx, S x {{x 7→v1}},

S wx {{w7→va ,x 7→v1}},∀r.S wx
r
{{w7→va ,x 7→v1}}, S wxy

s
{{w7→va ,x 7→v1 ,y7→v2}}, ↓z.Sz, S z {{z7→v1}},

S wxyz {{w7→va ,x 7→v1 ,y7→v2 ,z7→v1}},∀s.S wxyz
s

{{w7→va ,x 7→v1 ,y7→v2 ,z7→v1}}


L(v2) =

 >, A,∃t.B, ↓w.Sw, S w {{w7→v2}},∀t.S w
t
{{w7→v2}}, S wx

r
{{w7→va ,x 7→v1}}, ↓y.Sy,

S y {{y7→v2}}, S wxy {{w7→va ,x 7→v1 ,y7→v2}},∀s.S wxy
s
{{w7→va ,x 7→v1 ,y7→v2}}, . . .


L(v3) =

{
>, B,∃r.A, ↓w.Sw, S w {{w7→v3}}, . . .

}
Fig. 3. Clashed completion graph for Example 4 with propagated variable mappings

In particular, the application of the ∀-rule to a concept fact ∀r.C(v) now also propa-
gates mappings that are associated with ∀r.C(v) to the concept C in the labels of the
r-neighbours. If complex roles have to be handled, one can, for example, use an unfold-
ing of the universal restriction according to the automata for role inclusion axioms [10].

The remaining rules of Table 2 handle the (lazy) unfolding of the new query state
concepts in node labels. Please note that the standard unfolding rules for simple atomic
concepts are still necessary, i.e., C has to be added to a node label for axioms of the form
AvC and A1uA2vC if A or A1 and A2 are present. In contrast, the new unfolding rules
are only applied if at least one concept on the left-hand side is a query state concept and
they additionally also propagate associated variable mappings to C. More precisely, for
a query state concept Sx1...xn ∈ L(v) withM(Sx1...xn , v) = M and an axiom Sx1...xn v C ∈
K , thev1-rule adds C toL(v) and associates it with M. For an axiom of the form Sx1...xnu

A v C, we only add C and propagate the mappings to C if also the atomic concept A
is in the label (cf. v2-rule). Finally, the v3-rule handles binary inclusion axioms, where
both concepts on the left-hand side are query state concepts, by propagating the join of
the associated variable mappings to the implied concept.

Definition 2 (Variable Mapping Join). A variable mapping µ1 ∪ µ2 is defined by set-
ting (µ1 ∪ µ2)(x) = µ1(x) if x ∈ dom(µ1), and (µ1 ∪ µ2)(x) = µ2(x) otherwise. The join
M1 1M2 between the sets of variable mappingsM1 andM2 is defined as follows:

M1 1M2 = {µ1 ∪ µ2 | µ1 ∈ M1, µ2 ∈ M2 and µ1 is compatible with µ2}.

By applying the rules of Table 2 (in addition to the standard tableau rules) for a
knowledge base that is extended by the axioms from the query absorption, we get asso-
ciations of variable mappings with query state concepts such that they indicate which
parts of a query (and how these parts) are satisfied in the completion graph.

Example 4 (Example 2 cont.). Assume we extend K1 = {A(a), A v ∃t.B, B v ∃r.A, t v
s−, r v s−} with the axioms from absorbing Q1 in Figure 2 and test the consistency with
a tableau algorithm extended by the rules of Table 2. We observe that the constructed
completion graph contains a clash and, consequently, Q1 is entailed (cf. Figure 3). More
precisely, we create a node for the individual a and add A to its node label (due to A(a)).



10 Andreas Steigmiller and Birte Glimm

Now, we alternately create t- and r-successors (due to Av∃t.B and Bv∃r.A), where the
t-successors are labelled with B and the r-successors with A. Due to t v s− and r v s−,
we add s− to each edge label. It is obvious to see that the folding ∃(t u s−).∃(r u s−).>
of Q1 (cf. Example 1 and Figure 1) is satisfied for each node that instantiates A.

Due to > v ↓w.Sw from the absorption, we add Sw to each node label and associate
Sw with a mapping from w to the node. In particular, for va representing the individual a,
we associate {w 7→va} with Sw. Note that {w 7→va} ∈ M(Sw, va) is shown as S w{{w7→va}} in
Figure 3, i.e., we list the set of associated mappings as a second super-script highlighted
in grey. To satisfy the axiom Sw v ∀t.Sw

t , we unfold Sw to ∀t.Sw
t and we also keep the

variable mappings, i.e., we have {w 7→va} ∈ M(∀t.Sw
t , va). Now, the application of the ∀-

rule propagates {w 7→va} to Sw
t ∈ L(v1). There, we unfold Sw

t to the binder concept for x,
i.e., ↓x.Sx. Note that the unfolding would propagate the associated variable mapping(s)
to the binder concept, but they are not depicted in the figures since they are not further
used by the ↓-rule. In fact, the ↓-rule just creates a new variable mapping {x 7→ v1}

that is then joined by the v3-rule with {w 7→ va} such that we have {w 7→ va, x 7→ v1} ∈

M(Swx, v1). These steps are repeated until we have {w 7→ va, x 7→ v1, y 7→ v2, z 7→ v1} ∈

M(Swxyz
s , va). Since {w 7→ va} is compatible with {w 7→ va, x 7→ v1, y 7→ v2, z 7→ v1}, the

v3-rule adds the latter variable mapping to M(Swxyzw, va). Finally, the v1-rule adds ⊥
to L(va). (In the figures, we again omit the variable mappings that would be associated
with ⊥ due to the unfolding since they are not relevant.) Since all facts and variable
mappings are derived deterministically, no non-deterministic alternatives have to be
evaluated and entailment of Q1 is correctly determined.

As one can see from the example, the variable mappings associated with query state
concepts directly correspond to foldings of the query. In particular, variables that are
mapped to the same node correspond to the folding where the corresponding variables
are identified. In addition, if a variable is mapped to a nominal node, then the mapping
basically represents the “folding” that is obtained by replacing the variable with the
associated nominal/individual (and folding up the remaining terms).

Without further optimisations, we create new bindings for every node and, due to
complex roles and/or nominals, variable mappings might be propagated arbitrarily far
through a completion graph. At first sight, this seems problematic for blocking. The
correspondence with foldings, however, helps us to find a suitable extension of the
typically used pairwise blocking technique [10] defined as follows:

Definition 3 (Pairwise Blocking). Let G = (V, E,L, ,̇,M) be a completion graph. We
say that a node v with predecessor v′ is directly blocked if there exists an ancestor node
w of v with predecessor w′ such that (1) v, v′,w,w′ are all blockable, (2) w,w′ are not
blocked, (3) L(v) = L(w) and L(v′) = L(w′), and (4) L(〈v′, v〉) = L(〈w′,w〉). A node
is indirectly blocked if it has an ancestor node that is directly blocked, and a node is
blocked if it is directly or indirectly blocked.

The query state concepts, which track how much of the query is satisfied, are already
part of the node labels. Hence, it remains to check whether the query is analogously
satisfied (i.e., same foldings must exist) by, roughly speaking, checking whether the
variable mappings have been propagated in the same way between the blocking node,
its predecessor and (related) nominal nodes and between the blocked node, its prede-
cessor and (related) nominal nodes. Note that a mapping µ and the query state concepts



Absorption-Based Query Answering for Expressive Description Logics 11

va

v1

v2

v3

v4

t

t

t

t

bl
oc

ki
ng

L(va) =
{
>, A,∃t.A, ↓w.Sw, S w {{w7→va}},∀t.S w

t
{{w7→va}}

}
L(v1) =


>, A,∃t.A, ↓w.Sw, S w {{w7→v1}},∀t.S w

t
{{w7→v1},{w7→va}},

S w
t
{{w7→va}}, ↓x.Sx, S x {{x 7→v1}},

S wx {{w7→va ,x 7→v1}},∀r.S wx
r
{{w7→va ,x 7→v1}}


L(v2) =


>, A,∃t.A, ↓w.Sw, S w {{w7→v2}},∀t.S w

t
{{w7→v2},{w7→v1},{w7→va}},

S w
t
{{w7→v1},{w7→va}}, ↓x.Sx, S x {{x 7→v2}},

S wx {{w7→va ,x 7→v2},{w7→v1 ,x 7→v2}},∀r.S wx
r
{{w7→va ,x 7→v2},{w7→v1 ,x 7→v2}}


L(v3) =


>, A,∃t.A, ↓w.Sw, S w {{w7→v3}},∀t.S w

t
{{w7→v3},{w7→v2},{w7→v1},{w7→va}},

S w
t
{{w7→v2},{w7→v1},{w7→va}}, ↓x.Sx, S x {{x 7→v3}},

S wx {{w7→va ,x 7→v3},{w7→v1 ,x 7→v3},{w7→v2 ,x 7→v3}},∀r.S wx
r
{{w7→va ,x 7→v3},{w7→v1 ,x 7→v3},{w7→v2 ,x 7→v3}}


Fig. 4. Expansion blocked completion graph for Example 5 with variable mappings

with which µ is associated capture which query parts are already satisfied. Query state
concepts that are associated with mappings that are compatible with µ correspond to
states where fewer or additional query parts are satisfied. The following notion captures
such related query state concepts for a mapping µ and a node v of a completion graph:

Definition 4. Let G = (V, E,L, ,̇,M) be a completion graph. For v ∈ V and a mapping
µ, we set states(v, µ) = {C ∈ L(v) | µv ∈ M(C, v) is compatible with µ}.

Note that we do not limit states to query state concepts only to enable more absorp-
tion optimisations (see [20] for details). We formally capture (query state) concepts
associated with a mapping and their relation to blocking with the notion of analogous
propagation blocking and witness mappings:

Definition 5 (Analogous Propagation Blocking). Let G = (V, E,L, ,̇,M) be a com-
pletion graph and o1, ..., on ∈ V all the nominal nodes in G. We say that a node v with
predecessor v′ is directly blocked by w with predecessor w′ if v is pairwise blocked by
w and, for each mapping µ ∈ M(C, v) ∪ M(C, v′) ∪ M(C, o1) ∪ ... ∪ M(C, on),C ∈
L(v) ∪ L(v′) ∪ L(o1) ∪ ... ∪ L(on), there exists a witness mapping µ′ ∈ M(D,w) ∪
M(D,w′) ∪ M(D, o1) ∪ ... ∪ M(D, on),D ∈ L(w) ∪ L(w′) ∪ L(o1) ∪ ... ∪ L(on) and
vice versa such that states(v, µ) = states(w, µ′), states(v′, µ) = states(w′, µ′), and
states(oi, µ) = states(oi, µ

′) for 1 ≤ i ≤ n.

Example 5 (Example 2 cont.). For testing entailment of Q1 over K2 = {A(a), A v ∃t.A,
t ◦ t v t}, we can capture the transitivity of t by extending the axioms of Figure 2
with Sw

t v ∀t.Sw
t (cf. [10]). For the resulting axioms, the tableau algorithm creates a

completion graph as depicted in Figure 4, where the query is not entailed. Due to
the cyclic axiom A v ∃t.A, the tableau algorithm successively builds t-successors un-
til blocking is established. Note that new variable mappings are created for all nodes
and all mappings are propagated to all descendants due to the transitive role t. Hence,



12 Andreas Steigmiller and Birte Glimm

Table 3. Witness mappings for testing analogous propagation blocking for Example 5

µ µ′ states(v3, µ) = states(v2, µ
′) states(v2, µ) = states(v1, µ

′)

{w 7→v3} {w 7→v2} {Sw,∀t.Sw
t , S

x} {Sx}

{w 7→v2} {w 7→v1} {∀t.Sw
t , S

w
t , S

x, Swx,∀r.Swx
r } {Sw,∀t.Sw

t , S
x}

{w 7→v1}, {w 7→va} {w 7→va} {∀t.Sw
t , S

w
t , S

x, Swx,∀r.Swx
r } {∀t.Sw

t , S
w
t , S

x, Swx,∀r.Swx
r }

{x 7→v3} {x 7→v2} {Sw,∀t.Sw
t , S

w
t , S

x, Swx,∀r.Swx
r } {S

w,∀t.Sw
t , S

w
t }

{w 7→va, x 7→v3},
{w 7→v1, x 7→v3}

{w 7→va, x 7→v2} {∀t.Sw
t , S

w
t , S

x, Swx,∀r.Swx
r } {∀t.Sw

t , S
w
t }

{w 7→v2, x 7→v3} {w 7→v1, x 7→v2} {∀t.Sw
t , S

w
t , S

x, Swx,∀r.Swx
r } {Sw,∀t.Sw

t }

{x 7→v2} {x 7→v1} {Sw,∀t.Sw
t , S

w
t } {Sw,∀t.Sw

t , S
w
t , S

x, Swx,∀r.Swx
r }

{w 7→va, x 7→v2},

{w 7→v1, x 7→v2}
{w 7→va, x 7→v1} {∀t.Sw

t , S
w
t } {∀t.Sw

t , S
w
t , S

x, Swx,∀r.Swx
r }

we not only have mappings with new bindings for each new successor, but also an
increasing number of mappings. Nevertheless, v3 is already directly blocked by v2 us-
ing analogous propagation blocking since all pairwise blocking conditions are satis-
fied (e.g., L(v3) = L(v2), L(v2) = L(v1)) and we have for each variable mapping a
witness mapping as shown in Table 3. For example, for the mapping {w 7→ v3}, we
have states(v3, {w 7→ v3}) = {Sw,∀t.Sw

t , S
x} and states(v2, {w 7→ v3}) = {Sx} due to the

compatible mappings {x 7→ v3} and {x 7→ v2}, respectively (cf. first row of Table 3).
A witness for {w 7→ v3} is {w 7→ v2} since states(v2, {w 7→ v2}) = {Sw,∀t.Sw

t , S
x} and

states(v1, {w 7→v2}) = {Sx}.

To avoid considering all nominal nodes in blocking tests, one could obtain restricted
sets of relevant nominal nodes by “remembering” nominal nodes over which variable
mappings have been propagated, by tracking the usage of nominals for descendants or
by indexing variable mappings propagated over nominal nodes.

3.3 Correctness and Termination Sketches

As long as no new nominals are generated, a tableau algorithm with the presented exten-
sions terminates since the sets of (query state) concepts that are used by analogous prop-
agation blocking are bounded by the number of concepts occurring in the knowledge
base and in the query absorption. Hence, we eventually have variable mappings that are
associated with the same set of concepts for the nodes relevant for determining block-
ing. At the same time, analogous propagation blocking delays blocking sufficiently to
guarantee that the completion graph is expanded enough to show (non-)entailment of
the query. In addition, we observe that the query state concepts with their associated
variable mappings correspond to concepts that represent satisfied (parts of) foldings of
the query. Hence, correctness of the algorithm can be shown by transforming a fully ex-
panded and clash-free completion graph with propagated variable mappings to a fully
expanded and clash-free completion graph, where instead the correspondingly satis-
fied (sub-)concepts of folding are in the node labels and vice versa. Further details are
provided in the accompanying technical report [20].



Absorption-Based Query Answering for Expressive Description Logics 13

4 Optimized Query Answering Reduction

Instead of naively grounding conjunctive queries with answer variables (e.g., by adding
nominal concept terms), leading to (exponentially) many query entailment checks, we
can modify the presented absorption algorithm such that it delivers (candidates for) an-
swers. For this, we extend the knowledge base by assertions of the form O(a) for each
individual a, where O is a fresh atomic concept that allows for distinguishing known
and anonymous individuals. We then extend the query with concept terms of the form
O(x) for each answer variable x and absorb the query as presented in Section 3, but
omit the implication of ⊥ from the last query state concept. If the tableau algorithm
succeeds to construct a fully expanded and clash-free completion graph, then the vari-
able mappings that are propagated to and associated with the last query state concept
in node labels encode the answer candidates. Moreover, by analysing whether variable
mappings have been propagated deterministically, i.e., mappings that do not depend on
non-deterministic decisions, we can already identify which of the candidates are certain
answers. For the non-deterministically derived/propagated variable mappings, we have
to verify the obtained answer candidates with corresponding query entailment checks.
If most consequences of the knowledge base can be derived deterministically, then we
often also get the answers by only extracting them from the propagated variable map-
pings, i.e., the approach mimics a one-pass behaviour for “relatively simple and mostly
deterministic” ontologies.

The presented query answering approach can further be extended to exploit realisa-
tion results. In fact, query terms with only answer variables (and only atomic concepts)
correspond to (atomic) concept and role instance retrieval queries, which are typically
answered by the realisation service. Hence, we resolve these parts of a query via re-
alisation and interpret the answers as an upper bound for the entire query. Then, we
absorb the remaining part of the query by using restricted binder concepts for answer
variables such that the ↓-rule only creates a binding if the binder concept is in the label
of a node that represents an individual from the determined upper bound of the corre-
sponding variable. This reduces the propagation work in completion graphs since only
the remaining query terms have to be considered and only certain bindings are created.

5 Implementation and Experiments

We implemented the presented query answering approach into the tableau-based rea-
soning system Konclude [22], which supports the DL SROIQ with nominal schemas,
i.e., an extension of the nominal constructor by variables for natively representing rule-
based knowledge in ontologies. Axioms with nominal schemas are also absorbed in
Konclude such that variable bindings are appropriately propagated through the comple-
tion graph [21], which we reuse to some extent for the query answering extension. A
major difference is, however, that bindings for variables are now also created/allowed
for anonymous individuals, i.e., blockable nodes in completion graphs, which requires
the more sophisticated blocking technique. In addition, specialised binder concepts are
used to be able to restrict the creation of bindings to determined candidates as described
in Section 4. Furthermore, Konclude uses variants of completion graph caching tech-
niques such that only those parts of completion graphs have to be constructed that are



14 Andreas Steigmiller and Birte Glimm

Table 4. Statistics for evaluated ontologies with query entailment checking (EC) times in seconds

Ontology DL #Axioms #C #P #I #Assertions #Q EC avg/max [s]

DMKB SROIQ 4, 945 697 177 653 1, 500 50 0.30 / 1.08
Family SROIQ(D) 317 61 87 405 1, 523 50 180.32 / ≥300.00
Finance\D ALCROIQ 1, 391 323 247 2, 466 2, 809 50 0.15 / 0.33
FMA3.1\D ALCOIN 86, 898 83, 284 122 232, 647 501, 220 50 0.10 / 0.83
GeoSkills\D ALCHOIN 738 603 23 2, 592 5, 985 50 0.13 / 0.25
OBI SROIQ(D) 6, 216 2, 826 116 167 235 50 0.06 / 0.34
UOBM(1) SHOIN(D) 206 69 44 24, 858 257, 658 50 0.77 / 7.12
Wine SHOIN(D) 643 214 31 367 903 50 0.08 / 0.29

(potentially) relevant for satisfiability tests, which has been adapted for query answer-
ing. The cached graphs are also indexed to quickly resolve candidates for answer vari-
ables. We further collect approximative statistics of how (often) concept and role facts
are derived in the consistency test (e.g., whether they are derived (non-)deterministically
and/or only for nominal nodes) in order to absorb the query terms in an order that ideally
leads to few and cheap propagations (e.g., by preferring propagations over role terms
with few and mostly deterministically derived instances).

At the moment, Konclude may not terminate for SROIQ ontologies if the absorp-
tion of the query leads to propagations over new nominal nodes. However, this does not
seem problematic in practice. For example, the ORE2015 dataset [17] contains 1920
ontologies (with trivial ontologies already filtered out), but only 399 use all problem-
atic language features (36 with unqualified, 281 with qualified, and 82 with functional
number restrictions). Konclude never applied the new nominal rule in the consistency
checks for these 399 ontologies, but we terminated the reasoner (and, hence, the anal-
ysis of the new nominal generation) for 4 ontologies after reaching the time limit of
5 minutes. Even if new nominals have to be generated repeatedly by the tableau al-
gorithm, it would further be required that the query propagates differently over new
nominal and blockable nodes such that blocking cannot be established.

For evaluating (the limits of) the presented query entailment checking approach,1

we generated and/or hand-crafted 400 cyclic and non-trivial queries for interesting on-
tologies, such as DMKB, FMA, OBI, UOBM [14], i.e., ontologies from well-known
repositories that use many features of SROIQ and have at least 100 individuals. Ta-
ble 4 shows some metrics for these ontologies as well as the average and maximum
query entailment checking times (last column). Note that the columns #C, #P, #I, and
#Q denote the number of classes, properties, individuals, and queries and that the as-
sertions are not counted to the number of axioms. In summary (see [20] for details), the
entailment for most queries (90%) can be decided in under one second by using one
core of a Dell PowerEdge R420 server with two Intel Xeon E5-2440 CPUs at 2.4 GHz
and 144 GB RAM under a 64bit Ubuntu 16.04.5 LTS. However, Konclude reached the
time limit of 5 minutes for several queries of the Family ontology since complex roles
caused propagations to many nodes such that blocking tests became quite involved.

1 Source code, evaluation data, all results, and a Docker image (koncludeeval/abqa) for easily
reproducing the evaluations are available online, e.g., at https://zenodo.org/record/3266160.

https://zenodo.org/record/3266160


Absorption-Based Query Answering for Expressive Description Logics 15

Table 5. Ontologies with evaluated query answering times in seconds

Ontology DL #Axioms #Assertions #Q Konclude OWL BGP PAGOdA Pellet

ChEMBL1% SRIQ(D) 3, 171 2, 884, 896 6 0.3 1800.0 0.7 17.7
FLY SRI 20, 715 1, 606 11 4.7 3300.0 20.3 3300.0
LUBM(1) ALEHI+(D) 93 100, 543 35 1.2 16.8 5.4 11.2
Reactome10% SHIN(D) 600 1, 314, 640 7 0.4 2100.0 14.4 33.8
Uniprot1% ALCHOIQ(D) 608 1, 112, 441 13 0.3 3900.0 2.7 307.8
UOBM(1) SHIN(D) 246 257, 658 20 6.6 6000.0 22.7 972.7
ALL 92 13.6 17116.8 66.1 4643.2

Due to the fact that many state-of-the-art reasoners such as HermiT [4] and Pellet [19]
cannot even classify the Family ontology within 5 minutes, it can be seen as particu-
larly difficult. It also has to be considered that typical real-world queries are often not
Boolean and it is usually possible to identify individuals that could be affected by the
query (e.g., from answer variables) such that only certain parts of completion graphs
have to be considered for the remaining (entailment) computations (with appropriate
completion graph caching techniques). To further improve the performance, one could,
however, also use a representative propagation of variable mappings [21] for entailment
checks and/or index more precisely which nodes constitute blocker candidates.

To further compare our query answering approach with existing systems, we used
the ontologies and (non-trivial) queries from the PAGOdA evaluation [25] (cf. Table 5).1

Note that we excluded trivial concept and role instance retrieval queries since they can
be handled by (concept and role) realisation, for which already corresponding evalua-
tions exist (see, e.g., [17]). Since these expressive ontologies easily become problematic
for several reasoning systems, we used the smallest versions of the available datasets.

We compared the absorption-based query answering approach with OWL BGP [6],
PAGOdA, and Pellet, which are systems that are based on fully-fledgedSROIQ reason-
ers and, hence, principally capable of answering (restricted) conjunctive queries w.r.t.
knowledge bases that are formulated with more expressive DLs. Note that OWL BGP
as well as PAGOdA use a fully-fledged reasoner (usually HermiT) in form of a black-
box, but try to reduce the calls to the reasoner with different (lower and upper bound)
optimisations. OWL BGP can mostly be considered as an adapter that enables to answer
conjunctive instance queries, whereas PAGOdA tries to delegate most of the workload
to a more efficient datalog engine. We tried to separate the preprocessing (i.e., loading,
consistency checking, classification, etc.) from the actual query answering time. Since
we could not find a simple way to realise this for Pellet, we interpreted the fastest query
answering response as preprocessing/preparation time. As far it has been configurable,
we used only one core of the Dell PowerEdge R420 server for each reasoner to facili-
tate the comparison. Moreover, we used for each query a new instance of the reasoner
with a time limit of 5 minutes. If a reasoner did not finish the preprocessing within the
time limit, then we also interpreted the response time for the query answering task as a
timeout, i.e., as 5 minutes.

The query answering times accumulated per ontology are depicted in Table 5. By
considering the accumulated times over all ontologies (last row), one can say that Kon-



16 Andreas Steigmiller and Birte Glimm

clude outperforms the other systems for the evaluated ontologies and queries. In fact,
Konclude is faster than the other systems for all ontologies. Although PAGOdA can
answer all queries for all evaluated ontologies, it is clearly slower than Konclude for
Reactome10% and the FLY ontology. For FLY, PAGOdA had to fall back to the fully-
fledged reasoner, i.e., HermiT, for one query and these calls consumed most of the
time. PAGOdA and Konclude returned the same answers for all queries,2 whereas some
answers are incomplete for OWL BGP and Pellet due to their restrictions w.r.t. existen-
tial variables. Pellet and especially OWL BGP are significantly slower than Konclude
and PAGOdA. On the one hand, this is due to the fact that Pellet and HermiT cannot
handle these ontologies as easily as Konclude and they do not have optimisations to
delegate parts of the reasoning to more specialised systems (such as PAGOdA). On the
other hand, our query answering is much “deeper integrated” into the reasoning system
and, hence, it can better utilise the internal data structures and can profit more from
corresponding (reduction) optimisations. Also preprocessing (i.e., loading, consistency
checking, etc.) is significantly faster for Konclude than for the other systems (it required
at most half of their time).

6 Conclusions

We presented a new query answering approach based on the well-known absorption
optimisation that works well for several more expressive Description Logics and can
nicely be integrated into state-of-the-art tableau-based reasoning systems. More pre-
cisely, the approach rewrites/absorbs a conjunctive query into several simple axioms
such that minor extensions of the tableau algorithm appropriately create and propagate
bindings for variables through completion graphs, which then basically encode the sat-
isfied foldings of a query. Soundness, completeness, and termination is guaranteed as
long as only a limited number of new nominals has to be introduced in the reasoning
process, which seems always the case in practice.

The deep integration facilitates special optimisations that closely interact with other
reasoning services and utilise the internal data structures of the reasoner, which results
in a good performance. In fact, we integrated the presented query answering approach
into the reasoning system Konclude and evaluated it with several real-world as well
as benchmark ontologies. The comparison with state-of-the-art, but restricted query
answering systems shows that our approach often achieves competitive performance or
even outperforms these other systems.

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press, second edn. (2007)

2. Blackburn, P., Seligman, J.: Hybrid languages. J. Logic, Language & Information 4(3) (1995)

2 PAGOdA ignores the cardinality of answers by evaluating all SPARQL queries as they have
the DISTINCT modifier.



Absorption-Based Query Answering for Expressive Description Logics 17

3. Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive description
logics: An automata-theoretic approach. In: Proc. National Conf. on Artificial Intelligence
(2007)

4. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: An OWL 2 reasoner. J.
Automated Reasoning 53(3), 1–25 (2014)

5. Glimm, B., Horrocks, I., Sattler, U.: Unions of conjunctive queries in SHOQ. In: Proc. Int.
Conf. on Principles of Knowledge Representation and Reasoning (2008)

6. Glimm, B., Kazakov, Y., Kollia, I., Stamou, G.: Lower and upper bounds for SPARQL
queries over OWL ontologies. In: Proc. National Conf. on Artificial Intelligence (2015)

7. Glimm, B., Lutz, C., Horrocks, I., Sattler, U.: Conjunctive query answering for the descrip-
tion logic SHIQ. J. Artificial Intelligence Research 31, 157–204 (2008)

8. Grädel, E.: Why are modal logics so robustly decidable? In: Current Trends in Theoretical
Computer Science, Entering the 21th Century, vol. 2, pp. 393–408. World Scientific (2001)

9. Haarslev, V., Möller, R., Wessel, M.: Querying the semantic web with Racer + nRQL. In:
Proc. KI-2004 Int. Workshop on Applications of Description Logics (2004)

10. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc. Int. Conf. on
Principles of Knowledge Representation and Reasoning. AAAI Press (2006)

11. Horrocks, I., Tessaris, S.: Querying the semantic web: a formal approach. In: Proc. Int. Se-
mantic Web Conf. Springer (2002)

12. Hudek, A.K., Weddell, G.E.: Binary absorption in tableaux-based reasoning for description
logics. In: Proc. Int. Workshop on Description Logics. vol. 189. CEUR (2006)

13. Kollia, I., Glimm, B.: Optimizing SPARQL query answering over OWL ontologies. J. Arti-
ficial Intelligence Research 48, 253–303 (2013)

14. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL ontology
benchmark. In: Proc. European Semantic Web Conf. Springer (2006)

15. Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in expressive de-
scription logics via tableaux. J. Automated Reasoning 41(1), 61–98 (2008)

16. Pan, J.Z., Thomas, E., Zhao, Y.: Completeness guaranteed approximation for OWL-DL
query answering. In: Proc. Int. Workshop on Description Logics. vol. 477. CEUR (2009)

17. Parsia, B., Matentzoglu, N., Gonçalves, R.S., Glimm, B., Steigmiller, A.: The OWL reasoner
evaluation (ORE) 2015 competition report. J. Automated Reasoning 59(4), 455–482 (2017)

18. Rudolph, S., Glimm, B.: Nominals, inverses, counting, and conjunctive queries or: Why
infinity is your friend! J. Artificial Intelligence Research 39, 429–481 (2010)

19. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL
reasoner. J. Web Semantics 5(2), 51–53 (2007)

20. Steigmiller, A., Glimm, B.: Absorption-based query answering for expressive description
logics – technical report. Tech. rep., Ulm University, Ulm, Germany (2019), available on-
line at https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.090/Publikationen/2019/

StGl2019-ABQA-TR-ISWC.pdf
21. Steigmiller, A., Glimm, B., Liebig, T.: Reasoning with nominal schemas through absorption.

J. Automated Reasoning 53(4), 351–405 (2014)
22. Steigmiller, A., Liebig, T., Glimm, B.: Konclude: system description. J. Web Semantics 27(1)

(2014)
23. Stoilos, G., Stamou, G.: Hybrid query answering over OWL ontologies. In: Proc. European

Conf. on Artificial Intelligence (2014)
24. Vardi, M.Y.: Why is modal logic so robustly decidable? In: Proc. DIMACS Workshop on

Descriptive Complexity and Finite Models. vol. 31. American Mathematical Society (1997)
25. Zhou, Y., Cuenca Grau, B., Nenov, Y., Kaminski, M., Horrocks, I.: PAGOdA: Pay-as-you-go

ontology query answering using a datalog reasoner. J. Artificial Intelligence Research 54,
309–367 (2015)

https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.090/Publikationen/2019/StGl2019-ABQA-TR-ISWC.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.090/Publikationen/2019/StGl2019-ABQA-TR-ISWC.pdf

	Absorption-Based Query Answering for Expressive Description Logics
	Introduction
	Preliminaries
	Description Logics and Conjunctive Queries
	Tableau Algorithm

	Absorption-Based Query Entailment Checking
	Query Absorption
	Tableau Rules and Blocking Extensions
	Correctness and Termination Sketches

	Optimized Query Answering Reduction
	Implementation and Experiments
	Conclusions


