POP = POCL, right?
Complexity Results for Partial Order (Causal Link) Makespan Minimization

Pascal Bercher* and Conny Olz

Institute of Artificial Intelligence, Ulm University, Germany
pascal.bercher @anu.edu.au
conny.olz@uni-ulm.de

Abstract

We study PO and POCL plans with regard to their makespan
— the execution time when allowing the parallel execution
of causally independent actions. Partially ordered (PO) plans
are often assumed to be equivalent to partial order causal
link (POCL) plans, where the causal relationships between
actions are explicitly represented via causal links. As a first
contribution, we study the similarities and differences of PO
and POCL plans, thereby clarifying a common misconcep-
tion about their relationship: There are PO plans for which
there does not exist a POCL plan with the same orderings.
We prove that we can still always find a POCL plan with the
same makespan in polynomial time. As another main result
we prove that turning a PO or POCL plan into one with mini-
mal makespan by only removing ordering constraints (called
deordering) is NP-complete. We provide a series of further
results on special cases and implications, such as reordering,
where orderings can be changed arbitrarily.

Introduction

Although most of today’s planning systems produce sequen-
tial (i.e., totally ordered) solutions, many applications also
use partially ordered ones. Thus, there are many application
scenarios that take such a sequential plan as an input and
generate a partially ordered one (Aghighi and Bickstrom
2017). Such a partial order, which represents an up to ex-
ponential set of sequential plans, can be exploited in many
ways, for instance to obtain higher flexibility when it comes
to plan execution (Muise, Beck, and Mcllraith 2016; 2013;
Muise, Mcllraith, and Beck 2011). One of their main appli-
cations is temporal planning (Coles et al. 2010; Vidal and
Geffner 2006), where the execution time of a plan needs to
be optimized. The partial order is here a natural represen-
tation, as parallel execution of independent actions can be
exploited. By doing so, one is usually interested in a plan’s
optimal makespan — the time needed to execute a partially
ordered plan.

Optimizing sequential or partially ordered plans has thus
been investigated by many researchers — both in theory by

*Pascal Bercher is now at the College of Engineering and Com-
puter Science, the Australian National University
Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

investigating the computational complexity of plan opti-
mizations (Olz and Bercher 2019; Aghighi and Bickstrom
2017; Nakhost and Miiller 2010; Backstrom 1998; Fink and
Yang 1992) and in practice by providing algorithms for op-
timizing a given plan (Muise, Beck, and Mcllraith 2016;
Say, Cire, and Beck 2016; Siddiqui and Haslum 2015;
Chrpa, Kilani, and Balyo 2014; Nakhost and Miiller 2010;
Do and Kambhampati 2003; Fink and Yang 1992).

Many algorithms that produce partially ordered plans in
the first place (Vidal and Geffner 2006; Younes and Sim-
mons 2003; Penberthy and Weld 1992; McAllester and
Rosenblitt 1991) as well as those that infer them from se-
quential plans (Siddiqui and Haslum 2015) rely on causal
links, which explicitly represent causal dependencies be-
tween actions. As it turns out, plans with these links, so-
called POCL plans, have slightly different properties than
those without, which are called PO plans. Yet, it’s often
assumed that both kinds of plans are equivalent, i.e., that
the solution criteria based on PO vs. POCL plans are in-
terchangeable, which is not correct. We clarify this and ex-
plain why in some cases it might become problematic. For
this, we (re-)make aware of literature and examples that il-
lustrate these differences. As first technical contribution, we
prove that these two kinds of plans can be transformed into
each other in polynomial time without incurring undesired
increases in the makespan. Our second line of technical con-
tributions is the provision of several novel complexity re-
sults related to the PO and POCL makespan optimization
problem. Most importantly, we show that optimizing a plan’s
makespan by deordering it, i.e, by removing ordering con-
straints and changing causal links, is NP-complete.

Formal Framework

We consider the problem of optimizing the makespan of a
given (solution) plan. We choose STRIPS as the underly-
ing formalism. Here, a planning problem P is given by a
tuple (V, A, sy, g), where V is a finite set of propositional
state variables, s; € 2V is the initial state, and g CV
the goal description. A is a finite set of actions, each being
a tuple (prec, add, del) consisting of its precondition, add,
and delete list, prec, add, del C V. For an action a € A,
we also write prec(a), add(a), and del(a) to refer to these

sets. Action execution is defined as usual, i.e., an action
a € A is called executable in a state s € 2V if and only
if prec(a) C s. If a is executable in s, then the state transi-
tion function v : A x 2V — 2V returns the state resulting
from executing a in s, y(a,s) = (s \ del(a)) U add(a). A
sequence of actions @ = (aga; ... a,) is called executable
to a state sg if there exists a state sequence s . .. S,+1 such
that for all 1 < ¢ < n + 1 holds v(a;—1,8;—1) = s;. The
state s, 41 is called the result from executing said sequence.
A goal state is a state s that makes all goals true, i.e., such
that s O g.

The standard definition of a (solution) plan is simply such
an action sequence leading to a goal state. For the sake
of this paper — and in order to be able to speak about the
makespan — we need to extend this definition to partially
ordered plans, where ordering constraints are only given
among some of the actions but not necessarily all (which is
often possible, since normally not all actions depend among
each other).

Partially Ordered Plans

There are essentially two standard definitions of (partial)
partially ordered plans — one relies on causal links and the
other does not. Please note that we will always use the term
partial plan to refer to the plan data structure and plan to
refer to such partial plans that are solutions.

The practically most widely used formalization comes
from partial order causal link (POCL) planning, a plan
space-based planning approach (Weld 1994; Penberthy and
Weld 1992; McAllester and Rosenblitt 1991) for standard
STRIPS problems. The underlying techniques are further
exploited in makespan-optimal (constraint-based) planning
(Vidal and Geffner 20006), in state-based satisficing search
(Lipovetzky and Geffner 2011), and in optimal state-based
search (Karpas and Domshlak 2012). There is also a vast
range of hierarchical planning systems that rely on POCL
techniques as well (Bercher et al. 2016).

A partial POCL plan is a tuple P = (PS, <, CL), where
PS is a finite set of plan steps ps = (I, a) with [being a label
unique in PS, a € A an action; < is a partial order on PS;
and CL is a finite set of causal links. We need to introduce
plan steps, i.e., labeled actions, so that the ordering con-
straints can differentiate between multiple occurrences of
the same action. As for actions, we use prec(ps), add(ps),
and del(ps) to refer to the precondition, add list, and delete
list of a plan step ps of the respective action. Causal links
are used to explicitly represent the causal dependencies be-
tween plan steps. Originally, they were introduced as a tech-
nical vehicle to document and verify the progress of plan-
based search. Formally, the causal links are a set CL C
PS xV x PS. A causal link ¢l = (psp, v, ps.) € CL indi-
cates that the precondition v of the consumer plan step ps. is
supported by the producer plan step ps,, (i.e., it also implies
v € prec(ps.) N add(ps,)). The variable v is also said to be
protected by its causal link, because it raises a causal threat
(flaw) in case the condition might be violated. Thus, threats
need to be resolved to obtain a solution. Let a partial plan
P = (PS, =, CL) contain a causal link, (ps,, v, ps.) € CL.
Then, a causal threat is the situation where a plan step ps;

with v € del(ps;) may be ordered between ps,, and ps,, i.e.,
the ordering constraints may neither entail ps; < ps, nor
ps. = psi. The step ps; is called a threatening plan step.
To ease definitions, we require that any causal link between
two plan steps implies the respective ordering. So, w.l.o.g.,
we assume the existence of an ordering (psy, ps.) in < for
every causal link (ps,,v,ps.) € CL. The problem’s initial
state and goal description are encoded by two artificial ac-
tions. The first, called init, uses exactly the initial state as
add effect. The second, called goal, uses exactly the goal
description as precondition. For each partial plan init is or-
dered before all other steps and goal behind all others. We
can now define the solution criteria based on causal links.

Definition 1. A partial POCL plan P = (PS, <, CL) is
called POCL plan (also POCL solution) to a planning prob-
lem if and only if every precondition is supported by a causal
link and there are no causal threats.

The solution criteria for POCL plans can obviously be
checked in lower polynomial time. It is also easy to see that
these criteria are sufficient to imply that every linearization
of its steps is a solution in the classical sense given above.
These plans can hence be regarded a compact representa-
tion of an up to exponential number of sequential solutions.
We can also define such solution sets without causal links,
though.

We refer to a partial POCL plan P = (PS, <, CL) with-
out causal links, i.e., CL = (), as a partial partially or-
dered (PO) plan. For such a partial plan, we also write
P = (PS, <). Due to the absence of causal links, the solu-
tion criteria are here defined directly by the desired property
of every linearization being executable:

Definition 2. A partial PO plan P = (PS, <) is called PO
plan (also PO solution) to a planning problem if and only
if every linearization is executable in the initial state and re-
sults into a goal state.

Despite the absence of causal links, this solution criterion
can still be verified in polynomial time as Chapman (1987)
showed on p. 340'. Please note that this is not done by sim-
ply inferring causal links, because there exist plans which
still possess causal threats but without violating the property
of every linearization being executable (an example is given
in Fig. 1 and will be discussed in the next section). In order
to check for executability in the sense of Def. 2 we need to
check Chapman’s modal truth criterion, which ensures that
in every possible linearization each precondition of each ac-
tion holds in its predecessor state. Simplified to a ground
setting, it states:

A proposition p is necessarily true in a [state]’ s iff two
conditions hold: there is a [state] t equal or necessarily pre-
vious to s in which p is necessarily asserted; and for every
step C possibly before s and every proposition [...] p which
C denies, there is a step W necessarily between C and s
which asserts [...] p [...]. (Chapman 1987, p. 340)

"Nebel and Bickstrom (1994) essentially showed the same in
Thm. 12, but based on event systems rather than STRIPS. They
also discuss the relation of their results to that of Chapman (Sec. 5).

2Chapman (1987) used the term “‘situation” instead of “state”,
which is defined as a collection of literals.

Note that a plan step W that can re-introduce a once es-
tablished and then deleted proposition (i.e., state variable) is
called a White Knight (Chapman 1987, p. 340). For a further
discussion of the modul truth criterion and related work we
refer to the work by Kambhampati and Nau (1996).

For the sake of completeness, we would like to note that
there also exist formalizations of PO plans that can be re-
garded hybrids between our formalization of POCL plans as
defined in Def. 1 and PO plans as defined in Def. 2. Such
formalizations are given by Haslum et al. (2019, Def. 2.11
and below) and Siddiqui and Haslum (2015, Def. 1). There,
causal links are used, but the definition of a causal threat
now relies on white knights. First, let us consider the fol-
lowing situation: There are two plan steps ps, and ps., a
causal link (psp,v,ps.) between them, and a threatening
step ps; with v € del(ps;) (that could be ordered between
ps, and ps.). In standard POCL planning, such a situation
is always referred to as a causal threat and the only pos-
sibilities to resolve it rely on promotion (i.e., ordering the
threatening step before the producer, ps; < ps),) or on de-
motion (i.e., ordering the threatening step behind the con-
sumer, ps. < ps;). Haslum et al., in contrast, do not consider
such situations a causal threat in case a white knight exists,
i.e., if there is another step ps,,; in the (partial) plan that is
ordered between the threatening step ps; and the consumer
DSc, PS¢ < DSwi = PSc. We will however not use this “hy-
brid” formalization in the remainder of the paper and instead
strictly assume either Def. 1 or Def. 2.

Release Times and Makespan

For our makespan investigations we use terms and defini-
tions resembling the ones by Béckstrom (1998) defined in
Def. 5.4. Our definition of a makespan coincides with his
definition of the length of a parallel plan — but in contrast to
his definition we only consider actions of unit-duration and
we do not make use of a constraint called non-concurrency?.
We discuss the relation to our results in more detail in the
section on deordering and reordering (after Def. 6). Infor-
mally, the makespan is defined as the shortest execution time
if plan steps are allowed to be executed in parallel whenever
possible. Formally:

Definition 3. Let P = (PS, <, CL) be a (PO or POCL)
plan. A parallel execution of P is a function r : PS —
N U {0} denoting release times for the plan steps in PS sat-
isfying for all a,b € PS:r(a) +1 < r(b)ifa < b.

The length of a parallel execution r is defined as
maxpseps r(ps) + 1, ie., the latest finishing time of any
plan step. The makespan of P is then defined as the
length of a parallel execution with minimal length, i.e.,
min, maxysepg r(ps) + 1.

3 A non-concurrency constraint a#b demands that plan steps a
and b are not executed in parallel. Such constraints might be con-
sidered when executing partially ordered plans. Although all lin-
earizations of plans are executable, one might still want to forbid
a parallel execution of some, e.g., when actions have contradicting
effects to prevent partially undefined states. We refer to Backstrom
(1998) for a discussion.

PO Plans vs. POCL Plans:
Makespan-preserving Plan Conversion

In this section we investigate the differences and similarities
between PO plans and POCL plans. As mentioned in the last
section, the solution criteria for POCL plans imply that every
linearization of such a plan is an executable action sequence
generating a goal state. The converse, however, is not true.
That is, there exist PO plans which cannot be turned into
POCL plans by inserting causal links without having to in-
sert additional ordering constraints thereby changing the set
of ordering constraints and the number of possible lineariza-
tions. McAllester and Rosenblitt (1991) provide an exam-
ple by Kambhampati* (reproduced in Fig. 1) illustrating this
proposition, which we formally capture next:

Proposition 1. There are PO plans for which there does not
exist a POCL plan with the same plan steps and the same
ordering constraints.

Proof. For this, Kambhampati provided a partial POCL
plan, depicted in Fig. 1. Clearly, when removing its causal
links, it is a PO plan, as all (of its six) linearizations are exe-
cutable and end up in a goal state. But to turn it into a POCL
plan we need to support the open precondition P of the goal
action. There are two possibilities to do so. No matter which
one we choose (Wl or w2), the respective causal link will
raise a causal threat with either s1 or s2, respectively. To re-
solve said threat, we will either have to order s2 before w1l
or sl before w2, respectively, thereby adding ordering con-
straints to the induced PO plan (and reducing the number of
linearizations).]

TN Q
W2 W2 P
B e

Figure 1: Example demonstrating that there are PO plans for
which there is no POCL plan with the same set of ordering
constraints (or linearizations).

Note that this is not an issue for the completeness or
correctness of any POCL planning system. In the exam-
ple provided, any POCL planner would simply branch over
both options to support the open precondition with a causal
link thereby creating two POCL plans (rather than a single
PO plan). The union of these two POCL plan’s lineariza-
tions is still the same as the PO plan’s linearizations. Thus
the proposition mainly shows that PO plans can represent
more linearizations compactly than POCL plans (but re-
garding makespan-optimization there are still issues as dis-
cussed below). We believe that the knowledge about this
non-equivalence of PO and POCL plans has been widely

*See also Fig. 4 by Kambhampati and Nau (1996). Kambham-
pati and Nau note (on p. 146) that this example is due to Mark
Drummond (conveyed privately in 1991).

lost. This can be noticed from several papers based on POCL
planning where the PO and POCL criteria are considered
equivalent. Sometimes the POCL criteria and PO criteria
are mixed in a non-intuitive way (therefore contributing to-
wards the impression that both are equivalent). For instance,
when defining a POCL plan as solution if every linearization
is executable (Winer and Young 2016, p. 15; Schattenberg,
Bidot, and Biundo 2007, p. 369; Ghallab, Nau, and Traverso
2004, p. 91) we get the situation that partial plans which are
normally not considered POCL plans due to the presence
of flaws could be considered POCL plans (e.g., the partial
plan from Fig. 1 would be considered a POCL plan even
though there is an open precondition; it would still be re-
garded a solution after link insertion although there is still a
causal threat flaw). While the previous examples are techni-
cally not wrong, others explicitly mention the POCL criteria
as equivalent to all linearizations being executable (Muise,
Beck, and Mcllraith 2016, Thm. 1; Siddiqui and Haslum
2012, p. 805°).

In practice, reasoning about partially ordered plans is of-
ten based on causal links. But without knowing Prop. 1, one
can easily tend to assume that a PO plan is a solution if
and only if for every precondition there exists a plan step
with the respective effect that is ordered before it, such that
no other step negating that condition can be ordered in be-
tween. However, this criterion is equivalent to stating that
a partially ordered set of actions is executable if and only
if one can insert a set of causal links (without adding fur-
ther ordering constraints other than those implied by the
links). This, however, is not (always) correct as shown by
Kambhampati’s example. Instead, if it is important that all
plans in which every linearization is a solution (e.g., includ-
ing the one depicted in Fig. 1) are recognized as such, then
one needs to check for white knights. Executability check-
ing based on causal links is done in practice, e.g., for plan-
ning as SAT (Kautz, McAllester, and Selman 1996) or for
SAT-based plan optimization (Muise, Beck, and Mcllraith
2016). This, however, can be problematic when aiming at
plans that are either minimal in their number of ordering
constraints (as shown by the example given in Fig. 1) or
when aiming at plans that have a minimal makespan. For
the latter, it was — until now — not even clear whether the
additional ordering constraints required to turn a PO plan
into a POCL plan might influence the plan’s makespan. In
our (small) example, despite adding an ordering constraint,
the makespan remained unaltered. Whether this is always
possible was yet unknown, however. In other words, Prop. 1
raises the question whether for a given PO plan there exists
a POCL plan with the same makespan and whether this de-
cision problem is still tractable or NP-hard. The answer to
that question is of high practical relevance as it might either
invalidate makespan optimizations that exploit causal links
(in case POCL plans turn out to have a potentially larger

SWhile Siddiqui and Haslum (2012) use the standard POCL for-
malization without white knights (thus the presumed equivalence
(p. 805) is incorrect), their follow-up work (Siddiqui and Haslum
2015) relies on a POCL threat formalization with white knights
(thus the stated equivalence (cf. Def. 1 and Thm. 1) is correct).

makespan than their PO counterparts) or it might give evi-
dence on how to find makespan-minimal POCL plans.

To answer that question, we first introduce the concept of
minimum release times. Let P = (PS, <, CL) be a POCL
plan. A parallel execution r : PS — N U {0} denoting
release times was defined in Def. 3. A function providing
minimum release times mr : PS — N U {0} is a paral-
lel execution with minimum release times among all possi-
ble parallel executions r of P, i.e., it is a minimal release
time by which the makespan of a plan is defined. Intuitively,
minimum release times can be regarded as the release times
where all plan steps are executed as early as possible while
taking the ordering constraints and causal links into account.
We can compute a minimum release time function mr us-
ing Béckstrom’s DPPL algorithm (cf. Fig. 9), replicated in
Alg. 1. It simply performs a progression on the available
plan steps “executing” them as early as possible (and in par-
allel) and assigning the respective release time.

Algorithm 1: Computes the minimum release times.

Input: A POCL plan P = (PS, <, CL)
Output: The minimum release time mr
1 forall ps € PS do mr(ps) < 0
2 while PS # () do
Select a step a € PS without predecessors in PS
forall b € PS witha < bdo
| mr(b) <= max(mr(b), mr(a) + 1)
PS «+ PS\ {a}

7 return mr

W e W

=)

Giving these minimal release times — which can be com-
puted in O(|PS|?) by Alg. 1 — we can construct a POCL
plan from a PO plan with the same makespan thereby an-
swering our open question:

Theorem 1. Let P = (PS, <) be a PO plan with makespan
k. Then there exists a POCL plan P' = (PS,<’, CL) with
=<' D < that also has a makespan of k. Furthermore, P’ can
be computed in polynomial time.

Proof. The main idea is as follows: We can observe that the
makespan of a plan coincides with the length of a minimal
parallel execution mr, i.e., it is max,sec ps{mr(ps) + 1}.
We provide an algorithm (Alg. 2) that can always (i.e., for
each possible PO plan) insert causal links in such a way
that even if it has to alter the ordering constraints to resolve
causal threats (cf. our example in Fig. 1), it can do so with-
out increasing the release times responsible for defining the
makespan. Thus, the theorem follows inductively when we
show that we can always insert a causal link and the conse-
quential ordering constraints (to resolve arising threats that
might occur due to situations as depicted in Fig. 1) without
increasing the minimum release times.

To do so, we first compute the minimum release times by
Alg. 1 in Line 2 of Alg. 2. This step takes O(| PS|?) time.
The while loop starting in Line 3 selects arbitrarily one open
precondition after another. Alg. 2 then picks a producer of

the selected open precondition out of a set of possibilities ac-
cording to their minimum release times and specifies which
causal link is to be added. Let ¢ be a plan step with open
precondition v as selected in Line 4 of Alg. 2. We only take
plan steps for being a producer into account that are already
ordered before the consumer. Such a plan step must exist be-
cause otherwise not every linearization of the PO plan is a
solution.

Let pc be the candidates for being a producer of v as
given in Line 5. Pick p € pc as producer such that mr(p)
is maximal among pc (Line 6). We need to protect this
causal link and therefore let ' C PS be the set of threat-
ening plan steps. The choice of p implies mr(p) > mr(t)
for all plan steps ¢ € T, because for every ¢t € T there
must be a plan step out of pc that is ordered after ¢. Oth-
erwise there would be a linearization of the PO plan such
that there is a step t € T that is ordered between c and all
plan steps out of pc, which is again a contradiction to P be-
ing a PO plan. In order to resolve the threats we order every
t € T before p (Line 8). This does not change mr(p) since
mr(t) +1 < mr(p) forall t € T as observed before (more
precisely, if mr(p) would increase, then there were at € T'
such that mr(t) + 1 > mr(p), which would be a contradic-
tion to our choice of p with mr(p) > mr(t') forall ¢’ € T).
Moreover, we recompute the transitive closure of the order-
ings, i.e. we add (not already existing) ordering constraints
from actions ordered before all ¢ € T to p and the actions
ordered after p. Adding transitive ordering constraints can-
not increase the minimum release times. Therefore, in the
resulting partial plan the minimum release times have not
changed and still every linearization is a solution. We can
thus inductively repeat this procedure until every precondi-
tion is supported by a causal link. As the minimum release
times do not increase, the resulting POCL plan has the same
makespan as the input PO plan. Concerning the runtime, we
can state that we require at most | PS|? operations for calling
Alg. 1 in Line 2 plus the runtime for the while loop. A single
iteration of it needs at most | PS| (Line 5) +|PS| (Line 6) +
1 (Line 7) + |PS|? (Line 8) operations. Since one causal
link is added per loop, the overall runtime of the algorithm
isin O(|Pre|-|PS|?) with | Pre| = > pseps |prec(ps)| and
hence polynomial. O

We showed that we can turn each PO plan into a POCL
plan with the same makespan in polynomial time. The con-
verse holds as well, since every POCL plan induces a PO
plan with the same makespan (simply remove all causal
links). Taken together, we get the insight that it does not
make a difference whether we rely on PO plans or on POCL
plans when we aim at makespan optimality. Formally, we
get the following corollary.

Corollary 1. Let P be a planning problem. Then there is

a PO plan with makespan k for P if and only if there is a
POCL plan with makespan k for P.

Deordering & Reordering
Our main endeavor is to find plans having an optimal
makespan. For this, we first provide the necessary defini-
tions for obtaining a plan with a desired makespan, i.e.,

Algorithm 2: Computes a POCL plan from a PO
plan with identical makespan.

Input: A PO plan P = (PS, <)
Output: A POCL plan P’ = (PS, <’, CL) with
<’ D < and the same makespan as P
1 <« <and CL+ 0
2 compute mr by using Alg. 1
3 while P/ = (PS, <, CL) is not a POCL plan do
4 | select some plan step ¢ with precondition variable v
that is not yet supported by a causal link
/+ pc (producer candidates) is a
set of candidates for being a
producer of v */
5 | pc—{pePS|veadd(p) A (p,c)e =<'}
/+ select producer out of pc with
highest minimum release time «/
6 | p=argmax,c,. mr(q)andcl = (p,v,c)
7 | CL+ CLU/{cl}
8 | <"« (='U{(t,p) | t € PS threatens cl})™

9 return P’ = (PS,<’, CL)

we define the allowed plan modifications. Our definitions
are straight-forward adaptations of those in Def. 6.1 by
Bickstrom (1998) to work for POCL plans.

Definition 4. Let P = (PS,<,CL) and Q =
(PS, =<', CL') be two (PO or POCL) plans for a planning
problem P. Then,

e () is a reordering of P if and only if both P and @ are PO
plans or both are POCL plans for P.

e () is a deordering of P if and only if () is a reordering of
Pand <' C <.

Intuitively, reordering a plan means that we are allowed
to change ordering constraints and causal links arbitrarily,
as long as the resulting plan is still a solution. By contrast,
deordering means that we are only allowed to remove order-
ing constraints. Since we do not demand anything for causal
links in the previous definition, they might be changed as
well as long as this does not result into adding new order-
ings.

Bickstrom (1998) and Aghighi and Bickstrom (2017)
showed that finding a PO plan with a minimum num-
ber of ordering constraints via deordering and/or re-
ordering — which he called minimum-constrained deorder-
ing/reordering — is NP-complete (Thm. 4.12). This minimal-
ity does not imply a minimal makespan, however. In Fig. 2
we provide an example showing that a deordering w.r.t. a
plan’s number of ordering constraints does not always result
in a minimal makespan.

The example’s PO plan has 5 ordering constraints (6 with
transitive orderings) and a makespan of 3. Minimizing the
number of ordering constraints can be achieved by removing
the orderings from A2, A3, and A4 to A5 resulting in a PO
plan with 2 ordering constraints (3 with transitives) while
the makespan stays 3. Instead, removing the ordering from

D1 _ P
P2 P4
p3
\—/ D2
/ P3

3 P4

< P1
mm%

EW

Figure 2: Example demonstrating that minimizing the num-
ber of ordering constraints does not imply a minimum
makespan.

Al to A5 (and from A0 to A5) will also result in a PO plan,
but with a makespan of 2 and 4 ordering constraints.

To study the makespan optimization problem, we adapt
Béckstrom’s definitions of minimum-parallel reordering and
deordering (Def. 6.1) to our notation for the makespan:

Definition 5. Let P and @ be two (PO or POCL) plans.
Then,

o () is a minimum-makespan reordering of P if and only if
Q@ is a reordering of P and there is no reordering of @)
with a smaller makespan.

o () is a minimum-makespan deordering of P if and only if
@ is a deordering of P and there is no deordering of @)
with a smaller makespan.

Similar to Bickstrom’s Def. 6.2 and Def. 6.3 for parallel
plans with concurrency constraints, we define the two re-
spective decision problems for plans without them:

Definition 6. Let P be a (PO or POCL) plan with make-
span k. Then, we define the following decision problems:

e MINIMUM-MAKESPAN REORDERING: Does there exist a
reordering of P with makespan &’ < k?

e MINIMUM-MAKESPAN DEORDERING: Does there exist a
deordering of P with makespan &’ < k?

Before we come to our main result we want to discuss
some of the related work and how it differs from ours. As
mentioned in the beginning, Béckstrom (1998) also inves-
tigated the makespan of plans. He, however, allows non-
unit execution times of plan steps and plans (called par-
allel plans) may feature non-concurrency-constraints that
specify which plan steps may not be executed in parallel.
For such plans, even computing the makespan (which he
calls execution time) is NP-hard (Backstrom 1998, Thm. 5.8
and Cor. 5.9). His further investigations of optimizing the
makespan also depend on this non-concurrency constraint
set (as do the proofs) — thus both the results for reordering
and deordering were not known in the absence of these con-
straints. A special case that was investigated by Béackstrom
are definite plans (Def. 5.1), which are plans in which the
given non-concurrency constraints are trivially satisfied (as
definite plans require that for each non-concurrency con-
straint a#b either a < b or b < a holds). NP-completeness
was shown for makespan-minimization via reordering def-
inite plans (Béckstrom 1998, Thm. 6.7 and Thm. 6.8).

Whether deordering definite plans is NP-complete as well
was stated as an open question by Béackstrom (Sec. 7). We
will show NP-completeness of deordering PO plans, thus
NP-hardness for definite plans follows directly thereby an-
swering this question.

Theorem 2. Deciding the MINIMUM-MAKESPAN DE-
ORDERING problem of a PO plan P is NP-complete.

Proof. Membership: Compute the current makespan k in
polynomial time and guess a deordering P with the same
plan steps. This includes verifying that the guessed deorder-
ing P is actually a PO plan, which can be done in polyno-
mial time (Nebel and Béckstrom 1994, Thm. 12; Chapman
1987, p. 340). Reject if infeasible. Accept if the makespan
(computed by Alg. 1) is < k, otherwise reject.

Hardness: Proof by reduction from 3-SAT, which is NP-
complete (Hopcroft and Ullman 1979). Let ¢ be an in-
stance of 3-SAT, which consists of a set of atoms X =
{z1,...,2,} and a set of clauses C = {C1,...,Cp,} over
X, such that for all 1 < i< m, Cj = {lj,l,lj,g,lj,g} is
a clause of three literals over X. We construct a planning
problem P = (V, A, sz, ¢g) and PO plan P = (PS, <) with
makespan 4, such that it can be deordered to a PO plan with
makespan 3 if and only if the SAT formula is satisfiable.

Therefore, every x; € X is represented by two state vari-
ables I and x" encoding their truth assignment to ¢rue and
false, respectively. Moreover, there is a state variable g; for
each z; € X, which we use to enforce a truth assignment.
For every clause C'; € C we also introduce a state variable

cj.Let
U {vaxf>gi}u U {Cj}v

1<i<n 1<j<m
sp=10,andg={g;[1<i<n}

For each x; € X we define three actions and for each clause
C; € C we define four — all according to Tab. 1.

action prec add del
T 0 0 {9} B
AT 0 Agial} 0 B?
Af 0 {gizf} 0

action prec add del
1) {e) 0
{52} {c;} 0
B} {ljs} {¢;} 0
Dj {Cj} (Z) @

Table 1: Actions for each atom z; (left) and clause C}

.(liilght). We define I, < x if I;,, = a, and I3, « xf
g r =Tk

Each action appears exactly once in P, which is why we
label the plan steps according to the actions and refer to them
as actions as well. Furthermore, we introduce the following
ordering constraints foreach 1 <¢ <nand1 < j < m:

T
Ti<{j§w}< BJZ < D;.
i B3

The previous notation is a compact representation for or-
dering constraints: Actions within the same brackets are un-
ordered with respect to each other, but ordered to all actions
depicted before them or behind them. For example, it holds

T; < AiT/ F AT is unordered to A", and both AiT/ " are or-
dered before all le»/ 213, Obviously, P is a PO plan to P with
makespan 4 as the state variables g; in the goal description

T/F and 7}, which delete

i
g;, are ordered before the AZ-T/ F The preconditions xf/ F

of the actions le-/ 2/ are satisfied because of the AiT/ . Fi-
nally, the actions D; can be executed since the B /273 are
executed before and establish all c;. Note that actually just
one of AT and A needs to be ordered after 7} in order to
guarantee g; in the goal description. Hence, one of these or-
dering constraints can be deleted such that the corresponding

action, say A7 for example, can be executed at time point 0.
Then, those B;/ %/3 that have a precondition fitting the cho-

are established by the actions A

sen ordering to the respective AZT/ o (e.g., le» if it had the

precondition 1) may be executed already at time point 1.
As a consequence, D; could also be executed earlier, i.e.,
at time point 2. If we can find the right choice concern-
ing the removal of ordering constraints including the 7;; and
AZT/ F, all D; will be executable at time point 2 such that
the makespan shrinks to 3. Hence, this choice may be inter-
preted as assignment to the variables in X, which causes the
respective clauses to become true (reflected by the respective
actions le-/ 2/3 as well as D; becoming applicable earlier).
Thus, it remains to show that ¢ is satisfiable if and only if P
can be deordered to a plan () with makespan at most 3.

= Suppose ¢ is satisfiable. Let I be a truth assignment
to X that satisfies ¢. For all ¢ with I(z;) = true delete the
ordering T; < AT and for all i with I(z;) = false delete the
ordering T; < AZF. As ¢ is satisfiable, foreach 1 < j < m at
least one of the {l; 1,12, 1;,3} of clause C; must be true. We
pick the corresponding action B and remove ordering con-

straints of the form AZ.T/ Fo2 B, specified more precisely
below, such that B} can be executed at time point 1. The

precondition-establishing plan step AiT/ ¥ is still ordered be-
fore B at time point 0 as we have ensured in the first step.
D; can then also be executed earlier at time point 2, directly
after B]T. So, for each 1 < 57 < m choose r; such that
l;r, € Cjis satisfied by I. Let [., and [., be the remain-
ing two literals in C;. Remove A} < B} if I, = xy, oth-
erwise (i.e., if [; ., = —x}) remove A% < B;l. Moreover,
remove Bi* < D; and B;* < D;. For example, suppose
I(x;) = true for all 7. Then the remaining ordering can be
written as

T =< {2 < i
A; B j L DJj

Thus, mr(D;) = 2 forall 1 < j < m. For all remain-
ing actions, other than these D}, their minimum release time
was already at most 2 in the first place. Therefore @ has

makespan 3. It is still executable because one of the actions
AT AF is ordered after T} and establishes g; for the goal
description. Moreover, the actions B; .., Bj ., are still or-
dered after all A7 AF, so their preconditions are satisfied

and Bj ., is ordered after the corresponding AZ/ .
< Suppose there is a deordering () of P with makespan
at most 3. Note that D; must be ordered after at least one

of the le-/ /3 for all 1 < 7 < m, since they establish the

precondition c;. In order to guarantee mr(Dj) < 2, there
must be a B} with mr(B}) < 1. This implies that there is

an i, such that mr(A7) = 0 or mr(AF") = 0 and such that
l;» = m; or ~x; because the precondition l*w of B” must
be established. So define an interpretation such that for all
1 <i < nholds I(z;) + trueif mr(AT) = 0and I(z;) +
false otherwise. All linearizations are executable as either
AT or AF must be ordered after T; for all 1 < i < n because
otherwise it is not guaranteed that g; is true in the end. The
B} with mr(B?) = 1 indicate which literal is ¢rue in clause

;. This assignment satisfies ¢ by construction. O

There is an interesting relationship between the proofs for
deciding the existence of a minimum-makespan deordering
shown here and Béckstrom’s hardness proof for minimum-
constrained plans (plans with a minimal number of order-
ing constraints). His proof does not require negative (i.e.,
delete) effects, meaning that deciding minimum-constrained
deordering remains NP-hard in their absence, as stated in
Cor. 4.10 (Béckstrom 1998). Our proof does make use of
negative effects, however. And in fact, without them, the
problem becomes tractable. This is easy to see, since it is
optimal for the makespan to (greedily) apply every action
as early as possible. A simple polynomial-time algorithm
thus checks for all actions all its predecessors (including the
initial state) starting with the right-most actions and checks
which ordering constraints to its predecessors can be deleted
without violating executability of the plan — again in a right-
to-left fashion. This way, every action gets executed as early
as possible without sacrificing plan executability and with-
out adding ordering constraints. Compute its makespan and
check whether it is smaller than the one of the input. Accept
or reject accordingly.

Corollary 2. Let P be PO or POCL plan without negative
effects. Deciding the MINIMUM-MAKESPAN DEORDERING
problem for P can be done in polynomial time.

We can also generalize our main result, minimum-
makespan deordering being NP-complete for PO plans, to
POCL plans due to Cor. 1. We still have to show member-
ship, which is trivial since we can simply remove the causal
links and use the same membership test as in the proof of
Thm. 2. Thus:

Corollary 3. Deciding the MINIMUM-MAKESPAN DE-
ORDERING problem of a POCL plan P is NP-complete.

Recall that deordering of a POCL plan allowed us to
change causal links arbitrarily, as long as no new orderings
get inserted as a consequence. Choosing the “best” producer
for an action’s precondition variable was one of the sources
of hardness. As it turns out, this is also the only source

of hardness, meaning that finding a makespan-optimal de-
ordering becomes decidable in polynomial time if we pro-
hibit changing causal links. Since the problem then becomes
tractable, it also means that we might not find the makespan-
optimal deordering that might be possible if we would allow
changing them. In other words: The optimal makespan of an
induced deordered PO plan might be smaller.

Theorem 3. Let P = (PS, =<, CL) be a POCL plan for
some planning problem P. Deciding whether there is a
POCL plan Q = (PS, =<', CL) for P with makespan < k
such that <’ C < can be done in polynomial time.

Proof. Let P and k be given. Construct a POCL plan @ in
the following way. Consider P and remove all ordering con-
straints. (By definition the result of this is not even a par-
tial POCL plan because the orderings implied by the causal
links are now missing, but we will extend it to a POCL plan
throughout this proof.) For all causal links ¢/ € CL add the
corresponding ordering constraint and extend it to the tran-
sitive closure afterwards. We now resolve all causal threats
by demoting or promoting threatening plan steps. However,
we may only choose adding an ordering in accordance to
the ordering constraints originally present in P (since oth-
erwise the resulting plan would not be a deordering). So
let (psp,v,psc) € CL be a causal link and ps, a threat-
ening plan step. We know that either (ps;,ps,) € < or
(pSc, pst) € < must be true as otherwise P would not have
been a POCL plan. We also know that only one of them can
hold as otherwise < would not have been a partial order. We
thus add the respective ordering to <’ that was already in <.
After all threats are resolved we complete the set of ordering
constraints by computing the transitive closure. The result,
@, is then a POCL plan because all preconditions are sup-
ported by causal links and there are no causal threats. This
can be done in time O(|PS|?).

We claim that @ is a deordering of P with minimal
makespan (provided we are not allowed to change causal
links). By definition () must contain all ordering constraints
implied by its causal links. Furthermore, all causal threats
must be resolved and the choice between promoting and de-
moting is predefined by P because we may not add addi-
tional ordering constraints — we thus did not add any un-
necessary ordering constraints. If () has makespan < k the
answer is “yes” and “no” otherwise. This can be checked in
polynomial-time using Algorithm 1. O

Coming back to our main results (Thm. 2 and Cor. 3),
there is yet another implication. Since every deordering is
also a reordering, we can also conclude that reordering is
as hard as deordering. Membership can again be tested as
before.

Corollary 4. Deciding the MINIMUM-MAKESPAN
REORDERING problem of a (PO or POCL) plan P is
NP-complete.

The previous result — restricted to PO plans — also follows
from a proof from the literature (but not from its theorem).
Said proof shows Thm. 7.10 by Backstrém (1998) stating
several additional criteria (totally ordered input plans with

toggling effects (every effect requires its negation as precon-
dition)) under which deciding the MINIMUM-MAKESPAN
REORDERING problem remains NP-hard.

Conclusion

To finally answer the paper’s initial question whether par-
tial order (PO) plans are equivalent to partial order causal
link (POCL) plans, we can say: Yes and No. No, because
there exist PO plans for which there does not exist a POCL
plan with the same set of ordering constraints. However, we
can state Yes because we showed that for each PO plan we
can construct a POCL plan with the same makespan. For
this, we provided an algorithm running in polynomial time.
We further proved that the makespan deordering problem for
PO and POCL plans (i.e., removing ordering constraints to
find a plan with minimal makespan) is NP-complete. Pre-
vious related investigations made use of a set of additional
constraints so it was not clear whether the problem remains
as hard without them. Other results focused on optimizing
the number of ordering constraints, which was used as an
approximation to optimizing the makespan. From our de-
ordering results we also concluded that reordering is NP-
complete for PO and POCL plans. We further showed that
deordering becomes decidable in P if there are no negative
effects or if we are not allowed to change the causal links
present in a POCL plan.

Acknowledgments

We would like to thank the anonymous reviewers for their
valuable feedback.

This work was partly funded by the technology transfer
project “Do it yourself, but not alone: Companion-Techno-
logy for DIY support” of the CRC/TRR 62 funded by the
German Research Foundation (DFG). The industrial project
partner is the Corporate Research Sector of the Robert Bosch
GmbH.

References

Aghighi, M., and Béckstrom, C. 2017. Plan reordering and
parallel execution a parameterized complexity view. In Pro-
ceedings of the 31st AAAI Conference on Artificial Intelli-
gence (AAAI 2017), 3540-3546. AAAI Press.

Backstrom, C. 1998. Computational aspects of reorder-
ing plans. Journal of Artificial Intelligence Research (JAIR)
9:99-138.

Bercher, P.; Holler, D.; Behnke, G.; and Biundo, S. 2016.
More than a name? On implications of preconditions and
effects of compound HTN planning tasks. In Proceedings

of the 22nd European Conference on Artificial Intelligence
(ECAI 2016), 225-233. 10S Press.

Chapman, D. 1987. Planning for conjunctive goals. Artifi-
cial Intelligence 32(3):333-377.

Chrpa, L.; Kilani, A.; and Balyo, T. 2014. On different
strategies for eliminating redundant actions from plans. In

Proceedings of the 7th Annual Symposium on Combinatorial
Search (SOCS 2014), 10-18. AAAI press.

Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-
chaining partial-order planning. In Proceedings of the
20th International Conference on Automated Planning and

Scheduling (ICAPS 2010), 42-49. AAAI Press.

Do, M. B., and Kambhampati, S. 2003. Improving the
temporal flexibility of position constrained metric tempo-
ral plans. In Proceedings of the 13th International Confer-
ence on Automated Planning and Scheduling (ICAPS 2003),
AAALI Press. 42-51.

Fink, E., and Yang, Q. 1992. Formalizing plan justifications.
In Proceedings of the 9th Conference of the Canadian Soci-
ety for Computational Studies of Intelligence (CSCSI 1992),
9-14.

Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.

Haslum, P,; Lipovetzky, N.; Magazzeni, D.; and Muise, C.
2019. An Introduction to the Planning Domain Definition
Language. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool.

Hopcroft, J. E., and Ullman, J. D. 1979. Introduction to
Automata Theory, Languages, and Computation. Addison-
Wesley.

Kambhampati, S., and Nau, D. S. 1996. On the nature and
role of modal truth criteria in planning. Artificial Intelli-
gence 82(1):129-155.

Karpas, E., and Domshlak, C. 2012. Optimal search with
inadmissible heuristics. In Proceedings of the 22nd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2012), 92-100. AAAI Press.

Kautz, H. A.; McAllester, D. A.; and Selman, B. 1996. En-
coding plans in propositional logic. In Proceedings of the
Sth International Conference on Principles of Knowledge
Representation and Reasoning (KR 1996), 374-384. Mor-
gan Kaufmann Publishers Inc.

Lipovetzky, N., and Geffner, H. 2011. Searching for
plans with carefully designed probes. In Proceedings of the
21st International Conference on Automated Planning and
Scheduling (ICAPS 2011), 154-161. AAAI Press.

McAllester, D., and Rosenblitt, D. 1991. Systematic non-
linear planning. In Proceedings of the 9th National Confer-
ence on Artificial Intelligence (AAAI 1991), 634-639. AAAI
Press.

Muise, C.; Beck, J. C.; and Mcllraith, S. A. 2013. Flexible
execution of partial order plans with temporal constraints.
In Proceedings of the 23rd International Joint Conference
on Artificial Intelligence (IJCAI 2013), 2328-2335. AAAI
Press.

Muise, C.; Beck, J. C.; and Mcllraith, S. A. 2016. Optimal
partial-order plan relaxation via maxsat. Journal of Artificial
Intelligence Research (JAIR) 57:113-149.

Muise, C.; Mcllraith, S. A.; and Beck, J. C. 2011. Mon-
itoring the execution of partial-order plans via regression.
In Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI 2011), 1975-1982. AAAI
Press.

Nakhost, H., and Miiller, M. 2010. Action elimination
and plan neighborhood graph search: Two algorithms for
plan improvement. In Proceedings of the 20th International
Conference on Automated Planning and Scheduling (ICAPS
2010). AAAI Press.

Nebel, B., and Backstrom, C. 1994. On the computational
complexity of temporal projection, planning, and plan vali-
dation. Artificial Intelligence 66(1):125-160.

Olz, C., and Bercher, P. 2019. Eliminating redundant actions
in partially ordered plans — a complexity analysis. In Pro-
ceedings of the 29th International Conference on Automated
Planning and Scheduling (ICAPS 2019), 310-319. AAAI
Press.

Penberthy, J. S., and Weld, D. S. 1992. UCPOP: A sound,
complete, partial order planner for ADL. In Proceedings of
the 3rd International Conference on Principles of Knowl-
edge Representation and Reasoning (KR 1992), 103-114.
Morgan Kaufmann.

Say, B.; Cire, A. A.; and Beck, J. C. 2016. Mathematical
programming models for optimizing partial-order plan flex-
ibility. In Proceedings of the 22nd European Conference on
Artificial Intelligence (ECAI 2016), 1044-1052. 10S Press.

Schattenberg, B.; Bidot, J.; and Biundo, S. 2007. On the con-
struction and evaluation of flexible plan-refinement strate-
gies. In Proceedings of the 30th German Conference on Ar-
tificial Intelligence (KI 2007), 367-381. Springer.

Siddiqui, F. H., and Haslum, P. 2012. Block-structured plan
deordering. In Proceedings of the 25th Australasian Joint
Conference on Artificial Intelligence (Al 2012), 803-814.
Springer.

Siddiqui, F. H., and Haslum, P. 2015. Continuing plan qual-

ity optimisation. Journal of Artificial Intelligence Research
(JAIR) 54:369-435.

Vidal, V., and Geffner, H. 2006. Branching and pruning: An
optimal temporal pocl planner based on constraint program-
ming. Artificial Intelligence 170:298-335.

Weld, D. S. 1994. An introduction to least commitment
planning. Al Magazine 15(4):27-61.

Winer, D. R., and Young, R. M. 2016. Discourse-driven nar-
rative generation with bipartite planning. In Proceedings of
the Ninth International Natural Language Generation Con-
ference (INLG 2016), 11-20. The Association for Computer
Linguistics.

Younes, H. L. S., and Simmons, R. G. 2003. VHPOP: Ver-
satile heuristic partial order planner. Journal of Artificial
Intelligence Research (JAIR) 20:405-430.

