
Dissertation zur Erlangung des Doktorgrades Dr. rer. nat.
der Fakultät für Ingenieurwissenschaften, Informatik und Psychologie der Universität Ulm

Hierarchical Planning through Propositional Logic –
Highly Efficient, Versatile, and Flexible

von Gregor Behnke
aus Ribnitz-Damgarten

am Institut für Künstliche Intelligenz
Institutsdirektorin: Prof. Dr. Susanne Biundo-Stephan

im August 2019

Except were otherwise noted, pages 1 until 103 are licensed under the Creative Commons Attribution-
ShareAlike 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

Amtierender Dekan: Prof. Dr.-Ing. Maurits Ortmanns
Gutachter: Prof. Dr. Susanne Biundo-Stephan
Gutachter: Prof. Dr. Dana S. Nau
Gutachter: Prof. Dr. Uwe Schöning
Tag der Promotion: 02. Dezember 2019

HoCloG peGoS not peDoH

Acknowledgements

Lord, what fools these mortals be!
– Puck, A Midsummer Night’s Dream, Act III, Scene II

A foolish endeavour it would have been to undertake this work without
the help of others. I therefore express my thanks and deepest gratitude
to all those who have supported me in my research and beyond.

Prof. Dr. Susanne Biundo-Stephan
for allowing me to partake in the voyage to the vision of companion
systems and all the opportunities surrounding it and for providing
helpful critique and feedback on my work

Prof. Dr. Dana Nau and Prof. Dr. Uwe Schöning
for the huge effort they put into disentangling the indecipherable ram-
bling in this thesis

Prof. Dr. Birte Glimm
for her direct and diligent critique and advice and for her willingness
to work up to the middle of the night

Dr. Pascal Bercher
for always dutifully sacrificing his own time at my behest even though
this thesis and my work acknowledges him all too rarely

Dr. Marvin Schiller
for his kindness at all times in discussions

the unknown reviewers
for liking our “enjoyable proofs”

Daniel Höller
for his infatuation with new ideas, their discussion, and implementa-
tion, for being a good friend, and for the time spent waiting for the
bus

Jana Behnke
for all the effort she put into providing opportunities to a little boy,
even though he woke her up at 5 am on every Sunday morning

Abstract

AI Planning is a core technology in enabling advanced assistance for human users. When
faced with complex problems such as handicraft tasks for household repairs, Do-It-
Yourself projects, or difficult assembly tasks, a planning-based assistance system can
provide individualised and context-dependent instructions. It thus effectively supports
the user in achieving his or her goals. High-quality assistance should in addition conform
to the user’s current wishes and preferences to ensure maximum utility. This can be
achieved by involving the user into the planning process, i.e. by making planning mixed-
initiative. Hierarchical Task Network (HTN) planning is a method particularly well
suited for providing user support, as it resembles the means and structures humans use
for problem solving. We identified two major challenges that every mixed-initiative HTN
planning system must face and show how to address them: generating plans quickly and
flexibly altering them according to the user’s demands.

The main focus of this thesis lies on addressing the first challenge, i.e. on developing
a quickly responding and efficient HTN planner. Designing efficient HTN planners is
particularly difficult. Their algorithms have to take both dimensions of the problem
description – state and hierarchy – into account and have to consider interactions be-
tween them. We use a translation into propositional logic, enabling for the first time
a uniform view on the whole planning problem. First, we describe a new encoding for
totally-ordered HTN planning, before extending it in two consecutive steps to capture
general, partially-ordered domains. Second, we introduce Path Decomposition Trees
(PDTs) and Solution Order Graphs (SOGs) which enable a compact encoding and al-
leviate unnecessary reasoning from a SAT solver. They also pave the way for future
insights into structural properties of HTN planning problems, which allow for more ef-
ficient planning as well as for more advanced user support. Third, we show that our
encodings are a significant empirical improvement over the current state of the art in
HTN planning. Lastly, we present a fundamental technique for optimal HTN planning
– which is especially important in assistance scenarios – namely a method to compute
succinct depth bounds for plan-length optimisation.

In a mixed-initiative planning environment, users will frequently request the planner to
change a currently considered plan. We start solving this second challenge by considering
the most basic task involved: to verify that the changed plan is a solution to the planning
problem at hand. First, we show that this task is NP-complete. Second, we develop the
first plan verifier for HTN planning, which is based on a transformation into propositional
logic. Third, we analyse and categorise the requests possibly made by a user and show
that the objectives posed by her or him can be suitably represented as formulae in Linear
Temporal Logic (LTL). Fourth, we analyse the computational complexity of changing a
plan, showing that this task can be between NP-complete and undecidable. Lastly, we use
our SAT-based planner to change a plan with respect to a request formulated as an LTL
formula. We show that the full spectrum of LTL formulae can be supported efficiently
in a propositional encoding. For that, we introduce a new theoretical foundation for
reasoning about parallelism in LTL traces.

The practical applicability of our techniques has been demonstrated within a joint trans-
fer project with Robert Bosch GmbH. In it, we developed an assistance system that
guides novice users through a handicraft Do-It-Yourself project. The underlying hierar-
chical planning model is highly complex. Currently the only planner that is able to find
plans for this model within an acceptable time frame is the SAT-based HTN planner
developed as part of this thesis.

8

Contents

1. Introduction 1

2. From Classical to Hierarchical Planning 5
2.1. Summary . 5
2.2. Classical Planning . 6
2.3. Lifted Planning . 7
2.4. Hierarchical Planning . 8

2.4.1. Hierarchical Task Network Planning 8
2.4.2. Extensions and Restrictions to HTN planning 12
2.4.3. Structures for Representing Solutions 13

2.5. Algorithms for Solving Planning Problems 16
2.6. Linear Temporal Logic . 19

3. From Blackbox to Whitebox Planning 21
3.1. Summary . 21
3.2. Planning-based Assistance . 22

3.2.1. Black-box Planning . 23
3.2.2. White-box Planning . 23

3.3. The Planner in Mixed-Initiative Planning 26
3.4. Changing Plans . 28

3.4.1. Requests to Change a Plan . 28
3.4.2. Complex User requests . 30

3.5. The Computational Complexity of Changing Plans 31
3.5.1. Complexity of Plan Verification . 31
3.5.2. Complexity of Changing Plans . 33

4. From Verification to Planning 37
4.1. Summary . 37
4.2. Translating Plan Verification into SAT Formulae 39

4.2.1. Encoding Decomposition . 40
4.2.2. Computing Bounds for the Tree Height 42
4.2.3. Empirical Evaluation . 43

4.3. A Tree-style SAT Formula for Totally Ordered Planning 46
4.3.1. Path Decomposition Trees . 46
4.3.2. Tree-style SAT Formulae . 49
4.3.3. Empirical Evaluation . 51

4.4. Handling Partially-Ordered Problems . 53
4.4.1. Naive Encoding . 54
4.4.2. SOGs – Solution Order Graphs . 56

i

Contents

4.4.3. From n4 to mostly n2 Ordering Clauses 58
4.4.4. Attaching Modern Propositional Encodings of Classical Planning . 59
4.4.5. Empirical Evaluation . 59

4.5. Finding Provably Optimal Plans . 64
4.5.1. Succinct Bounds on the Decomposition Depth 65
4.5.2. Evaluation . 67

4.6. Discussion and Future Work . 69

5. From Changing Plans to Assisting Users 71
5.1. Summary . 71
5.2. Handling User Requests via LTL . 72

5.2.1. Planning with LTL constraints . 73
5.2.2. Improving the Propositional Encoding for LTL 74

5.3. Practical Application . 75
5.3.1. Scenario . 75
5.3.2. System Architecture . 76
5.3.3. Coherent Models for Multi-Component Planning-Based Assistance

Systems . 79
5.3.3.1. Knowledge Management and Decomposition Methods . . 80
5.3.3.2. Knowledge Management and State Information 81

5.3.4. Evaluation . 81

6. Conclusion 85

A. Bibliography 87

B. Core Publications 103

Note on References: References to bibliographic items are prefixed with a letter in-
dicating their type. References prefixed with C are peer-reviewed core publications of
this dissertation and reprinted in full in Appendix B. References prefixed with F are
further publications of which I am a co-author. All F publications except for [F43] are
peer-reviewed. References prefixed with R denote related work of with I am not a(n)
(co-)author.

ii

1. Introduction

Humans, especially inexperienced ones, often require assistance when faced with com-
plex problems. For example, they may require assistance via providing appropriate
instructions when performing handicraft tasks such as household repairs or construction
projects [C3, F18], when developing a personal fitness schedule [F27], or when setting up
a home theatre ensemble [F31, F40, R74]. In these scenarios, planning-based assistance
can suitably provide individualised instructions and thus support the user to achieve his
or her goals. Merely providing a sequence of instructions is often not sufficient [F26]. We
argue that users often require a mixed-initiative interaction allowing them to adapt the
presented instructions to their personal preferences and wishes. Existing planners are
often not fast enough to ensure an appropriately short response time for such assistance.

This thesis is concerned with the theoretical foundations and the practical realisation
of providing adaptive planning-based assistance. The main focus lies on developing
the planning capabilities necessary for quickly processing the user’s wishes and requests
with respect to a given plan. In this thesis, we consider hierarchical planning in form
of Hierarchical Task Network (HTN) planning [R88, R113, R143]. It is well suited to
deliberate with humans on planning processes, as on the one hand it resembles the way
humans plan themselves and on the other hand is quite appropriate for realising for
advanced capabilities, e.g. the explanation and repair of plans [F30, R74, R87].

We start by discussing existing planning-based assistance systems in Chapter 3. We
then argue that any request of a user to change a given plan can be suitably interpreted
as formulae in Linear Temporal Logic (LTL). Next, we provide the first theoretical
foundation for mixed-initiative planning by classifying and studying possible requests to
change a given plan. For most of these requests, the task of plan verification – asking,
given a sequence of actions, whether it is a solution to the current planning problem
– plays a central role. We show that this task is NP-complete for HTN planning [C9]
and for another variant of hierarchical planning [F35]. Next, we classify possible change
requests for plans along two axes: what to change and which follow-up modifications
are allowed. For all these requests, we investigate their computational complexity [C8].
Lastly, we generalise these results in this thesis to cover arbitrary requests posed.

These theoretical results – especially the NP-completeness of HTN plan verification
– led to reviving an idea for solving HTN planning problems: HTN planning via logic.
It is described in Chapter 4. This planning approach has – in addition to its efficiency
– advantages when applied in mixed-initiative planning, as it enables a seamless inte-
gration of user requests into the planning process. Prior to the work of this thesis two

1

1. Introduction

encodings for HTNs in logic existed. One translates HTN planning problems into propo-
sitional logic [R138], but assumes that first, the HTN structure is acyclic, that second,
each task can occur at most once during decomposition – which is an even stricter than
acyclicity, and that third tasks can be arbitrarily inserted – not just via decomposition.
These restrictions are severe and limit the practical usability of the translation. The
second translation encodes totally ordered HTN planning problems into answer set pro-
gramming, modelling the progression search used by SHOP [R114]. We developed a new
translation of HTN planning problems into SAT, which is applicable without restrictions
and adheres to the standard semantics regarding task decomposition of HTN planning
[R88, R143] and Hybrid Planning [F35, R124].

As a first step in creating a planner that exploits the concept of planning via logic,
we operationalised the complexity results for HTN plan verification by developing a
translation into propositional logic. The encoding (as all other encodings in this thesis)
represents all possible decompositions up to a given depth-bound. This work constitutes
the first plan verifier for HTN planning [C7], and has led to the development of other
verifiers (e.g. by Barták et al. [R48]). Our verifier can be utilised in a wide range
of scenarios beyond that of mixed-initiative planning, in particular for post-optimising
plans and for local plan repair.

A SAT-based planner can be obtained from the verification encoding by replacing
the clauses asserting the solution that should be verified with a formula expressing state
transitions. To ensure the completeness of this planner, the bound on the decomposition
depth is increased stepwise until a solution has been found. Unfortunately, the use of this
first encoding for planning is limited, mostly due to the size of the formula and due to
structures in the formula that make it particularly difficult to solve for most SAT solvers.
Therefore, we developed a more compact propositional encoding specifically designed
for totally-ordered planning domains. It is based on our newly introduced theoretical
concept of Path Decomposition Trees (PDTs, [C5]) which are compact representations of
all possible decompositions up to a given depth-limit. The resulting planner shows good
results, outperforming all currently known techniques on totally-ordered HTN planning
problems. We developed two modifications of the encoding, each allowing to handle
partial order in the domain [C2, C6]. For one of them, we developed the Solution Order
Graph (SOG), a compact representation of the partial order of all solutions up to a given
decomposition depth [C2]. SOGs allow for an efficient representation of partially ordered
solutions in a propositional formula. The application of SOGs and PDTs is however not
limited to SAT-based planning: they are generic representations of the problem, which
make structural properties of the problem explicit. As such they may be applied in
other algorithms, e.g. in search-based ones, as well as to e.g. improve heuristics. The
new encoding for general HTN planning based on an SOG exhibit good performance
when compared to state-of-the-art HTN planners.

The so-far presented planning techniques only allow for finding some solution – without
a guarantee to its quality. In practical applications short or cheap (according to some cost
function) plans are often required. This is especially true if human users are involved as
they might spot obvious redundancies in the plan. Finding guaranteed optimal plans in
HTN planning via SAT is difficult, as there is no strict correlation between decomposition
depth and plan length. As such, it might be possible to derive shorter plans if deeper

2

decompositions are allowed. Optimal SAT-based HTN planning thus requires to compute
an upper bound on the decomposition depth necessary to reach all plans up to a given
length. We show how succinct upper bounds can be found [C1]. Our planner using this
bounding technique outperforms other optimal HTN planners.

In Chapter 5, we show that the newly developed SAT-based HTN planner can suitably
form the basis for addressing the user’s instructions within a mixed-initiative assistance
system. As noted above, a user’s requests can be interpreted as formulae in LTL. LTL
constraints can be added to a propositional planning formula easily, as an encoding is
already known [R96]. However, this encoding cannot cover full LTL, but only formulae
without the temporal next operator X. This operator is especially useful when formalising
a user’s requests to change a plan, as e.g. the request to perform an action as the
immediate next step requires this operator. We show how the encoding can be modified
to also cover the operator X. In doing so, we develop a new theoretical framework, Partial
Evaluation Traces, to reason about LTL formulae [C4]. Using this framework, we not
only added support for the operator X, but also improved the base encoding allowing
for even faster planning [C4].

Lastly, we show that the developed technologies have been successfully applied in
industrial research. The techniques described and developed within this thesis have
been applied in a technology transfer project which was jointly conducted with Robert
Bosch GmbH. In it, we have created an assistant that guides a novice user through a
handicraft Do-It-Yourself project, such as building a wooden key rack [C3, F18]. The
planning model in this scenario is highly complex and currently only the newly developed
SAT-based planner is able to find plans in an acceptable time frame. In this context,
we discuss how different types of knowledge (procedural and static) in such an assistant
can be suitably integrated [F33, C10].

3

2. From Classical to Hierarchical Planning

2.1. Summary

Planning is the means of deciding which actions to take in order to achieve a given ob-
jective. This complex cognitive ability is one of the most notable abilities possessed by
humans, setting them apart from most other live.1 The need for planning when produc-
ing composite tools may have even influenced the evolution of the human brain [R123].
Planning helps to make strategic long-term decisions, to save resources, time, and en-
ergy, and to achieve one’s objectives even in an adversarial environment. Naturally,
early computer scientists aimed to develop systems that were able to emulate the hu-
man ability to plan and to solve problems. Beginning with the general problem solver
[R159], research in planning began to focus on the task of selecting a sequence of actions
that, if executed, would lead to a desired goal. Solving these problems automatically
with a planner requires the problem to be described as an abstraction of the real world,
which mirrors its relevant aspects. The idea is that a plan, once found for the ab-
stract model, would also be workable in the real world, provided the planning model
was chosen appropriately. As a consequence, a variety of simple and complex planning
formalisms was developed, each suited to reflect some features of the real world (e.g.
STRIPS [R158], PDDL [R130], PDDL with time [R116, R120], RDDL [R91], and HTN
planning [R143, R156] formulated using HDDL [F14]). In these models, planning boils
down to combinatorial optimisation.

Planners have been applied in a multitude of practical scenarios, demonstrating one
of their key capabilities: being solvers for arbitrary – and not just a few specific –
planning domains. For example, planners have been used to optimise logistics [R86], to
optimise the transport of plants in automated greenhouses [R90], for determining the
reactions needed for the synthesis of organic compounds [R71], for planning experiments
in synthetic biology [R54], for generating narratives [R67, R105], for tutoring systems
or computer games [R81], and for controlling NASA’s rovers on Mars [R100, R112] and
the Rosetta space probe [R70].

The results and techniques that we present in this thesis will only be formulated for
propositional planning, i.e. planning with the assumption that the state of the world
can be represented as a set of atomic logical propositions. The techniques we present
are however also applicable to planning problems which are specified using a lifted for-
malisation (see Section 2.3). Notably, the evaluations we present throughout this thesis

1At least on earth.

5

2. From Classical to Hierarchical Planning

(Sections 4.2.3, 4.3.3, 4.4.5, and 4.5.2) consider mostly planning problems specified in a
lifted fashion. We further assume non-continuous, i.e. discrete, time. We however sup-
pose that the developed techniques can be extended to also handle the above-mentioned
more complex types of planning problems, i.e. domains containing continuous state vari-
ables and time (see, e.g. Section 4.6).

In this chapter, we introduce classical and hierarchical planning – in the notation used
throughout this thesis. We start by giving an introduction into classical planning. Based
on it, we describe the extensions hierarchical planning makes. We further introduce
theoretical concepts and results by other researchers that are relevant to the techniques
and results developed in this thesis. Lastly, we briefly introduce Linear Temporal Logic
(LTL), which we will use in Chapters 3 and 5.

Core publications described in this chapter

This chapter serves to introduce relevant concepts for this thesis and thus does not contain any
core contribution.

2.2. Classical Planning

The most basic formalism for planning is that of classical planning, which is sometimes
also called STRIPS, named after the first planner for the by now standard formalism
of classical planning [R158]. In classical planning, states of the world are described in
terms of sets of proposition symbols. We denote with L the (finite) set of all proposi-
tion symbols, which can e.g. include propositions like attached_battery7_drill5. It
describes that the battery7 is attached to the drill5. A state is any subset s of L.
All propositions p ∈ s are considered true in s while all others are considered false.
Actions provide the means to transform states into each other. Every action a is associ-
ated with a precondition prec(a) and an effect eff (a). The precondition prec(a) is any
propositional formula over the proposition symbols L. It describes the circumstances
under which the action a can be executed. An action a is considered executable in a
state s if and only if s |= prec(a). For example the action attach_battery7_drill5 –
which shall attach battery7 to drill5 – can only be executed if battery7 is com-
patible with drill5. Hence, the precondition will contain the proposition symbol
compatible_battery7_drill5. The effect eff (a) of an action describes how the ap-
plication of a changes the state to which it is applied. The effect can either be described
as a conjunction of positive or negative proposition symbols or equivalently by two sets
of proposition symbols: add(a) and del(a). The set add(a) – the adding effects – contains
the positively occurring propositions, while del(a) – the deleting effects – contains the
negative ones. If a is executed in the state s, the propositions in del(a) are removed from
s and those in add(a) are added. More formally, executing a in s results in the state

6

2.3. Lifted Planning

(s \ del(a)) ∪ add(a) and is denoted with γ(s, a). For a sequence of actions π = a1 . . . an

applied in a state s, we define the resulting state as

γ(s, π) =

s π = ε

undefined π = a1a2 . . . an and s 6|= prec(a1)
γ(γ(s, a1), a2 . . . an) π = a1a2 . . . an and s |= prec(a1)

A planning problem in the classical setting is given in terms of two sets of propositions: sI

and g – the initial state and the goal. A planner’s objective is to find a sequence of actions
π – called a plan – that if executed in the state sI will lead to a state sg = γ(sI , π) in
which the goal g holds, i.e. g ⊆ sg. Note that this necessarily entails that preconditions
of every action in π are satisfied, else sg would be undefined. From a computational
point of view, determining whether an solution to a classical planning problem exists is
PSPACE-complete [R147].

There are several extensions to this basic classical formalism. For example planners
often allow for conditional effects [R151], which describe effects that are only executed
if the state in which an action is applied satisfies a given formula. Conditional effects,
as well as other similar extensions, can be compiled into an equivalent model in the
presented formalism [R132]. The SAS+ planning formalism [R146] extends the repre-
sentation of states from a simple boolean representation to a multi-valued representation.
In it, a state is an assignment of a value to each state variable. Similar to conditional
effects, SAS+ planning problems can be compiled into the presented formalism. For
both conditional effects (and similar extensions) and SAS+ it is more efficient to de-
velop planners that can handle them natively. A compilations either increases the size of
the problem significantly (for conditional effects up to exponentially many new actions
in the number of conditional effects per action are needed) or hide relevant structural
information from the planner.

2.3. Lifted Planning

The description of classical planning in the previous section assumed that both the
proposition symbols and the actions are mere symbols, e.g. attached_battery7_drill5.
While such a simplistic model might be adequate for theoretical investigations and the
development of planners, it is very impractical for modelling planning domains. The
model would have to specify all proposition symbols and actions explicitly, even though
they often conform to a pattern. For example, a DIY domain might contain the predicate
attached_b_d for every battery b and drill d. The same holds for the attach_b_d
actions. To allow for specifying such domains compactly, they are commonly specified in
a lifted fashion. Here, proposition symbols and actions are not only names, but names
with a sequence of parameter variables. For example, we can declare an action (attach
?b ?d).2 Each variable is assigned to a type, i.e. a set of constants. In the example,
the type of ?b is battery – the set of all batteries – while the type of ?d is drill – the
set of all drills. The preconditions of actions are described by function-free first order

2In planning, variable names are commonly prefixed with question marks, as e.g. in PDDL.

7

2. From Classical to Hierarchical Planning

formulae. The add and delete lists of actions similarly contain positive, function-free
literals.

The simple propositional representation presented above can be generated from such a
lifted representation by enumerating every assignment, i.e. instantiation, of variables to
constants of the respective types. Of course, such a simple instantiation procedure will
generate actions that can never be executable. To compute only the potentially reachable
groundings, several techniques have been developed. These include the planning graph
[R140] and the conversion into SAS+ [R101].

Throughout this thesis, we will describe techniques and ideas using a grounded propo-
sitional representation of planning problems. In examples and in practical applications,
we will however use a lifted representation, both to ease modelling and to make models
easier to read and to ease interactions with users. The presented theory and tech-
niques are (with appropriate modifications) nevertheless applicable, since we can create
a propositional model from a lifted one via grounding.

2.4. Hierarchical Planning

Classical planning aims solely at finding a sequence of actions from a pool of available
actions that transforms the initial state into a goal state. The domain structure and the
rationale used when solving these planning problems may not conform with the ways
humans would solve the same problem, which tend to solve problems in a hierarchical
fashion [R154]. In addition to a portfolio of available elementary actions, humans also
perform reasoning over more abstract tasks which are composed of (potentially) a mul-
titude of elementary actions [R111]. The intensity with which humans do this depends
on the cognitive difficulty of the problem. While they tend to rely more heavily on
abstractions when solving easier and day-to-day tasks, reasoning in complex tasks is
done in a manner more similar to forward search on elementary actions [R107]. In any
case, it is useful to be able to refer to more abstract courses of action when interacting
with human users. This e.g. comes into play when a planning-based system explains its
behaviour to the user [R74, R84], where an abstraction hierarchy allows for shorter and
more focussed explanations. Lastly, it is often also more intuitive to formulate the aim
of a planning problem not in terms of a state to reach, but in terms of tasks to preform.
For example, if a user wishes to participate in a conference, the initial and final states
of a plan are identical – with the sole exception that the user has less money after the
conference. In contrast, it is intuitive to formulate the aim in terms of a high-level task
to perform: (visit ICAPS_2019).

2.4.1. Hierarchical Task Network Planning

The most commonly used formalism for planning problems that contains abstract tasks
and defines its aims in terms of tasks to perform is Hierarchical Task Network (HTN)
planning [R44, R143, R156]. In HTN planning, we distinguish two types of tasks: prim-
itive actions and abstract tasks. Primitive actions are formulated with the same means
as actions in classical planning, i.e. preconditions and effects. They represent the lowest

8

2.4. Hierarchical Planning

α(t1) = A

α(t2) = B

α(t3) = c

α(t4) = d

T = {t1, t2, t3, t4}

α′(t′1) = B

α′(t′2) = B

α′(t′3) = e

α′(t′4) = f

T ′ = {t′1, t
′
2, t

′
3, t

′
4}

Figure 2.1.: Two example task networks tn = (T,≺, α) and tn′ = (T ′,≺′, α′) where the
order is given by the depicted graphs. Compound task names are indicated
with capital letters, while lower-case letters indicate primitive action names.
Copied from [C2]. Reprinted with kind permission of AAAI press. AAAI
does not endorse any of Ulm University’s products or services.

level of abstraction available, i.e. those activities that can be performed without the
need for further refining them. Abstract tasks represent more complex courses of action.
Formally, abstract tasks are identified by their names. Whenever we are referring to a
task from now on, we mean either an abstract task or a primitive action.

An HTN planning problem connects abstract tasks with primitive actions via decom-
position methods. Such a method is a rule a → tn that provides an option to perform
the left hand side abstract task a: by performing the tasks contained in the right hand
side tn. The means by which the right hand side tn is described gives HTN planning
its name: task networks. A task network is a partially ordered multi-set of tasks. Since
task networks are multi-sets, i.e. can contain the same task twice, we have to introduce
IDs to distinguish them. Formally, we define a task network as follows.

Definition 1 (Task Network [R88, R143])
Let X be a set of tasks. A task network tn is a triple (T,≺, α) where

• T is a set of task identifiers,
• ≺ ⊆ T × T is a partial order over T , and
• α : T → X labels each task identifier with a task.

We denote with TNX the set of all task networks over a set of tasks X. For a given
task network tn, we denote with T (tn) the set of its task identifiers, with ≺(tn) its task
ordering, and with α(tn) its task labelling.

Two task networks are depicted in Figure 2.1. Based on the definition of task networks,
an HTN planning problem is defined as follows.

Definition 2 (HTN planning problems [R88])
An HTN planning problem is a 6-tuple P = (L,A,O,M, aI , sI) where

• L is a set of proposition symbols,
• A is a set of abstract tasks,
• O is a set of primitive actions (or operators),

9

2. From Classical to Hierarchical Planning

α(t1) = A α(t′1) = B

α(t′2) = B

α(t′3) = e

α(t′4) = f

α(t3) = c

α(t4) = d

T = {t1, t3, t4, t′1, t
′
2, t

′
3, t

′
4}

Figure 2.2.: The task network tn∗ = (T ∗,≺∗, α∗) resulting from applying the method
(B, tn′) to t2 in tn of Fig. 2.1. Copied from [C2]. Reprinted with kind
permission of AAAI press. AAAI does not endorse any of Ulm University’s
products or services.

• M is a set of decomposition methods (a, tna) where a ∈ A and tna ∈ TNA∪O,
• aI ∈ A is the initial abstract task, and
• sI ⊆ L is the initial state

The problem’s decomposition methods describe how abstract tasks can be performed
by means of executing more primitive actions. A decomposition method (a, tna) (also
written as a → tna) allows for replacing the abstract task a in a task network tn with
the task network tna. While doing so, the tasks in tna inherit the relative orderings of
a in tn.

Definition 3 (Task Decomposition [R88])
Let P = (L,A,O,M, aI , sI) be an HTN planning problem and let tn = (T,≺, α) ∈ TNA∪O

be a task network and t ∈ T a task identifier labelled with the abstract task a = α(t). Fur-
thermore, let (a, tna) ∈M be a decomposition method and assume that T ∩ T (tna) = ∅.
If this is not the case, we can rename the task identifiers in tn appropriately.

Decomposing the task identifier t in the task network tn using the method (a, tna)
results in the task network tn′ = (T ′,≺′, α′) where:

T ′ = (T \ {t}) ∪ T (tna)
α′ = (α \ {(t, a)}) ∪ α(tna)
≺′ = (≺ \ {(x, t), (t, x) | x ∈ T}) ∪ ≺(tna) ∪

{(x, t′) | (x, t) ∈ ≺, t′ ∈ T (tna)} ∪ {(t′, x) | (t′, x) ∈ ≺, t′ ∈ T (tna)}

We write tn →D tn′ if there is any decomposition method m ∈ M and task identifier
t ∈ T (tn) such that applying m to t in tn leads to tn′. Further,→∗D denotes the transitive
hull of →D.

If we consider the first task network in Figure 2.1 and apply a method to its task
identifier t2 labelled B whose task network is the second one shown in Figure 2.1, i.e.
the method B → tn′, we obtain the task network shown in Figure 2.2.

10

2.4. Hierarchical Planning

The objective in an HTN planning problem is defined in terms of an initial abstract
task aI . The objective is to apply decomposition methods to aI until a task network
containing only primitive actions has been reached, which we call a primitive decom-
position. The restriction to a single goal task is solely for notational purposes. Any
partially-ordered set of tasks can be used as a goal by adding a single additional decom-
position method.

Definition 4 (Primitive Decomposition)
Let P = (L,A,O,M, aI , sI) be an HTN planning problem. A task network tn is called
a primitive decomposition of P if ({x}, ∅, {(x, aI)})3 →∗D tn holds and tn ∈ TNO, i.e. if
tn contains only primitive actions and can be reached via decomposition from the initial
abstract task.

Determining for a given HTN planning problem whether a primitive decomposition
exists is trivial and can e.g. be done by a bottom-up marker algorithm. For a primitive
decomposition tn to be a solution to a given planning problem P we also have to show
that it is executable. Here, executability means that there is a linearisation of the tasks
in tn that is executable in the initial state sI .

Definition 5 (Executability and Solutions)
Let P = (L,A,O,M, aI , sI) be an HTN planning problem. Let tn ∈ TNO be a primitive
action network. tn is executable in sI if there is a linearisation t1, . . . , tn of its task
identifiers T (tn) such that π = α(tn)(t1) . . . α(tn)(tn) is executable in sI , i.e. such that
γ(sI , π) is defined.

A solution to an HTN planning problem, i.e. a plan, is a sequence of primitive actions
π such that there is a primitive decomposition tn and π is an executable linearisation of
tn. We denote the set of solutions to an HTN planning problem P as S(P).

In the presented form, an HTN planning problem does not pose any requirement to
the state that is reached after the last task in the solution is executed. This is not
a restriction as we can simulate the requirement posed by a goal state. To do so, we
introduce a new initial abstract task a∗I and a primitive goal task g whose preconditions
are the desired goal. We then add a decomposition method decomposing a∗I into aI and
g with aI ≺ g, i.e. a∗I → aIg. Thus g will be the last task in any linearisation of a
primitive decomposition and g’s preconditions, i.e. the state-based goal, will be fulfilled
in any solution.

From the standpoint of complexity, finding solutions to an HTN planning problem is
a hard task. Erol et al. [R143] showed that determining whether a solution to an HTN
planning problem exists is undecidable.

HTN planning problems bear strong similarities to formal grammars. The process of
decomposition is very similar to derivation in formal grammars. Consequently proofs
for HTN planning domains sometimes rely on concepts from formal grammars. Höller
et al. [F36, F42] studied the connection of solutions in HTN planning and formal lan-
guages. From a language point-of-view, HTN planning problems correspond to a class of

3Here x is an arbitrary symbol.

11

2. From Classical to Hierarchical Planning

languages strictly between the context-free and context-sensitive languages [F42] while
classical planning problems can express at most regular languages [F36], showing the
high expressivity of HTN planning.

As for classical planning, HTN planning problems are usually specified in a lifted for-
malism where abstract tasks and decomposition methods are specified in a factored way
utilising typed variables. To obtain a purely propositional representation, we can ground
the domain and perform reachability checks on the methods and abstract tasks. The
planning system PANDA (Planning and Acting in a Network Decomposition Architec-
ture [F29, R75, R124]) provides such a “grounder”, which was mainly developed by the
author of this thesis. Other “grounders” for HTN planning problems are also available
[R59, R76], which often produce larger groundings than PANDA due to its more com-
plex reachability analysis. Especially in HTN planning there are also planners that don’t
perform grounding before the actually planning process but use the domain in a lifted
fashion and ground whenever necessary. These planners include, e.g. the well-known
planners SHOP and SHOP2 [R118, R135]. This approach is advantageous whenever it
is computationally too expensive to fully ground the planning domain. For them it is in
contrast also more difficult to define good heuristics.4

2.4.2. Extensions and Restrictions to HTN planning

In principle any extension to classical planning, e.g. conditional effects, can also be added
to HTN planning. There are also extensions and alterations that are specific to the hi-
erarchical nature of HTN planning. This includes, e.g. Hybrid Planning which adds
preconditions and effects to abstract tasks and allows for causal links in decomposition
methods [F35, R124]. Several formulations of HTN planning also allow for state con-
straints to be present in decomposition methods [R48, R143]. These include e.g. before,
after, and prevail constraints, which span between tasks and may refer to the states
occurring in a solution between them. The most prominent of these constraints are
method preconditions [R118, R135], which must be fulfilled in order to a decomposition
method to be applicable.5 Method preconditions can be compiled into additional primi-
tive actions while the other constraints must – at least to our knowledge – be handled in
the planner. We will refrain from presenting such extensions as they would only clutter
the notation unnecessarily. The techniques presented in this thesis can however handle
method preconditions, before, after, and prevail constraints.

In addition to extensions to the presented formalism, there are also several restrictions
to the hierarchy that have been investigated in the past. Each of these restrictions forms
a subclass of HTN planning problems, which is decidable and thus is worth investigating
as more efficient algorithms to solve them might exist. Most notably, if we restrict the
partial order ≺ in every method to be a total order, planning becomes significantly
easier. First, determining plan-existence for totally-ordered HTN planning problems
is “only” EXPTIME-complete [R143]. Second, handling them is also easier from an
algorithmic and implementation standpoint. This is e.g. witnessed by the large number
of specialised planners for them, which includes SHOP [R135], totSAT [C5], Alford’s

4Note that neither SHOP nor SHOP2 use heuristics, but blind depth-first search.
5For the exact semantics of these preconditions we refer to Nau et al. [R118] and Behnke et al. [C7].

12

2.4. Hierarchical Planning

A

x

A

B

A x B y

B x y

B

z

z

Figure 2.3.: Decomposition methods of a planning problem with abstract tasks A =
{A,B} and primitive actions O = {x, y, z}. The initial abstract task is A.

translation [R92], and a planner based on Answer Set Programming [R114]. Theoretical
work on HTN planning was concerned with further restrictions, which include

• acyclic planning problems, where the decomposition methods do not allow any
recursion through abstract tasks, i.e. it is impossible to derive a task network
containing the abstract task a via an arbitrary number of decompositions from a
[R143],

• regular planning problems, where each method can contain only a single abstract
task and this task must be ordered after all primitive actions in the method [R143],

• tail-recursive planning problems, which forbid certain types of recursion and allow
them only through a last abstract task in every method [R68].

Lastly, there is HTN planning with task insertion – or TIHTN – which is not an
alteration to the way planning problems are expressed but to the requirements posed to
its solution. In TIHTN planning we require a solution – a sequence of primitive actions
– to only contain the linearisation of a primitive decomposition as a subsequence. The
planner is allowed to insert tasks apart from the hierarchy, but still has to decomposed
the initial abstract task. This alteration makes HTN planning decidable [R88], more
precisely it becomes NEXPTIME-complete [R69]. We will not further consider TIHTN,
but note that the planning techniques presented in this thesis can easily be adapted to
handle TIHTN planning problems.

2.4.3. Structures for Representing Solutions

To analyse the structure of HTN planning problems and their solutions, several repre-
sentations and abstractions have been developed. These include e.g. the Task Decompo-
sition Graph, which encodes the decomposition methods of an HTN planning problem
in a graph structure [R75].

For this thesis, the most important structures are Decomposition Trees [R88]. They
represent the decompositions that were applied to obtain a solution π. In representing
decompositions of an HTN planning problem, they are related to Task Decomposition

13

2. From Classical to Hierarchical Planning

Trees [R89], Task Decomposition Graphs [F29, R75, R82], and Planning Trees [R134].
These three concepts differ sharply from that of Decomposition Trees, as they represent
an abstraction of all possible decompositions in an HTN planning problem. A Decompo-
sition Tree on the other hand represents those decompositions – without any abstraction
– that have led to a concrete solution π.

The root of a Decomposition Tree is the initial abstract task aI . Every task t occurring
during the decomposition process is represented by a node v in the Decomposition Tree.
Methods in turn correspond to edges, adding an edge from v to child v′ for every task in
a method’s task network. The leafs of the Decomposition Tree then correspond to the
task network resulting from applying all decompositions. These leafs are also called the
tree’s yield.

Definition 6 (Decomposition Tree [R88])
Let P = (L,A,O,M, aI , sI) be an HTN planning problem. A Decomposition Tree (DT)
is a 5-tuple T = (V,E, α, β,≺), where

• (V,E) is a directed tree with the root node r and inner nodes I.
• α : V → A ∪O labels each node with a task. The label of each inner node is in A,
the label of each leaf is in O, and the label of the root node r is aI , i.e. α(r) = aI .
• β : I → M labels each inner node v with a method β(v) = (a, tna) such that
α(v) = a. Further v must have |T (tna)| children C = c1, . . . , c|T (tna)| and there
must be an isomorphism φv : T (tna) → C such that α(φv(ti)) = α(tna)(ti) for all
i ∈ {1, . . . , |T (tna)|}.
• ≺ is a partial order on the nodes of v. For every inner node v with β(v) = (a, tna)
it contains the order φv(t1) ≺ φv(t2) if t1≺(tna) t2 for any t1, t2 ∈ T (tna). It
further contains for every order v1 ≺ v2 the order c1 ≺ v2 and v1 ≺ c2 for any
(v1, c1), (v2, c2) ∈ E. Lastly, ≺ may not contain any other ordering apart from
those implied by these two rules and transitivity.

The depth of a Decomposition Tree is the depth of (V,E). The yield of a Decomposition
Tree is the task network yield(T) = (Ty, αy,≺y) where

• Ty is the set of leafs of T ,
• αy(t) = α(t), and
• ≺y= {(t1, t2) ∈ α | t1, t2 ∈ Ty}.

To illustrate the concept of a Decomposition Tree, consider an HTN planning problem
with the decomposition methods shown in Figure 2.3. In Figure 2.4, we show a Decom-
position Tree for this domain. The yield of this Decomposition Tree consists of its seven
leafs and their relative ordering. It is depicted in Figure 2.5. A valid linearisation of this
yield would, e.g. be xxyxzzy.

Geier and Bercher [R88] showed that every solution π to an HTN planning problem
P is the linearisation of the yield of a Decomposition Tree for P. The contrary is clear
by definition as any executable linearisation of yield(T) will be a solution to P.

Theorem 1 (Decomposition Trees and HTN solutions [R88])
Let P be an HTN planning problem and π a solution to that planning problem.

14

2.4. Hierarchical Planning

Depth 0

Depth 1

Depth 2

Depth 3

A

B

x

A

x y
x B y

zz

Figure 2.4.: A Decomposition Tree for the HTN planning problem shown in Figure 2.3.
Dashed arrows indicate the order ≺, where black arrows indicate order con-
tained in the problem’s methods and blue order implied via decomposition.
Transitively implied ordering constraints are not shown.

x y

x

x y

z

z

Figure 2.5.: The yield of the Decomposition Tree shown in Figure 2.4.

15

2. From Classical to Hierarchical Planning

Then there exists a Decomposition Tree T such that π is a linearisation of yield(T).

2.5. Algorithms for Solving Planning Problems

Due to their computational complexity – classical planning is in general PSPACE-
complete and HTN planning is undecidable – there are no generally efficient algorithms,
i.e. algorithms that run in (only) polynomial time, for solving these problems.6 In the
past, several techniques for solving planning problems have been developed, which aim
at solving them in a practically efficient manner. Practically efficient here means, that
problem instances occurring in the real world will be solved within an acceptable time
frame. How this time frame looks like depends on application, but it can range from
seconds to hours or days – as compared to “more time than the universe has already
existed”. Witnessed by the increase in performance over the last two decades and their
application to real-world problems, these approaches have been widely successful.

The most common way to solve planning problems is via search. This search is ei-
ther performed in the space of plans or in the space of states (respectively the space of
progressions for HTN planning problems [F20, R118]). In plan space search, search is
performed over incomplete plans and successor nodes are created by applying modifica-
tions to them [R150]. Modifications aim at removing a flaw from the plan, i.e. a property
that prohibits the incomplete plan from being a solution, e.g. an unfulfilled precondition.
The search ends as soon as a plan without a flaw is found. In state space search, the
nodes of the search are states, starting from the initial state. Successors are generated
by applying applicable actions to the current state. The search terminates if a state has
been reached in which the goal is true. Both plan space and state space search can be
improved with a variety of techniques, e.g. heuristic search using A* or greedy search,
pruning techniques, (at least state space search) by bidirectional search, or orbit search.

Another search-based technique, which differs in its general principles from state space
and plan space search, is symbolic search. Here one considers the set of all states with
a distance of at most k units from the initial state. These are represent by a Binary
Decision Diagram (BDD). To compute the same set for the distance k + 1, we can
apply operations to the BDD. This allows for considering all reachable states at once,
thus speeding up the computation. Interestingly, this technique can be extended to
incorporate some types of heuristics [R66].

Lastly, there are planning approaches that transform the planning problem into an-
other equivalent problem and use ready-to-use solvers for that problem. Any approach
that solves planning via translation into another problem has one fundamental advantage
compared to search-based techniques: it benefits automatically from progress made in
solving the target problem. This allows for improvement of planner performance without
changing the planner at all. The best known type of these approaches is planning via
SAT – the satisfiability problem for propositional logic.

Definition 7 (SAT)
Given a propositional formula F in conjunctive normal form (CNF), SAT is the problem

6However there might be for classical planning if P = PSPACE, which is fairly unlikely.

16

2.5. Algorithms for Solving Planning Problems

of determining whether a valuation β that satisfies F exists, i.e. β |= F , and if so to
output β.

The problem SAT is NP-complete [R157]. The core idea in SAT-based planning is to
construct a propositional formula that is satisfiable if and only if the planning problem
has a solution. Based on the satisfying valuation β, it is then possible to extract that
solution. Even for classical planning there is a slight theoretical problem: while SAT
is NP-complete, classical planning is PSPACE-complete. As such, we can’t expect that
there is such a transformation of polynomial size.7 To circumvent this problem and allow
for SAT-based planning nevertheless, we are not constructing a propositional formula
that is satisfiable if the problem has any solution, but only if it has a solution with
specific properties, such as adherence to some bound. We then choose this property
such that the plan existence problem becomes NP-complete. Completeness is usually
achieved by an iteration over the bound.

SAT-based planners draw from the high efficiency of modern SAT solvers. Translations
into propositional logic are also practical for extensions, as their encodings are usually
easily extendable, e.g. to handle Linear Temporal Logic [R96]. Further, using SAT
Modulo Theory solvers even allows to support numerical state variables and time [R62].
This could even be extended to cover Planning Modulo Theories that, e.g. allow for
complex geometrical reasoning in planning actions [R83].

For classical planning, the typical restriction posed on the plans described in the
propositional formula is a length bound [R145]. Given a length bound `, we construct a
formula that is satisfiable if and only if a plan of length at most ` exists. If we assume
a unary encoding8 of ` the plan existence problem becomes NP-complete.

The encoding is based on representing the plan as a sequences of timesteps. For each
timestep t (0 ≤ t ≤ `) and proposition symbol p, the decision variable p@t represents
that p is true in the state at time t [R145]. Similarly, for every timestep t (0 ≤ t < `)
and action a, the decision variable a@t represents that a is executed at time t. The
propositional formula now asserts that

1. at t = 0 the decision variables p@0 exactly represent the initial state,
2. the goal is true at t = `,
3. the preconditions of each applied action are fulfilled in the state in which it is

executed,
4. the effects of each applied action are executed,
5. proposition symbols not affected by applied actions retain their truth from state

to state, and
6. at most one action can be executed at each timestep.

The commonly used translation of these rules into a propositional formula was introduced
by Kautz and Selman [R145]. In order to obtain a complete planner based on this
encoding, we have to call the SAT solver multiple times. We start with length bound

7Again, unless NP = PSPACE.
8Note: from a complexity theory point-of-view, this is not an acceptable assumption. However since
we are interested in the practical usability of the approach alone, it is acceptable to use an encoding
that is polynomial in ` but exponential in log `.

17

2. From Classical to Hierarchical Planning

` = 1, construct the formula, and run the solver. If it returns a satisfying valuation, we
can extract the plan. If the solver shows that there is no satisfying valuation, we know
that any plan for the problem must have at least the length 2. We then increment `
by one an repeat the process. Several improvements to this simple scheme have been
proposed. This includes different step sizes, i.e. increases by more than one [R78], the
interleaved execution of SAT solvers [R104], and the use of incremental SAT solving
[R58].

In addition to technical improvements in the evaluation of the formula, there has
also been progress in making the formula more amenable to SAT solvers. Most of the
clauses resulting from encoding the assertions 1-5 are Horn clauses, i.e. they contain at
most one positive literal. The only exception are those clauses that pertain to negative
preconditions and delete effects. Horn clauses can be treated efficiently by SAT solvers
and a formula containing only Horn clauses can be solved in polynomial time. Encoding
the assertion 6 breaks this pattern – which seems somewhat unnatural, as does the fifth
axiom of geometry [C161, Book I, Proposition V]. The constraint can, however, not be
dropped entirely. Doing so would allow for executing actions in parallel as long as their
preconditions are fulfilled in the same state. Consider – as an example – two action,
both having a ∧ b as their precondition and one having ¬a, the other ¬b as its effect.
Both actions are applicable in the state {a, b} but executing one necessarily disables the
execution of the other. It is not possible to sequentialise them such that the resulting
plan would be executable.

Already the encoding of Kautz and Selman [R145] accounts for a limited amount
of safe parallelism, nowadays called ∀-step parallelism [R104]. As of now, the encod-
ing based on the ∃-step semantics for parallel execution of actions allows for the most
parallelism [R104]. Its aim is to allow parallel execution of actions whenever a linearisa-
tion of the actions exists that is executable. Deciding this property is unfortunately NP-
complete [R104]. Rintanen et al. [R104] presented an approximation that pre-computes
an ordering of all actions and allows any subset of actions to be executed in parallel if
they are executable in this precomputed order. This property can be compactly encoded
into propositional logic via chains [R104]. For both encoding chains and determining an
appropriate order of all tasks, the Disabling Graph (DG) is used. The DG’s nodes are
the actions and an edge (a1, a2) denotes that executing a1 may falsify a2’s preconditions.
If the DG is acyclic, it is safe to execute all actions in a reverse topological ordering, as
none will disable an action occurring later on in the order. If the DG contains cycles,
actions are executed in reverse topological order of the strongly connected components
and in random order within the components.

Most planners for HTN planning problems used some fashion of blind search, e.g.
SHOP and SHOP2. Recently, search-based HTN planners began to incorporate heuris-
tics, e.g. PANDA [F20, F29, R75], and pruning techniques, e.g. FAPE [R61, R76], which
provided significant improvements in solving time for HTN planning problems.

Similar to classical planning, translation-based approaches for HTN planning have
also been introduced in the past. For totally-ordered HTN planning problems, Dix et al.
proposed a translation into Answer Set Programming [R114]. Alford et al. [F34, R92]
showed that HTN planning problems can be translated into classical planning problems.

18

2.6. Linear Temporal Logic

Similar to the encoding of classical planning into propositional logic, their translation
requires a bound. In this case, the bound is the so-called progression bound – the max-
imum size of an intermediate task network under progression. For tail-recursive HTN
planning problems, an upper progression bound can always be computed in polynomial
time, i.e. a bound k such that any solution has a progression trace where the largest
intermediate task network has size k. For arbitrary HTN planning problems, this bound
cannot exist – else we would have obtained a decision procedure for an undecidable prob-
lem. Mali and Kambhampati [R138] proposed an encoding of hierarchical planning into
propositional logic. Their notion of hierarchical planning, however, differs significantly
from the presented, and by now established, HTN formalism. Notably, their formalism
does not include an initial abstract task, but specifies the aim in terms of a goal state.
As such, abstract tasks can be freely inserted into the plan. Such planning problems
are classified as decompositional planning, where abstract tasks and the hierarchy do
not specify the problem, but assist in solving it [R73, R137, R149]. Further they allow
for task-sharing [R60], i.e. a task that has been derived twice via decomposition must
be executed only once. Lastly, they assume that the decomposition hierarchy is acyclic.
These differences make their encoding not useable for HTN planning problems. To the
best of the knowledge of the author, there is no encoding of (standard) HTN planning
into propositional logic prior to this work.

2.6. Linear Temporal Logic

Parts of this thesis also deal with handling planning in conjunction with (finite) Linear
Temporal Logic (LTL) [R155]. LTL is a modal extension of classical propositional logic.
It is defined based on a set of primitive propositions A which by itself can be formulated
in any complex logical language. For the purposes of planning, we use the propositional
logic over the set of proposition symbols L and primitive actions O. LTL makes state-
ments over sequences of states over which propositions in A can be evaluated, i.e. we
assume a discrete view on time. Such a sequence of states is also called a trace. In the
case of planning, a state in the LTL sense is a state plus the action which is executed in
it. For the last state of a plan there is no such action. Technically, we can add a dummy
action end that signifies the end of the plan.

Based on the set A, we define the following expressions as syntactically valid LTL
formulae T :

a ∈ A | t1 ∧ t2 | t1 ∨ t2 | ¬t | Xt | Et | Gt | t1Ut2

The logical connectors ¬, ∧, and ∨ have the usual semantics. X, E, G, and U are called
temporal operators. The temporal operator X refers to the next timestep and E to
some point of time in the future. Gt denotes that t should hold from now on forever
and t1Ut2 denotes that t1 holds until t2 holds for the first time or that it will eventually
hold.9 Conceptually, E corresponds to the modal operator � and G to �. More formally,
a temporal formula T is evaluated over a sequence of states s1, . . . , sn. The truth of a

9LTL is usually formulated over infinite traces were t1Ut2 is also satisfied if t1 holds forever.

19

2. From Classical to Hierarchical Planning

formula [[φ]](s1, . . . , sn) is defined as:

[[a]](s1, . . . , sn) = s1 |= a iff a ∈ A
[[f ∧ g]](s1, . . . , sn) = [[f]](s1, . . . , sn) ∧ [[g]](s1, . . . , sn)
[[f ∨ g]](s1, . . . , sn) = [[f]](s1, . . . , sn) ∨ [[g]](s1, . . . , sn)

[[¬f]](s1, . . . , sn) = ¬[[f]](s1, . . . , sn)
[[Xf]](s1, . . . , sn) = [[f]](s2, . . . , sn) iff n > 1
[[Xf]](s1, . . . , sn) = ⊥ iff n = 1
[[Ef]](s1, . . . , sn) = [[f]](s1, . . . , sn) ∨ [[f]](s2, . . . , sn) iff n > 1
[[Ef]](s1, . . . , sn) = [[f]](s1) iff n = 1
[[Gf]](s1, . . . , sn) = [[f]](s1, . . . , sn) ∧ [[f]](s2, . . . , sn) iff n > 1
[[Gf]](s1, . . . , sn) = [[f]](s1) iff n = 1

[[fUg]](s1, . . . , sn) = [[g]](s1, . . . , sn) ∨ ([[f]](s1, . . . , sn) ∧ [[fUg]](s2, . . . , sn)) iff n > 1
[[fUg]](s1, . . . , sn) = [[g]](s1) iff n = 1

For simplicity, we denote for a plan π and an LTL formula φ with [[φ]](π) the truth
of φ over the state trace (s1, . . . , sn) induced by π, i.e. [[φ]](s1, . . . , sn).

20

3. From Blackbox to Whitebox Planning

3.1. Summary

Planning-based systems provide a wide range of useful assistance by exploiting a plan-
ner’s abilities to quickly and effectively adapt to new, unforeseen, and challenging prob-
lems. Based on a generated plan, these systems can recommend a course of action to
their human users. We start our investigation by surveying some of the existing tech-
niques for providing such assistance. Some of them simply present the planner’s solution
to the user, without allowing the user any influence over it, i.e. act in a blackbox fash-
ion. In contrast, Mixed-Initiative Planning Systems enable the user to exert influence
and control over the planning process by making the planner’s decision making process
collaborative. This way, they allow the user to better understand and accept the plan-
ner’s decisions, thus improve his satisfaction with the assistance system, and transform
the assistant into a whitebox system.

We will identify which capabilities a planner must possess in order to be used suc-
cessfully within a mixed-initiative planning-based assistant. First, the planner must be
able to find plans as quickly as possible in order to create a system that is reactive.
Second, the planner must be able to change a once found plan in accordance with the
instructions of the user.

To understand the difficulties involved in changing plans with respect to such requests,
we study the computational complexity of the involved decision problems. As a first
step in the analysis, we show that HTN plan verification is NP-complete [C9]. Next,
we show that even the most elementary requests to change a plan (adding, removing,
exchanging, re-ordering actions) are as difficult as planning itself [C8]. To not only
cover these elementary types of requests, but general ones posed by the user, a suitable
representation is required. We argue that Linear Temporal Logic (LTL) is a suitable
formalism to express the requests posed by the user to change plans. Lastly, we show that
the computational complexity of changing plans in accordance with a given LTL formula
is as hard as the elementary requests. This investigation is – to the best of our knowledge
– the first complexity-theoretic analysis related to mixed-initiative hierarchical planning.

The theoretical results of this chapter – which pertain to the second requirement posed
to a planner – have led to the development of an HTN planner that currently outperforms
all its competitors (see Chapter 4) and thus also address the first requirement.

21

3. From Blackbox to Whitebox Planning

Core publications described in this chapter

[C8] Gregor Behnke, Daniel Höller, Pascal Bercher, and Susanne Biundo. “Change the
Plan – How hard can that be?” Proceedings of the 26th International Conference on Automated
Planning and Scheduling (ICAPS 2016). AAAI Press, 2016, pp. 38–46

[C9] Gregor Behnke, Daniel Höller, and Susanne Biundo. “On the Complexity of HTN Plan
Verification and Its Implications for Plan Recognition”. Proceedings of the 25th International
Conference on Automated Planning and Scheduling (ICAPS 2015). AAAI Press, 2015, pp. 25–33

3.2. Planning-based Assistance

Planning-based systems have been deployed in a wide variety of scenarios over the last
three decades, especially in those practical applications where there is the need for solv-
ing moderately to highly complex combinatorial problems. Planning-based assistance
systems provide suitable help in these scenarios, by quickly, effectively, and automati-
cally solving these combinatorial problems for the system’s users.

In any deployed planning-based system a human user or operator has – at least in some
way – contact to the system and the planner. In some scenarios this contact is tangent,
e.g. in logistics [R86] or automated greenhouses [R90], where the planner achieves some
technical objective that is of interested to its human user. In these technical types of
scenarios, it is generally sufficient to simply find a plan which is subsequently executed
without further user of the planner.1

In contrast, there is a multitude of scenarios in which planners provide assistance
directly to their users. This includes e.g. composing a fitness training plan [F27], figuring
out how to connect the devices of a home theatre system [F40, R74], or determining how
to use electric tools to complete a Do-It-Yourself home improvement project [C3]. The
planner alleviates its user from the tedious and difficult task of determining a goal-leading
course of action in a complex environment. Instead, the users can focus on higher level
activities, on controlling the system, or on tasks that can only be performed by humans.
There are several scenarios in which planners have been successfully used in this way.
They however differ in the way the user and the planner interact and in the way in
which the user has influence and control over the planning process. In this section we
will survey some of the existing planning systems that assist their human users.

1Note that in domains with a more complex physical environment, a coupling between planning and
acting might be necessary [R45].

22

3.2. Planning-based Assistance

3.2.1. Black-box Planning

Some planning-based assistance systems treat the planner as a black-box system, i.e.
as a system into which inspection is not possible and whose inner workings cannot be
analysed, modified, or influenced. For example Bercher et al. [F43, F40, R74] presented
a planning-based assistant which supports a human user in setting up a home theatre
system. Based on the currently available devices, cables, and connectors, the assistant
finds a plan to connect all devices appropriately. The plan is transformed into a sequence
of instructions and presented to the user. The user, however, cannot influence the
generated plan in any way. The only circumstance under which the assistant is able to
alter its plan is if the execution of a plan step has failed. Then the assistant will adapt
its plan to the changed situation using plan repair.

The XPLAN system [R54] automatically plans laboratory experiments for tests of
synthetic biology. Its plans are executed by lab assistants and the results are used by
bio-engineers. XPLAN’s users solely provide the input for the planner and execute the
produced plan. Interaction with the planner is not possible.

Assistance systems like Bercher et al.’s home theatre assistant or XPLAN base their
assistance on providing the user with a set of instructions (or performing them them-
selves) that solve the user’s current problem. Their core assumption is that the user
will be satisfied with the plan – no matter how it looks like – provided that it solves the
user’s problem. They lack the ability to react to a user, who might be dissatisfied with
the produced plan, even though it solves his problem. As a result of their dissatisfaction,
users might abort individual interactions with the assistant or stop using it entirely.

3.2.2. White-box Planning

While some assistance systems use planners in a black-box fashion, many practical ap-
plications require that the planner is (in some way) exposed to the user. This results in a
white-box planning-based assistant. The planner should allow the user to exert influence
and, if possible, even control over the planning process. Thus, the planner should take
the user’s wishes into account and, if possible, let the user shape the planning process
to its will. The assumption is that a user with control over the planning process will be
satisfied with its results [F26]. Planning that allows for such an integration of the user
into the planning process is called mixed-initiative planning [R85].

One of the first mixed-initiative planning systems was TRAINS [R144], which assisted
in planning for a transportation task. Its main focus was not on the mechanics of plan-
ning necessary for such a system, but on dialogue and interactional aspects. Interaction
focusses on jointly altering a current – unfinished – plan until it achieves the goal of the
transportation task, as well as satisfying the user. The planner in TRAINS was a hand-
crafted path-finding algorithm written specifically for this domain. Later, TRAINS was
extended to TRIPS [R136], which demonstrates how to assist human crisis-managers by
jointly developing plans for disaster relief, e.g. for an evacuation. Like TRAINS, TRIPS
focusses on interactional aspects of mixed-initiative planning as well as questions of ar-
chitecture, while using specialised programs to solve the planning aspects of the domain.

23

3. From Blackbox to Whitebox Planning

Notably, they propose to separate the components of a mixed-initiative planning sys-
tems into three parts: input/output components, a dialogue component, and a reasoning
component. The assistant we present in Sec. 5.3 uses the same architectural principles.

Mixed-Initiative Cased-Based Planning (MI-CBP) [R142] was – to the best of the
author’s knowledge – the first mixed-initiative planning system that was applicable to
general planning problems and not specialised to a single domain. It bases its user
interaction upon case-based reasoning and not upon search as used by most modern
planners. Whenever the user inputs a new goal into MI-CBP, it uses its case-based
reasoner to retrieve a plan for a similar situation contained in its knowledge base. The
user is then asked to adapt this retrieved plan such that it will solve the problem at
hand. MI-CBP supports the user in this by providing him with plausible modifications.

SIPE-2 is a domain independent plan-space planning system that supports user inter-
action during the planning process [R133]. In SIPE-2, the user can take full control of
the planning process and subsequently performs all decisions (adding actions, ordering,
causal relations) during the planning process himself. In addition, the user can hand
control back to SIPE-2, which continues the planning process until a solution has been
found without any opportunity for the user to take control again. When continuing
the planning process, SIPE-2 will refine the partial plan the user has constructed, i.e.
it will adhere to the user’s prior instructions. In essence, SIPE-2 allows the user to
perform parts of the planning process manually and provides the user with the option
of completing the constructed partial plan automatically.

PASSAT is a mixed-initiative planning system solving HTN planning problems and
consequently uses a general HTN planner in its core [R122]. PASSAT’s main application
domain is the planning of missions of military special operations forces. It presents its
user during interaction with a current, unfinished decomposition tree and points out
which tasks, i.e. leafs, in the tree must be refined further, as well as causal errors in
the plan. PASSAT’s user can either refine an undecomposed task or use a plan-repair
mechanism to resolve causal errors. Lastly, PASSAT offers the ability for plan sketching
[R117], where the user provides tasks (primitive and abstract) that must be contained
in the final plan. PASSAT determines which refinements of the initial abstract task can
suitably be used to generate a plan containing these tasks.2 This is designed to combine
top-down and bottom-up planning techniques. PASSAT further assumes that its domain
model is not necessarily correct or complete and thus allows the user to change it by
dropping or adding constraints or tasks.

Nau et al. [R131] created a planning-based system that assists engineers in creating mi-
crowave modules (transmitters and receivers). The planner generates a “Process Plan”,
i.e. a plan determining how a specific part is manufactured and added to the microwave
module. Here, the planner does not generate plans for assembling the whole module,
but only for individual parts to be added to the module. It further not only generates a
single plan, but multiple alternative plans for adding a specific part to the module. The
engineer can then select for each of the parts a plan to assemble it and thus can create
a plan for assembling the whole module. He can further exchange parts for other parts
fulfilling an equivalent functionality. In this, the user is assisted by a trade-off analysis

2This problem bears strong similarities to HTN plan recognition [F19].

24

3.2. Planning-based Assistance

module, which helps him to optimise his selection of sub-plans – in order to create a
final module and a full production plan for it.

Muñoz-Avila et al. [R129] presented the mixed-initiative planning system SiN. As
PASSAT, it is based on HTN planning and focusses on the military application of non-
combatant evacuation. SiN combines the HTN planner SHOP [R135] with NaCoDAE
[R141]. NoCoDAE uses a case-based reasoner to retrieve cases matching the user’s de-
scription. The focus of SiN are domains with incomplete knowledge – which are very
common in military applications due to unknown situation in enemy territory [R162,
Chapter 12]. SiN assumes that SHOP cannot find a solution to the posed problem
based on the information it has (i.e. the known state). Interaction with the user is ini-
tiated whenever a situation occurs in which SHOP cannot continue its search without
backtracking. In most cases, this is the case if an abstract task which SHOP cannot de-
compose3 has been reached. Control of the planning process is then ceded to NaCoDAE
which initiates a dialogue with the user, who decides how to proceed. NaCoDAE holds
a set of standard operating procedures, one of which is selected via case-based reasoning
from the user’s answers to NaCoDAEs questions. This procedure is interpreted as a
decomposition method and executed, allowing SHOP to resume planning.

TRAINS/TRIPS, MI-CBP, SIPE-2, and PASSAT have one central feature in common:
all of them integrate the user into the process of finding a solution. In them, the user
asserts control over the planning process by taking decisions a black-box planner would
perform during search. As a result, these mixed-initiative planners present incomplete
plans to their users and ask how they should be modified. The user is then asked for his
opinions on possible modifications and/or is allowed to instruct the planner to perform
more or less complex operations on the plan, e.g. “send the trains from Chicago to
Detroit” in TRAINS [R144]. Once a solution is found, the planning process is finished
and it is assumed that the user will be satisfied with this plan. We call this type of
integration of the user into the planning process search-based.

In contrast, the probably best known mixed-initiative planning system MAPGEN
[R100, R112] uses a different approach. MAPGEN was designed to create the plan for
operating NASA’s Mars rovers Spirit and Opportunity. ENSEMBLE, the successor of
MAPGEN, is used to create the operation plans for the rover Curiosity [R100]. MAP-
GEN’s users are always presented with a causally sound plan, i.e. a plan that satisfies
all flight and mission rules. These plans could be used as operation plans for the rover,
i.e. are solutions to the planning problem at hand. The main objective of MAPGEN is
to assist in the mediation between different groups of scientists with different objectives.
Each of them has a set of scientific tasks to perform, but it is never possible to perform
all of them in a single day. Thus MAPGEN proposes a selection, which can afterwards
be altered by the scientists to achieve scientifically optimal results. MAPGEN allows
both for manual manipulation of the plan – after which it further modifies the plan
to ensure causal correctness, as well as posing additional constraints, which are then
automatically fulfilled by the planner. These constraints can include additional goal, as
well as temporal constraints over the plan. To be able to cope with these manipulations
and inputs from the user, MAPGEN uses an efficient temporal planner at its core. The

3SHOP’s domains can contain method preconditions which may restrict the applicability of decompo-
sition methods.

25

3. From Blackbox to Whitebox Planning

planning model itself is however classical, i.e. non-hierarchical.

MAPGEN interacts with its users only based on solutions and allows its users to move
from solution to solution via modifications of the plan or instructions to the planner.
Here the planning process is finished once a solution is found that is satisfactory to
MAPGEN’s users. We call this style of interaction solution-based. The distinction
between search-based integration and solution-based integration was already observed
by Muñoz-Avila et al. [R129].

We presume that with the advent of highly efficient planning system like FF [R128]
and Fast Downward [R101] for classical planning, and e.g. PANDA [C2, F20, F29] for
hierarchical planning, solution-based interaction will become more popular. The main
disadvantage of search-based interaction is that it forces the user to consider deeply
planning-related questions, e.g. how and why a causal error occurs, which modifications
to a plan are allowed, and has to understand partially completed plans. Notably, search-
based interaction might (has to) present causally flawed plans to the user, which is
hard for him to understand and must be remedied [F32, F41]. In contrast, solution-
based interaction always presents complete and causally correct plans to the user. Using
completed plans, it is also (presumably) easier to explain the rationale behind the plan
to the user in order to help the user to better understand it. Lastly, solution-based
interaction focusses on the final plan that the user will execute or be assisted with. This
allows him to specifically address issues he has with the actual final plan, instead of
issues with intermediate uncompleted plans.

As we deem solution-based interaction strategies more promising for future applica-
tions, we focus in this thesis on techniques for mixed-initiative planning that uses a
solution-based interaction. The techniques we present are however also applicable for
search-based interaction techniques.

3.3. The Planner in Mixed-Initiative Planning

Mixed-initiative planning is, on the system’s side, not enabled by the abilities of a single
system component. Interaction, dialogue, and planning components must be able to
handle the tasks they have to fulfil in a mixed-initiative planning setting. Rightly, a
lot of focus was laid on interactional and dialogical aspects of mixed-initiative planning
[F32, F41, R136, R144], as without them humans will refrain from using mixed-initiative
planners due to their unusable interaction behaviour. In this thesis, we want to focus
on the tasks the planner itself has to perform in a mixed-initiative planning setting.
For that we start by discussing the objectives of the planner in both search-based and
solution-based mixed-initiative interactions.

For search-based interaction, we argue that a depth-first search style interaction with
the user is necessary in order to keep him attentive and not to overstrain his cognitive
load [F32, F41]. Such an interaction strategy is e.g. used by PASSAT [R122]. When
using a depth-first-style interaction, a severe problem arises: dead ends in the search
space. Dead ends are states of the search from which it is not possible to reach a goal
or a causally completed and error-free plan. If the user controls the search, he might

26

3.3. The Planner in Mixed-Initiative Planning

inadvertently modify the plan in an way that precludes it from being a solution. There
are two ways of solving this problem. We either allow the user to “back-up” from such
a dead end plan, or we prohibit the user from ever choosing an option that will lead to
one.

For the former, we would allow the user to perform any modification until an unre-
solvable flaw is present in the current plan. If so, the planner has to notify the user –
through the dialogue manager – and ask for instructions. In the simplest case, the user
will ask for a plan that is solvable to be presented. At this point, we have to ensure
expectation conformity to keep the user attentive. This means that we have to find a
solution that is as similar as possible to the current plan, but can still be refined into a
solution [F32, F41]. The planner can e.g. solve this problem by planning while optimis-
ing a plan-distance metric.4 As such, the requirement to the planner is to find solutions
quickly, i.e. to be fast.

If we use the second means to avoid the problems of a depth-first search-based inte-
gration, we cannot allow the user to perform changes to the plan that would lead to a
dead-end state. For that, we have to be able to determine whether a given plan can be
refined into a solution. Answering this question is in its core a planning problem. In the
interaction, we would have to be able to perform these tests in (near) real-time, i.e. a
fast planner is required. We constructed a planning-based assistant – SLOTH – using
this interaction scheme [F27, F32]. SLOTH assists its user in planning an individualised
workout for a given set of training objectives. In it, we perform a depth-first search and
present the user with options to refine his current plan at every step. We use the planner
to exclude all refinements that cannot lead to solutions, e.g. due to violation of general
training rules.

In both search-based and solution-based interaction, users will commonly request al-
terations to the plan. For solution-based interaction, requesting to change the plan is
the main type of request posed to the planner. In search-based interaction, the user
is usually presented with a set of possible modifications (or refinements) to the plan.
These modifications are usually those that the planner itself would perform to reach the
next search node. Applying these presented modifications can be easily implemented in
the planner, as it only has to apply them. But the user – on his own initiative – might
instruct the planner to perform a more complex change to the plan. In both cases, the
planner must be able to find a plan that satisfies the user’s request.5 Thus as a minimum
requirement, the planner must be able to find plans that satisfy a given request from the
user. If so, we can again optimise a distance metric from the previously shown plan in
order to ensure expectation-conforming changes. Answering the requests of a user again
requires to have a planner that produces solutions quickly – i.e. a fast planner – as the
modification has to be performed within a time-frame acceptable to the user.

In SLOTH, we added a rudimentary handling of these requests, namely only a single
type: exchanging exercises for other exercises. Note that this might imply to change
more than one exercise as the resulting plan must adhere to the general fitness training
rules (e.g. that a trained muscle must be warmed-up first).

4For a SAT-based planner one would binary-search the optimum. See Section 4.5.
5Or be able to explain why this is not possible. This is an avenue for future research.

27

3. From Blackbox to Whitebox Planning

To sum up, for any kind of mixed-initiative interaction, we need a fast planner and
one that is able to find plans satisfying a user’s requests to change a plan. We will
address the need for a fast HTN planner in Section 4. In it, we will show how HTN
planning problems can be translated into propositional logic. Using this translation, we
can obtain the currently fastest known HTN planner.

3.4. Changing Plans

As we have stated, one key ability of the planner in a mixed-initiative planning system
is to alter a plan according to the user’s instructions. When enabling the planner to
handle these instructions, we face two problems: (1) how do these instructions look like,
i.e. how can they be formalised and (2) how can the planner find plans adhering to these
formalised instructions?

3.4.1. Requests to Change a Plan

We start by studying potential requests uttered by users [C8]. As a first characteristic
of any request, it describes the change that the user wants to see implemented to the
plan by the planner. At first glance, we can distinguish four general types of these
changes, each pertaining to a mandated change to the actions contained in a current
plan presented to the user.

• Adding an action or actions to the current plan

• Removing an action or actions from the current plan

• Replacing an action in the current plan by others

• Reordering an action in the current plan

Naturally, users might not restrict their instructions to these four simple patterns. We
however argue that they are prototypical for more complex requests made by users and
are thus worth studying. We will discuss how more complex requests to change a plan
can be interpreted and represented formally in Section 3.4.2.

If we consider these four requests, applying them to a given plan seems to be rather
trivial, as we “only” have to add, remove, replace, or reorder actions. At a closer look,
there is a problem with this simple view on implementing these four requests. If the
user instructs a mixed-initiative planning system to change a plan presented to him,
he has certain expectations on how the result looks like and which properties it must
possess. For a solution-based interaction, we obviously have to ensure that the changed
plan is still a solution to the planning problem and e.g. not causally flawed, or is missing
actions enforced to be in the plan via the HTN domain structure. For a search-based
interaction, the planner should likewise find a plan that both fulfils the request and can
still be refined into a solution. If the planner would merely implement the requested
change, there would be a risk that the new plan cannot be refined into a solution, i.e. is
a dead-end in the search space. Presenting such a plan to the user would demonstrate
incompetence of the planner to the user, as he might think that the planner should

28

3.4. Changing Plans

have seen that the new plan is a dead-end and should have acted accordingly. As such,
independent of the interaction strategy, the planner must ensure that the changed plan
is either a solution or can still be refined into a solution.

Further, the change requested by the user might still allow for a plan to be found,
but the plan might be significantly longer or its actions may be more complicated or
more dangerous to be performed. In these cases, the planner should be able to inform
the assistant’s user about this fact and may even advise him to not use the altered
plan, but the original one instead. This would, to be persuasive for the user, require
an explanation why e.g. a shorter or less complicated solution cannot be found when
adhering to the user’s request. Such explanations are out of the scope of this thesis and
may be considered in future work.

Thus the planner has to be allowed to alter the plan apart from the change directly
requested to by the user. To see why this is necessary, consider as an example a plan
for sawing a wooden plank into two pieces using a hand saw. This plan may contain
the action saw_by_hand(. . .). Now a user might want to alter the plan so that the
plank is sawn using an electric saw instead of manually. If the planner solely replaces
saw_by_hand(. . .) with the corresponding action saw_with_saw(. . .) the plan will con-
tain three types of flaws. First, if we only replace the action, the electric saw might not
be set up correctly due to missing actions, e.g. those inserting batteries or setting the
saws switches to the correct positions. Second, the plan might still contain actions that
pertain to the manual saw, e.g. those “setting it up” by inserting a sawing blade or by
attaching the plank in a specific way to the table. These actions are superfluous and
should be removed, else the planner might be viewed as incompetent. Third, using an
electric saw instead of a manual one might influence other actions in the plan. For ex-
ample we might have to sand the cut edge which was not necessary when using a manual
saw. Also if the user has only a single battery, the battery has to be removed from the
saw and has to attached to the drill if it is used afterwards, which was not necessary
before. This third type of changes, i.e. those necessary to apparently unrelated parts
of the plan, becomes even more apparent if we consider a transportation scenario with
delivery-deadlines. If we change the route at one point in time, we might have to alter
the remaining parts of the route to ensure the deadlines are met.

The reason for these flaws is that the user’s request has been implemented word-by-
word, i.e. if the user instructs the planner to replace action A with action B, we assumed
that the planner does exactly this operation. Note that executing these kinds of requests
seems trivial, which we will show is not the case for HTN planning in Section 3.5.2. In
order to prevent the above shown flaws in plans, the planner has to be allowed to perform
additional changes to the plan next to the change the user requested explicitly. Which
and how many of these additional changes are allowed thus forms the second dimension
of a user’s request.

In practice, we would most of the time like to optimise a distance metric between
the plan to which a change should be applied and the plan resulting from that change.
Naturally, one might imagine even more complex models of which changes can be allowed.
For example, one might associate different costs with changing different actions, or
penalises changes that occur “near” to each other in the plan less than changes that

29

3. From Blackbox to Whitebox Planning

are unconnected to each other. Further, users will typically not state this secondary
requirement for a change explicitly. Instead, the planner will have to make assumptions
based on the domain and the current situation which metric should be optimised, if any.
We deem this question to be out of scope of this thesis and have thus not investigated
it further.

In order to study these optimisation problems theoretically, we can instead study
decision-theoretic versions of the optimisation. From the computation-theoretical per-
spective, we can distinguish three types of additionally allowed changes [C8]:

• No additional changes are allowed

• Up to k additional changes are allowed

• Any additional changes are allowed

Notably, minimising the number of changes is related to the second restriction, as an-
swering it is necessary for optimisation. Thus studying the second type of restriction
is the computation theoretic way of studying the question of minimising the number of
changes.

3.4.2. Complex User requests

In the previous section, we noted that one might imagine requests to change a current
plan that pose more complex requirements than those four basic typed we presented.
For example, the user in a DIY setting might ask the planner to ensure that whenever
he cuts a surface it should be sanded afterwards. We could handle this constraint by
translating it into several requests to add the sand(. . .) action for every cut surface.
This kind of treatment has however two significant disadvantages. First, we have to
keep track of this constraint when further changes to the plan are made as we have to
insert sanding actions if we are cutting additional surfaces. Second, we would have to
develop such a specialised treatment (i.e. translation into elementary requests) for every
possible request uttered by the user. This is highly inefficient and, due to its inevitable
redundancy, prone to errors.

As such, it would be beneficial to have a unified representation for all requests that
might be posed by the user. This representation would enable handling all requests in
a uniform way by a single algorithm and thus removing redundancy. Further, adhering
to previously posed constraints when handling subsequent requests by the user is easier,
as all of them have the same format and can be more easily integrated.

The unified representation of change requests should be able to express arbitrary log-
ical connections between both actions and state features. Further, the user should be
able to pose requirements with respect to the order of actions and their dependency over
time. Linear temporal logic (LTL) [R155] is a suitable formalism to express these kinds
of restrictions. LTL has been used in wide variety of scenarios to formulate and formalise
restrictions to processes with timing aspects such as workflow management [R103]. Fur-
ther, model checking systems like NuSMV [R119] use LTL to specify desired and unde-
sired system behaviour. Notably, LTL is used to specify the semantics of plan constraints
and preferences in PDDL, which is the standard description language for classical plan-

30

3.5. The Computational Complexity of Changing Plans

ning problems [R109].

Consider the simple types of requests mentioned in the previous section. Each of them
can be easily transformed into an LTL formula. Adding an action a corresponds to the
LTL requirement Ea. Removing an action a corresponds to G¬a, changing an action a
to b corresponds to Eb ∧G¬a, and ordering action a before b to E(a ∧XEb).

Unfortunately, it is highly improbable that the users of a mixed-initiative planning
system will be able to formulate their requests to the system in terms of an LTL formula
they would like to see fulfilled. As such, the restrictions formulated by the user in natural
language have to be converted into corresponding LTL formulae. Nikora and Balcom
[R94] presented a technique to extract LTL requirements from natural language using a
combination of machine learning and pattern-based techniques. For the DIY assistant
we describe in Section 5.3, we have used a similar technique tailored to the specifics of
the DIY domain. The translation was implemented by a Master’s student [R53].

3.5. The Computational Complexity of Changing Plans

In the previous section, we analysed how the requests of a user to change a given plan
can be formalised using Linear Temporal Logic. In order to be able to develop planning
techniques which are suitable to address them, we first have to understand the theoretical
aspects of adhering to requests by the user.

3.5.1. Complexity of Plan Verification

We start our investigation with a request that has – so far – not been discussed explic-
itly. We however start with it, as the results from its investigation from an important
cornerstone of further theoretical as well as practical work in this thesis.

Consider a situation where the user is wholly discontent with the plan that the planner
has presented to him. Instead of asking the planner for specific changes, he might
simply provide the planner with a sequence of actions that he wants to perform (or to
be performed). In this situation, the planner has to verify that the plan the user has
provided is actually a solution to the planning problem. For HTN planning this means
that the plan has to be executable and that it can be obtained from the initial abstract
task via decomposition.

Note that in this scenario, we assume that the user does only provide the primitive
actions, i.e. the plan itself. He does not provide a decomposition for this plan. Especially
in a mixed-initiative setting this is a reasonable assumption, as the user will only provide
the steps he has to undertake. Further, we do not expect that the user is able to name
the specific methods applied in the planner’s model to obtain these actions.

Formally, the plan verification problem asks the following.

Definition 8 (Plan Verification)
Given a planning problem P and a sequence of actions π. The plan verification problem
is to decide whether π ∈ S(P).

31

3. From Blackbox to Whitebox Planning

The first insight into the complexity of plan verification gave an investigation of the
connection between planning problems and formal grammars [F42]. The set of solutions
S(P) to a planning problem P can be interpreted as a formal language over the set of
actions O. We showed that this language lies strictly between the context free and the
context sensitive languages [F42]. Taking the analogy of parsing words for these two
languages, the complexity of plan verification should lie between P (parsing for context
free languages) and PSPACE (parsing for context sensitive languages).

Based upon this initial intuition, we showed that the plan verification problem is NP-
complete [C9]. Contrary to most proofs for NP-completeness, the difficulty here lies in
proving that the plan verification problem can be solved in non-deterministic polynomial
time. One might assume that a simple guess-and-check algorithm would suffice, where
we apply decomposition methods until the task network tn to be verified is found. This
is however not sufficient, as task networks of size n exist which require an exponential
number of decompositions in n to reach them from the initial abstract task. This is
caused by the presence of so-called ε-decompositions, methods that allow to decompose
an abstract task into an empty task network, i.e. one without tasks in it. If we consider a
planning problem with abstract tasks ai for i ∈ {0, ..., n} such that a0 can be decomposed
into an empty task network and every other ai is decomposed into a task network
containing two copies of ai−1, we can see that every primitive decomposition in this
domain requires 2n+1 − 1 applications of decomposition methods. These ε-methods are
not just idiosyncrasies of the HTN formalism, but occur naturally in practice. Consider
an abstract task drill_screw(?o,?s) in the DIY domain that will drill the screw ?s
into the object ?o. The decomposition method for it will decompose it into a sequence
of abstract tasks that first configure the drill appropriately (insert battery and screw
bit, put switches into correct position) and second perform the actual drilling. Such a
task sequence could, e.g. be attach_battery, attach_bit, configure_gear_switch,
configure_direction_switch, and drill. The tasks setting up the drill must not be
executed if the drill is already configured correctly, e.g. from a previous drill_screw
task for another screw and object. These tasks can be accomplished by simply doing
nothing, i.e. by a ε-decomposition. Instead of using ε-decompositions, we could have a
separate decomposition method for drill_screw for every omitted subset of preparatory
steps. This would however lead to both an exponential amount of additional methods
and second add significant redundancies into the model. In fact, every planning problem
with ε-decomposition methods can be compiled into a model without such methods6 by
added an exponential number of additional new decomposition methods [F42].

As another example, consider a planning problem where packages are delivered via
trucks. The abstract task goTo(?t,?l) describes moving the truck ?t to location ?l.
If the truck ?t is already located at ?l, this task can obviously be achieved without
doing anything. Consequently there should be a decomposition method that decomposes
goTo(?t,?l) into the empty task network.

To show NP-membership of the plan verification problem, we introduced a mechanism
to handle these ε-methods efficiently during the decomposition process. More specifically,
we showed that every task network of size n can be obtained by 2 · |A| ·n decompositions

6Except one, if the initial abstract task can be decomposed into an empty plan. This is similar to the
Chomsky Normal Form of formal grammars.

32

3.5. The Computational Complexity of Changing Plans

plus (an up to exponential amount of) decompositions that only lead to the removal
of tasks from the current task network [C9]. We can determine for every abstract task
whether it can be decomposed into an empty task network in polynomial time. Further,
the size of every intermediate task network after abstract tasks have been removed is
at most n. These two results allow us to simulate the necessary exponential number of
decompositions in polynomial time, showing NP-membership.

NP-hardness can be proven via a reduction from the vertex cover problem. Roughly
speaking, we use an abstract task for every edge to choose a vertex cover and then use
the plan to be verified to restrict the number nodes in the cover [C9]. The mechanics of
the hardness proof was inspired by the work of Barton [R152] on ID/LP grammars.

Theorem 2 (Complexity of Plan Verification [C9])
Deciding the problem of plan verification is NP-complete.

3.5.2. Complexity of Changing Plans

Next, we investigated the four elementary types of change requests we presented in
Section 3.4.1. We showed that the computational complexity of the requests does not
depend on the type of the request, bust mostly on the amount of additional changes that
the planner is allowed to make in order to implement the change [C8].

If the planner is not allowed to perform additional changes, but only to implement
the user’s request word-by-word, we can use the complexity result for plan verification
and show NP-completeness for the four types of requests [C8]. If the planner is allowed
an arbitrary amount of changes, we can reduce the HTN plan existence problem to
answering the request [C8]. Since HTN plan existence is undecidable [R143], answering
the four basic types of change requests with unlimited additional changes is undecidable.
Lastly, we showed that answering the four requests with a bound of k additional changes
is NEXPTIME-complete, based on a reduction from the plan existence problem for
acyclic HTN planning problems.

These complexity results however cover only the four elementary types of requests
to change the plan. Since we propose to use LTL as the unified representation of user
requests to change the plan, we should also investigate the computational complexity of
changing plans with respect to a change request formulated as an LTL formula φ. As
such, we should define the decision problem(s), depending on the amount of additional
changes allowed to be performed. For the problem without allowed changes, it is unclear
how to define it in the first place, as an arbitrary LTL formula does not directly imply
changes. As such, we will only consider k-limited changes and unrestricted changes.

Definition 9 (k-LTL-Change)
Let P be an HTN planning problem and φ be an LTL formula over P’s proposition
symbols and actions. Let π ∈ S(P) be a solution to P.

k-LTL-Change is the problem of deciding whether a solution π∗ to P exists for which
[[φ]](π∗) = >, such that π∗ can be obtained from π by adding and removing at most k
actions. t

33

3. From Blackbox to Whitebox Planning

Any-LTL-Change is the problem of deciding whether a solution π∗ to P exists for
which [[φ]](π∗) = >.

Note that the new solution π∗ for Any-LTL-Change has no connection to the old
solution π. This is a necessary consequence of considering any amount of changes to the
original plan. The only information contained in the original plan is that the problem
P is in principle solvable.

We now show that the k-LTL-Change problem is NEXPTIME-complete, as were the
four basic types of requests.

Theorem 3
k-LTL-Change is NEXPTIME-complete.

Proof. Membership: Let P be an HTN planning problem. Since k is encoded logarith-
mically, we can perform up to k additions and deletions of actions in non-deterministic
exponential time. Let π∗ be the resulting plan. Afterwards, we can in linear time in |π∗|,
i.e. exponential time in the input, evaluate the truth of φ based on the rules presented
in Section 2.6. If π∗ does not satisfy φ we return false. Lastly, we run the NP algorithm
for plan verification to check whether π∗ is a solution to P or not. This remains an
NEXPTIME algorithm, as we simply return the result of the plan verification algorithm.

Hardness: We reduce from the plan existence problem for acyclic HTN planning prob-
lem, which is known to be NEXPTIME-complete [R68]. Let P = (L,A,O,M, aI , sI)
be an acyclic HTN planning problem. We construct a new planning problem in the
following way: create a new primitive action p that is not contained in P. p has neither
preconditions nor effects, i.e. is always applicable. Next, we introduce a new abstract
task a∗ that is not contained in P. We then add two decomposition method for a∗. One
method decomposes a∗ into a task network containing only p and the other into a task
network containing only aI .

π = (p) is clearly a solution to the transformed problem. For a given acyclic HTN
planning problem, the maximum length of a plan derivable via decomposition is ∆|A|
where ∆ is the maximum number of subtasks in a method. We thus pose the request of
changing π = (p) with the formula φ = G¬p and up to k = 1 + ∆|A| allowed changes.

If P has a solution, then it contains at most ∆|A| actions. To obtain it from π, we
remove p and add the solution, amounting to at most 1 + ∆|A| operations. This solution
also satisfies φ as it cannot contain p.

If there is a changed plan π∗ satisfying φ, obtainable with at most k changes from π,
it is clearly a solution to P.

Next we show that Any-LTL-Change is undecidable.

Theorem 4
Any-LTL-Change is undecidable.

Proof. We reduce from the plan existence problem for HTN planning, which is known
to be undecidable [R143]. Let P = (L,A,O,M, aI , sI) be an HTN planning problem.

34

3.5. The Computational Complexity of Changing Plans

We construct a new planning problem in the following way: create a new primitive
action p that is not contained in P. p has neither preconditions nor effects, i.e. is always
applicable. Next, we introduce a new abstract task a∗ that is not contained in P. We
then add two decomposition method for a∗. One method decomposes a∗ into a task
network containing only p and the other into a task network containing only aI .

π = (p) is clearly a solution to the transformed problem. We pose the request of
changing π = (p) with the formula φ = G¬p.

If P has a solution, it will also be a solution to the transformed problem. This solution
also satisfies φ as it cannot contain p.

If the call to Any-LTL-Change returns true, there is a plan not containing p. This
plan is a solution to the original planning problem P.

These two results show that answering change requests formulated in LTL are as hard
as answering the four types elementary change requests. Further, we can deduce that
optimising the number of changes is undecidable in the sense that there is no terminating
algorithm that can output the minimum number of required changes. If there would
be such an algorithm, it could be used to decide the undecidable Any-LTL-Change
problem.

Lastly, we can draw conclusions from these results for the design of algorithms for
handling a user’s request to change the plan. The question arises whether it is sensible to
develop specialised algorithms for handling change requests, or whether is more sensible
to integrate handling them into a general planning algorithm. A specialised algorithm
is (in the first instance) only reasonable if changing the plan is easier than planning
itself, else e.g. a compilation-based approach is more sensible as a first option. Since
adhering to change requests is undecidable, this is not the case. I.e. we should, at first,
integrate answering change requests into the planning process itself. We will describe in
Section 5.2 how we can integrate requests formulated in LTL into the planning techniques
we present in the next section. There we will further describe improvements to the state
of the art in SAT-based planning with constraints in LTL.

35

4. From Verification to Planning

4.1. Summary

In this chapter, we describe how the theoretical results of the previous chapter have
led to the development of the first HTN plan verifier, and further to a highly efficient
HTN planning technique. Both the verifier and the planning technique are based on a
translation into propositional logic. The resulting formulae are solved by off-the-shelf
SAT solvers. Thus, both the verifier and the planner will automatically profit from any
improvements made to SAT solvers in the future.

As we showed in the previous chapter, determining whether a given plan is a solution
to an HTN planning problem is NP-complete. Thus a translation of the problem into
the equally NP-complete boolean satisfiability problem is a suitable means to solve the
problem. We start by presenting such an encoding and show that it is able to verify
plans for common benchmark instances [C7].

One could easily extend this encoding for plan verification to not only be able to verify
plans, but also to find them. There is however one theoretical issue with this extension:
There cannot be a single propositional formula that is satisfiable if and only if a given
HTN planning problem has a solution. This is due to the fact that plan existence for
HTN planning is undecidable [R88, R143] – even for variants [F35]. To circumvent this
issue, we consider plan existence only for plans that have a limited decomposition depth
K. To nevertheless achieve completeness, we iterate over the bound until a plan has
been found.

A naive adaptation of the verification encoding for planning proved to be too inefficient
in practice. Thus we developed a specialised encoding for the class of totally-ordered
planning problems [C5]. Due to their specific structure, we were able to significantly
reduce the size of the encoding. This in turn enabled SAT solvers to solve the translated
problems efficiently. The reduction in size is achieved by representing all (depth-limited)
decomposition trees of the planning problem in a single common super-tree, the Path
Decomposition Tree (PDT). A PDT contains all possible,K-depth-limited decomposition
trees as its rooted subtrees. The propositional encoding then represents a decomposition
tree as a subtree of the PDT.

Next, we show that this compact encoding for totally-ordered HTN planning prob-
lems can form the basis for an encoding for general, i.e. partially-ordered, HTN planning
which is similarly compact. We introduce an encoding that explicitly tracks the partial

37

4. From Verification to Planning

order imposed by methods within the propositional formula [C6]. This encoding requires
the SAT solver to explicitly reason about the order contained in the planning domain’s
methods, which takes considerable effort. To alleviate the SAT solver from this reason-
ing, we introduce a method to handle these ordering constraints externally, i.e. before
the propositional formula is constructed. For this, we modify the construction of the
PDT so that a compact representation of the order in all primitive action networks that
can be derived via K-depth-limited decomposition can be extracted [C2]. Technically,
every derivable primitive action network will be an induced subgraph of the extracted
ordering – called the Solution Order Graph (SOG). Exploiting the information in the
SOG, the ordering constraints imposed on the solution do not depend on the applied
methods anymore. This allows for an asymptotically more compact representation of
order, which greatly improves the efficiency of the planner based on it.

The three encodings presented so far have only been developed for satisficing planning,
i.e. for the task of finding any plan. In practice it is however often necessary to not
only find some plan, but the shortest or a reasonably short plan. We show that the
presented propositional encodings can also be utilised to find such optimal (or near
optimal) solutions. We start with finding some satisficing solution, and optimise the
plan length with additional calls to the SAT solver thereafter. To be able to perform this
optimisation, we have to determine a maximum decomposition depth K(`) such that all
plans of length ` have a decomposition depth of less than K(`). During the development
of the plan verifier, we have already proposed three algorithms to compute an upper
bound on K(`) [C7]. These bounds were however unnecessarily high. We present a new
algorithm to compute a succinct upper bound, which is used in our optimal SAT-based
HTN planner [C1].

Lastly, we show that a planner based on these new encodings outperforms the current
state-of-the-art in HTN planning. We compare the new planner against a wide range of
competitors: PANDApro [F20], HTN2STRIPS [F34], PANDA [F29, R75], FAPE [R61,
R76], SHOP2 [R118], and HTN2ASP [R114]. The evaluation is conducted on a set of
benchmark domains which includes domains that were used in the evaluations of other
planners, but also new domains. Based on the evaluation results, we can claim that the
new planner is an important step towards fulfilling the first requirement we set out in
Section 3.3: having a fast planner.

Core publications described in this chapter

[C1] Gregor Behnke, Daniel Höller, and Susanne Biundo. “Finding Optimal Solutions
in HTN Planning – A SAT-based Approach”. Proceedings of the 28th International Joint
Conference on Artificial Intelligence (IJCAI 2019). IJCAI, 2019, pp. 5500–5508. doi:
10.24963/ijcai.2019/764

[C2] Gregor Behnke, Daniel Höller, and Susanne Biundo. “Bringing Order to Chaos – A
Compact Representation of Partial Order in SAT-based HTN Planning”. Proceedings of the 33rd
AAAI Conference on Artificial Intelligence (AAAI 2019). AAAI Press, 2019, pp. 7520–7529.
doi: 10.1609/aaai.v33i01.33017520

38

4.2. Translating Plan Verification into SAT Formulae

[C5] Gregor Behnke, Daniel Höller, and Susanne Biundo. “totSAT – Totally-Ordered
Hierarchical Planning through SAT”. Proceedings of the 32nd AAAI Conference on Artificial
Intelligence (AAAI 2018). AAAI Press, 2018, pp. 6110–6118

[C6] Gregor Behnke, Daniel Höller, and Susanne Biundo. “Tracking Branches in Trees –
A Propositional Encoding for solving Partially-Ordered HTN Planning Problems”. Proceedings
of the 30th International Conference on Tools with Artificial Intelligence (ICTAI 2018). IEEE
Computer Society, 2018, pp. 73–80. doi: 10.1109/ICTAI.2018.00022

[C7] Gregor Behnke, Daniel Höller, and Susanne Biundo. “This is a solution! (... but is
it though?) – Verifying solutions of hierarchical planning problems”. Proceedings of the 27th
International Conference on Automated Planning and Scheduling (ICAPS 2017). AAAI Press,
2017, pp. 20–28

4.2. Translating Plan Verification into SAT Formulae

Plan verification is the problem of deciding for a given plan whether it is a solution to
a given HTN planning problem. This problem plays a central role, not only in mixed-
initiative planning, but in planning in general. For example, local search techniques
[R121] alter a current plan until it is a solution to the planning problem. If we were to
apply this technique to HTN planning, we would have had to check, for every altered
plan, whether it is reachable via decomposition from the initial abstract task. An inde-
pendent plan verifier is also a useful tool for planning researchers in order to check that
their planners work correctly. Plan verification may play a role in forthcoming HTN
planning competitions to check whether the plans output by the planners are actually
valid [F13]. The general interest in HTN plan verification is also emphasised by the
fact that after the publication of the first HTN verifier by us, Barták et al. [R48] have
recently published a second independent HTN plan verifier.

We showed in Section 3.5.1 that the HTN plan verification problem is NP-complete.
Due to the problem’s complexity, a translation into another NP-complete problem for
which efficient solvers already exist seems a reasonable choice. Among the NP-complete
problems, the satisfiability problem for propositional logic (SAT, see Definition 7) has
both ready-to-use and highly efficient solvers.

When using SAT to solve the plan verification problem, we have to construct a propo-
sitional formula F that is satisfiable if and only if a given plan π is a solution to a
planning problem P. In HTN planning a solution has to fulfill two requirements (see
Definition 5): It has to be executable and it has to be obtainable via decomposition
from the initial abstract task. The former can be verified easily with existing tools, e.g.
VAL [R108] or the formally verified validator for PDDL [R47]. Thus what remains for
a translation into propositional logic is to determine whether it is possible to obtain a
plan π via decomposition from the initial abstract task.

The created propositional formula F must – at least in some way – encode the de-
compositions that were used to obtain tn. As we argued in Section 3.5.1, there are cases

39

4. From Verification to Planning

where it is necessary to apply an exponential number of decomposition methods in order
to obtain a primitive decomposition of an abstract task. Most of these decompositions
however will not add new primitive actions to the task network. We showed that at
most 2|A||π| “productive” decomposition methods are necessary to obtain any solution
π – provided some decomposition exists at all [C9]. Determining for an abstract task
whether it can be decomposed into the empty task network can be done in polynomial
time (see Section 3.5.1). If our encoding allows for the removal of these tasks from a cur-
rent task network, 2|A||π| is a theoretical upper bound for the number of decompositions
the encoding needs to consider when verifying π.

Next, we describe our encoding for plan verification. Using this encoding together
with the theoretical upper limit on the number of decompositions 2|A||π| is practically
impossible, as it will usually be far too high for the formula to be constructable. Thus we
propose two methods to compute better bounds. Note that in Section 4.5 we will present
another method to compute these bounds, which is empirically significantly better than
the two methods presented in this section. The newer method to compute the bound
was not included in the evaluation, however.

4.2.1. Encoding Decomposition

When encoding the process of decomposition into propositional logic, restricting the
number of allowed decompositions directly is quite cumbersome. Instead, we only re-
strict the depth of the Decomposition Tree corresponding to the applied decompositions.
We denote this depth bound with K. If we are given a bound B on the number of de-
compositions to apply, we can set K = B. This might allow the encoding to perform
more decompositions than B, but ensures that any combination of B = K decomposition
methods can be applied. Note that this is sufficient for correctness. As our encoding
uses the decomposition depth K as a bound, we will aim to compute succinct values for
K instead of B in the next section.

A satisfying valuation of the formula will represent a Decomposition Tree T via its
decision variables, whose yield is the plan π. Such a tree T exists if and only if π can
be obtained via decomposition from the initial abstract task [R88]. We can arrange the
vertices of each Decomposition Tree T into layers where edges of the tree connect nodes
in adjacent layers. Then the number of necessary layers is equal to the maximum depth
K of any Decomposition Tree we want to consider. We can further view every layer of
the Decomposition Tree as a sequence of tasks and limit its length – using the results
of Section 3.5.1 – to |π|. In total we can assign each node of any Decomposition Tree
T to a point in a matrix of size K × |π|. Figure 4.1 contains a visual depiction of such
an assignment. To further ease the construction of the formula, we repeat leafs of a
Decomposition Tree, i.e. primitive actions, in the layer below them. This ensures that
the yield of the Decomposition Tree will be completely present in the last layer.

Each point in the matrix is represented by its coordinates (l, p) where l identifies the
layer and p the position within the sequence of possible tasks in the layer. To encode
the Decomposition tree, we introduce for every point (l, p) and for every task a ∈ A∪O
a decision variable a(l,p). If a(l,p) is true, there will be a corresponding node v in the

40

4.2. Translating Plan Verification into SAT Formulae

l0

l1

l2

l3

p1 p2 p3 p4 p5

solution

Figure 4.1.: A structural depiction of the plan verification formula, where tasks are ar-
ranged in a sequence of layers and are assigned to a position in each layer.
A selected Decomposition Tree is shown in black. Decomposition is shown
with straight arrows, while inheritance of primitive actions is shown with
dashed arrows. Constructed after a Figure in [C7]. Reprinted with kind
permission of AAAI press. AAAI does not endorse any of Ulm University’s
products or services.

Decomposition tree whose label, i.e. α(v), will be a. Next, we introduce for every two
positions p and p′ in every layer l (except for the last) the decision variable e(l,p)

(l+1,p′),
which if true represents an edge in the Decomposition Tree between (l, p) and (l+ 1, p′).
To fully represent Decomposition Trees, we further introduce for every point in the
matrix and method m the decision variable m(l,p), indicating that β(v) = m. Lastly, we
add decision variables b(l,p)

(l,p′) for every pair of positions p, p′ in each layer l encoding the
relative order of the nodes in each layer. The formula asserts the properties required in
the definition of a Decomposition Tree (Definition 6). The formula asserts that

1. every point in the matrix is labelled with at most one a(l,p) and if and only if it is
labelled with an abstract task, then at most one of the m(l,p) is true.

2. for every m(l,p) that is true, each subtask t of m will occur in the layer l + 1 or t
can be decomposed into the empty task network.

3. every primitive action is repeated at the same position in the next layer.

4. the order of tasks in layer l is inherited to its subtasks in layer l + 1.

5. the order in each layer is valid, i.e. transitively closed and acyclic.

6. every point in the matrix has at most one incoming edge.

7. if a point in the matrix is labelled with a task, it has either an incoming edge or
is at layer 0. In layer 0 only one position can be labelled with a task.

8. for every edge e(l,p)
(l+1,p′) both adjacent positions (l, p) and (l+1, p′) are labelled with

a task.

41

4. From Verification to Planning

We omit the details of the encoding at this point for the sake of brevity. Details can
be found in the corresponding paper [C7]. We shown that our encoding is correct and
complete, i.e. that every satisfying valuation represents a Decomposition Tree of height
≤ K and that for every such Decomposition Tree a satisfying valuation exists [C7,
Theorem 1].

As the last step in the encoding, we add clauses to the last layer ensuring that the
order represented by the b(l,p)

(l,p′) atoms is in line with the natural ordering of the positions,
i.e. ¬b(l,p)

(l,p′) for all p > p′, and clauses asserting that the positions in the last layer are
labelled with the solution to be verified.

We want to note that the construction of the formula does not require π to contain
only primitive actions. This formula could thus also be applied to (partial-)plans still
containing abstract tasks and verify whether they can be derived via decomposition from
the initial abstract task. This ability is e.g. useful for search-based integrations of the
user, as they will deal with plans containing abstract tasks frequently.

4.2.2. Computing Bounds for the Tree Height

The presented translation is based on the fact that there is an upper bound K to the
height of Decomposition Trees leading to a given plan π.1 Based on our theoretical
results, K can be set to 2|A||π| [C9]. We show that this bound is far too high in practice
and can be lowered significantly, thereby improving the efficiency of the verifier.

The theoretical bound considers solely the worst possible case for decompositions and
does this without taking the specific structure of the planning problem into account.
More specifically, all abstract tasks are viewed as interchangeable and it is assumed
that every abstract task has only methods leading to the maximum bound, i.e. methods
leading to tasks with high minimum decomposition depth. This is often not the case in
typical planning problems. We developed two methods to extract a more succinct bound
of which the third dominates the two others, i.e. it is always smaller or equal to them,
and should thus be preferred. These bounding techniques exploit specific structures
present in the planning problem.

As a first observation, there is a significant proportion of planning problems that – after
grounding – are acyclic (see Section 2.4.2). For them, we construct the Task Transition
Graph (TTG) T whose nodes are the problem’s tasks (primitive and abstract). T
contains the directed edge (a, b) whenever there is a decomposition method for a whose
task network contains b. The planning problem is acyclic if and only if T is acyclic.
Obviously, we can use the length of the longest path in T as an upper bound for height
of any decomposition tree in this domain.

For the second method, we consider planning problems in which all decomposition
methods contain at least two subtasks. In such problems, we can apply at most |π| − 1
decompositions until we have reached a plan with the same size as π. Any further
applied method will ensure that any resulting task network cannot be equal to π as
it contains more tasks. Any HTN planning problem can be compiled into a solution-

1Or alternatively an upper bound B on the number of applied decompositions.

42

4.2. Translating Plan Verification into SAT Formulae

domain number of Ktheo Kunit KT T G

instances min max min max min max
UM-Translog 21 70 1258 5 37 3 6
Satellite 22 20 510 5 17 1 4
SmartPhone 3 132 324 11 15 3 ∞
Woodworking 5 12 48 2 4 1 2
Monroe 50 198 11032 ∞ ∞ 4 8

Table 4.1.: Number of instances per test domain. Minima and maxima for each method
to compute a hight bound. Colours refer to the runtimes in Figure 4.2.
Infinity represents instances in which either the computation is not applica-
ble (SmartPhone) or timed out (Monroe). Ktheo denotes the theoretical
upper bound 2|A||π|, Kunit the bound computed for the compiled domain
where all methods have at least two subtasks, and KT T G is the bound appli-
cable only to problems with acyclic grounding. Abridged version from [C7].
Reprinted with kind permission of AAAI press. AAAI does not endorse any
of Ulm University’s products or services.

equivalent planning problem where all methods at least two subtasks [F42].2 However
an exponential increase in size might be necessary. If possible within the given time
limit, we compile the given HTN planning problem into one where all methods have
at least two subtasks. If not, we do not use this second method. Since we alter the
domain structure by this compilation, we used the altered domain for verification if the
computed bound was the smallest and was thus used for verification.

4.2.3. Empirical Evaluation

To ascertain the empirical performance of our plan verifier, we tested it on several
planning problems with (at the time of publication) known solutions. The experiments
were conducted on an Intel Xeon E5-2660 with 503 GB available RAM.We used instances
from the domains UM-Translog, Satellite, SmartPhone, and Woodworking.
These domains were e.g. used in the evaluation of the HTN planner by Bercher et
al. [R75]. We added 50 randomly selected plans form the Monroe corpus [R106].
This corpus was developed to test plan and goal recognition algorithms and contains in
addition to the plan to be recognised, the HTN planning domain with which the plans
were generated. Planning in the Monroe domain is rather trivial, while determining
for any given sequence of actions whether it is a solution is difficult. Note especially that
the plan verification problem is equivalent to the plan goal recognition problem for HTN
planning if we know that the whole plan was observed [C9]. In total we considered 101
planning problems with their known solutions.

As a first step, we computed the height bound K with all three methods (theoretical
2Note that this paper describes only a method to ensure that all methods contain at least one sub task.
This method can however be easily expanded to achieve the required property. Further, technically
there can be methods with fewer than two subtasks, as long as they decompose the initial abstract
task and no method contains the initial abstract task as a subtask.

43

4. From Verification to Planning

5 10 15 20 25 30 35

0
20

0
40

0
60

0
80

0
10

00
12

00

plan length

S
AT

 s
ol

vi
ng

 ti
m

e
in

 s
ec

●● ●● ●●● ● ●●
●

● ●● ●●● ●● ●●● ●●●● ●●● ● ●● ●● ● ●● ● ●● ● ●● ● ●● ●● ●●
● ●

●
●●

●

●● ●●
●

●

●

●● ●

●

●
●

●●
●

● ●
●● ●

● ●●●
●

●●

●

●●
●●

●
●

●

● ●

●

●●

●

(a) Runtime on actual solutions.

5 10 15 20 25 30 35

0
20

0
40

0
60

0
80

0
10

00
12

00

plan length

S
AT

 s
ol

vi
ng

 ti
m

e
in

 s
ec

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●

●
●
●
●●

●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●
●●●●● ●●●●●

●
●●●●

●●●●●
●●●●●●●●●●

●●●●●●●●●● ●●●●●●●●●●

●●
●●●

●●●●●

●●
●●●

●●●●●●●●●●
●●●●●

●

●
●
●

●

●●●●●
●●●●●

●●●●●●●●●●
●●●●
●

●●●●●

●
●●

●

●

●●●●●
●●●●●●●●●● ●●●●●

●●●●● ●●●
●●●●●●●●●●●●

●●●●●
●●●●●●●●●●

●●●●●

●●●●●●●●●● ●●●●●●●●●●

●
●●●

●

●●●●●

●

●
●
●

●

●
●
●

●

●

●●●●● ●●●●●

●

●
●●

●

●●●●●●●●●●

●

●

●

●

●

(b) Runtime on non-solutions, generated by
replacing a single action in a solution.

5 10 15 20 25 30 35

0
20

0
40

0
60

0
80

0
10

00
12

00

plan length

S
AT

 s
ol

vi
ng

 ti
m

e
in

 s
ec

●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●

●●●●● ●●●●●
●●●●●

●●●●●●●●●●
●●●●●

●●●●●●●●●● ●●●●●●●●●●
●●
●
●●

●●●●●

●●●●●

●●●●●●●●●● ●●●●●

●●●●●

●●●●●
●●●●●

●●●●●●●●●●

●
●●
●
●●●●●● ●●●●●

●●●●●●●●●● ●●●●●
●●●●● ●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●

●

●●●●●

●●●●●
●●●●● ●●●

●●●●
●●●●
●●●●

●●●●●

●●●●●

●●●●● ●●●●●

●●●●●●

●●●●●●●●●●

●
●
●

●
●

(c) Runtime on non-solutions, generated by
random-walking.

Figure 4.2.: Runtimes of plan verifier on test instances. All Figures are copied from [C7].
Reprinted with kind permission of AAAI press. AAAI does not endorse any
of Ulm University’s products or services.

44

4.2. Translating Plan Verification into SAT Formulae

limit, TTG, and at-least-2-subtasks). The results are shown in Table 4.1. Note that
the bound based on our theoretical results is always significantly higher than those
computed by the other two methods. Especially the minima are higher than the maxima
for all other methods, if they exist. Next, the unit-decomposition expansion timed out3

on all instances of the Monroe domain, but led to comparably small bounds for all
other instances. After grounding, only some instances of the SmartPhone domain
contained cycles, i.e. the TTG-based method was usable in all other instances. In all
other instances, the TTG method was an improvement over the unit-method or the
theoretical upper bound (for Monroe).

To test the efficiency of the presented encoding, we have not only considered plans to
be verified, but also non-plans which should be refuted. We added two types of non-
solutions to the test set. One was generated from solutions by randomly replacing an
action in the plan with another action from the domain. The second was generated
by randomly applying applicable actions until a plan of the same length as the known
solution was found. For both types, we generated five non-solutions for each instance,
i.e. 505 instances for each type.

For all solutions our encoding was able to verify them. The maximum runtime for
verifying a solution was 451 seconds. However, the runtime exceeded 100 seconds in only
four instances. The runtimes per instance are shown in Figure 4.2.

The runtime behaviour of our verifier on the almost-solutions – where we randomly
replaced an action in the solution with another action – is shown in Figure 4.2b. For
some instances runtime increased significantly (the maximum runtime was 1123 sec-
onds), while all were still refuted correctly. We suppose that this is due to the fact
that the resulting formula is “almost satisfiable” as the plan to verify differs only in one
action from a solution. In general, propositional formulae that are almost satisfiable
(i.e. satisfiable if only a few or just a single clause were to be dropped) are considered
computationally hard. Of the 505 plans generated by random walking, 501 were clas-
sified as non-solutions, with the highest runtime being less than 120 seconds. The four
remaining plans were classified as solutions. We manually checked that this classification
was indeed correct. The runtime needed to refute each of the 501 non-solutions is shown
in Figure 4.2c.

As such, our evaluation has validated our plan verifier and has shown that it can handle
verification instances it was tasked within a reasonable time-frame. At this point, we
want to note that since the publication and development of this plan verifier a second
HTN plan verifier has been published by Barták et al. [R48]. It views the HTN planning
problem as a grammar and if parsing of the plan is possible with that grammar, it is a
solution to the planning problem. This approach showed – compared to the technique
presented here – a significant improvement in performance.

3We considered a timeout of one hour. All other computations finished within a few seconds.

45

4. From Verification to Planning

4.3. A Tree-style SAT Formula for Totally Ordered Planning

The encoding for plan verification describes the process of decomposing the initial ab-
stract task into a given task network. If we were to remove the clauses asserting that the
result of that decomposition is the given plan π and instead check that the obtained plan
is executable, we would – at first glance – have constructed a formula that is satisfiable
if a solution to the planning problem exists. Unfortunately, this approach has two signif-
icant drawbacks. First, HTN planning is undecidable [R143], i.e., it cannot be possible
to create a single propositional formula that is satisfiable if and only if a given planning
problem has a solution. The formula we described in the previous section cannot capture
any decomposition leading to a solution, but only those that have a decomposition of
height less than K. The parameter K, in turn, depends on the (maximum) length n
of plans considered, as we compute K from it. Since HTN planning is undecidable, no
upper bound to n or K can exist. To obtain a complete planner, we would have to
increase n until a solution has been found.

Second, our initial experiments showed that the plan verification formula is unusable
for planning due to its size. It will contain Θ(n4) clauses, if we consider plans of length
n. For a plan of 100 actions, this means 108 clauses, which is at the upper limit of
solvability for current SAT solvers. For even longer plans, we cannot expect a SAT
solver to find a satisfying valuation in any reasonable time frame. Further, the formula
contains a high degree of non-determinism, making it hard for SAT solvers.

Thus a new encoding was developed, specifically designed for the purpose of planning.
A significant number of clauses in the plan verification formula, in fact those responsible
for Θ(n4) clauses, encodes the partial order of tasks in task networks. Since handling
partial order is (seemingly) the most difficult element of an HTN planning problem, we
first developed a specialised encoding for totally-ordered HTN planning problems. Based
on this encoding we were able to add support for partial order (see Sec. 4.4).

4.3.1. Path Decomposition Trees

The central deficiency of the encoding for plan verification is that it does not exploit the
specific decompositional structure of the planning problem at all – apart from using it to
compute more succinct height bounds. An encoding exploiting the specific structure of
decompositions contained in the problem should expose more of the problem’s structure
in the propositional formula and thus should make the formula easier to solve. As the
first step in exploiting the problem-specific structure of decompositions, we need a repre-
sentation of that structure. Unfortunately, considering all individual decompositions of
the initial abstract task into plans is impractical or impossible (depending on the prob-
lem), because there are either too many or even infinitely many such decompositions.

Thus, we need a compact representation of decompositions of the initial abstract
task aI . Assume that this representation would encode all such decompositions. Any
propositional encoding based on this representation could only encode a subset of these
decompositions, as we would else created a terminating decision procedure for an un-
decidable problem. Since representing more information than can be utilised by any

46

4.3. A Tree-style SAT Formula for Totally Ordered Planning

⊕ =

Figure 4.3.: Two Decomposition Trees, one marked with black nodes and one with white
nodes. On the right, an ordered Path Decomposition Tree is shown that
has both Decomposition Trees as sub-trees. The morphism is shown via the
colour of the nodes.

encoding is futile, we will also restrict this compact representation to a subset of all
possible decompositions of the initial abstract task. The design choice at this point is to
determine which subset to choose. Under the assumption that the specialised encoding
will – as the encoding for plan verification – bound the maximum depth of decomposi-
tion in some way, our compact representation will consider all decompositions up to a
given depth limit K. Note that via iterating over the depth bound K, we still retain
completeness.

As a compact representation of decompositions, we introduced the concept of Path
Decomposition Trees (PDTs). Intuitively speaking, a PDT is a tree P such that all pos-
sible Decomposition Trees T (Def. 6) up to a given depth bound K are rooted subtrees
of P . This allows us to use the same nodes of the PDT to represent multiple Decom-
position Trees, which essentially “fuses” multiple Decomposition Trees and significantly
compacts their representation. To distinguish the Path Decomposition Trees for totally-
ordered HTN planning problems from those for general, partially-ordered problems, we
introduce them formally as Ordered Path Decomposition Trees, but use the term Path
Decomposition Tree throughout this thesis.

Definition 10 (Ordered Path Decomposition Tree [C5])
Let P be a planning problem and K a depth bound.
Then PK = (V,E, α) is an Ordered Path Decomposition Tree iff

• (V,E) is a directed and ordered tree rooted at rI ,

• α : V → 2A∪O labels each node with a set of (primitive and abstract) tasks, and

• for every Decomposition Tree T = (V T , ET ,≺T , αT , βT), (V T , ET) is a subtree
of (V,E) under the morphism φ : V T → V such that for the root r of (V T , ET)
φ(r) = rI holds , for every node v ∈ V T it holds that αT (v) ∈ α(φ(v)), and the
order ≺T is the same as the order of nodes in (V,E) under φ.

We show in Figure 4.3 two Decomposition Trees and a possible Path Decomposition
Tree that contains both of them as sub-trees.

To see that a PDT can be a compact representation of decompositions, consider all
Decomposition Trees up to depth K for a planning problem where the maximum number
of subtasks in a method is ∆. The last depth layer of a Decomposition Tree can contain
up to ∆K nodes. The number of all inner nodes in the tree is less or equal to ∆K − 1
and equal only if ∆ = 2. In the edge case ∆ = 1 the number of inner nodes is K − 1.

47

4. From Verification to Planning

{A}

{a} {A, a} {a}

{a} {A, a} {a}

{a} {A, a} {a}

{a}

{A}

{A, a} {A, a}

{A, a} {A, a} {A, a} {A, a}

{A, a} {A, a}{A, a}
{A, a}{A, a}

{A, a}{A, a} {A, a}

{a} {a} {a} {a} {a} {a} {a} {a}

Figure 4.4.: Two PDTs for a domain with the three decomposition methods A → aA,
A→ Aa, and A→ a.

Any of these nodes can be labelled with any (primitive) task or not be present in the
Decomposition Tree at all. Thus there are O((|O|+1)∆K) different Decomposition Trees
of depth K. However, there is always a path Decomposition Tree of size O(∆K) that
has all Decomposition Trees as sub-trees – namely one whose inner nodes have always
∆ children and that labels all nodes v with α(v) = A ∪ O. This shows that the PDT
representation can be exponentially more compact than enumerating all Decomposition
Trees.

Naturally, we are interested in a “minimal” PDT. Minimal is put into quotation marks,
as it is a priori not clear what minimality means here, as there are several potentially
plausible metrics we might want to minimise. At first glance, it seems useful to minimise
the number of nodes in the tree or the size of the label sets. Both optimisations might
lead to smaller and more informative encodings. There is, however, no obvious means
to weigh these two criteria against each other, i.e. it is not clear whether it is better to
have fewer nodes in PK at the cost of larger label sets α(·).

Even if we want to optimise the number of vertices of the PDT, the problem might
be computationally difficult. Even if computing the optimal size of the PDT is still
polynomial,4 the minimal PDT can have exponentially many nodes. As we have to
compute the PDT explicitly for encoding, a complexity analysis at this point is futile.
Note that locally optimising the number of children for every subtask of the tree does not
lead to a globally optimal number of nodes for the PDT. To see this, consider a planning
problem with three decomposition methods A → aA, A → Aa, and A → a, where A is
an abstract task, a a primitive action, and A the initial abstract task. The PDT with
the minimal number of nodes for K = 4 is depicted in Figure 4.4. We can see that only
a single task in every layer is labelled with the abstract task A. This ensures that only
one node per layer has children in the next layer. If a Decomposition Tree contains the
first decomposition method, we can use the first two children to represent its subtasks.
If it contains the second method, we can use the latter two. This construction results in
a size of the PDT that is linear in the depth K. Note that there are inner nodes with
three children, but the maximum size of each method is 2. If we optimise the number of
children for each node locally, as done in the second PDT depicted in Figure 4.4, each
inner node has only two successors at the cost of the overall size of the tree now growing
exponentially in K. This is due to the fact that now each inner node has two children

4Which is as of yet unknown.

48

4.3. A Tree-style SAT Formula for Totally Ordered Planning

labelled with the abstract task A, both of which must be expanded further.

Due to these difficulties in finding an “optimal” PDT, we opted to construct the PDT
in a greedy fashion. For a given planning problem P, we start with a PDT containing a
single node r labelled with α(r) = {aI}. We repeatedly expand leafs of the current tree
until all leafs are either at depth K or their label sets contain only primitive actions.
Consider a leaf l with the label set α(l). We gather all methods applicable to the
abstract tasks in α(l). Since the planning problem is totally-ordered, these methods’
tasks networks will be sequences of tasks. We combine these sequences into a sequence
of sets of tasks in a greedy fashion while trying to minimise the size of these sets. E.g.
we reduce the sequences aAa, Aa, and aB to {a}, {A,B}, and {a}. For each set s in
this sequence, we generate a new child for l and label it with s. The constructed tree is
a valid PDT [C5].

4.3.2. Tree-style SAT Formulae

In the previous section, we introduced PDTs which are compact representations of all
possible Decomposition Trees of an HTN planning problem up to a given depth bound
K. For every solution π to an HTN planning problem, there exists a Decomposition
Tree that has π as its executable yield (see Theorem 1). Conversely, a solution can
be extracted from every Decomposition Tree with an executable yield. Thus instead of
modelling solutions in a propositional formula directly (which is difficult), the formula
can encode a Decomposition Tree via its decision variables. A valuation of the formula
will represent such a Decomposition Tree and the formula will assert that the tree is
consistent and that its yield is executable.

Let PK = (V,E, α) be a totally-ordered Path Decomposition Tree. When constructing
the formula, we introduce two types of decision variables.

• av – for every v ∈ V and a ∈ A ∪O

• mv – for every v ∈ V and m ∈M

Using these decision variables, we will select a Decomposition Tree T = (V T , ET ,≺T ,
αT , βT) that is a sub-tree of PK . Setting av to true means that v is part of V T and that
αt(v) = a. Similarly setting mv to true represents βT (v) = m.

The propositional formula itself ensures that the represented Decomposition Tree is
valid. Following the definition of Decomposition Trees (Definition 6), we have to ensure
that

1. for every node v ∈ V at most one av and mv are true, i.e. v is labelled with at
most one task and at most one method is applied.

2. if av is true for an abstract task a, an appropriate method mv is chosen, else no
method is chosen.

3. if mv is true, the appropriate tasks will be assigned to the children of v and all
other children have no tasks assigned to them.

4. if av is true, its parent also has a task assigned to it (except if a is the root).

49

4. From Verification to Planning

These constraints can be transformed into a propositional formula Fdecomp [C5]. To
ease the further construction of the formula, we also added clauses that ensure that if
a primitive action is assigned to an inner node v, it is also assigned to exactly one of
the children of v. As a result, every valuation assigns the action at the leafs of the
represented Decomposition Tree to the leafs of PK .

In addition to being a decomposition of the initial abstract task aI , the yield of the
represented Decomposition Tree T must also be executable. Executability means (see
Theorem 5) that there is a linearisation of the yield which is executable in the initial
state. Using the above-mentioned encoding trick, the yield of T is assigned to the leafs of
PK . Since the HTN planning problem is assumed to be totally-ordered and the PDT PK

complies with that ordering, the natural order of the leafs of PK will be the order of the
tasks in the represented yield of T . As such, the tasks assigned to the leafs of PK from
a sequence of actions for which any propositional encoding for classical planning can
be used to ensure executability. We chose the original encoding by Kautz and Selman
[R145] since subsequent encodings mostly allow for actions parallelism, which does not
occur in totally-ordered planning problems. We call this formula Fexe. The connection
between the two formulae is made via re-using the av atoms for leafs v as the action
atoms in Fexe.

We showed that Fdecomp ∧Fexe is satisfiable if and only if the HTN planning problem
P for which the formula was created has a solution of depth at most K [C5]. Thus a
planner based on it using an appropriate iteration over K will be sound and complete.

To solve any totally-ordered planning problem P, we iterate over the depth bound K
starting with the minimally necessary value to obtain a primitive decomposition of aI .
For every depth bound, we construct the PDT PK and construct the formulae Fdecomp

and Fexe for it. We then pass Fdecomp∧Fexe on to a SAT solver. If it returns a satisfying
valuation, we can extract the plan and return. If not we increase K. Note that we can
technically end this iteration after K = |A|(2|L|)2, as if no plan exists at this point for a
totally-ordered HTN planning problem, none can exist for higher K [C5].

Note that this (original) procedure has still room for further technical improvements.
For example, we could re-use the PDT constructed for K − 1 to compute the one for K
as they are sub-trees of each other. Similarly, the propositional formula for depth K will
contain (a large part of) the formula for depth K−1, which can be exploited by using an
incremental SAT solver [R46]. Further, one can imagine interleaving the individual calls
to the SAT solver for different depth bounds, as is done for length bounds in classical
planning [R78].

We implemented the described encoding technique within the hierarchical planning
framework PANDA.5 In addition to the code for computing the PDT and transforming
it into a propositional formula, the author of this thesis has also implemented significant
parts of the preprocessor infrastructure of the planner.

5PANDA – currently in its third re-implementation – encompasses several software components written
by Daniel Höller, Gregor Behnke, and various students. It contains parsers, a “grounder” [F12], sev-
eral further preprocessing components, a plan-space-search-based planner [F29, R75], a progression-
based planner [F20], and the SAT-based planner described in this thesis.

50

4.3. A Tree-style SAT Formula for Totally Ordered Planning

4.3.3. Empirical Evaluation

To show that the presented planning approach performs well in practice, we conducted
an empirical evaluation of its performance.

Planners. We compared our approach against other state-of-the-art HTN planning
systems. Each planner was given 10 minutes runtime and 4 GB of RAM per instance on
an Intel Xeon E5-2660. Since there are both HTN planners specifically designed to solve
totally-ordered HTN planning problems and those that can solve arbitrary problems, we
compared our technique against both types of planners. We considered the two following
dedicated total-order HTN planners:

• SHOP, a progression-based planner that performs blind depth first search [R135]
and

• HTN2ASP, a translation of totally-ordered HTN planning problems into answer
set programming [R114]. Since the code of this planner is not available, a Masters
student has re-implemented the translation according to the authors’ descriptions.

From the group of general HTN planners, we considered a variety of planners employ-
ing different solving strategies:

• PANDApro, a progression-based algorithm that uses an encoding of the current
state and remaining task network into classical planning for heuristic guidance
[F20]. We used it with the greedy A∗ search algorithm.

• HTN2STRIPS, a translation of HTN planning problems into a sequence of clas-
sical planning problems [F34] which are then solved by a state-of-the-art classical
planner, in this case jasper [R79].6

• PANDA, a plan-space-search-based planner with heuristics based on the Task De-
composition Graph (TDG). We used both the heuristic that estimates action costs
(TDG-c) as well as the one estimating remaining modification effort (TDG-m),
both in conjunction with greedy A∗ [F29, R75].

• FAPE, a plan-space-search-based planner that is capable of handling domains with
temporal constraints [R76]. FAPE uses blind search, but employs an effective
pruning technique for search nodes. It is based on a translation of the current
search node into a flat temporal model on which feasibility is determined [R61].
The ordering in the domain’s methods is translated into temporal constraints. As
such, FAPE’s pruning can take some, but not all ordering constraints into account
in its pruning, which is currently not possible in both PANDApro’s and PANDA’s
heuristics.

Note that FAPE cannot handle recursion in the planning problem. As such, we
ran it only on instances which do not contain recursion.

• UMCP is a plan-space-search-based planning algorithm [R148]. We implemented
this algorithm within PANDA. We tested it in its breath-first search, depth-first
search, and heuristic configurations.

6For a comparison including classical planners form the most recent IPC, see Section 4.4.5.

51

4. From Verification to Planning

We tested the presented propositional encoding in conjunction with the best perform-
ing SAT solver of the SAT Competition 2016: cryptominisat5 [R65], MapleCOMSPS
[R63], and Riss6 [R64]. The resulting planner is named totSATḟootnoteThe name tot-
SAT is a joking reference to the emblem of the PANDA planner within which totSAT
was implemented. The panda seems (at least to me) to raise his hand to pad his full
belly – he is totally full or “total satt” in German.

Benchmark Instances. There is currently no established set of benchmarking in-
stances for HTN planning, let alone for totally-ordered HTN planning. As such, we
used instances from domains which have been used in other empirical evaluations of
HTN planners [F20, F29, R75, R82]. These are the domains Entertainment, UM-
Translog, Satellite, Woodworking, SmartPhone, Rover, and Transport con-
taining in total 127 planning problems. Of those instances only 36 are totally-ordered (20
of UM-Translog, 12 of Entertainment, and 4 of Satellite). We manually added
ordering constraints to all other instances, making them totally-ordered. The ordering
was added so that at least one solution was preserved in every instance. Further note
that only the domains Satellite, Woodworking, and Rover contain no recursion
in the lifted model, i.e. those are the only ones on which FAPE was run.

#
in
st
an

ce
s

to
tS
AT

cr
yp

to
m
in
isa

t5

to
tS
AT

M
ap

le
C
O
M
SP

S

to
tS
AT

R
iss

6

PA
N
D
A
pr
o
gr
ee
dy

A
∗
F
F

H
T
N
2A

SP

SH
O
P

H
T
N
2S

T
R
IP

S

T
D
G
-c

gr
ee
dy

A
∗

T
D
G
-m

gr
ee
dy

A
∗

FA
P
E

U
M
C
P
-B

F

U
M
C
P
-D

F

U
M
C
P
-H

Entertainment 12 12 12 12 9 12 5 5 9 9 - 5 5 6
UM-Translog 22 22 22 22 22 21 22 18 22 22 - 22 22 22
Satellite 25 25 25 25 25 25 25 23 25 25 25 24 18 20
Woodworking 11 11 11 11 11 11 10 5 9 9 0 6 6 6
SmartPhone 7 7 7 7 7 6 4 6 5 6 - 4 4 4
Rover 20 20 20 20 17 8 16 5 2 2 15 0 0 0
Transport 30 28 27 26 20 14 0 20 2 1 - 1 0 1
total 127 125 124 123 111 97 82 82 74 74 40 / 56 62 55 59

Table 4.2.: Number of solved instances per planner per domain. Maxima are indicated
in bold. Planners shown in bold are general HTN planners, i.e. they can also
handle partially-ordered planning problems. Copied from [C5]. Reprinted
with kind permission of AAAI press. AAAI does not endorse any of Ulm
University’s products or services.

Results. Table 4.2 shows the coverage, i.e. the number of instances solved within
the time and memory limits, for all planners. Figure 4.5 shows the number of solved
instances in relation to the time it took to solve the problems. The new planner totSAT
solves between 123 to 125 (depending on the solver) out of the 127 instances. Note
that totSAT solves all instances except for the two largest instances in the Transport
domain. We tested these two with a higher time limit and totSAT solves both within 30

52

4.4. Handling Partially-Ordered Problems

totSAT cms
totSAT Maple
totSAT Riss6
PANDApro FF
ASP
SHOP original
HTN2STRIPS
TDG-c
TDG-m
FAPE
UMCP-BF
UMCP-DF
UMCP-H

1 2 5 10 20 50 100 200 500

20

40

60

80

100

120

Runtime in seconds

N
um

be
r
of

so
lv
ed

in
st
an

ce
s

Figure 4.5.: Runtime vs number of solved instances per planner. Copied from [C5].
Reprinted with kind permission of AAAI press. AAAI does not endorse any
of Ulm University’s products or services.

minutes.

The two other planners specifically developed for totally-ordered problems (HTN2ASP
and SHOP) have a higher coverage than all other general purpose HTN planners, except
for PANDApro. Such a behaviour is expected as these two planners can exploit the fact
that the domain is totally ordered – as does our encoding. It is remarkable that this
advantage even allows the blind-search-based planner SHOP to beat both HTN2STRIPS
and the TDG-based planners which use informed search.

4.4. Handling Partially-Ordered Problems

In the previous section, we presented an encoding of totally-ordered planning problems
into propositional logic based on a compact representation of all possible decompositions
up to a given depth bound. We further showed that the resulting planner outperforms
other state-of-the-art HTN planners, some of them significantly. In practical applica-
tions, however, planning problems are seldom totally-ordered, as witnessed by the fact
that only 36 out of the 127 original benchmark instances were totally-ordered. As an
example, consider the DIY domain and its abstract task setup_drill setting up a drill
for operation. This includes several steps, but at least inserting the battery, inserting
the drill bit, setting the gear switch, and setting the direction switch appropriately.
Each of these steps is represented by a separate sub-task of the method decomposing
setup_drill. As these steps can be executed independently from each other there won’t
be any ordering between them. Further these tasks themselves might contain more than
one operation as e.g. inserting the drill bit, which might first insert a bit holder, then
fasten it, and then insert the drill bit into the bit holder. Partial order in the method for

53

4. From Verification to Planning

setup_drill is required to allow the – physically possible and plausible – interleaving
of these steps, e.g. with inserting the battery into the drill. Note that – in an assistance
scenario – the user might actually request to change the plan to use any of these partic-
ular orders (or parts of it). Thus, the planning model has to be able to represent them
all and must thus allow for partial order in methods. Further note that there are struc-
tures in plans – especially the interleaving of primitive actions stemming from different
abstract tasks, which is necessary in the DIY domain – that cannot be represented with
totally-ordered domains [F36, F42].

As partial order is an important and, especially in assistance domains, practically oc-
curring feature of HTN planning problems, the planner totSAT presented in the previous
section will not suffice as a planner for these settings. In this section we show how the
encoding of totSAT can be extended to also cover partially-ordered planning problems.
We first present a naive extension of the totSAT encoding that tracks the partial order
explicitly in decision variables [C6]. Next, we will show that the ordering constraints
contained in a planning problem can be extracted before the problem is encoded and
can thus be handled in the formula more efficiently [C2]. We introduce the notion of
Solution Order Graphs – a data structure that represents the order of all primitive de-
compositions of the initial abstract task up to a given depth limit. Lastly, we present
an empirical evaluation that compares the performances of the encodings to each other
as well as to current state-of-the-art HTN planning systems.

4.4.1. Naive Encoding

The presented encoding of totally-ordered HTN planning problems into propositional
logic is based on the concept of Path Decomposition Trees (PDTs). The definition of
PDTs in Section 4.3.1 relied on the fact that the subtasks of each decomposition method
form a sequence and thus their ordering can be represented in the PDT by an ordered
set of children for any inner task. As such the order of the yield of a decomposition tree
– the plan it represents – was given by the order induced on the leafs of the PDT. The
propositional encoding exploited this fact to encode state transitions directly using the
decision variables av representing the actions assigned to the leafs of the PDT.

This technique is not directly applicable if the domain contains partially-ordered meth-
ods as we cannot choose a sequential order of the children for each inner node. The first
solution to this problem we present is to separate the – so far – joint handling of sub-
tasks and the order between them. In an unordered PDT, the order between vertices is
not taken into account any more, neither is the order in Decomposition Tree T . It solely
represents the tasks contained in any Decomposition Tree T .

Definition 11 (Unorderd Path Decomposition Tree [C6])
Let P be a planning problem and K a depth bound.
Then PK = (V,E, α) is a Path Decomposition Tree iff

• (V,E) is a directed tree rooted at rI ,

• α : V → 2A∪O labels each node with a set of (primitive and abstract) tasks, and

• for every Decomposition Tree T = (V T , ET ,≺T , αT , βT), (V T , ET) is a subtree

54

4.4. Handling Partially-Ordered Problems

of (V,E) under the morphism φ : V T → V such that for the root r of (V T , ET)
φ(r) = rI holds and for every node v ∈ V T it holds that αT (v) ∈ α(φ(v)).

Unordered PDTs can be computed in the same way as ordered PDTs are. We can
even use the same procedural mechanics, if we use any topological order7 of each method
instead of the method’s actual order [C6].

The propositional encoding of an ordered PDT PK does not take the ordering of
its nodes into account – it comes only into play when executability is encoded. As
such we can use the same propositional formula Fdecomp for an unordered PDT as for
the ordered case. Consequently, its correctness and completeness are retained, i.e. any
satisfying valuation of its decision variables av and mv is a valid decomposition tree of
depth ≤ K and all such decomposition trees correspond to a satisfying valuation [C5,
C6].

What remains to encode is executability of the yield of the represented Decomposition
Tree T . A witness for executability is a linearisation π of the yield, which is compatible
with the ordering constraints imposed by the applied methods. An ordering constraint
can only originate in a method imposing such a constraint to its subtasks [C6]. We track
these constraints via additional decision variables bv

w for each two vertices v and w of
the PDT that are direct children of the same node. bv

w being true represents that the
method applied to their common parent node has introduced the ordering v ≺ w on
them. The correct truth values of these variables can be maintained using implications
from the mu variables for the parent u of v and w [C6].

Consider any two leafs l1 and l2 of a DT T as a sub-tree of the PDT PK . We can
w.l.o.g. assume that they are also leafs of PK (see Section 4.3.2). The order between l1
and l2 in the DT T can only be induced by the method applied to their last common
ancestor a = lca(l1, l2) in T respectively PK [C6]. This order will have been imposed
on the children c1 and c2 of a that are ancestors of l1 and l2, respectively. This is the
ordering encoded by variable bc1

c2 .

To find an executable linearisation of the yield of T , the encoding proceeds in three
steps. First, it encodes a linearisation of the leafs of PK , which will also include a
linearisation of the leafs of T as a subsequence. Second, it ensures that this linearisation
does not violate the ordering constraints imposed by the chosen Decomposition Tree via
the bv

w atoms. Third, it asserts that tasks of the chosen linearisations are executable in
the initial state.

To choose a linearisation of the leafs of PK , we encode a matching of the leafs of PK

to a sequence of time-steps [C6]. We chose the number of time-steps as the number of
leafs of PK . To check the third condition, we can employ any propositional encoding for
classical planning. We again use the one by Kautz and Selman [R145]. Lastly, we have
to ensure that the chosen linearisation is compatible with the ordering induced by the
Decomposition Tree T on the leafs. This is not the case if there are two leafs l1 and l2
for which the DT T enforces the order l1 ≺ l2, but l1 is mapped to a time-step i and
l2 to a time-step j < i. This situation can be forbidden by clauses using the bc1

c2 atoms
[C6].

7Technically any order suffices, but empirically it is better to use a topological order.

55

4. From Verification to Planning

The most significant drawback of the presented encoding is its size. Checking that the
linearisation does not violate the ordering constraints induced by the applied decomposi-
tion methods still requires Θ(n4) clauses. Note that the rest of the formula contains only
Θ(n2) clauses. Due to the disparity in number between the order-related clauses and
those pertaining to decomposition and executability, they will dominate the encoding
causing the formula (potentially) to be harder to solve for SAT solvers.

4.4.2. SOGs – Solution Order Graphs

Checking whether the chosen linearisation of the leafs of T/PK complies with the order
imposed by the Decomposition Tree is the largest and thus most problematic part of the
formula. Thus, we developed a technique to reduce its size. The naive encoding in the
previous section exploits only the structure of decomposition in the planning problem,
but not the structure of ordering constraints. We introduce a compact representation
of the ordering of all potential yields of Decomposition Trees T of depth less than K.
This ordering is a super-graph of all possible task networks that can be obtained via K-
depth-limited decomposition from the initial task. We call it the Solution Order Graph
(SOG) [C2].

Formally a Solution Order Graph S is a transitively closed DAG8 whose vertices are
the leafs of PK . Let l1 and l2 be two leafs of PK , a = lca(l1, l2) their last common
ancestor, and c1 and c2 the children of a that are ancestors of l1 and l2, respectively.
We call the SOG S consistent with respect to PK if for every pair of vertices l1 and
l2 the presence of an edge between them is consistent with the applicable methods. If
all methods applicable to a either impose the ordering c1 ≺ c2 or do not assign tasks
to either c1 or c2, then the presence of the edge (l1, l2) is consistent. If all methods
applicable to a do not impose the order c1 ≺ c2 or c2 ≺ c1 or do not assign tasks to
either c1 or c2, then the absence of the edge (l1, l2) is consistent. Any other situation is
inconsistent. A consistent SOG thus requires that all methods applicable to each inner
node treat their subtasks “uniformly” when it comes to the order imposed to them. This
uniformity is preserved by a method not assigning a task to one of the children at all.
Given a SOG S that is consistent with a PDT PK , we know that if tasks are assigned
to two leafs l1 and l1 of PK their order in the yield of the represented Decomposition
Tree will be the same as in S – due to the fact that the sole method that determines the
order between them has forced the ordering contained in S [C2]. Note that S does not
contain orderings that are not implied by the applied methods, i.e. it represents exactly
the imposed constraints. The important observation is that this is independent of the
actually applied methods. Consequently, the ordering of l1 and l2 is not dependent on
any decision variable in the encoded formula any more. We will exploit this property to
simplify the validity check for the linearisation.

At this point, the question is how an SOG S that is consistent with a PDT PK can
be computed. Unfortunately, not every PDT has a consistent SOG S. However, we can
derive a necessary condition for a PDT PK to have a consistent SOG S. Consider an
inner node a with two children c1 and c2 and two methods that would impose different

8A DAG is a Directed Acyclic Graph, i.e. a directed graph that does not contain a directed cycle.

56

4.4. Handling Partially-Ordered Problems

α(t1) = {A,B}

α(t2) = {B}

α(t3) = {c}

α(t4) = {d, f}

α(t5) = {e} A

B

c d

B B

e

f

Figure 4.6.: On the right, we depict two task networks. On the left, we show a possible
common supergraph G such that both task networks are induced subgraphs
of G. Copied from [C2]. Reprinted with kind permission of AAAI press.
AAAI does not endorse any of Ulm University’s products or services.

orderings between c1 and c2. If such vertices existed, any two leafs l1 and l2 below c1
and c2 would violate the consistency of S. We can represent this local consistency of
the order imposed to the children of an inner node a as a graph problem. The task
network of each method m applicable to a task in α(v) can be equivalently viewed as a
vertex-labelled DAG Dm. The children of a also form a DAG G whose nodes are labelled
with sets of tasks – the α(·) sets. If the PDT has a consistent SOG S then all Dm are
induced subgraphs of G. We showed that this condition is also sufficient, i.e. if for every
inner node there is a DAG G over its children for which all Dm are induced subgraphs,
we can compute an SOG S for the respective TDG PK [C2, Theorem 2]. Two task
network graphs Dm and a possible DAG G for the children are depicted in Figure 4.6.

We can construct the SOG together with the PDT. When constructing the PDT, we
keep a current SOG S for the current leafs of the PDT. Whenever we expand a leaf l of
PK , we construct its children in conjunction with a DAG G such that for all applicable
methods m, Dm is an induced subgraph of G. We add the children to PK and replace
the node l in S with G. Once the construction of PK is completed, S will be a consistent
SOG for PK [C2].

For this construction procedure, we have to compute a set of appropriate children C
and DAG G on them, given a set of applicable methodsM . Obtaining any graph G with
the required property is easy, as the disjoint union of all Dm for m ∈M will suffice. Such
a choice would lead to enumerating all Decomposition Trees explicitly and is thus not
feasible. Instead, we are however interested in a small DAG G that “fuses” as many tasks
in the applicable methods into one. As for the case of total order, locally minimising
the number of children does not lead to a globally minimal number of leafs. Further, we
showed that even locally minimising the number of children is already NP-complete and
therefore globally optimising them must be at least NP-hard.9

Definition 12 (Minimal Induced Supergraph)
The decision problem MinimalInducedSupergraph is given a family of transitively
closed DAGs Dm and a number k to decide whether there exists a transitively closed
DAG G with at most k vertices such that every Dm is an induced subgraph of G.

9Consider a PDT for K = 1.

57

4. From Verification to Planning

Theorem 5 (Minimal Induced Supergraph [C2])
MinimalInducedSupergraph is NP-complete.

Currently, the DAG G is constructed in a greedy fashion [C2]. We start with G to be
the first Dm and iteratively merge the next method’s DAG into the current G. Each Dm

is merged greedily vertex by vertex updating the set of edges and anti-edges, i.e. pairs
of vertices between which no edge can be inserted into G in order to keep the induced
subgraph property for every previously processed Dm. Whenever merging the next node
of Dm with any of the nodes of G is not possible, we create a new vertex in G.

Note the requirement that a DAG G over the children of each inner node must exists
that is consistent with the order of all applicable methods may increase the number of
children as compared to the construction method used for the naive encoding, which
ignored order. Thus, using the SOG-based construction, the number of leafs of the PDT
might increase. Our evaluation shows that this is indeed the case, but the benefits of
having extracted a SOG outweighs the increase of the number leafs.

4.4.3. From n4 to mostly n2 Ordering Clauses

The SOG S constructed in conjunction with the PDT PK provides additional structural
information on the planning problem that can be exploited to improve the propositional
encoding. The clauses tracking order in the naive encoding, i.e. those defining bv

w atoms,
can be removed, as the order of the leafs is now uniquely determined. Thus reasoning
on this order has not to be performed by the SAT solver. Our main objective was to
replace the clauses ensuring that the chosen linearisation of the leafs of PK adheres to
the ordering imposed by the selected Decomposition Tree. Due to the construction of
the SOG, this ordering is now independent of the actually chosen Decomposition Tree.
As such, we may choose any linearisation of S.

As described in Section 4.4.1, the linearisation is chosen by matching each leaf of PK

to a timestep. To encode a linearisation that respects the leaf’s ordering, we utilise the
following observation. If we match a leaf l to a timestep t, all successors of l cannot
be matched to a time before t. Requiring this condition for all leafs and timesteps is
also sufficient. We add for every leaf l and timestep t an atom flt representing that it is
forbidden to match leaf l to time t. Note that fl

t can also be interpreted as: l must be
matched to a timestep after t. We can encode the following rules that ensure a correct
linearisation has been chosen, based on the above observation [C2].

1. If leaf l is matched to time t, all direct successors of l in S cannot be matched to t.

2. If leaf l cannot be matched to time t, l cannot be matched to t− 1.

3. If leaf l cannot be matched to time t, the direct successors of l in S cannot be
matched to t as well.

Encoding these three constraints requires O(L2 ·∆+(S)) clauses where L is the number
of leafs and ∆+(S) is the maximum number of direct successors of any node in S. In the
worst case, ∆+(S) will be L−1, but in most planning problems, ∆+(S) is typically very
small, i.e. at most 3. As such, the encoding requires O(L3) clauses in theory, but often

58

4.4. Handling Partially-Ordered Problems

degenerates and requires only O(L2) clauses in practice. This constitutes a significant
improvement over the previous naive encoding in terms of formula size.

4.4.4. Attaching Modern Propositional Encodings of Classical Planning

Up to this point, we have always used the encoding of Kautz and Selman [R145] to ex-
press the executability of a linearisation of primitive actions. Since the development of
this formula in 1996, there have been significant improvements to SAT planning for clas-
sical planning problems. The most significant improvements were the addition of state
invariants [R139] and the ability to encoding parallel action execution [R104]. Invariant
clauses are an extension to the Kautz and Selman encoding and do not require any
modification to the encoding of the HTN planning problems. Further, empirically they
always improved the performance of the planner. We thus used it in all configurations
in the following evaluation.

The ∀-step10 and ∃-step encodings for classical planning alter the way actions are ex-
ecuted in the encoding [R104]. While originally only one action could be executed per
timestep, both encodings allow the for execution of multiple actions at the same time.
Naturally, this is not possible for each subset Π of the set of primitive actions A. Conse-
quently both encodings pose additional restrictions to the set of actions to be executed
in parallel. While the ∀-step encoding requires that all linearisations are executable, the
∃-step encoding ensures only that at least one such linearisation of the actions in Π is
actually executable. However both require that all executable linearisations result in the
same state, i.e. the state after their execution is the same.

Technically, the classical encoding by Kautz and Selman uses the same variables to
reference to the actions executed at each timestep as the ∃-step encoding. For each
timestep t and action a ∈ A the decision variable a@t denotes that a is executed at time
t. While the ∃-step encoding allows for multiple a@t atoms to be true for one timestep
t, the formula we presented for matching the leafs of the PDT to timesteps does not
[C6]. We can relax this formula to allow for matching multiple leafs of the PDT to
the same timestep [C2]. It however does not suffice to simply remove constraints from
the matching, i.e. the one restricting the number of matched edges per timesteps, as
matching two leafs that are labelled with the same task to the same timestep is illegal.
If so, we would only execute the respective action once, while the HTN problem forced
us to execute it twice, which might not be possible. We showed how this situation can be
forbidden [C2]. Thus, our encoding profits from the newer and more efficient encodings
of classical planning problems. Note that this modification applies both to the naive
encoding, as well as to the SOG-based encoding.

4.4.5. Empirical Evaluation

We showed the encoding for totally-ordered HTN planning can be modified to also
handle partial order in HTN planning problems. It is however unclear which of these
encodings is suited best for solving HTN planning problems. As such, we compared them
10A variant of the ∀-step encoding is already described Kautz and Selman [R145].

59

4. From Verification to Planning

empirically against each other. We considered the naive tree-style encoding SAT-tree
(Section 4.4.1) and the SOG-based encoding SAT-F (Section 4.4.3). Both encodings
were tested with the Kautz and Selman (the “bare” SAT-tree and SAT-F encodings)
and the ∃-step encoding for primitive executability (SAT-tree ∃ and SAT-F ∃).

Benchmark Instances. For the evaluation, we use the domain presented in Sec-
tion 4.3.3. Note that (some of) these domains are naturally partially-ordered. For the
previous evaluation in Section 4.3.3 we have manually modified the partially ordered do-
mains so that they are totally ordered. In this evaluation, we use the original, partially
ordered ones.

Further, we added a new domain, PCP, which exploits the fact that general, partially-
ordered HTN planning is undecidable [R143]. Each PCP instance encodes an instance
of undecidable Post’s Correspondence Problem [R160]. We chose this problem as a
benchmark, as it represents one of the computationally most difficult problems HTN
planners can handle.

Planners. Each planner was given 10 minutes runtime and 4 GB RAM per instance
on an Intel Xeon E5-2660. We compared our encodings against the same planners11

as in Section 4.3.3, omitting those that are specifically developed for totally-ordered
instances (HTN2ASP and SHOP). We added the planner SHOP2 [R118], which is an
extension of SHOP that can handle partially-ordered planning problems. While in the
previous evaluation, we used the HTN2STRIPS planner only in conjunction the classical
planner jasper, we here also tested it in conjunction with the best-performing planners
of the 2018 International Planning Competition. These are Fast Downward Stone Soup
[R56], saarplan [R51], and LAPKT-BFWS-Preference [R52]. Further, we also included
the SAT-based planner MpC [R78], which uses the ∃-step encoding.

We tested our encodings in conjunction with the best-performing SAT-solvers of the
SAT Competition 2018. The SAT solvers expMC [R50], cryptominisat5.5 [R57], CaD-
iCaL [R49], and MapleLCMDistChronoBT [R55] achieved the best performance when
used together with our encoding.

Results. We show in Table 4.3 for each planner and domain the number of instances
that the planners solved in the respective domain, as well as totals over all domains. We
can clearly see that all the propositional encodings presented in this chapter outperform
other state-of-the-art HTN planning systems and solve at least 9 instances more than the
next competitor (PANDApro with the lm-cut heuristic vs. SAT-tree using CaDiCaL).

Interestingly, the SAT-tree and SAT-F encodings do not differ much in their coverage,
which depending on the SAT solver either rises by 1-2 instances or falls by 2 instances.
If we consider the versions of these encodings that use the ∃-step encoding for primitive
executability, we can see a significant improvement. The SAT-tree encoding solves 1 to
8 more instances, while for the SAT-F encoding coverage rises by 7 to 13 instances. In
total, the combination of the SAT-F and ∃-step encoding showed the best coverage. The
lack of improvement from the SAT-tree to the SAT-F encoding hints at a synergy effect
between the SAT-F and the ∃-step encoding, which provides an interesting avenue for

11Note that the original paper [C2] did not include UMCP as a planner in the evaluation. We have
included it here for the sake of completeness.

60

4.4. Handling Partially-Ordered Problems

SAT-F ∃ expMC
SAT-F cryptominisat
SAT-tree ∃ cryptominisat
SAT-tree cryptominisat
PANDApro lm-cut
TDG-m greedy A*
HTN2STRIPS jasper
SHOP2
FAPE

1 2 5 10 20 50 100 200 500

20

40

60

80

100

120

140

Runtime in seconds

N
um

be
r
of

so
lv
ed

in
st
an

ce
s

Figure 4.7.: Runtime vs number of solved instances per planner. Copied from [C2].
Reprinted with kind permission of AAAI press. AAAI does not endorse any
of Ulm University’s products or services.

future research.

In Figure 4.5 we additionally the number of solved instances per planner as a function
of time. We show only the best performing configurations for each planner. Here, we
observe that the planners based on our propositional encoding trail in performance for
the first 5-10 seconds, as they have an initial effort in constructing the PDT, writing the
formula and starting the SAT solver. However, after 10 seconds of runtime they clearly
outperform all other planning systems. Further, we can see the runtime dominance of
the SAT-F ∃ encoding over the other encodings.

We also checked whether the differences in runtime were actually statistically signif-
icant. Using a Kolmogorov-Smirnov Test, we found that the differences between the
several SAT encodings are not statistically significant (i.e. p < 0.05). However, if we
compare the SAT-base planners with all other planners in the comparison, the results
are statistically significant. The highest p-value for comparing any planner with any of
the SAT-based planners is 0.000139, when comparing SAT-F Kautz&Selman CaDiCaL
and PANDApro lm-cut. If we consider only the best configuration of the SAT-based
planner – SAT-F ∃ expMC – the highest p-value for any other planner is 0.0000823,
again for PANDApro lm-cut.

In our evaluation, we also made interesting observations regarding the use of clas-
sical planners in conjunction with the HTN2STRIPS encoding [F34]. All currently
best-performing classical planners (Fast Downward Stone Soup, SaarPlan and LAPKT-
BFWS) performed significantly worse than the older japser planner. Further, MpC was
the worst performing planner in our evaluation solving as many instances as FAPE which
was only run on a third of all instances. The poor performance of MpC is caused by
an adverse interaction between the disabling graph used in the ∃-step encoding and the
HTN2STRIPS encoding. Essentially, the Disabling Graph for the HTN2STRIPS encod-

61

4. From Verification to Planning

#instances

SAT-F ∃ expMC

SAT-F ∃ MapleLCM

SAT-F ∃ CaDiCaL
SAT-F ∃ cryptominisat

SAT-F expMC

SAT-F MapleLCM

SAT-F CaDiCaL
SAT-F cryptominisat

SAT-tree ∃ expMC

SAT-tree ∃ MapleLCM

SAT-tree ∃ CaDiCaL
SAT-tree ∃ cryptominisat

SAT-tree expMC

SAT-tree MapleLCM

SAT-tree CaDiCaL
SAT-tree cryptominisat
PANDApro lm-cut
PANDApro FF
PANDApro ADD
TDG-m greedy A*
TDG-c greedy A*
UMCP H
UMCP BF
UMCP DF
HTN2STRIPS jasper
HTN2STRIPS FD-SS 2018
HTN2STRIPS SaarPlan
HTN2STRIPS LAPKT-BFWS
HTN2STRIPS MpC
SHOP2

FAPE

U
M

-T
ranslog

22
22

22
22

22
22

22
22

22
22

22
22

22
22

22
22

22
22

22
22

22
22

22
22

22
19

17
17

17
6
22

-
Satellite

25
25

25
25

25
24

24
25

25
25

25
25

25
25

25
25

25
25

24
23

25
21

23
18

20
23

19
14

12
0

22
22

W
oodw

orking
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

10
9

9
8

10
6

6
6

5
5

5
5

4
8

0
Sm

artP
hone

7
7

7
7

7
7

7
6

7
6

6
7

7
6

6
6

7
5

5
5

5
5

4
4

4
6

6
5

5
4

4
-

P
C

P
17

12
12

12
12

12
12

12
12

12
12

11
12

11
12

11
12

9
10

11
9

8
0

0
0

3
3

3
3

0
0

-
entertainm

ent
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

12
12

11
11

12
9

9
6

5
5

5
5

5
4

4
5

-
rover

20
10

11
9

8
5

6
4

4
4

4
4

6
4

4
4

5
4

3
4

2
2

0
0

0
5

5
4

4
4

3
3

transport
30

22
20

20
20

15
14

15
17

22
20

19
21

15
15

15
18

9
11

7
1

1
0

1
0
19

17
13

13
3

0
-

total
144

121
120

118
117

108
108

107
110

114
112

111
116

106
107

106
112

95
95

93
81

78
61

56
57

85
77

66
63

25
64

25/56

Table 4.3.: Number of solved instances per planner per domain. Maxima are indicated in
bold. Copied and modified (added UMCP) from [C2]. Reprinted with kind
permission of AAAI press. AAAI does not endorse any of Ulm University’s
products or services.

ing will be near to a complete graph: for most pairs of two actions in the encoding, the
effect of one will the other’s preconditions false and vice versa. Thus the ∃-step encoding
cannot execute many actions in parallel, which is one of the cornerstones of its efficiency.

To conclude our evaluation, we investigated the impact of our more compact encoding

62

4.4. Handling Partially-Ordered Problems

101

101

102

102

103

103

104

104

105

105

106

106

107

107

108

108

OOM

OOM

SAT-tree

SA
T
-F

Figure 4.8.: Number of clauses in instances compared per encoding, axes are scaled loga-
rithmically. Colours indicate orders of magnitude. OOM= Out-Of-Memory.
Copied from [C2]. Reprinted with kind permission of AAAI press. AAAI
does not endorse any of Ulm University’s products or services.

of order (Section 4.4.3) on the size of the encoding. Although the number of clauses
decreases from O(L4) to O(L3) in theory, an empirical evaluation is still necessary. Note
that the number of clauses depends on L – the number of leafs of the PDT. Since we
require an additional property for the PDTs used in the SAT-F encoding – namely that
the children of each task are order-consistent – the constructed PDTs may differ between
the SAT-tree and SAT-F encodings. The increase in size of the PDT necessary for the
SAT-F encoding might off-set the more compact encoding. We analysed all 269 PDTs
which were constructed by both encodings for the problems in the benchmark set. Out
of these PDTs 68 differed in their number of leafs between the two encodings. The
highest increase was 9.5%, the highest decrease 14.2%, which is in absolute numbers and
increase of 16 leafs and a decrease of 5 leafs. Note that a decrease is possible, as we only
greedily optimise the PDT.

Figure 4.8 contains a scatter plot indicating for each PDT the number of clauses of
the formula generated based on it. To keep the sizes comparable, we only considered
the encodings without the ∃-step encoding. We can observe that the size of the formula
almost never increases – it does so in only four instances (the red dots in the plot), and in
all of them only slightly. There are several instances in which the size decreases by more
than a magnitude and for some even by two. Lastly, there are several instances (green
dots) for which the construction of the SAT-tree formula leads to an out-of-memory
error, while the SAT-F formula was still constructable. Especially the bad performance
of SAT-tree in the rover domain is caused by this problem. Here 14 out of 20 instances

63

4. From Verification to Planning

led to an out-of-memory error.

4.5. Finding Provably Optimal Plans

The encodings in Sections 4.3 and 4.4 were solely designed for satisficing planning.
In satisficing planning, we only ask for some solution that solves the given planning
problem. Consequently, this solution can – and will frequently – contain more actions
than strictly necessary. For example, the planner might repeatedly insert and remove
the same battery from a device – just because it is possible. We observed that especially
our SAT-based planner tends to include more actions than necessary into plans.

Such plans containing redundant actions or action sequences can cause severe issues
when presented to a user. As in the case of attaching and removing the battery, a human
user can easily recognise the redundancy in the plan. He or she might then perceive an
assistant as highly incompetent, might abort interaction, and never trust or even use the
assistant again. To avert this issue, the planner should only produce plans that do not
contain such redundancies. In other words, the planner should produce optimal plans,
i.e. plans with the minimum number of actions required.

The SAT-based planning technique we described so far cannot directly be used to find
optimal plans. The planner bounds the depth of decomposition – and not the number
of actions in the plan. A depth bound implicitly also contains a bound on the number of
actions, e.g. the number of leafs of the PDT. This bound only pertains to the maximum
number of actions in the plan, i.e. an encoding for depth K cannot consider plans longer
than the bound, but may not consider shorter plans. In general, if the shortest plan
for a given depth K has length `, a plan of depth K + 1 with length ` − 1 can exists,
i.e. an increase in the considered decomposition depth may allow for shorter plans. As
an example consider a planning problem with two abstract tasks A and B and three
primitive actions a, b, and c. Assume further that the problem contains three methods:
A → abc, A → aB, and B → b. If we consider the depth limit K = 1, the shortest
possible plan contains 3 actions. For the larger depth bound K = 2 it is possible to find
the shorter plan ab.

Instead of bounding the depth of the decomposition, we have to directly bound the
number of actions. As a first step, we have to be able to directly restrict the number of
actions in the propositional encoding to be smaller than a given number `. This can be
done by enforcing that at most ` of the a@t atoms of the formula for primitive executabil-
ity are true12. Since this type of constraint is fairly common in propositional modelling,
compact encodings are readily available. We use the sequential encoding [R110].

Adding this constraint enables us to construct propositional formulae that represent
plans up to a given length bound `. To be able to ensure optimality, we however need a
formula for a given ` that is satisfiable if and only if there exists a plan of length ≤ `. To
this end, we have to ensure that we choose the depth bound K(`) for the construction
of the formula appropriately, i.e. in a way so that all plans of length ≤ ` can be derived
12Note that we are technically not restricted to simply optimising the length of the plan. We could also

optimise any additive metric that assigns (rational) costs to individual actions.

64

4.5. Finding Provably Optimal Plans

with at most depth K. We will describe how this bound K(`) is chosen in Section 4.5.1.

Lastly, we have to determine how the planner determines the optimal length of a
solution. A simple option would be to construct the formula for increasing length bounds
` until a solution has been found. Note that we can – in general – not terminate this
procedure as HTN planning is undecidable. We denote this strategy with INC(rement).

Although being simple, this strategy has a drawback, as it may require unnecessarily
many calls to the SAT-solver. Technically, if the optimal plan has length `∗, only the
formulae for `∗ and `∗ − 1 must be considered, where the latter proves that no better
solution exists. The issue is determining `∗ as quickly as possible. Streeter and Smith
[R97] presented several algorithms for optimising the plan length using SAT-based plan-
ners for classical planning domains. Optimising the plan length in HTN planning bears
one additional difficulty, compared to classical planning: no a priori upper bound on
the length of the optimal plan is known13. Thus, before optimising the plan length, we
start by running the planner in satisficing mode, i.e. we try to obtain any solution to
the planning problem. Note that this procedure is usually faster than running INC, as
the plan length is (up to) exponential in the depth of decomposition. Using the length
of this initially found solution as an upper bound, we run the optimisation algorithm.
We tested an adaptation of Streeter and Smith’s [R97] strategy S2, which is effectively
binary search over the possible plan length. We denote this strategy with BIN(ary). In
addition, we also tested a strategy that decreases the length bound starting with the
initial upper bound until no plan is found any more, denoted DEC(rement).

4.5.1. Succinct Bounds on the Decomposition Depth

As we stated above, our SAT-based optimal HTN planner must be able to compute – for
a given length bound ` – a depth bound K(`) so that if no plan of length ≤ ` exists with
depth ≤ K(`) none will exist at all. We previously discussed this question in the context
of plan verification (cf. Section 4.2.2), were we had to determine a depth bound K(`)
for a given plan of length ` such that if there is no decomposition of depth ≤ K, there
is none at all. For optimal planning, we need the same value K(`), i.e. we could use the
same three bounds Ktheo, Kunit, and KT T G. Unfortunately these bounding methods are
impractically high for many HTN planning problems [C1], especially for more complex
ones. The three bounding methods were only sufficient for the HTN planning problems
considered at that time. Further, both Kunit and KT T G rely on specific structures to be
present in the planning problem, which is often not the case. If both methods are not
applicable, we have to rely on Ktheo which is often too high by several magnitudes.

We therefore developed a new, fourth method to compute an upper bound on the
required decomposition depth K4(`) [C1]. This method is based on computing for
every pair of plan length ` and task (primitive and abstract) t an individual bound
K4(`, t). The value of K4(`, t) should – in contrast to K4(`) – be the minimum de-
composition depth necessary so that if no decomposition of t into exactly ` actions
with depth ≤ K4(`, t) exists, there exists none at all. Consequently, we will select
K4(`) = max0≤m≤`K4(m, aI), where aI is the initial abstract task.
13In classical planning it is 2|L|.

65

4. From Verification to Planning

K4(a, `) = 1 + max{K4(b, `1), K4(c, `2), K4(d, `3)}

K4(b, `1) K4(c, `2) K4(d, `3)

`1 + `2 + `3 = `

Decomposition method a→ b, c, d

.
`1 `2 `3

Figure 4.9.: Consideration of a new decomposition method, which increases the consid-
ered decomposition depth by one. Copied from [C1]. IJCAI. The authors
have kindly been granted the right to reuse any material in other works
of their own authorship. IJCAI does not endorse any of Ulm University’s
products or services.

The most significant obstacle the algorithm has to overcome are so-called ε-methods
and unit-methods. The former are methods that contain no subtask and the latter
are those that contain only a single subtask which is abstract. Both types of methods
allow for arbitrarily deep decompositions for a single given plan. Our algorithm to
compute K4(`, t) proceeds in two steps: we first consider the planning problem without
such decomposition methods and compute K4(`, t) accordingly. Then, later on, we will
account for ε- and unit-methods.

As an additional speed-up to the algorithm, we do not consider all abstract tasks
simultaneously, but only those that form a Strongly Connected Component (SCC) within
the Task Transition Graph (TTG). We process the SCCs S of the TTG in their reverse
topological order – thus whenever computing the values K4(`, t) for all t ∈ S, the depth
bounds for all tasks occurring in decomposition methods for tasks t ∈ S have already
been correctly computed – except for those that are themselves in S.

The algorithm for the first step iteratively updates the values of K4(`, t) based on pre-
viously computed values for other tasks. Each update, i.e. increase of K4(`, t) indicates
that a new decomposition of t with length ` with higher depth has been found. As such,
the update tries – when considering the value K4(`, t) – to construct a decomposition
of t into ` actions with maximum depth. It does so by first considering all applicable
decomposition methods mt = (t, tnt). If t is to be decomposed into ` primitive actions
starting with the method mt, each task t′ in tnt will be decomposed into φ(t′) primitive
actions. To find a decomposition of t into ` actions,

∑
t′∈T (tnt) φ(t′) = ` must hold. For

such a distribution of primitive actions to subtasks φ, the maximum achievable depth of
decomposition is K∗ = 1 + maxt′∈T (tnt)K4(φ(t′), α(tnt)(t′)). This update is depicted in
Figure 4.9. We can thus update K4(`, t) if it is smaller than K∗. To achieve complete-
ness, we have to iterate over all such distributions φ of which there are exponentially
many. We achieved a polynomial runtime in ` using dynamic programming [C1]. We
further showed that if the update is performed ` times, the bound will be correct [C1].

The computation has so far excluded ε- and unit-methods. We include them in a
second step of the algorithm, where we perform the same update mechanic as described
in the previous paragraph – but only to those ε- and unit-methods. To achieve com-
pleteness, we perform the update |S| − 1 times for every abstract task within an SCC

66

4.5. Finding Provably Optimal Plans

S. Further, we iterate the steps one and two in total |S|+ 1 times [C1].

4.5.2. Evaluation

To ascertain whether the proposed technique is actually efficient in practice, we compared
it against other optimal HTN planners [C1]. There was however only one such planner
published prior to our work: PANDA with the A* search algorithm and the TDG-c
heuristic [F29].

We therefore modified both the progression search-based algorithm of PANDApro
[F11, F20] and the translation into classical planning of HTN2STRIPS [F34] to allow
for finding guaranteed optimal solutions. We refer to our paper for details [C1]. We else
used the same setting as in the evaluation in Section 4.4.5.

The coverage results are depicted in Table 4.4 while the runtime behaviour is shown in
Figure 4.10. From both we can see that the new SAT-based optimal HTN planner out-
performs the other optimal planners significantly – with a margin of at least 19 instances.
Between the three algorithms INC, DEC, and BIN, there is no significant difference. As
expected BIN solves slightly more instances than INC and DEC. We however presume
that it will get more pronounced with even better propositional encodings and SAT
solvers.

Lastly, we investigated the empirical difference between the three previous methods
to compute the depth bound and the new method K4. Figure 4.11 shows for every
call to the computation of the depth bound that was conducted during the evaluation
both values as a scatter plot. At first, we note that K4 never computed a worse bound
than the other three methods. Even further, its bound is often far better – in some
case up to three magnitudes. Lastly, there were 37 cases, shown as red dots, where the
three previous methods returned a finite bound, but K4 returned −∞. Thus K4 could
prove that no plan of the given length existed, while the three older methods could not,
showing the effectiveness of the algorithm in practice.

67

4. From Verification to Planning

SAT BIN SAT DEC SAT INC

PA
N
D
A
pr
o
LM

-C
ut HTN2

STRIPS

#
in
st
an

ce
s

cr
yp

to
m
in
isa

t

ex
pM

V

M
ap

le
LC

M

cr
yp

to
m
in
isa

t

ex
pM

V

M
ap

le
LC

M

cr
yp

to
m
in
isa

t

ex
pM

V

M
ap

le
LC

M

T
D
G
-c

A
*

bo
un

de
d
m
ax

PB

m
ax

PB

UM-Translog 22 22 22 22 22 22 22 22 22 22 22 22 16 12
Satellite 25 25 25 25 25 24 25 24 23 25 21 21 8 6
Woodworking 11 11 10 11 11 10 10 10 10 10 10 8 5 5
SmartPhone 7 6 6 6 6 6 6 6 6 6 5 5 5 4
PCP 17 12 12 12 12 12 12 12 12 11 13 5 1 0
entertainment 12 9 9 9 9 9 9 9 9 9 5 5 4 0
rover 20 7 7 7 5 6 4 8 8 7 1 4 1 0
transport 30 14 11 14 14 11 14 13 9 12 3 2 1 0
total 144 106 102 106 104 100 102 104 99 102 80 72 41 27

Table 4.4.: Coverage of all evaluated planners on the benchmark set. Copied from [C1].
IJCAI. The authors have kindly been granted the right to reuse any material
in other works of their own authorship. IJCAI does not endorse any of Ulm
University’s products or services.

Runtime in Seconds

N
um

be
r
of

So
lv
ed

In
st
an

ce
s

SAT BIN cryptominisat5.5
SAT DEC cryptominisat5.5
SAT INC cryptominisat5.5
PANDApro lm-cut
TDG-c A*
HTN2STRIPS bounded
maxPB
HTN2STRIPS maxPB

1 2 5 10 20 50 100 200 500

20

40

60

80

100

120

140

Figure 4.10.: Runtime vs Solved instances for selected planners. Copied from [C1]. IJ-
CAI. The authors have kindly been granted the right to reuse any material
in other works of their own authorship. IJCAI does not endorse any of
Ulm University’s products or services.

68

4.6. Discussion and Future Work

min{Ktheo,Kunit,KT T G}

K
4

2

2

10

10

100

100

1000

1000

10000

10000

Figure 4.11.: We show for every computed depth bound the bounds Ktheo, Kunit, and
KT T G versus K4. Red dots indicate that the depth bound K4 returned
−∞. Copied from [C1]. IJCAI. The authors have kindly been granted the
right to reuse any material in other works of their own authorship. IJCAI
does not endorse any of Ulm University’s products or services.

4.6. Discussion and Future Work

In this chapter, we presented both the very first verifier for HTN plans, as well as an
highly efficient planning technique for HTN planning. With respect to Mixed-Initiative
planning, the new planner is an important step towards fulfilling the objective of pro-
viding a fast planner (see Section 3.3). Its performance is higher than all the currently
available HTN planners on the tested benchmarks, which should also translate to real-
world application domains. Specifically, we will elaborate on the performance of our
planner in a DIY assistance setting in Section 5.3.

In addition to the high performance of the planner, the declarative representation of
the problem for planning also allows for easily extending the presented technique. For
search-based planners, such extensions usually require a modification of the search rou-
tine and several consequent changes to its heuristics. For planning approaches based on
propositional logic, these extensions are relatively simple, as the additional constraints
posed by these extensions have only to be added to the encoding of the problem. We
will show – as one example – how constraints in Linear Temporal Logic can be inte-
grated into the planning process in the following Section 5.2. As a further possibility,
one can consider to add support for non-propositional state fluents. For example, it
could be useful to model screws in a DIY domain as a numerical resource (i.e. by mod-
elling the number of still available screws), or to model angles, thickness of a material,
diameters of a hole as numerical properties, instead of as discrete properties. Such state
variables can be easily handled by using SAT Modulo Theory (SMT) [R93] instead of
a standard SAT solver. Such an integration was already proposed for classical plan-
ning with Planning Modulo Theories [R83] and could be adapted here. SMT allows for

69

4. From Verification to Planning

formulating individual propositions in terms of expressions over a mathematical theory.
For the examples in the DIY domain, a linear algebra over rational numbers suffices.
By integrating SMT solving capabilities into the planner it can (presumably) cope e.g.
with complex geometrical reasoning, which is, as of now, hard for a purely propositional
planner.

As for the presented propositional encodings itself, there are several avenues of possible
future work. For example, the PDT/SOG is currently computed in a greedy fashion.
An optimisation of the PDT might further improve the performance of the planner.
Similarly, the PDT is constructed uniformly up to the given depth limit, i.e. all branches
of the tree are expanded up to that depth. It might be worthwhile to study show an
asymmetric expansion can be utilised to focus on the difficult parts of the planning
problem. Lastly, the encoding of the linearisation, which is currently the most difficult
part of the encoding might be improved using either SMT modelling or GraphSAT [R77].

70

5. From Changing Plans to Assisting Users

5.1. Summary

In the previous chapter, we presented the first plan verifier for HTN planning. We
subsequently used the basic ideas and principles of the technique to develop a new
and highly efficient HTN planner. A planner used in a mixed-initiative planning-based
assistance system is not only required to quickly respond, i.e. to plan quickly, but also
has to be able to change plans according to the user’s instructions. As we argued in
Section 3.4.2, these requests to perform changes to a plan can be viewed suitably as a
request to find a plan complying with a Linear Temporal Logic (LTL) formula φ. As
such, the planner should be able to handle planning problems in conjunction with an
LTL constraint φ resulting from a user request. The planner must thus be able to find
a plan that is both a solution to the LTL constraint and to the HTN planning problem
– so that it still solves the original planning problem.

As argued in Section 4.6, a propositional encoding of planning forms a good basis
for further extensions of the planning process. The declarative nature of the encoding
– it “simply” models what a solution is – allows for adding further constraints to the
solution that have the same general structure. For example, temporal control constraints
– such as LTL formulae – can be supported with relative ease by adding clauses to the
formula. These constraints pertain only to the primitive actions in a solution, and thus
techniques for them are applicable both to hierarchical and to classical planning. For
LTL, a propositional encoding of planning with a constraint φ that is based on the ∃-
step encoding for classical planning already exists [R96]. We can thus integrate it into
the planner presented in the previous chapter without modification. We start by briefly
describing the encoding and related approaches. Unfortunately, the encoding does not
support the full set of syntactically valid LTL formulae, but only those formulae not
containing the temporal next operator X. This operator is known to be difficult to
handle since its presence prohibits the exploitation of stutter equivalence [R153]. It is
however necessary in practice, as it is the only means to specify that a specific task has to
be executed has the immediately next action – e.g. in a user request “I want to saw next.”
We show how the X-operator can be nevertheless integrated into the encoding [C4]. The
necessary changes inspired us to modify the encoding further, which ultimately made it
more efficient.

Lastly, we turn towards the practical application of planning-based assistance sys-
tems. For it, we focussed on an assistance scenario in the Do-It-Yourself (DIY) home

71

5. From Changing Plans to Assisting Users

improvement setting. The resulting assistant, Robert, was developed in cooperation
with Robert Bosch GmbH [C3, F18]. The objective of Robert is to support novices
when performing small household DIY projects with the help of electronic tools, e.g.
drills, saws, and sanders. Robert provides these novices with suitable and situation-
adapted instructions on how to complete their project. Using planning techniques, we
can choose the instructions presented to the user in a way that is appropriate for the
tools and materials that the user has available. We will describe the application setting
of Robert and show how its components – planner, reasoner, and dialogue manager
– operate together. For a seamless interaction between these three components, their
knowledge models have to be tightly intertwined. We present two means to couple on-
tological and planning-related knowledge and exemplify their benefits in planning-based
assistance systems [C3, F33].

Core publications described in this chapter

[C3] Gregor Behnke, Marvin Schiller, Matthias Kraus, Pascal Bercher, Mario Schmautz,
Michael Dorna, Michael Dambier, Wolfgang Minker, Birte Glimm, and Susanne Biundo. “Alice
in DIY-Wonderland or: Instructing novice users on how to use tools in DIY projects”. AI
Communications, 32(1), 2019, pp. 31–57. doi: 10.3233/AIC-180604

[C4] Gregor Behnke and Susanne Biundo. “X and more Parallelism: Integrating LTL-
Next into SAT-based Planning with Trajectory Constraints While Allowing for Even More
Parallelism”. Inteligencia Artificial, 21(62), 2018, pp. 75–90. doi: 10 . 4114 / intartif .
vol21iss62pp75-90

[C10] Gregor Behnke, Denis Ponomaryov, Marvin Schiller, Pascal Bercher, Florian Noth-
durft, Birte Glimm, and Susanne Biundo. “Coherence Across Components in Cognitive Systems
– One Ontology to Rule Them All”. Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI 2015). AAAI Press, 2015, pp. 1442–1449

5.2. Handling User Requests via LTL

As argued in Section 3.4, users of a mixed-initiative planning system might request alter-
ations of a currently considered plan. These changes may also require further consequen-
tial changes to the plan. Determining these changes is a computationally hard problem
(see Section 3.5.2). Since this problem is as hard as planning itself, it makes sense to use
a planner for it. Further, the immediate objective should not be to develop techniques
to answer every possible type of request via a specialised solver, as this would incur
unnecessary redundancy and additional development effort. Instead, requests should be
transformed into a uniform description language and handled accordingly. We argued in
Section 3.4.2 that a user’s requests can be interpreted as constraint in Linear Temporal

72

5.2. Handling User Requests via LTL

Logic (LTL, [R155]). When integrating LTL constraints into search-based HTN plan-
ners, a significant amount of research to handle these constraints efficiently would be
required. For example new heuristics would have to be developed that take these con-
straints accurately into account. SAT-based planners on the other hand are well suited
for handling them as the formulae can be added “on-top” of the existing encoding.

5.2.1. Planning with LTL constraints

At this point, we assume that the planner is given the user’s requests for alterations are
already in form of an LTL formula φ. In a planning-based assistant, the user will input
his request in natural language. The first step is thus a transformation into a formula
in LTL, which we can then handle algorithmically (see Section 5.3.2).

To suitably answer requests by the user to change a plan, we have to enable the
planner to find a plan that satisfies the given formula φ. In the past, three general types
of approaches for this problem were developed, but all of them, except for the work
by Sohrabi et al. [R95], were done in the context of classical planning. Since an LTL
formula usually only refers to primitive actions and predicates, this does – in general –
not make a difference, as the techniques for classical planning will also be applicable to
HTN planning.

The first technique to handle LTL constraints is to track the validity of the LTL
formula during a search procedure. In classical state-based forward search, this means
to progress the formula φ through the applied states until it evaluates to > or ⊥. In
the former case a solution has been found, in the latter the current search node can
be pruned. A planner that uses this technique is the TALPLANNER [R125]. Sohrabi
et al. [R95] applied a similar technique when handling PDDL3’s preferences [R109] in
HTN planning. Similar techniques could be applied to progression-based HTN planners.
The main issue with this technique is that existing heuristics – which are necessary for
sufficiently fast planning – have to be altered in order to take the LTL formula φ into
account.

A second option for handling these constraints is to alter the preconditions and effects
of the primitive actions and the goal state, such that only plans that satisfy the formula
φ are executable and reach the goal state. These encodings are usually based on an
automata-theoretic interpretation of the formula. Most approaches transform the LTL
formula φ into an equivalent Büchi automation B. For LTL over finite traces, i.e. finite
plans [R80] the Büchi automaton B accepts the plan if it halts in an accepting state.
Planning with LTL usually considers only finite traces i.e. finite plans, although work
on infinite traces in planning exists [R96]. The first encoding that used these automata
was proposed by Edelkamp [R115], while similar compilations were e.g. proposed by
Baier and McIlraith [R98]. The drawback of all approaches that rely on Büchi automata
is that the size of the constructed automaton can be exponential in the size of the
formula and thus the encoding can be as well. Torres and Baier [R72] proposed to use
the equivalent representation of an LTL formula φ as an Alternating Automaton A for
encoding. Alternating Automata are a common intermediary step when constructing the
Büchi automata of an LTL formula φ, but are linear in size with respect to the formula

73

5. From Changing Plans to Assisting Users

φ [R126]. Based on them Torres and Baier [R72] presented a polynomial-size encoding.

The third option for handling LTL constraints is to encode the formula φ as a set of
additional clauses for a SAT-based planner. To the best of our knowledge, only one such
approach exists for planning [R96]. It uses a propositional encoding for LTL formulae
that was developed in the context of bounded model checking and which is linear in size
[R99]. A naive addition of this encoding to current propositional encodings of classical
planning, i.e. the ∃-step encoding, leads to incorrect results, as the encoding cannot han-
dle multiple actions occurring that the same time correctly. Instead, one would have to
use the non-parallel encoding by Kautz and Selman [R145] which decreases the efficiency
of the resulting planner significantly. To allow ∃-step parallelism in conjunction with
the LTL encoding, a modification to the ∃-step encoding was presented that preserved
correctness and completeness [R96].

Both a polynomial transformation and an encoding of LTL formulae into propositional
logic seem to be suitable for a mixed-initiative planner, as both do not require (signif-
icant) alterations to the rest of the planner. To decide between these two approaches,
we investigated them further. During these investigations, we showed that from a the-
oretical point-of-view both encodings are identical [C4]. We showed that the encoding
by Mattmüller and Rintanen [R96] was – unknown to its authors – an encoding of an
Alternating Automaton into propositional logic. As such, it uses the same information
and exposes the same structure as the encoding by Torres and Baier [R72]. The latter
however adds additional actions into the plan, which are needed to synchronise the exe-
cution of the automaton with the plan – which is not needed in a propositional encoding.
This makes the former – the encoding into propositional logic – far more compact and
thus our encoding of choice.

5.2.2. Improving the Propositional Encoding for LTL

The propositional encoding for LTL formulae by Mattmüller and Rintanen [R96] has
a practical disadvantage: its integration with the ∃-step encoding is only correct if the
formula does not contain the LTL next operator X. Supporting the operator X is
however necessary in practice, as it is the only means to specify that a specific task has
to be executed has the immediately next action – e.g. in a user request “I want to saw
next.”

The missing support for the operator X is caused by the way the encoding allows for
parallelism. Parallelism is based on the stutter-equivalence of LTL−X [R153], i.e. the
fact that these formulae cannot distinguish between traces (or plans) in which an action
is repeated only once or twice or more often. For example, any LTL−X formula φ will
have the same truth value on the traces abc and aaabbbcccc. If we consider any trace
of actions, we can try to modify it without changing the truth of any (possible) LTL−X

formula. We can rename all actions in the trace that do not influence any of the atomic
propositions in the formula to the first action before them that changes any of these
propositions. Based on stutter equivalence, we can now allow parallel execution of these
actions. As a consequence, the encoding restricts the parallel execution of actions to one
that alters any proposition of φ followed by an arbitrary number of actions that don’t.

74

5.3. Practical Application

Technically, Mattmüller and Rintanen [R96] showed that adding edges to the Disabling
Graph (DG, see Section 2.5), a data structure used in the construction of the ∃-step
encoding, and adding a set of clauses for every proposition symbol in φ suffices to achieve
correctness and completeness for LTL−X . For notational purposes we will denote the
additional clauses for a proposition p with A(p).

In the presence of theX operator, LTL formulae are not stutter equivalent, thus break-
ing the encoding by Mattmüller and Rintanen [R96]. We proposed an alteration of their
encoding that allows for handling these constraints without disallowing all parallelism.
The encoding of the LTL formula φ into propositional logic contains a decision variable
for every timestep t and subformulae ψ of φ that is true if ψ is satisfied by the trace
starting at time t. As such, we know for every timestep whether the X operator must be
evaluated at this timestep. If so, we can forbid any parallelism via an guarded at-most-
one constraint [C4]. Otherwise, we can allow for the parallelism allowed by the encoding
by Mattmüller and Rintanen [R96]. Using the idea of only restricting parallelism at
timesteps when doing so is necessary, we have also introduced a second improvement
to the encoding that enforces the A(p) clauses only if necessary, i.e. if the proposition
p is evaluated in the LTL formula at the current timestep [C4]. This results in a less
severe restriction to parallelism, which allows for plans to be found with fewer parallel
timesteps, which in turn allows for a practically more efficient planner.

To show that the new encodings are correct, we could not rely on prior proofs by
Mattmüller and Rintanen [R96] as they relied on stutter-equivalence. We developed a
new theoretical framework, called Partial Evaluation Traces allowing us to prove the
correctness of our encoding [C4]. To show that our alterations are not only correct, but
also improves on the prior encoding, we conduced an empirical evaluation [C4], which
confirmed our assumption.

5.3. Practical Application

To conclude this thesis, we present how planning-based assistance can be suitably applied
in a real-world setting. As this setting, we chose supporting novice users in Do-It-Yourself
(DIY) handiwork tasks. The assistant for this scenario, called Robert [C3, F18], was
developed in a technology transfer project jointly with the industry partner Robert Bosch
GmbH, one of the world’s largest manufacturers of electronic tools. In this section, we
will describe the application scenario of Robert and then proceed to give an overview
of Robert’s architecture and its components. Next, we elaborate on the knowledge
engineering aspects of Robert and lastly on a subject group study with Robert.

5.3.1. Scenario

Users who have never or only seldom used electronic tools in the past, can be frightful of
using such tools for small household tasks and Do-It-Yourself (DIY) home-improvement
projects. This can, e.g. be caused by unfamiliarity with the tool or the lack of knowledge
on how to handle it properly, which in turn can, e.g. cause fear of using an electronic
saw. Robert aims at assisting such novice users by providing them suitable step-

75

5. From Changing Plans to Assisting Users

Figure 5.1.: An instruction presented by Robert to the user. Robert provides its users
with a textual description of what to do, an image of the task, as well as a
video showing how to perform the step.
The instructions are provided in German. A translation into English would
read: “1 Cutting the plank into two pieced (back and tray). Fix the plan
with a screw clamp to the table such that the cut mark is sufficiently sepa-
rated from the edge of the table. Cut the plank.”.
Copied from [C3]. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-180604.

by-step instructions on how to use electronic tools in order to achieve their objective.
Using the planner presented in Chapter 4, Robert determines which actions have to
be performed in order to complete the user’s project. When doing so, the tools and
materials available to the user are taken into account by means of representing them in
the planning problem’s initial state. The plan found by the planner is then presented
to the user as a step-by-step instruction taking the form of a slideshow (see Figure 5.1).
Each step is augmented with a suitable description in text-form, as well as with a picture
and a video of the action to perform. Robert allows its users to ask questions about
the presented instructions, e.g. to ask what a metal drill is and how it can be recognised
(see Figure 5.2). Further, using the HTN planning domain that was used to generate the
presented plan, Robert can provide the user with both a more abstract description of
what to do, as well as with semantic information on where in the completion of the project
the user is currently located (see bar at the top of Figure 5.1). This information also
enables Robert to provide motivating feedback to the user (e.g. “You have completed
step three, now the wooden frame is finished.”). Lastly, Robert can react upon requests
by the user to complete the project in another way than currently presented, i.e. requests
to change the plan.

5.3.2. System Architecture

Robert consists of three components that interact with each other in order to provide
suitable assistance to Robert’s users [C3, F18]: a planner, a component for knowledge
management, and a dialogue manager. The general architecture of Robert is derived

76

5.3. Practical Application

Figure 5.2.: Robert explains individual concepts to its user. This can both be a textual
description or, e.g. in the case of explaining what a “Phillips Screw” is, an
image.
In English the text in the white box would read: “2.5 Insert the drill bit.
Insert the 3 millimetre metal drill bit into the electric drill. In order to do
so, the rotation direction switch of the electric drill into the middle position
...”.
The text in the green box reads: “A metal drill bit with a diameter of 3
millimetre can be used for drilling into metal and wood. A metal drill bit
with a diameter of 3 millimetre has a conical shape (i.e. not a wedge-shaped
one)”. Copied from [C3]. The final publication is available at IOS Press
through http://dx.doi.org/10.3233/AIC-180604.

77

5. From Changing Plans to Assisting Users

UI

Planner

Ontology

Dialogue

1

2

3
4

5

6

7

1 display instructions
2 user input
3 initial state
4 planning request, chosen project
5 plan
6 media
7 tasks, available tools, and materials

Figure 5.3.: Robert’s system architecture. Each arrow describes data or in-
structions passed between the individual components. Copied from
[C3]. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-180604.

from an earlier assistant developed at Ulm University [F43, F31, F40, R74]. It was
designed to assist the user in setting up an ensemble of home entertainment devices.
The instructions were – similar to Robert– determined by a planner and presented to
the user via a dialogue management system. The previous assistant however lacked the
ability to change plans based on the user’s instructions (it was only able to change plans
in the event of an execution error). It also lacked a dedicated knowledge base for general
domain knowledge and was thus not able to explain factual background knowledge to
the user.

In Robert, each component is responsible for an aspect of the assistance provided by
Robert and functions are handled by the component best suited for them. The same
holds for the information stored by Robert: while procedural knowledge is formulated
in the planner’s HTN domain model, the knowledge management component stores
general domain knowledge. The general architecture and the information exchanged
between the components is depicted in Figure 5.3.

At its core, Robert uses the HTN planner presented in this thesis (Chapter 4). It
reasons and provides plans based on an HTN planning problem which models a wide
variety of tasks in the DIY setting. We tested the domain in conjunction with several
state-of-the-art HTN planning systems and found that only the SAT-based planner pre-
sented in this thesis is able to find plans within a reasonable timeframe. Once a user
starts interaction with Robert, the dialogue component inquires for the user’s objec-
tive and the available tools and materials. The objective is transferred to the planner,
while the information on tools and materials is communicated to the knowledge man-
ager. Based on the objective of the user, i.e. the project the user wants to complete, the
planner starts its planning process, where the user’s project is the goal, i.e. the initial
abstract task. Since static information about the domain is necessary during the plan-
ning process, but is stored in the ontology, the planner requests such static information
from the knowledge manager prior to planning.

Once a plan has been found, it is transferred to the dialogue manager, which is re-
sponsible for instructing the user based on that plan. The plan is transformed into
step-by-step instructions in the form of a slideshow, where each action in the plan corre-

78

5.3. Practical Application

sponds to one slide, and presented to the user. Each action is displayed in terms of text,
image, and video material. Suitable media content for each instruction is retrieved from
Robert’s knowledge-base via ontology reasoning [C3, F18]. The dialogue manager is
thereafter responsible for mediating the interaction between Robert and its user, which
is primarily performed via natural language interaction [F23]. Natural language interac-
tion is an important feature in the DIY setting, as it enables hands-free interaction in a
situation where the user will usually not be able to use his or her hands for interaction,
as they are, e.g. dirty, in gloves, or he is holding a tool. The dialogue manager accepts
the user’s inquiries and determines, based on a machine learning model, which action
to take [F23]. This includes simple interactional requests, requests for factual knowl-
edge, as well as requests to change the current plan. Instructional requests like “Show
the next step” can be handled by the dialogue manager directly. Requests for factual
knowledge, e.g. “How does a Phillips Screw look like”, are handled by the knowledge
management component. Lastly, requests to change the current plan, e.g. “I don’t want
to use an electric saw”, are handled by the change-request mechanism of the planner.
The respective answers are subsequently computed by the responsible component and
transferred to the dialogue manager for communication to the user. Note that in the
case of requests to change the plan, the user’s request is transformed into a formula in
LTL before it is handled by the planner. This component is based on a machine learning
technique and was implemented by a student under the supervision of the author of this
thesis.

5.3.3. Coherent Models for Multi-Component Planning-Based Assistance
Systems

Robert – as do almost all planning-based assistance systems (see Section 3.2.2) – con-
sists of several components besides its planner. Each of these components might require
its own model of the application domain in order to perform its functions. These mod-
els will, at least to some degree, be concerned with the same entities and facts. This
necessarily creates redundancies between the models, which over time might lead to in-
consistencies between them as they are modified and extended. These inconsistencies
will inevitably lead to problems in the assistant. Thus, we ensure consistency of the
different models by design.

Our approach to achieve model consistency is to generate or extract the models re-
quired for each component based on a common knowledge base [F37, C10]. Since no
single modelling framework can provide a suitable uniform representation of all models
in a planning-based assistant, the knowledge base is still divided into several separate
models. We reduce redundancy as far as possible by storing only partial models in the
knowledge base, only containing those information the respective component and mod-
elling language is best suited for. Whenever necessary, we generate elements needed to
complete one model automatically based on the appropriate information stored in the
other models.

From the planner’s point of view, the most important connection its model has, is
with the domain’s factual knowledge. For example the planner’s model in Robert
in only connected to the domain’s factual knowledge. The planner’s interaction with

79

5. From Changing Plans to Assisting Users

Robert’s dialogue component’s is conducted via the shared terms contained in the
factual knowledge base. In Robert, the domain’s general background knowledge is
stored and handled in form of an ontology based on standard first order semantics. In
the following section, we will discuss two methods for integrating the knowledge stored
in such an ontology with a planning model. In Robert, we have only used the second
means for integration, as the first was not suitable for the application scenario. It has
however proved useful in other application scenarios such as fitness training [F27].

5.3.3.1. Knowledge Management and Decomposition Methods

One notable feature of ontologies is that they describe a hierarchical structure of con-
cepts. Similarly, HTN planning problems describe a hierarchy of tasks. Due to this
similarity, a representation of the HTN’s decomposition hierarchy in description logics
seems to be a suitable candidate for knowledge integration. If successful, we could then
extract the abstract tasks and decomposition methods for the HTN planning model from
the ontology, eliminating the duplicated reference to them in both the planning model
and the factual knowledge model.

The intuitive semantics we propose for the connection between ontologies and planning
is that a concept A shall represent all possibilities to refine the represented abstract task
A into primitive actions [C10]. Consequently A v B would hold for two concepts,
if all primitive decompositions for A would also be primitive decompositions for B.
This notion coincides with a decomposition method applicable to the abstract task B
resulting in a task network containing only the task A – all primitive decompositions
for A are also possible primitive decompositions of B. Unfortunately, this intuition
fails for decomposition methods containing more than one task. Individuals contained
in the ontological concepts under our intuition describe sequences or sets of objects1

instead of atomic objects – which is a base assumption of description logics. To allow
for a representation of decomposition methods with more than one task, we use a role
includes that represents the union of individuals in a concept. For example, we denote a
decomposition method for A into B and C with the axiom ∃includes.Bu∃includes.Cu
∀includes.(B tC) v A [C10]. The modelling pattern used here is called onlysome and
can express the combination of a set of concepts {C1, . . . , Cn}, but only these concepts in
description logics [R102]. Formally we introduce the axiom onlysome(C1, . . . , Cn) v A
for every method that decomposes A into a task network containing C1, . . . , Cn. We
showed that modelling methods in this way correctly interacts with subsumption in
description logics, i.e. that two such expression subsume each other if and only if the
subconcepts can be matched to each other. Note that this modelling of decomposition
methods completely ignores ordering constraints contained in the domain. This is due
to the fact that DAG-style orderings cannot be represented in description logics due to
the tree-model property [R127].

The main advantage of a connection between decomposition methods and abstract
tasks on the one hand and concepts in description logics on the other is that inference
mechanisms in description logics can be used to infer new decomposition methods. If

1Note that a plan is essentially a set of tasks.

80

5.3. Practical Application

a new subsumption A v B is derivable in the ontology, we can add a decomposition
method for B into A into the planning model [C10]. We showed that we can complete
a partially modelled planning domain with this mechanics. As a further benefit, we
can use this connection between the planning domain and the ontology to enhance plan
explanations [R84] by integrating ontology explanations into them [C10].

5.3.3.2. Knowledge Management and State Information

As a second means to separate knowledge between the planning model and the ontology,
we studied how state-related information can be separated from procedural information.
In contrast to the previously described mechanism, this separation is more suited to
the means by which ontologies and planning describe their models. While we describe
static and relational information in the ontology, we describe dynamic and procedural
information in the planning model. Static knowledge relates e.g. to the types and objects
occurring in the application domain – for Robert e.g. screws, drills, drill bits, etc. – but
also to the current, i.e. the initial, state of the world. This information is stored in the
ontology and transformed into information for the planner whenever a planning processes
is initiated. Individuals in the ontology correspond to objects in the planning problem,
concepts correspond to types, roles correspond to predicates, and axioms and assertions
involving roles are interpreted as facts. Since we cannot interpret arbitrary axioms as
facts for the planner’s initial state, we only consider axioms of the form ∃r.B v A which
correspond to facts (r A B) in the planner’s initial state [C3, F33].

We go even further with our separation of factual and procedural knowledge. Espe-
cially in the DIY domain, there is a lot of factual knowledge which is tightly coupled with
procedural knowledge for handling electronic tools. This, for example, pertains to the
possible configurations of electronic drills. Its configuration options – e.g. the inserted
bit, drilling speed, and torque – must be adequate for the material that will be drilled
into. The allowed configurations are static in the sense that they do not change over
time. These configurations are naturally referenced in the preconditions of the drilling
action in Robert’s planning model. By using our approach of separating factual and
procedural knowledge, we can store the allowed configurations as axioms in the ontology
and translate them into facts of the planning problem’s initial state. The drill action
can then reference these facts and check whenever the action is to be applied, whether
the facts hold [C3]. The drill action does not have to take individual configurations
into account, but only a general mechanism to handle them. This way, only a single
drill action is required in the planning model – as opposed to one per type of drill and
type of material. This makes the planning problems significantly shorter and easier to
comprehend and modify.

5.3.4. Evaluation

To show that the assistance provided by Robert is useful, we evaluated it with a
subject group [C3, F25]. The group consistent of 18 persons, 10 females and 8 males,

81

5. From Changing Plans to Assisting Users

with a mean age of 33.4 years2. Each participant constructed a wooden key rack from a
provided wooden plank. Although this task seems trivial at first glance, it encompasses
several steps that are difficult for novice users. They were given an electric jigsaw and
an electric drill. One part of the group used the full assistance capabilities of Robert
(13 participants), while a control group of 5 participants was provided with a basic
instruction. To keep both groups comparable, the basic instructions were delivered
using Robert’s user interface in order to exclude preferences solely based on graphical
presentation. The basic instructions did not instruct the participants to configure their
devices, just to use them. The user interface did not respond to voice commands, showed
no videos, and did not answer any questions.

In a subjective post-questionnaire, participants using Robert’s full assistance gen-
erally perceived it as useful (3.59 on a 5-point Likert scale) and had a positive overall
evaluation of the assistant (3.85 on a 5-point Likert scale). In addition to subjective
measures, we have also objectively compared the participants. We considered the time
needed by the participants to fully configure each electronic device they used. This
measure is an indicator for the quality of the instructions provided by Robert as less
time is presumed to be needed with better assistance. In Figure 5.4 we show the time
needed by every participant to set up the electric drill and the electric jigsaw. It shows a
trend for the participants using Robert being faster than those with only basic instruc-
tions. Note that this difference is already significant for the jigsaw (a one-way analysis
of variance, ANOVA, yields p = 0.002).

2Note that the group is relatively small. The study was conducted as part of an industry transfer project
with Robert Bosch GmbH. Its main focus was the investigation of engineering questions related to
Robert. Thus, in agreement with Robert Bosch GmbH, the size of the cohort was chosen to be
relatively small.

82

5.3. Practical Application

0:00

1:00

2:00

3:00

4:00

5:00

6:00

7:00

8:00

9:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

drill driver electric saw

Figure 5.4.: Scatterplot of time to operation (in minutes) for electric drill driver and
jigsaw; left sub-columns: full assistance, right sub-columns: baseline, hor-
izontal bars: mean times, vertical bars: standard deviation. Copied and
adapted from [C3]. The final publication is available at IOS Press through
http://dx.doi.org/10.3233/AIC-180604.

83

6. Conclusion

In order for planners to provide the basis for useful and individualised assistance, they
have to be both fast and able to change plans according to the wishes of their users. In
this thesis, we have shown how both of these challenges can be addressed within hierar-
chical planning – a formalism that resembles domain structures and planning strategies
used by humans.
We started out by studying the computational complexity of changing and verifying

plans [C8, C9]. The core result of this investigation – that HTN plan verification is NP-
complete – led to the development of the first plan verifier for HTN plans [C7]. It uses
a translation of the problem into propositional logic. Based on the experience with the
encoding for verification, we developed an encoding for totally-ordered HTN planning
problems [C5]. It is based on the new theoretical concept of Path Decomposition Trees
which are a means to compactly specify the possible, K-depth-limited decompositions of
a given hierarchical planning problem. The resulting planner is highly efficient and out-
performed all other state-of-the-art planners on totally-ordered planning problems [C5].
Next, we extended the concept of Path Decomposition Trees such that it is also appli-

cable to general, partially-ordered HTN planning problems [C6]. Solution Order Graphs
– which can be extracted from appropriately constructed Path Decomposition Trees –
allow for a compact representation of the order of primitive actions in solutions [C2].
We showed that Solution Order Graphs enable a concise encoding of partial order in
HTN planning problems into propositional logic [C2]. In practical applications, it not
only important to find some plan that solves the problem at hand, but also the shortest
possible plan. To allow an SAT-based HTN planner to find such optimal solutions, we
presented a method to compute succinct depth bounds given a length bound [C1]. Using
them, a once found solution can be optimised until no shorter plan exists.
Our propositional encodings showed a significant empirical improvement over the state

of the art, and – as did the planner for totally-ordered HTN planning problems – out-
performed all competitors [C2]. This new planner thus constitutes an important step
towards providing fast planners for planning-based assistance systems. The declarative
nature of the planning approach we have taken constitutes a suitable foundation for
future developments in HTN planning, e.g. for the integration of numeric state fluents
via SAT Modulo Theories.

In order to allow our planner to handle a user’s request to change a given plan, we
first propose to view these requests uniformly as formulae in Linear Temporal Logic.
Using existing encoding techniques, this allows our planner to answer change requests
by the user. The existing encoding, however, does not support the full set of temporal

85

6. Conclusion

operators. We showed how the encoding can be modified to do so and simultaneously
provided an improvement to the encoding which allowed to find plans more quickly
under these constraints [C4]. Both the interpretation of requests to change a plan and
our improvement to the LTL encoding are applicable both to hierarchical and to classical
planning.
Lastly, we considered the application of the presented techniques in a real-world assis-

tance scenario. We have developed the assistant Robert within an knowledge transfer
project conducted jointly with Robert Bosch GmbH. It supports novice users in Do-It-
Yourself (DIY) home improvement projects by suitably instructing them on the steps to
take in order to complete their project [C3]. This, e.g. involves instructions on how to
configure and use electronic tools appropriately. Robert uses the hierarchy of its HTN
planning model to communicate instructions of different levels of abstraction to the user,
which allows for a smoother interaction. We further developed methods for knowledge
integration between a planning model and a logic-based ontology [C10], facilitating a
coherent behaviour of all of Robert’s components. It also enables new capabilities and
eases domain modelling. In an empirical evaluation, users perceived Robert’s assis-
tance as helpful [C3]. They further objectively benefited from the provided assistance
as they were able to perform tasks faster than a control group without Robert’s assis-
tance. In order to provide its assistance, Robert requires a highly complex planning
domain, which models several aspects of real-world tasks in the DIY setting. Without
the scientific advances presented in this thesis, Robert would not have been able to
find and change plans for its users within a reasonable timeframe and would thus not
have been able to assist its users.

86

A. Bibliography

References to bibliographic items are prefixed with a letter indicating their type. Ref-
erences prefixed with C are peer-reviewed core publications of this dissertation and
reprinted in full in Appendix B. References prefixed with F are further publications of
which I am a co-author. All F publications except for [F43] are peer-reviewed. References
prefixed with R denote related work of with I am not a(n) (co-)author.

Core Publications

[C1] Gregor Behnke, Daniel Höller, and Susanne Biundo. “Finding Optimal So-
lutions in HTN Planning – A SAT-based Approach”. Proceedings of the 28th
International Joint Conference on Artificial Intelligence (IJCAI 2019). IJCAI,
2019, pp. 5500–5508. doi: 10.24963/ijcai.2019/764.

[C2] Gregor Behnke, Daniel Höller, and Susanne Biundo. “Bringing Order to
Chaos – A Compact Representation of Partial Order in SAT-based HTN
Planning”. Proceedings of the 33rd AAAI Conference on Artificial Intelligence
(AAAI 2019). AAAI Press, 2019, pp. 7520–7529. doi: 10.1609/aaai.v33i01.
33017520.

[C3] Gregor Behnke, Marvin Schiller, Matthias Kraus, Pascal Bercher, Mario
Schmautz, Michael Dorna, Michael Dambier, Wolfgang Minker, Birte Glimm,
and Susanne Biundo. “Alice in DIY-Wonderland or: Instructing novice users on
how to use tools in DIY projects”. AI Communications, 32(1), 2019, pp. 31–57.
doi: 10.3233/AIC-180604.

[C4] Gregor Behnke and Susanne Biundo. “X and more Parallelism: Integrating
LTL-Next into SAT-based Planning with Trajectory Constraints While Allowing
for Even More Parallelism”. Inteligencia Artificial, 21(62), 2018, pp. 75–90. doi:
10.4114/intartif.vol21iss62pp75-90.

[C5] Gregor Behnke, Daniel Höller, and Susanne Biundo. “totSAT – Totally-
Ordered Hierarchical Planning through SAT”. Proceedings of the 32nd AAAI
Conference on Artificial Intelligence (AAAI 2018). AAAI Press, 2018, pp. 6110–
6118.

[C6] Gregor Behnke, Daniel Höller, and Susanne Biundo. “Tracking Branches in
Trees – A Propositional Encoding for solving Partially-Ordered HTN Planning
Problems”. Proceedings of the 30th International Conference on Tools with Ar-

87

A. Bibliography

tificial Intelligence (ICTAI 2018). IEEE Computer Society, 2018, pp. 73–80.
doi: 10.1109/ICTAI.2018.00022.

[C7] Gregor Behnke, Daniel Höller, and Susanne Biundo. “This is a solution! (...
but is it though?) – Verifying solutions of hierarchical planning problems”.
Proceedings of the 27th International Conference on Automated Planning and
Scheduling (ICAPS 2017). AAAI Press, 2017, pp. 20–28.

[C8] Gregor Behnke, Daniel Höller, Pascal Bercher, and Susanne Biundo. “Change
the Plan – How hard can that be?” Proceedings of the 26th International Con-
ference on Automated Planning and Scheduling (ICAPS 2016). AAAI Press,
2016, pp. 38–46.

[C9] Gregor Behnke, Daniel Höller, and Susanne Biundo. “On the Complexity of
HTN Plan Verification and Its Implications for Plan Recognition”. Proceedings
of the 25th International Conference on Automated Planning and Scheduling
(ICAPS 2015). AAAI Press, 2015, pp. 25–33.

[C10] Gregor Behnke, Denis Ponomaryov, Marvin Schiller, Pascal Bercher, Florian
Nothdurft, Birte Glimm, and Susanne Biundo. “Coherence Across Components
in Cognitive Systems – One Ontology to Rule Them All”. Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI 2015). AAAI
Press, 2015, pp. 1442–1449.

Further Co-Authored Publications

[F11] Daniel Höller, Pascal Bercher, Gregor Behnke, and Susanne Biundo. “On
Guiding Search in HTN Planning with Classical Planning Heuristics”. Proceed-
ings of the 28th International Joint Conference on Artificial Intelligence (IJCAI
2019). IJCAI, 2019.

[F12] Gregor Behnke, Daniel Höller, Pascal Bercher, and Susanne Biundo. “More
Succinct Grounding of HTN Planning Problems – Preliminary Results”. Pro-
ceedings of the Second ICAPS Workshop on Hierarchical Planning. 2019, pp. 40–
48.

[F13] Gregor Behnke, Daniel Höller, Pascal Bercher, Susanne Biundo, Humbert
Fiorino, Damien Pellier, and Ron Alford. “Hierarchical Planning in the IPC”.
Proceedings of 2019 Workshop on the International Planning Competition
(WIPC 2019). 2019.

[F14] Daniel Höller, Gregor Behnke, Pascal Bercher, Susanne Biundo, Humbert
Fiorino, Damien Pellier, and Ron Alford. “HDDL – A Language to Describe
Hierarchical Planning Problems”. Proceedings of the Second ICAPS Workshop
on Hierarchical Planning. 2019, pp. 6–17.

[F15] Matthias Kraus, Marvin Schiller, Gregor Behnke, Pascal Bercher, Susanne
Biundo, Birte Glimm, and Wolfgang Minker. “A Multimodal Dialogue Frame-
work for Cloud-Based Companion Systems”. Proceedings of the 9th International
Workshop on Spoken Dialog Systems Technology (IWSDS 2018). Ed. by Rafael
Banchs, Luis Fernando D’Haro, and Haizhou Li. Lecture Notes in Electrical
Engineering. Springer, 2019.

88

[F16] Gregor Behnke and Susanne Biundo. “X and more Parallelism – Integrating
LTL-Next into SAT-based Planning with Trajectory Constraints while Allowing
for even more Parallelism”. Proceedings of the Workshop on Constraint Satisfac-
tion Techniques for Planning and Scheduling Problems (COPLAS 2018). 2018,
pp. 1–10.

[F17] Gregor Behnke, Daniel Höller, and Susanne Biundo. “Tracking Branches in
Trees – A Propositional Encoding for solving Partially-Ordered HTN Planning
Problems”. Proceedings of the First ICAPS Workshop on Hierarchical Planning.
2018, pp. 40–47.

[F18] Gregor Behnke, Marvin Schiller, Matthias Kraus, Pascal Bercher, Mario
Schmautz, Michael Dorna, Wolfgang Minker, Birte Glimm, and Susanne Bi-
undo. “Instructing Novice Users on How to Use Tools in DIY Projects”. Pro-
ceedings of the 27th International Joint Conference on Artificial Intelligence and
the 23rd European Conference on Artificial Intelligence (IJCAI-ECAI 2018). IJ-
CAI, 2018, pp. 5805–5807.

[F19] Daniel Höller, Gregor Behnke, Pascal Bercher, and Susanne Biundo. “Plan
and Goal Recognition as HTN Planning”. Proceedings of the 30th International
Conference on Tools with Artificial Intelligence (ICTAI 2018). IEEE Computer
Society, 2018, pp. 466–473. ICTAI 2018 CV Ramamoorthy Best Paper Award.

[F20] Daniel Höller, Pascal Bercher, Gregor Behnke, and Biundo Biundo. “A
Generic Method to Guide HTN Progression Search with Classical Heuristics”.
Proceedings of the 28th International Conference on Automated Planning and
Scheduling (ICAPS 2018). AAAI Press, 2018, pp. 114–122. ICAPS 2018 Best
Student Paper Award.

[F21] Daniel Höller, Pascal Bercher, Gregor Behnke, and Susanne Biundo. “HTN
Plan Repair Using Unmodified Planning Systems”. Proceedings of the First
ICAPS Workshop on Hierarchical Planning. 2018, pp. 26–30.

[F22] Daniel Höller, Pascal Bercher, Gregor Behnke, and Susanne Biundo. “Plan
and Goal Recognition as HTN Planning”. Proceedings of the AAAI 2018 Work-
shop on Plan, Activity, and Intent Recognition (PAIR 2018). 2018, pp. 607–
613.

[F23] Matthias Kraus,Gregor Behnke, Pascal Bercher, Marvin Schiller, Susanne Bi-
undo, Birte Glimm, and Wolfgang Minker. “A Multimodal Dialogue Framework
for Cloud-Based Companion Systems”. Proceedings of the 10th International
Workshop on Spoken Dialog Systems Technology (IWSDS 2018). 2018.

[F24] Benedikt Leichtmann, Pascal Bercher, Daniel Höller,Gregor Behnke, Susanne
Biundo, Verena Nitsch, and Martin Baumann. “Towards a Companion System
Incorporating Human Planning Behavior – A Qualitative Analysis of Human
Strategies”. Proceedings of the 3rd Transdisciplinary Conference on Support
Technologies (TCST 2018). 2018, pp. 89–98. TCST 2018 Best Paper Award.

[F25] Marvin Schiller, Gregor Behnke, Pascal Bercher, Matthias Kraus, Michael
Dorna, Felix Richter, Susanne Biundo, Birte Glimm, and Wolfgang Minker.
“Evaluating Knowledge-Based Assistance for DIY”. Proceedings of MCI Work-
shop “Digital Companion”. 2018, pp. 925–930.

89

A. Bibliography

[F26] Gregor Behnke, Benedikt Leichtmann, Pascal Bercher, Daniel Höller, Ver-
ena Nitsch, Martin Baumann, and Susanne Biundo. “Help me make a dinner!
Challenges when assisting humans in action planning”. Proceedings of the 2nd
International Conference on Companion Technology (ICCT 2017). IEEE, 2017.

[F27] Gregor Behnke, Florian Nielsen, Marvin Schiller, Pascal Bercher, Matthias
Kraus, Birte Glimm, Wolfgang Minker, and Susanne Biundo. “SLOTH – the
Interactive Workout Planner”. Proceedings of the 2nd International Conference
on Companion Technology (ICCT 2017). IEEE, 2017.

[F28] Gregor Behnke, Florian Nielsen, Marvin Schiller, Denis Ponomaryov, Pascal
Bercher, Birte Glimm, Wolfgang Minker, and Susanne Biundo. “To Plan for the
User Is to Plan With the User – Integrating User Interaction Into the Planning
Process”. Companion Technology – A Paradigm Shift in Human-Technology In-
teraction. Ed. by Susanne Biundo and Andreas Wendemuth. Cognitive Tech-
nologies. Springer, 2017. Chap. 7, pp. 123–144.

[F29] Pascal Bercher, Gregor Behnke, Daniel Höller, and Susanne Biundo. “An Ad-
missible HTN Planning Heuristic”. Proceedings of the 26th International Joint
Conference on Artificial Intelligence (IJCAI 2017). IJCAI, 2017, pp. 480–488.

[F30] Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo. “User-
Centered Planning”. Companion Technology – A Paradigm Shift in Human-
Technology Interaction. Ed. by Susanne Biundo and Andreas Wendemuth. Cog-
nitive Technologies. Springer, 2017. Chap. 5, pp. 79–100.

[F31] Pascal Bercher, Felix Richter, Thilo Hörnle, Thomas Geier, Daniel Höller, Gre-
gor Behnke, Florian Nielsen, Frank Honold, Felix Schüssel, Stephan Reuter,
Wolfgang Minker, Michael Weber, Klaus Dietmayer, and Susanne Biundo. “Ad-
vanced User Assistance for Setting Up a Home Theater”. Companion Technology
– A Paradigm Shift in Human-Technology Interaction. Ed. by Susanne Biundo
and Andreas Wendemuth. Cognitive Technologies. Springer, 2017. Chap. 24,
pp. 485–491.

[F32] Florian Nothdurft, Pascal Bercher, Gregor Behnke, and Wolfgang Minker.
“User Involvement in Collaborative Decision-Making Dialog Systems”. Dia-
logues with Social Robots: Enablements, Analyses, and Evaluation. Ed. by Kris-
tiina Jokinen and Graham Wilcock. This book chapter was accepted at the 7th
International Workshop On Spoken Dialogue Systems (IWSDS 2016). Springer,
2017, pp. 129–141.

[F33] Marvin Schiller, Gregor Behnke, Mario Schmautz, Pascal Bercher, Matthias
Kraus, Michael Dorna, Wolfgang Minker, Birte Glimm, and Susanne Biundo.
“A Paradigm for Coupling Procedural and Conceptual Knowledge in Compan-
ion Systems”. Proceedings of the 2nd International Conference on Companion
Technology (ICCT 2017). IEEE, 2017.

[F34] Ron Alford, Gregor Behnke, Daniel Höller, Pascal Bercher, Susanne Bi-
undo, and David W. Aha. “Bound to Plan: Exploiting Classical Heuristics via
Automatic Translations of Tail-Recursive HTN Problems”. Proceedings of the
26th International Conference on Automated Planning and Scheduling, (ICAPS
2016). AAAI Press, 2016, pp. 20–28.

90

[F35] Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo. “More
than a Name? On Implications of Preconditions and Effects of Compound HTN
Planning Tasks”. Proceedings of the 22nd European Conference on Artificial
Intelligence (ECAI 2016). IOS Press, 2016, pp. 225–233.

[F36] Daniel Höller, Gregor Behnke, Pascal Bercher, and Susanne Biundo. “As-
sessing the Expressivity of Planning Formalisms through the Comparison to
Formal Languages”. Proceedings of the 26th International Conference on Au-
tomated Planning and Scheduling, (ICAPS 2016). AAAI Press, 2016, pp. 158–
165.

[F37] Gregor Behnke, Pascal Bercher, Susanne Biundo, Birte Glimm, Denis Pono-
maryov, and Marvin Schiller. “Integrating Ontologies and Planning for Cogni-
tive Systems”. Proceedings of the 28th International Workshop on Description
Logics (DL 2015). CEUR Workshop Proceedings, 2015, pp. 338–360.

[F38] Gregor Behnke, Marvin Schiller, Denis Ponomaryov, Florian Nothdurft, Pas-
cal Bercher, Wolfgang Minker, Birte Glimm, and Susanne Biundo. “A Unified
Knowledge Base for Companion-Systems – A Case Study in Mixed-Initiative
Planning”. Proceedings of the First International Symposium on Companion
Technology (ISCT 2015). 2015, pp. 43–48.

[F39] Pascal Bercher, Daniel Höller, Gregor Behnke, and Susanne Biundo. “User-
Centered Planning – A Discussion on Planning in the Presence of Human Users”.
Proceedings of the First International Symposium on Companion Technology
(ISCT 2015). 2015, pp. 79–82.

[F40] Pascal Bercher, Felix Richter, Thilo Hörnle, Thomas Geier, Daniel Höller, Gre-
gor Behnke, Florian Nothdurft, Frank Honold, Wolfgang Minker, Michael We-
ber, and Susanne Biundo. “A Planning-based Assistance System for Setting
Up a Home Theater”. Proceedings of the 29th AAAI Conference on Artificial
Intelligence (AAAI 2015). AAAI Press, 2015, pp. 4264–4265.

[F41] Florian Nothdurft, Gregor Behnke, Pascal Bercher, Susanne Biundo, and
Wolfgang Minker. “The Interplay of User-Centered Dialog Systems and AI Plan-
ning”. Proceedings of the 16th Annual Meeting of the Special Interest Group on
Discourse and Dialogue (SIGDIAL 2015). Association for Computational Lin-
guistics, 2015, pp. 344–353.

[F42] Daniel Höller, Gregor Behnke, Pascal Bercher, and Susanne Biundo. “Lan-
guage Classification of Hierarchical Planning Problems”. Proceedings of the 21st
European Conference on Artificial Intelligence (ECAI 2014). Vol. 263. IOS
Press, 2014, pp. 447–452.

Further Co-Authored Publications (non peer-reviewed)

[F43] Pascal Bercher, Felix Richter, Frank Honold, Florian Nielsen, Felix Schüssel,
Thomas Geier, Thilo Hörnle, Stephan Reuter, Daniel Höller, Gregor Behnke,
Klaus Dietmayer, Wolfgang Minker, Michael Weber, and Susanne Biundo.
A Companion-System Architecture for Realizing Individualized and Situation-

91

A. Bibliography

Adaptive User Assistance. technical report. Ulm University, 2018. doi: 10 .
18725/OPARU-11023.

Related Work

[R44] Pascal Bercher, Ron Alford, and Daniel Höller. “A Survey on Hierarchical Plan-
ning – One Abstract Idea, Many Concrete Realizations”. Proceedings of the 28th
International Joint Conference on Artificial Intelligence (IJCAI 2019). IJCAI,
2019.

[R45] Sunandita Patra, Malik Ghallab, Dana Nau, and Paolo Traverso. “Acting and
planning using operational models”. Proceedings of the 33rd AAAI Conference
on Artificial Intelligence (AAAI 2019). AAAI Press, 2019.

[R46] Dominik Schreiber, Tomáš Balyo, Damien Pellier, and Humbert Fiorino. “Tree-
REX: SAT-based Tree Exploration for Efficient and High-Quality HTN Plan-
ning”. Proceedings of the 29th International Conference on Automated Planning
and Scheduling (ICAPS 2019). AAAI Press, 2019, pp. 382–390.

[R47] Mohammad Abdulaziz and Peter Lammich. “A Formally Verified Validator
for Classical Planning Problems and Solutions”. Proceedings of the 30th Inter-
national Conference on Tools with Artificial Intelligence (ICTAI 2018). IEEE
Computer Society, 2018, pp. 474–479.

[R48] Roman Barták, Adrien Maillard, and Rafael C. Cardoso. “Validation of Hier-
archical Plans via Parsing of Attribute Grammars”. Proceedings of the 28th In-
ternational Conference on Automated Planning and Scheduling (ICAPS 2018).
AAAI Press, 2018.

[R49] Armin Biere. “CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT Enter-
ing the SAT Competition 2018”. Proceedings of SAT Competition 2018: Solver
and Benchmark Descriptions. University of Helsinki, 2018, pp. 13–15.

[R50] Md Solimul Chowdhury, Martin Müller, and Jia-Huai You. “Description of ex-
pSAT Solvers”. Proceedings of SAT Competition 2018: Solver and Benchmark
Descriptions. University of Helsinki, 2018, pp. 22–23.

[R51] Maximilian Fickert, Daniel Gnad, Patrick Speicher, and Jörg Hoffmann. “Saar-
Plan: Combining Saarland’s Greatest Planning Techniques”. IPC2018 – Clas-
sical Tracks: Planner Abstracts for the Classical Tracks in the International
Planning Competition 2018. 2018, pp. 10–15.

[R52] Guillem Frances, Hector Geffner, Nir Lipovetzky, and Miquel Ramirez. “Best-
First Width Search in the IPC 2018: Complete, Simulated, and Polynomial Vari-
ants”. IPC2018 – Classical Tracks: Planner Abstracts for the Classical Tracks
in the International Planning Competition 2018. 2018, pp. 22–26.

[R53] Daniel Kinzler. Extraction of Linear Temporal Logic Formulae from Natural
Language. Project Report at Ulm University. 2018.

92

[R54] Ugur Kuter, Robert P. Goldman, Daniel Bryce, Jacob Beal, Matthew De-
haven, Christopher S. Geib, Alexander F. Plotnick, Tramy Nguyen, and Nicholas
Roehner. “XPLAN: Experiment Planning for Synthetic Biology”. Proceedings
of the First ICAPS Workshop on Hierarchical Planning. 2018, pp. 48–52.

[R55] Vadim Ryvchin and Alexander Nadel. “Maple_LCM_Dist_ChronoBT: Featur-
ing Chronological Backtracking”. Proceedings of SAT Competition 2018: Solver
and Benchmark Descriptions. University of Helsinki, 2018, p. 29.

[R56] Jendrik Seipp and Gabriele Röger. “Fast Downward Stone Soup 2018”. IPC2018
– Classical Tracks: Planner Abstracts for the Classical Tracks in the Interna-
tional Planning Competition 2018. 2018, pp. 72–74.

[R57] Mate Soos. “The CryptoMiniSat 5.5 set of solvers at the SAT Competition
2018”. Proceedings of SAT Competition 2018: Solver and Benchmark Descrip-
tions. University of Helsinki, 2018, pp. 17–18.

[R58] Stephan Gocht and Tomáš Balyo. “Accelerating SAT Based Planning with In-
cremental SAT Solving”. Proceedings of the 27th International Conference on
Automated Planning and Scheduling (ICAPS 2017). AAAI Press, 2017, pp. 135–
139.

[R59] Abdeldjalil Ramoul, Damien Pellier, Humbert Fiorino, and Sylvie Pesty.
“Grounding of HTN Planning Domain”. International Journal on Artificial In-
telligence Tools, 26(5), 2017, pp. 1–24.

[R60] Ron Alford, Vikas Shivashankar, Mark Roberts, Jeremy Frank, and David W.
Aha. “Hierarchical Planning: Relating Task and Goal Decomposition with Task
Sharing”. Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI 2016). AAAI Press, 2016.

[R61] Arthur Bit-Monnot, David Smith, and Minh Do. “Delete-Free Reachability
Analysis for Temporal and Hierarchical Planning”. Proceedings of the 22nd
European Conference on Artificial Intelligence (ECAI 2016). IOS Press, 2016,
pp. 1698–1699.

[R62] Michael Cashmore, Maria Fox, Derek Long, and Daniele Magazzeni. “A Com-
pilation of the Full PDDL+ Language into SMT”. Proceedings of the 26th In-
ternational Conference on Automated Planning and Scheduling (ICAPS 2016).
AAAI Press, 2016, pp. 79–87.

[R63] Jia Hui Liang, Chanseok Oh, Vijay Ganesh, Krzysztof Czarnecki, and Pas-
cal Poupart. “MapleCOMSPS, MapleCOMSPS_LRB, MapleCOMSPS_CHB”.
Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions.
University of Helsinki, 2016, pp. 52–53.

[R64] Norbert Manthey, Aaron Stephan, and Elias Werner. “Riss 6 Solver and Deriva-
tives”. Proceedings of SAT Competition 2016: Solver and Benchmark Descrip-
tions. University of Helsinki, 2016, pp. 56–57.

[R65] Mate Soos. “The CryptoMiniSat 5 set of solvers at SAT Competition 2016”.
Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions.
University of Helsinki, 2016, p. 28.

93

A. Bibliography

[R66] Álvaro Torralba, Carlos Linares López, and Daniel Borrajo. “Abstraction
Heuristics for Symbolic Bidirectional Search”. Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2016). AAAI Press,
2016, pp. 3272–3278.

[R67] David R. Winer and R. Michael Young. “Discourse-Driven Narrative Gener-
ation with Bipartite Planning”. Proceedings of the 9th International Natural
Language Generation Conf. (INLG 2016). The Association for Computer Lin-
guistics, 2016, pp. 11–20.

[R68] Ron Alford, Pascal Bercher, and David W. Aha. “Tight Bounds for HTN Plan-
ning”. Proceedings of the 25th International Conference on Automated Planning
and Scheduling (ICAPS 2015). AAAI Press, 2015, pp. 7–15.

[R69] Ron Alford, Pascal Bercher, and David W. Aha. “Tight Bounds for HTN Plan-
ning with Task Insertion”. Proceedings of the 25th International Joint Confer-
ence on Artificial Intelligence (IJCAI 2015). 2015, pp. 1502–1508.

[R70] Steve Chien, Gregg Rabideau, Daniel Tran, Martina Troesch, Joshua Double-
day, Federico Nespoli, Miguel Perez Ayucar, Marc Costa Sitja, Claire Vallat,
Bernhard Geiger, Nico Altobelli, Manuel Fernandez, Fran Vallejo, Rafael An-
dres, and Michael Kueppers. “Activity-based Scheduling of Science Campaigns
for the Rosetta Orbiter”. Proceedings of the 25th International Joint Conference
on Artificial Intelligence (IJCAI 2015). AAAI Press, 2015, pp. 4416–4422.

[R71] Arman Masoumi, Megan Antoniazzi, and Mikhail Soutchanski. “Modeling Or-
ganic Chemistry and Planning Organic Synthesis”. Proceedings of the First
Global Conference on Artificial Intelligence (GCAI 2015). EasyChair, 2015,
pp. 176–194.

[R72] Jorge Torres and Jorge A. Baier. “Polynomial-time Reformulations of LTL Tem-
porally Extended Goals into Final-state Goals”. Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2015). AAAI Press,
2015, pp. 1696–1703.

[R73] Patrick Bechon, Magali Barbier, Guillaume Infantes, Lesire. Charles, and Vin-
cent Vidal. “HiPOP: Hierarchical Partial-Order Planning”. Proceedings of the
7th European Starting AI Researcher Symposium (STAIRS 2014). IOS Press,
2014, pp. 51–60.

[R74] Pascal Bercher, Susanne Biundo, Thomas Geier, Thilo Hörnle, Florian Noth-
durft, Felix Richter, and Bernd Schattenberg. “Plan, Repair, Execute, Explain
– How Planning Helps to Assemble your Home Theater”. Proceedings of the
24th International Conference on Automated Planning and Scheduling (ICAPS
2014). AAAI Press, 2014, pp. 386–394.

[R75] Pascal Bercher, Shawn Keen, and Susanne Biundo. “Hybrid planning heuristics
based on task decomposition graphs”. Proceedings of the 7th Annual Symposium
on Combinatorial Search (SoCS 2014). AAAI Press, 2014, pp. 35–43.

[R76] Filip Dvorak, Arthur Bit-Monnot, Félix Ingrand, and Malik Ghallab. “A flexible
ANML actor and planner in robotics”. Proceedings of the 4th Workshop on
Planning and Robotics (PlanRob). 2014, pp. 12–19.

94

[R77] Martin Gebser, Tomi Janhunen, and Jussi Rintanen. “SAT Modulo Graphs:
Acyclicity”. Logics in Artificial Intelligence, 14th European Conference JELIA
2014. Springer, 2014, pp. 137–151.

[R78] Jussi Rintanen. “Madagascar: Scalable Planning with SAT”. The 2014 Interna-
tional Planning Competition: Description of Participating Planners, Determin-
istic Track. 2014, pp. 66–70.

[R79] Fan Xie, Martin Müller, and Robert Holte. “Jasper: The art of Exploration
in Greedy Best First Search”. The 2014 International Planning Competition:
Description of Participating Planners, Deterministic Track. 2014, pp. 39–42.

[R80] Giuseppe De Giacomo and Moshe Y. Vardi. “Linear Temporal Logic and Linear
Dynamic Logic on Finite Traces”. Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI 2013). AAAI Press, 2013, pp. 854–
860.

[R81] Remco Straatman, Tim Verweij, Alex Champandard, Robert Morcus, and Hylke
Kleve. “Game AI Pro: Collected Wisdom of Game AI Professional”. Ed. by
Steven Rabin. CRC Press, 2013. Chap. Hierarchical AI for Multiplayer Bots in
Killzone 3.

[R82] Mohamed Elkawkagy, Pascal Bercher, Bernd Schattenberg, and Susanne Bi-
undo. “Improving Hierarchical Planning Performance by the Use of Land-
marks”. Proceedings of the 26th AAAI Conference on Artificial Intelligence
(AAAI 2012). AAAI Press, 2012, pp. 1763–1769.

[R83] Peter Gregory, Derek Long, Maria Fox, and J. Christopher Beck. “Plan-
ning Modulo Theories: Extending the Planning Paradigm”. Proceedings of the
22nd International Conference on Automated Planning and Scheduling (ICAPS
2012). AAAI Press, 2012, pp. 65–73.

[R84] Bastian Seegebarth, Felix Müller, Bernd Schattenberg, and Susanne Biundo.
“Making Hybrid Plans More Clear to Human Users – A Formal Approach for
Generating Sound Explanations”. Proceedings of the 22nd International Con-
ference on Automated Planning and Scheduling (ICAPS 2012). AAAI Press,
2012, pp. 225–233.

[R85] David E. Smith. “Planning As an Iterative Process”. Proceedings of the 26th
AAAI Conference on Artificial Intelligence (AAAI 2012). AAAI Press, 2012,
pp. 2180–2185.

[R86] Tiago Stegun Vaquero, Gustavo Costa, Flavio Tonidandel, Haroldo Igreja, Jose
Reinaldo Silva, and J. Christopher Beck. “Planning and Scheduling Ship Oper-
ations on Petroleum Ports and Platforms”. Proceedings of the 2012 Scheduling
and Planning Applications woRKshop (SPARK 2012). 2012, pp. 8–16.

[R87] Susanne Biundo, Pascal Bercher, Thomas Geier, Felix Müller, and Bernd Schat-
tenberg. “Advanced user assistance based on AI planning”. Cognitive Systems
Research, 12(3), 2011, pp. 219–236.

[R88] Thomas Geier and Pascal Bercher. “On the Decidability of HTN Planning with
Task Insertion”. Proceedings of the 22nd International Joint Conference on Ar-
tificial Intelligence (IJCAI 2011). AAAI Press, 2011, pp. 1955–1961.

95

A. Bibliography

[R89] Mohamed Elkawkagy, Bernd Schattenberg, and Susanne Biundo. “Landmarks
in Hierarchical Planning”. Proceedings of the 20nd European Conference on
Artificial Intelligence (ECAI 2010). IOS Press, 2010, pp. 229–234.

[R90] Malte Helmert and Hauke Lasinger. “The Scanalyzer Domain: Greenhouse Lo-
gistics as a Planning Problem”. Proceedings of the 20th International Confer-
ence on Automated Planning and Scheduling (ICAPS 2010). AAAI Press, 2010,
pp. 234–237.

[R91] Scott Sanner. “Relational Dynamic Influence Diagram Lan-
guage (RDDL): Language Description”. Accessed March 22, 2019,
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf. 2010.

[R92] Ronald Alford, Ugur Kuter, and Dana Nau. “Translating HTNs to PDDL: A
Small Amount of Domain Knowledge Can Go a Long Way”. Proceedings of
the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009).
AAAI Press, 2009, pp. 1629–1634.

[R93] Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli. “Satisfia-
bility Modulo Theories”. Handbook of Satisfiability. Ed. by Armin Biere, Marijn
Heule, Hans van Maaren, and Toby Walsh. IOS Press, 2009. Chap. 26, pp. 825–
885.

[R94] Allen Nikora and Galen Balcom. “Automated Identification of LTL Patterns in
Natural Language Requirements”. Proceedings of the 20th IEEE International
Conference on Software Reliability Engineering (ISSRE 2009). IEEE Press,
2009, pp. 185–194.

[R95] Shirin Sohrabi, Jorge A. Baier, and Sheila A. McIlraith. “HTN Planning with
Preferences”. Proceedings of the 21st International Joint Conference on Artifi-
cial Intelligence (IJCAI 2009). AAAI Press, 2009, pp. 1790–1797.

[R96] Robert Mattmüller and Jussi Rintanen. “Planning for Temporally Extended
Goals as Propositional Satisfiability”. Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI 2007). AAAI Press, 2007,
pp. 1966–1971.

[R97] Matthew Streeter and Stephen Smith. “Using Decision Procedures Efficiently
for Optimization”. Proceedings of the 17th International Conference on Auto-
mated Planning and Scheduling (ICAPS 2007). AAAI Press, 2007, pp. 312–319.

[R98] Jorge Baier and Sheila McIlraith. “Planning with First-Order Temporally Ex-
tended Goals Using Heuristic Search”. Proceedings of the 21st National Confer-
ence on Artificial Intelligence (AAAI 2006). AAAI Press, 2006, pp. 788–795.

[R99] Armin Biere, Keijo Heljanko, Tommi Junttila, Timo Latvala, and Viktor Schup-
pan. “Linear Encodings of Bounded LTL Model Checking”. Logical Methods in
Computer Science, 2(5), 2006, pp. 1–64.

[R100] John Bresina and Paul Morris. “Mission Operations Planning: Beyond MAP-
GEN”. Proceedings of the 2nd IEEE International Conference on Space Mission
Challenges for Information Technology (SMC-IT 2006). IEEE, 2006, pp. 151–
156.

96

[R101] Malte Helmert. “The Fast Downward Planning System”. Journal of Artificial
Intelligence Research (JAIR), 26, 2006, pp. 191–246.

[R102] Matthew Horridge, Nick Drummond, John Goodwin, Alan Rector, Robert
Stevens, and Hai Wang. “The Manchester OWL Syntax”. Proceedings of the
Workshop on OWL Experiences and Directions (OWLED 2006). 2006.

[R103] Maja Pesic and Wil van der Aalst. “A Declarative Approach for Flexible Busi-
ness Processes Management”. Proceedings of the 2006 International Conference
on Business Process Management (BPM 2006). Springer, 2006, pp. 169–180.

[R104] Jussi Rintanen, Kejio Heljanko, and Ilkka Niemelä. “Planning as satisfiability:
parallel plans and algorithms for plan search”. Artificial Intelligence, 170(12-13),
2006, pp. 1031–1080.

[R105] James Thomas and Robert Michael Young. “Author in the Loop: Using Mixed-
Initiative Planning to Improve Interactive Narrative”. Proceedings of the Work-
shop on AI Planning for Computer Games and Synthetic Characters. 2006,
pp. 21–30.

[R106] Nate Blaylock and James Allen. “Generating Artificial Corpora for Plan Recog-
nition”. Proceedings of the 10th International Conference on User Modeling (UM
2005). Springer, 2005, pp. 179–188.

[R107] Simon Davies. “Planning and problem solving in well-defined domains”. The
Cognitive Psychology of Planning. Ed. by Robin Morris and Geoff Ward. Psy-
chology Press, 2005. Chap. 2, pp. 35–51.

[R108] Maria Fox, Richard Howey, and Derek Long. “Validating Plans in the Context
of Processes and Exogenous Events”. Proceedings of the 20th National Confer-
ence on Artificial Intelligence and the 17th Innovative Applications of Artificial
Intelligence Conference (AAAI 2005). 2005, pp. 1151–1156.

[R109] Alfonso Gerevini and Derek Long. Plan Constraints and Preferences in PDDL3.
Tech. rep. Department of Electronics for Automation, University of Brescia,
2005.

[R110] Carsten Sinz. “Towards an Optimal CNF Encoding of Boolean Cardinality
Constraints”. Proceedings of the 11th International Conference on Principles
and Practice of Constraint Programming (CP 2005). Vol. 3709. Springer, 2005,
pp. 827–831.

[R111] Geoff Ward and Robin Morris. “Introduction to the psychology of planning”.
The Cognitive Psychology of Planning. Ed. by Robin Morris and Geoff Ward.
Psychology Press, 2005. Chap. 1, pp. 1–34.

[R112] Mitchell Ai-Chang, John Bresina, Len Charest, Adam Chase, Jennifer Hsu,
Ari Jonsson, Bob Kanefsky, Paul Morris, Kanna Rajan, Jeffrey Yglesias, Brian
Chafin, Willian Dias, and Pierre Maldague. “MAPGEN: Mixed-Initiative Plan-
ning and Scheduling for the Mars Exploration Rover Mission”. Intelligent Sys-
tems, IEEE, 19(1), 2004, pp. 8–12.

[R113] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated Planning: Theory
and Practice. Ed. by Denise E. M. Penrose. Morgan Kaufmann, 2004.

97

A. Bibliography

[R114] Jürgen Dix, Ugur Kuter, and Dana Nau. “Planning in answer set programming
using ordered task decomposition”. Proceedings of the 26th Annual German
Conference on Artificial Intelligence (KI 2003). Springer, 2003, pp. 490–504.

[R115] Stefan Edelkamp. “On the Compilation of Plan Constraints and Preferences”.
Proceedings of the 16th International Conference on Automated Planning and
Scheduling (ICAPS 2006). AAAI Press, 2003, pp. 374–377.

[R116] Maria Fox and Derek Long. “PDDL2.1 : An Extension to PDDL for Express-
ing Temporal Planning Domains”. Journal of Artificial Intelligence Research
(JAIR), 20, 2003, pp. 61–124.

[R117] Karen Myers, Peter Jarvis, Mabry Tyson, and Michael Wolverton. “A Mixed-
initiative Framework for Robust Plan Sketching”. Proceedings of the 13th In-
ternational Conference on Automated Planning and Scheduling (ICAPS 2003).
AAAI Press, 2003, pp. 256–265.

[R118] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. Murdock, Dan Wu,
and Fusun Yaman. “SHOP2: An HTN Planning System”. Journal of Artificial
Intelligence Research (JAIR), 20, 2003, pp. 379–404.

[R119] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia,
Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella.
“NuSMV 2: An OpenSource Tool for Symbolic Model Checking”. Proceedings of
the 14th International Conference on Computer Aided Verification (CAV 2002).
Springer, 2002.

[R120] Maria Fox and Derek Long. “PDDL+: Modelling continuous time-dependent
effects”. Proceedings of the 3rd International NASA Workshop on Planning and
Scheduling for Space (IWPSS 2002). 2002.

[R121] Alfonso Gerevini and Ivan Serina. “LPG: A Planner Based on Local Search for
Planning Graphs with Action Costs”. Proceedings of the 6th International Con-
ference on Artificial Intelligence Planning Systems (AIPS 2002). AAAI Press,
2002, pp. 12–22.

[R122] Karen L. Myers, W. Mabry Tyson, Michael J. Wolverton, Peter A. Jarvis,
Thomas J. Lee, and Marie desJardins. “PASSAT: A User-centric Planning
Framework”. Proceedings of the 3rd International NASA Workshop on Plan-
ning and Scheduling for Space (IWPSS 2002). 2002.

[R123] Stanley H. Ambrose. “Paleolithic Technology and Human Evolution”. Science,
291(5509), 2001, pp. 1748–1753.

[R124] Susanne Biundo and Bernd Schattenberg. “From Abstract Crisis to Concrete
Relief – A Preliminary Report on Combining State Abstraction and HTN Plan-
ning”. Proceedings of the 6th European Conference on Planning (ECP 2001).
AAAI Press, 2001, pp. 157–168.

[R125] Patrick Doherty and Jonas Kvarnström. “TALPLANNER – A temporal logic-
based planner”. The AI Magazine, 22(3), 2001, pp. 95–102.

[R126] Paul Gastin and Denis Oddoux. “Fast LTL to Büchi Automata Translation”.
Proceedings of the 13th International Conference on Computer Aided Verifica-
tion (CAV 2001). Springer-Verlag, 2001, pp. 53–65.

98

[R127] Erich Grädel. “Why Are Modal Logics So Robustly Decidable?” Current Trends
in Theoretical Computer Science. Ed. by B. Păun, G. Rozenberg, and A. Salo-
maa. World Scientific Publishing Co., Inc., 2001, pp. 393–408.

[R128] Jörg Hoffmann and Bernhard Nebel. “The FF Planning System: Fast Plan Gen-
eration Through Heuristic Search”. Journal of Artificial Intelligence Research
(JAIR), 14, 2001, pp. 2531–302.

[R129] Héctor Muñoz-Avila, David Aha, Dana Nau, Rosina Weber, Len Breslow, and
Fusun Yaman. “SiN: Integrating Case-based Reasoning with Task Decomposi-
tion”. Proceedings of the 17th International Joint Conference on Artificial In-
telligence (IJCAI 2001). AAAI Press, 2001, pp. 999–1004.

[R130] Drew McDermott. “The 1998 AI Planning Systems Competition”. AI Magazine,
21(2), 2000, pp. 35–55.

[R131] Dana Nau, Michael Ball, John Baras, Abdur Chowdhury, Edward Lin, Jeff
Meyer, Ravi Rajamani, John Splain, and Vinai Trichur. “Generating and evalu-
ating designs and plans for microwave modules”. Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing, 14(4), 2000, pp. 289–304. doi:
10.1017/S0890060400144026.

[R132] Bernhard Nebel. “On the Compilability and Expressive Power of Propositional
Planning Formalisms”. Journal of Artificial Intelligence Research (JAIR), 12,
2000, pp. 271–315.

[R133] David Wilkins. Using the SIPE-2 Planning System – A Manual for SIPE-2,
Version 6.1. Tech. rep. 2000.

[R134] Amnon Lotem, Dana Nau, and James Hendler. “Using Planning Graphs for
Solving HTN Planning Problems”. Proceedings of the 16th National Conference
on Artificial Intelligence (AAAI 1999). AAAI Press, 1999, pp. 534–540.

[R135] Dana Nau, Yue Cao, Amnon Lotem, and Hector Munoz-Avila. “SHOP: Sim-
ple hierarchical ordered planner”. Proceedings of the 16th International Joint
Conference on Artificial Intelligence (IJCAI 1999). 1999, pp. 968–973.

[R136] George Ferguson and James Allen. “TRIPS: An Integrated Intelligent Problem-
Solving Assistant”. Proceedings of the 15th National Conference on Artificial
Intelligence (AAAI 1998). AAAI Press, 1998, pp. 567–572.

[R137] Subbarao Kambhampati, Amol Mali, and Biplav Srivastava. “Hybrid Planning
for Partially Hierarchical Domains”. Proceedings of the 15th National Confer-
ence on Artificial Intelligence (AAAI 1998). AAAI Press, 1998, pp. 882–888.

[R138] Amol Mali and Subbarao Kambhampati. “Encoding HTN Planning in Propo-
sitional Logic”. Proceedings of the 4th International Conference on Artificial
Intelligence Planning Systems (AIPS 1998). AAAI, 1998, pp. 190–198.

[R139] Jussi Rintanen. “A planning algorithm not based on directional search”. Pro-
ceedings of the 6th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 1998). Morgan Kaufmann Publishers, 1998,
pp. 617–624.

[R140] Avrim Blum and Merrick Furst. “Fast Planning Through Planning Graph Anal-
ysis”. Artificial Intelligence, 90(1-2), 1997, pp. 281–300.

99

A. Bibliography

[R141] Leonard Breslow and Aha David. NaCoDAE: Navy Conversational Decision
Aids Environment (Technical Report AIC-97-018). NCARAI, Washington, DC,
1997.

[R142] Manuela Veloso, Alice Mulvehill, and Michael Cox. “Rationale-Supported
Mixed-Initiative Case-Based Planning”. Proceedings of the 9th Conference on
Innovative Applications of Artificial Intelligence (IAAI 1997). AAAI Press,
1997, pp. 1072–1077.

[R143] Kutluhan Erol, James Hendler, and Dana Nau. “Complexity results for HTN
planning”. Annals of Mathematics and AI, 18(1), 1996, pp. 69–93.

[R144] George Ferguson, James Allen, and Bradford Miller. “TRAINS-95: Towards a
Mixed-Initiative Planning Assistant”. Proceedings of the 3rd International Con-
ference on Artificial Intelligence Planning Systems (AIPS 1995). 1996, pp. 70–
77.

[R145] Henry Kautz and Bart Selman. “Pushing the Envelope: Planning, Propositional
Logic, and Stochastic Search”. Proceedings of the 13th National Conference on
Artificial Intelligence (AAAI 1996). 1996, pp. 1194–1201.

[R146] Christer Bäckström and Bernhard Nebel. “Complexity Results for SAS+ Plan-
ning”. Computational Intelligence, 11(4), 1995, pp. 625–656.

[R147] Tom Bylander. “The Computational Complexity of Propositional STRIPS Plan-
ning”. Artificial Intelligence, 69(1-2), 1994, pp. 165–204.

[R148] Kutluhan Erol, James Hendler, and Dana Nau. “UMCP: A Sound and Complete
Procedure for Hierarchical Task-Network Planning”. Proceedings of the 2nd
International Conference on Artificial Intelligence Planning Systems (AIPS).
AAAI Press, 1994, pp. 249–254.

[R149] Michael Young, Martha Pollack, and Johanna Moore. “Decomposition and
Causality in Partial-Order Planning”. Proceedings of the 2nd International Con-
ference on Artificial Intelligence Planning Systems (AIPS). AAAI Press, 1994,
pp. 188–193.

[R150] J Scott Penberthy, Daniel S Weld, et al. “UCPOP: A Sound, Complete, Partial
Order Planner for ADL”. Proceedings of the 3rd International Conference on
Principles of Knowledge Representation and Reasoning (KR). Morgan Kauf-
mann, 1992, pp. 103–114.

[R151] Edwin Pednault. “ADL: Exploring the Middle Ground Between STRIPS and the
Situation Calculus”. Proceedings of the First International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR 1989). Morgan Kauf-
mann Publishers Inc., 1989, pp. 324–332.

[R152] G. Edward Barton. “On the Complexity of ID/LP Parsing”. Computational
Linguistics, 11(4), 1985, pp. 205–218.

[R153] Leslie Lamport. “What Good is Temporal Logic?” Proceedings of the 9th IFIP
World Computer Congress. Elsevier, 1983, pp. 657–668.

[R154] Richard Byrne. “Planning meals: Problem solving on a real data-base”. Cogni-
tion, 5, 1977, pp. 287–332.

100

[R155] Amir Pnueli. “The Temporal Logic of Programs”. Proceedings of the 18th An-
nual Symposium on Foundations of Computer Science (SFCS 1977). IEEE,
1977, pp. 46–57.

[R156] Austin Tate. “Generating Project Networks”. Proceedings of the 5th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 1977). Morgan Kauf-
mann, 1977, pp. 888–893.

[R157] Stephen Cook. “The Complexity of Theorem-proving Procedures”. Proceedings
of the Third Annual ACM Symposium on Theory of Computing (STOC 1971).
ACM, 1971, pp. 151–158.

[R158] Richard Fikes and Nils Nilsson. “STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving”. Artificial Intelligence, 2(3–4), 1971,
pp. 189–208.

[R159] Allen Newell, John Shaw, and Herbert Simon. “Report on a general problem-
solving program”. Proceedings of the International Conference on Information
Processing. Edmund C. Berkeley and Associates, 1959, pp. 256–264.

[R160] Emil Post. “A Variant of a Recursively Unsolvable Problem”. Bulletin of the
American Mathematical Society, 52 4 1946, pp. 264–268.

[R161] Euclid. The Elements. Ca. 300 BCE.
[R162] Sun Tzu. The Art of War. Ca. 500 BCE.

101

