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ABSTRACT

Effectively supporting novices during performance of complex
tasks, e.g. do-it-yourself (DIY) projects, requires intelligent assis-
tants to be more than mere instructors. In order to be accepted as
a competent and trustworthy cooperation partner, they need to
be able to actively participate in the project and engage in helpful
conversations with users when assistance is necessary. Therefore,
a new proactive version of the DIY-assistant Robert is presented
in this paper. It extends the previous prototype by including the
capability to initiate reflective meta-dialogues using multimodal
cues. Two different strategies for reflective dialogue are imple-
mented: A progress-based strategy initiates a reflective dialogue
about previous experience with the assistance for encouraging the
self-appraisal of the user. An activity-based strategy is applied for
providing timely, task-dependent support. Therefore, user activi-
ties with a connected drill driver are tracked that trigger dialogues
in order to reflect on the current task and to prevent task failure.
An experimental study comparing the proactive assistant against
the baseline version shows that proactive meta-dialogue is able to
build user trust significantly better than a solely reactive system.
Besides, the results provide interesting insights for the development
of proactive dialogue assistants.

CCS CONCEPTS

• Human-centered computing → Human computer interac-

tion (HCI); HCI design and evaluation methods; User stud-
ies; Interaction design theory, concepts and paradigms.
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1 INTRODUCTION

Do-it-yourself (DIY) home improvement is one of the most popu-
lar hobbies around the world. A study conducted in 2019 revealed
that, in Germany alone, 11.91 million people aged 14 and older
showed particular interest in the topic of home improvement [1].
However, for novices the entrance into the DIY-domain is, despite
interest, fraught with difficulties. For example, beginners do not
have specific knowledge about materials and tools. Thus, they lack
the technical and practical abilities for conducting DIY projects
without proper instructions. Furthermore, due to being afraid of
failure and damage, they often have low self-confidence and shy
away from using typical tools such as an electric drill and saw.
Therefore, novices are in need for trusted and competent assistance
in order to receive appropriate guidance and tutoring. One possibil-
ity to obtain such assistance are interactive assistant systems, e.g.
intelligent tutoring systems (ITS) [2, 22] or companion systems [16].
In previous work, a conversational assistant (CA) named Robert
has been developed in collaboration with Robert Bosch GmbH, one
of the leading manufacturers of power tools [12]. Robert provides
novice DIYers with planner-generated step-by-step instructions on
how to successfully complete a given DIY task. For illustration of
individual task steps, instructional texts, images, and videos are
automatically selected using knowledge-based reasoning. In order
to have dialogue capabilities, the assistant is able to process mul-
timodal natural language (text, speech). A study comparing the
first version of Robert with a non-interactive slide-show-based
baseline showed that novice users were favourable towards the
assistance of Robert. A drawback of the system was that it could
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only provide reactive assistance, i.e. on user request. Therefore,
it could not support the user on its own initiative in situations
where system interventions could have been beneficial. Hence, the
assistant lacked the human like capability of proactivity. Current
research of proactive behaviour in human-computer interaction
(HCI) suggests that active system actions, if provided appropriately,
have a positive effect on the user’s acceptance and trust towards
the system [3, 40, 59, 63]. For this reason, they should be considered
in the design process of a CA. However, finding the right strategies
for situation-dependent proactivity is far from being solved [55].

Hence, this paper makes the following contributions: First, a new
iteration of Robert is equipped with situation-adaptive proactive
functionality. Therefore, strategies for meta-dialogue initiation are
implemented. The term meta-dialogue is used for task-independent
interaction that relates, for example, to correction of user actions or
asking for feedback about the system’s behaviour [69]. A progress-
based strategy initiates a reflective dialogue about previous experi-
ence with the assistance after completion of important sub-tasks.
Reflective dialogue has shown to be useful in order to boost the
development of conceptual knowledge, problem-solving ability, and
overall experience with intelligent tutoring systems [33, 34, 60]. Ad-
ditionally, an activity-based strategy is applied for providing timely,
task-dependent support. Therefore, the user’s activities with an
electric drill driver are tracked. By applying additional sensors and
machine-learning, it is possible to classify seven different activities,
which then are used for dialogue initiation in order to reflect on
the current task and to prevent task failure. Tool usage, as an addi-
tional input modality, can be seen as a multimodal cue for engaging
in a multimodal dialogue in combination with typical user input
(speech, text, touch). Furthermore, a between-subject experimen-
tal study is presented, comparing the proactive variant of Robert
with the reactive variant in terms of acceptance, perceived trust-
worthiness, and usability. During the study, subjects are instructed
to build a wooden key rack in cooperation with the assistant. The
results show that proactive meta-dialogue is able to build user trust
significantly better than a solely reactive system. Besides, the re-
sults provide interesting insights for the development of proactive
dialogue assistants, especially with regard to the user’s gender.

The outline of this paper is as follows: Related work regarding
CA systems, proactive HCI, and human-computer trust is presented
in Section 2. Section 3 provides an overview of the system’s com-
ponents, while Section 4 deals with the integration of proactive
meta-dialogue in Robert. Subsequently, the experimental setup
and evaluation methods are described in detail. In Section 6, the
results of the study are presented. A discussion of found results is
provided in Section 7. Finally, the paper is concluded in Section 8.

2 RELATEDWORK

Systems that mimic human conversation using text or spoken lan-
guage are known as conversational agents, such as Apple Siri and
Amazon Alexa [48]. CAs extend the abilities of agents by addition-
ally providing guidance and help with problem-solving, decision-
making, and learning [41]. Successful applications of CAs are nu-
merous and span diverse fields like health care [41], education [36],
or assistance in the public (museum guiding [37]) and private sector
(cooking assistant [52]). A sophisticated realisation of CAs can be

found in the line of research of companion-technology for tech-
nical cognitive systems [16]. According to the authors’ definition,
companion systems combine the cognitive abilities of planning,
knowledge reasoning, and dialogue in order to provide individual
and adaptive assistance. Empirical evaluations of companion sys-
tems [12, 15] demonstrate the acceptance and usefulness for users
in real-world application scenarios. From a dialogue research point
of view, the alignment of artificial intelligence (AI) and human
problem-solving, i.e. the integration of AI planning in user-centred
dialogue, has been studied in the context of companion systems
[53]. Furthermore, insights about the impact of explanations of sys-
tem behaviour in incomprehensible situations during interaction
with companions and their effect on trust have been provided [54].
These explanations mainly serve a social (interactional) purpose
[65] in building positive social relations by building trust and rap-
port through transparency [17, 19]. In the context of companion
systems, social interaction is necessary as the user has to form a
bond with the system in order to accept and trust its instructions.
Therefore, the repertoire of social conversation is extended with
reflective dialogues in this paper. The intent of reflective dialogue
is for the user to understand what has occurred and to actively
inquire about his actions in order to process impactful experiences
and to learn [21]. Reflection is an important part of action research,
among planning, action and observation [47], and has shown to
have a positive impact on learning [34]. Most previous research
on reflective dialogue has been contributed in the field of intel-
ligent tutoring systems [33–35, 60]. Katz et al. [35], for example,
present a comparative analysis of problem-solving and reflective
dialogue. By studying the effect of post-practice reflection (PPR),
the authors show that student self-explanation and self-appraisal
are more prevalent in PPR and correlate strongly with learning. Fur-
thermore, they show that a debrief after task completion correlated
with an effective performance.

In this paper, the concept of reflective dialogue is investigated
in the context of companion systems. However, the focus is shifted
away from the impact on learning towards the impact on the social
human-companion relationship. Here, the human-computer trust
relationship is considered. Additionally, it is deemed inevitable for
the reflective dialogue to be initiated by the assistant. For this reason,
an overview of proactive HCI is presented in the next section.

The term proactivity stems from the domain of occupational
and organisational psychology [23, 58]. Although there are a lot of
ways to describe proactive behaviour, they all have in common that
proactive behaviour is about anticipatory action in order to influ-
ence future situations and to prevent problems. Nothdurft et al. [55]
thereupon derived a definition for dialogue systems: “Proactivity in
technical systems is an autonomous, anticipatory system-initiated
behaviour, with the purpose to act in advance of a future situation,
rather than only reacting to it”. Additionally, the authors stated
three challenges for proactive dialogue systems: If proactivity is
necessary, when, and how proactivity should be initiated. The neces-
sity of proactive behavior depends on several factors. Most notably,
the decision should be utility-based and help the user in general,
rather than aim solely at task success [51]. Therefore, reflective
meta-dialogue is implemented in Robert as a proactive dialogue
strategy. In doing so, an enhanced trust-building towards the user is
expected. However, this is only beneficial for the interaction, if the
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style and timing of proactive behaviour is designed appropriately.
Initiating an interaction at an inappropriate point of time and in
the wrong way could be perceived as disruptive and obtrusive. This
may lead to a corrupted human-computer relationship, especially
regarding the user’s perceived trust in the system [30, 46].

When a system should initiate proactive behaviour is closely
related to its ability to anticipate, i.e. to make assumptions about
the future. For assistant systems, there exist several possibilities
to predict future situations, e.g. gaze of the user [28], or verbal
cues [66]. In case of CAs, making assumptions about the user and
the situation requires extensive knowledge about the user’s current
activity state. Activity recognition is an emerging research field.
Especially, sensor-based approaches have made great progress due
to the advancements in deep learning [72]. Sensors for activity
recognition can be divided roughly into the categories body worn
sensors (smartphone, wearable), object sensors (RFID, accelerom-
eter), ambient sensors (sound, door sensor), and hybrid variants.
They are applied in various application fields, for example, daily life
monitoring [68], medical environments [18, 24], and smart homes
[43, 61]. In this work, object sensors (gyroscope, accelerometer, com-
pass) integrated into an electric screwdriver of the Robert Bosch
company are used to infer the user’s current activity. The activity
state is used for proactive dialogue initiation in order to reflect on
the current task and to prevent task failure. Furthermore, proactive
behaviour is triggered accordingly after certain points of progress
during the project. The way in which a proactive system should
initiate its actions is a current hot topic in HCI and mostly related
to the intervention style (e.g. see Wagner et al. [71]) or a system’s
level of autonomy [3, 59, 73]. In related literature, the system’s
autonomy is frequently categorised into 10 levels [4, 63, 67]. These
levels can be roughly abstracted to low- (computer offers no as-
sistance), medium- (computer offers a suggestion), and high-level
(computer executes a suggestion) proactivity. Recent studies have
shown that a medium-level of proactivity can be beneficial to the
human-computer trust relationship [40, 63]. Therefore, proactive
behaviour of Robert is implemented to be suggestion-based, where
the user is still in control of the interaction.

The concept of trust is fundamental both in interpersonal as well
as human-computer relationships [42, 45]. Trust can be defined as
“the attitude that an agent will help achieve an individual’s goals
in a situation characterised by uncertainty and vulnerability” [42].
Substantial research on this topic has been provided in the field
of autonomous systems [26, 50, 57] and human-robot interaction
[20, 25]. In this paper, the trust model developed by Madsen and
Gregor [44] serves as the foundation for the evaluation of Robert’s
proactive behaviour. This hierarchical model is built on five basic
components of trust: Personal attachment and faith form the bases
for affect-based trust while perceived understandability, perceived
technical competence, and perceived reliability constitute the bases
for cognition-based trust. Affect-based trust refers to a long-term
human-computer relationship, being established through frequent
interactions with a system. Conversely, cognition-based trust refers
to a more short-termed trust. Here, mostly the functionality and
usability of a system are of importance. The trust model by Madsen
and Gregor [44] allows for a differentiated measurement of which
factors of trust are particularly influenced by the manipulation of
Robert’s proactive behaviour.

3 SYSTEM OVERVIEW

Robert comprises three components for providing suitable assis-
tance to novice DIYers [12, 13, 39]: a planning-, an ontology-, and
a dialogue-management-component. An overview of the workflow
between these components is depicted in Fig. 1. All three compo-
nents share the samemodel information. However, each component
only stores the information for handling which it is best suited for.
When required, information is transmitted from one component to
another. To allow for this interoperability and to ensure coherent
storage of models and information, a specific modelling paradigm
is used, which e.g. allows for storing parts of the planning model
in a structured way in the ontology [64].

3.1 HTN Planner

Robert proposes a course of action to its user that if performed will
complete the DIY project the user wants to undertake. Robert’s
planning component is responsible for determining this course of
action – called a plan. For determining a suitable plan, the plan-
ner utilises a general description of the DIY setting and the user’s
project in terms of a planning model. This model encompasses for-
mal descriptions of the available tools and materials as well as the
actions that can be used to manipulate the environment in a DIY
setting – e.g. sawing, drilling, fixating. The model itself does not
pertain to the specifics of a single (or some) specific problems or
projects, but instead is a general description of the possible ac-
tivities that can be performed in a DIY setting. This generality
allows Robert’s planner to flexibly adapt its plan to the current
situation and project of the user. For example, it can come up with
other means of making a large hole, if no Forstner bit is available.
For formalising the model, we use the concept Hierarchical Task
Network (HTN) planning [14]. Using HTNs enables us to suitably
integrate the planning model with the ontology [11, 64] s.t. infor-
mation is stored only once and handled by the component best
suited for it. Further, the integration of the HTN planning model
and the ontology enables us to answer questions that connect the
knowledge from both models [5]. Lastly, the hierarchical nature of
the description allows Robert to provide abstract instructions in
addition to detailed instructions. This is useful if a user is already
familiar with some procedures in the DIY setting (e.g. pre-drilling)
– and thus does not need to be instructed on how to perform them
again. Robert uses a SAT-based planner to find optimal (shortest)
plans [7–10].

3.2 Ontology Manager

The ontology manager organises Robert’s static knowledge spe-
cific to the DIY domain. DIY tools and objects (e.g. drills, bits, saw
blades, . . . ) are organised in an ontology and characterised by prop-
erties such as colour, shape, but also technical parameters (e.g.
battery voltage) and functionalities (e.g. that a drill driver can serve
both as a drill and as a screw driver). The ontology also stores
suitable configurations for instantiating actions in the domain, e.g.
the recommended speed settings for drilling in wood. The ontol-
ogy’s DIY domain model is provided both to the planner and the
dialogue manager. In addition, the ontology manager organises the
instruction elements (texts, images, videos) from which the step-by-
step instructions are to be assembled according to the actions and
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Figure 1: Overview of robert’s architecture. A user interacts with the assistant’s interface capable of multimodal input recog-

nition. User input is forwarded to a server-based dialogue manager that mediates the interaction with the HTN planner and

the ontology manager. In addition, the system is able to track the user’s activity with a connected electric drill for proactive

dialogue initiation (product picture: Bosch).

parameters instantiated by planning, for which logical reasoning
(classification) in the ontology is used. The ontology manager is
also queried when Robert answers factual questions from the user,
for which text is generated from the stored descriptions and media
are retrieved (as described in the following section, see also [12]).

3.3 Dialogue Manager

Robert’s dialogue manager controls the interaction between the
assistant and its user. It is implemented as a web-based server
application following a client-server architectural approach. On
the client side, a user interacts with a browser-interface based on
JavaScript. It presents the generated plan in the form of step-by-step
instructions (see Fig. 2). The content of the instructions is provided
in the form of a textual and visual (picture, video-on-demand) task
description. The interface is capable of processing multi-modal
user input (speech, touch, text). Spoken language is transformed
into text using Google Chrome’s web speech API. Each new input
is forwarded to the dialogue-server using HTTP-methods (POST,
GET, PUT) and JSON as data format.

For dialogue management, an agent-based approach is utilised
[62]. For each component of Robert there exists an individual
dialogue agent that is handling module-specific tasks. In order to
recognise the user’s intention, i.e. which component is best suited
for processing the user’s request, the statistical-driven natural lan-
guage understanding (NLU) unit Rasa (rasa.com) is applied. For
example, when the user has a plan-related intention, such as get-
ting instructions for a specified DIY project or the wish to modify
the plan according to his preferences, the HTN planner is invoked
by its respective dialogue agent. The planner then generates a se-
quence of actions, i.e. the plan, providing appropriate instructions.
The ontology is used to augment the symbolic description of the
actions with textual instructions and media contents for presen-
tation to the user. The ontology-related agent is able to handle
requests for information and explanation about specific materials
and tools, e.g. “What is a drill-bit?” or “What does a drill-bit look
like?” The returned explanation is presented to the user in the form

Figure 2: Screenshot of the interface.

of a pop-up modal containing a textual and/or visual description.
Additionally, the written descriptions are synthesised to speech
using Chrome’s TTS API. The dialogue-related agent is responsible
for meta-dialogues (information confirmation/grounding, reflec-
tion) and for keeping track of the project and dialogue state, stored
together in an interaction state S. This state S contains information
about the project step (Action) the user is currently working on, as
well as past user input (UserAct), and system output (SystemAct).
The system uses this information for adequate response generation.

4 INTEGRATION OF PROACTIVE

META-DIALOGUE

Based on the described version of Robert two proactive meta-
dialogue strategies are developed for providing an additional way
of assistance: Following a progress-based strategy, proactive system
behaviour is triggered at the end of important sub-tasks. These
moments mark a clear cut between two main sub-tasks, enabling
the user to pause, reflect, and prepare for the next sub-task. For
example, “cutting the wooden board in two pieces (rear and shelf)”
is the first main task of building the key rack in the evaluation sce-
nario. As a last step of this task, the user is instructed to loosen the
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screw clamps that are used for fixating the wooden board. There,
a reflective meta-dialogue is initiated after the user has spent ten
seconds on the instructional slide. This timing is chosen heuristi-
cally based on the average reading duration of the instruction. An
example dialogue of this interaction scenario between the system
(S) and its user (U) is provided in the following:

S: The first step to building a key rack has been taken. Are you
satisfied so far?

U: Yes, everything went fine.
S: What did you like about this craft step?
U: I enjoyed using the electric saw. Never thought I could handle

it so easily.
S: How did you like the instruction up to here?
U: Nothing to complain right now.
S: Thanks for your response. Would you like to know the steps

for the next sub-task?
U: Yes! Thanks!

As can be seen in the example, each reflective meta-dialogue con-
sists of a maximum of four turns: Questioning the overall satisfac-
tion, asking about an appraisal of the finished craft step and the
instruction, and proposing the initiation of the next project step.
The interaction follows a static dialogue flow, where the NLU is only
applied for confirmations. Here, the system expects affirmations
or denials from the user, and uses reprompts otherwise. For the
appraisal questions users could provide arbitrary answers. Ques-
tioning the overall satisfaction is intended to boost self-awareness
about the finished task. In combination with the specific question
about the likeability of the completed craft step, this should ani-
mate the user to self-appraise, and to appreciate the made progress.
As self-appraisal has shown positive results on users of tutoring
systems regarding learning and task performance [35], this is also
deemed to positively affect the perceived assistance of robert.
Questioning the likeability of the provided instructions is intended
to set the user’s focus on the competence and reliability of the
system with regard to its helpful guidance. This is considered to
manifest trust in the assistant. Afterwards, the user is proposed to
move on to the next task which finishes the reflective meta-dialogue.
In summary, the reflective meta-dialogue serves the purpose to get
users to talk to the system in order to establish a trust-relationship
by letting the system appear to be careful and competent. Addition-
ally, it should reinforce the users’ thinking about their capabilities
and positively contribute to their experience with the system. It
is possible to ignore the robert’s proactive behaviour or to quit
the dialogue at each step in order to continue with the project. In
doing so, the assistant lets users unobtrusively in control of the
interaction, which has shown to benefit the human-computer trust
relationship in proactive dialogue systems [40, 63]. The wording of
the system’s utterances is alternated for each sub-task to increase
naturalness.

Following an activity-based strategy, situation-dependent proac-
tive behaviour is triggered using cues from a connected drill serving
as an external sensor of user behaviour [6]. To proactively provide
assistance, sensor data for tracking the user’s current activity is
used, e.g. drilling or screwing. To collect sensor data, an inertial
measurement unit is integrated into a standard cordless drill driver
and connected to a Wi-Fi development board, such that gyroscopic,
accelerometric and compass data are transmitted from the device.

Activity classification is provided by a neural network trained with
data from 12 participants collected in a separate data-collection
experiment. A deep neural network approach is preferred since it is
considered state-of-the-art in human activity recognition and yields
good results for classifying movement patterns based on sequences
of raw sensor inputs (e.g. see Ordóñez and Roggen [56]). Classifi-
cation serves to distinguish the following classes of (in-)activity:
off (machine not moved), screwing, drilling, drill change, battery
change, in use (machine is moved, motor is off), and other. Activity
classification reached an accuracy of 0.91 (in 4-fold cross validation,
micro avg. F1 = 0.91, macro avg. F1 = 0.83) in the classifier-training
experiment [29]. Additional information is available in the form of
probability distributions, e.g. of the current activity, the activity’s
operation time and frequency of its occurrence.

robert receives new information about the user’s activities
every 500 ms via a TCP-socket connection. For leveraging this in-
formation during the interaction, the concept of amachineState as a
part of the interaction state S is introduced. ThemachineState allows
to trigger proactive system actions based on implicit knowledge
about the user’s tool activity. It consists of so-called machineActs.
An act has information about the current activity, its operation
time, and how often this act has occurred before. Themachine-State
is updated each time a different user activity is tracked with a high
confidence, i.e. the activity’s probability has to be higher than 0.95.

Activity-based proactive system behaviour addresses the active
initiation of a reflective meta-dialogue with users in order to check
whether they are performing the project’s steps correctly and to
provide help in the case of failure. For this reason, a rule-based
decision model for intervention is implemented. At each project
step where the connected tool needs to be applied, Robert is able
to actively start a dialogue with its user. Depending on the context
it is differentiated between three different interaction scenarios:
A message is triggered after the user picked up the machine (in
use-classification): “You seem to be working with the connected tool
for the first time. Don’t worry, I’ll guide you through the steps!” This
message is used for making the user aware of the connected tool,
and can be triggered only once. To react to possible user insecurity
about the current project step, a help request is sent to the user after
three minutes of inactivity (off -classification). This kind of request
is only executed during steps where an action with the connected
tool has to be performed: “I haven’t seen any tool activity by you
in three minutes. Do you need help?” In case the user affirms this
question, he or she is invited to watch a video of the current step.

Finally, Robert checks whether the user performs the instructed
task correctly (see Fig. 2). An interaction is initiated whenever one
of the activities battery change, drilling, drill change, or screwing
is recognised. The user is asked whether the current step is going
well. If the user answers with no, further help is offered. If help
is requested, the system starts an explanatory video of the task.
Otherwise, the system apologises for the disturbance.

S: I noticed that you were drilling. Was that successful?
U: No, it wasn’t.
S: Ok, do you need additional help?
U: Yes, please.
S: A video of this project step could help. I’m going to play it

for you. (Then a video is played.)
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Figure 3: A user attaches the battery of the electric drill dri-

ver while being assisted by robert.

5 EXPERIMENTAL SETUP

For comparing the effect of proactive meta-dialogue on the user’s
perceived trust, acceptance, and experience, a between-subject A/B-
test was conducted. Here, the proactivity of Robert was used
as independent variable, where an assistant capable of proactive
meta-dialogue was compared to a baseline variant without any
proactive functionalities. Participants were randomly distributed
to both study groups.

33 German subjects were recruited by a professional institute for
study consulting (MTO). They were evenly assigned to each study
group regarding gender and age. A criterion for study participation
was to be a novice in DIY projects. However, three subjects had
to be excluded from the evaluation, as they were rated as "quite
experienced" by study observers in hindsight. In addition, two par-
ticipants had to be excluded because they did not work according to
the study plan. One participant had to be excluded due to malfunc-
tion of the system, and one participant aborted the project. This
resulted in data from 26 subjects being considered for evaluation.
The average age of subjects was 37.54 (𝑆𝐷 = 14.72). Study partici-
pants had various professional and educational backgrounds. The
group size of subjects working with the proactive assistant was 12
(5 male, 7 female), while 14 subjects (5 m, 9 f) worked with the base-
line version of Robert. All subjects received 50 e independently
of the study outcome.

After the welcome procedure, the subjects were provided with
first instructions and details of the study. They had to read and sign
the informed consent and had to fill out a pre-test questionnaire
regarding demographics and possible confounding variables, such
as previous experience with DIY and technical affinity. Furthermore,
propensity towards trust in autonomous systems with the scale by
Merritt et al. [49] was measured in order to gain information about
the users’ initial trust. Afterwards, they received an interactive
tutorial in order to get familiar with the standard functionalities
of Robert, e.g. how to activate the speech recognition, and how
to navigate through the user interface. Subsequently, they were
asked to build a key rack from a wooden board in cooperation with
the DIY-assistant Robert. The task consisted of four sub-tasks:
sawing a plank into two boards, connecting the boards, attaching
two hangers to the back, and adding four hooks to the tray. For

the duration of the construction, an experiment facilitator was
in the same room as the participant for observation, but was not
allowed to assist. The study was captured on video and audio and
streamed to a separate room. There, study observers took notes
about specific events and participant features, e.g. their subjective
assessment of participants’ DIY-experience levels. After completion,
the participants had to fill in a questionnaire to assess the dependent
variables. Total duration of the experiment was between 1.5-2.5
hours. The study setup is depicted in Fig. 3.

In the experiment, the system’s perceived trust, acceptance, and
the user experience with the system were assessed as dependent
variables. For measuring the speech capabilities of the system, the
Subjective Assessment of Speech System Interfaces (SASSI) ques-
tionnaire [27] was employed. This questionnaire contains the sub-
scales annoyance, user satisfaction, cognitive demand, speed, and
habitability. According to the authors a “habitable system may be
defined as one in which there is a good match between the user’s
conceptual model of the system and the actual system.” The accep-
tance towards the assistant was measured with a scale developed
by Van Der Laan et al. [70]. To determine trust towards Robert,
the Trust in Automated Systems Scale [31] was implemented. By
measuring the difference between these post-trust ratings and the
propensity to trust before the experiment, the effects of the proac-
tive assistant on trust establishment could be observed. Further-
more, scales for measuring the bases of trust developed by Madsen
and Gregor [44] were used. All scales were translated into German
and slightly modified for study context. All scales were assessed
with a 7-point (except where noted with 5-point) Likert scales rang-
ing from 1 = “totally disagree” to 7 = “totally agree” except for the
acceptance assessment which used contrary adjective pairs on a
7-point Likert scale.

According to our preceding considerations and related work, the
following hypotheses were tested:
H1: Proactive meta-dialogue leads to a better establishment of

trust than non-proactive dialogue, i.e. the difference ofwithin-
subject measured trust before and after the experiment is
significant.

H2: Proactive meta-dialogue leads to higher perceived trust than
non-proactive dialogue, i.e. the difference of between-subject
measured trust after the the experiment is significant.

H3: Proactive meta-dialogue leads to higher ratings for accep-
tance, satisfaction, and habitability than non-proactive dia-
logue.

6 RESULTS

In this paper, results of the effect of proactive meta-dialogue on the
user’s perception of robert are presented. A previously published
paper [6] focused on the evaluation of user-adaptive planning. Both
evaluations were examined in the same study setup.

For data analysis, a Mann-Whitney-U-Test was calculated to de-
termine if there were differences in confounding as well as depen-
dent variables. A non-parametric test was chosen, as a rather small
sample size was examined. Additionally, a Pearson-Chi-Square test
was used for the confounding variables, previous experience in
DIY-tools (drilling, sawing,...) and in speech assistants (Siri, Alexa,
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Google Assistant, ...). These were measured on nominal scales. Con-
founding group variables for proactive behaviour could be ruled out,
as measurements for predisposed trust in autonomous systems [49],
technical affinity [32], previous experience in DIY-tools and speech
assistants were not significant (all p-values > 0.05). Solely, the Chi-
Square test for previous experience with Alexa (𝜒2 = 7.22, 𝑝 < 0.01)
became significant. However, experience with similar assistants
was evenly distributed, hence this result was negligible. In addition,
participants’ age and gender was similarly distributed for the dif-
ferent experimental groups and no outliers were found in the data
set. An overview of the results is presented in Table 1.

There were no significant between-subject differences for the de-
pendent variables. However, a significant within-subject difference
was found regarding the development of trust towards Robert.
Therefore, the difference between trust ratings before and after
completion of the project was assessed using a Wilcoxon-Signed-
Ranks test (initial trust was measured with propensity towards
trust in autonomous systems questionnaire). In comparison to the
baseline group, which showed no difference (𝑍 = −0.39, 𝑝 = 0.71),
the group with the proactive assistant showed a significantly higher
trust building (𝑍 = −2.58, 𝑝 < 0.01). The results are visualised in
Fig. 4.

Significant gender differences regarding experience in DIY-tools
and speech assistants were found. Chi-Squared tests revealed that
females had far less experience in the usage of two out of four
questioned electric tools (percussion drill, 𝜒2 = 4.63, 𝑝 = 0.03;
electric jigsaw, 𝜒2 = 5.10, 𝑝 = 0.02) than men. Besides, females had
less experience in two out of three speech assistants (Google As-
sistant, 𝜒2 = 6.52, 𝑝 = 0.01; Alexa, 𝜒2 = 4.51, 𝑝 = 0.03). Therefore,
gender-based differences regarding proactive meta-dialogue were
considered. Females rated the proactive meta-dialogue with robert
significantly higher than interacting with the baseline variant for
the categories satisfaction (𝑈 = 8.00, 𝑍 = −2.50, 𝑝 = 0.01) and
speed (𝑈 = 13.00, 𝑍 = −2.00, 𝑝 = 0.046). Furthermore, there was
a notable higher rating for acceptance of proactive behaviour by
females (𝑈 = 14.50, 𝑍 = −1.81, 𝑝 = 0.07). Males evaluated the per-
sonal attachment towards the baseline assistant notably higher than
the proactive version of robert (𝑈 = 4.00, 𝑍 = −1.49, 𝑝 = 0.07).
Regarding the age of the participants no significant differences were
found.

7 DISCUSSION

The study revealed differences between the proactive and the base-
line condition. Particularly, it could be shown that the integration
of proactive-meta dialogue leads to a significantly better establish-
ment of trust between the user and robert as compared to the
non-proactive baseline (H1 verified). This result is quite intuitive, as
a system that actively engages with the user and tries to participate
in the project should be perceived as a more trustworthy assistant.
Especially for novices, to which the entry to a new topic can be
quite challenging, it seems to be beneficial to have a more natu-
ral and social assistant than a rigid, non-communicative system.
Therefore, the socialising purpose of reflective dialogue is useful,
as it establishes a communication and acknowledges the progress
made by the user in order to foster the user’s self-appraisal. Besides
the positive effect of reflective dialogue on the user’s learning in

Figure 4: Depiction of the results for the development of

trust towards robert depending on the study condition.

Mean values and standard deviations from the user ratings

on a 5-point Likert scale are provided.

intelligent tutoring systems [35], this work provides evidence that
it can also be beneficial for establishing trust in CAs.

Even though there were no significant group differences found
regarding the overall measurements of trust and its components (H2
rejected), a trend can be seen that timely proactivity enhances trust
towards assistants. Means for overall trust and cognitive-based trust
(competence, reliability, and predictability) were all higher for the
proactive condition than for the baseline condition. This is in line
with related work that shows that low- to medium-level proactivity
positively affects a system’s perceived competence and reliability
[40]. For affect-based trust an opposite tendency is observable. Both
variables, personal attachment and faith, were rated higher for the
baseline condition. This may be explained by noting that users
were more familiar with reactive systems. However, the overall
score of these variables was rather low for both conditions. For
fostering a better affect-based trust, a long-term relationship with
the user, where he or she could emotionally bond with the system,
is necessary. Furthermore, the standard deviations were quite high
for the affect-based variables. This could be a sign that proactive
behaviour has a very individual impact on the user’s affect towards
assistants.

A positive trend of proactive-meta dialogue in CAs was also
noticeable considering the acceptance of and user experience with
robert. Means for acceptance, satisfaction, and habitability were
higher for the proactive condition. This is similar to the results of a
Wizard-of-Oz study reported by Peng et al. [59], where a medium-
proactive robot was perceived as more appropriate and helpful in
decision-making tasks. However, the differences found in our work
are not significant (H3 rejected). Nonetheless, the effect of proactive
dialogue strategies on the user’s acceptance and satisfaction should
be further examined, as proactive behaviour shows much potential.
Interestingly, there was no difference between the two conditions
regarding the rating of annoyance, as proactive intervention can
be perceived as obtrusive. Therefore, the possibility to ignore the
system-initiated dialogues, i.e. to let the user have the control over
the interaction, was appropriate in this scenario. As proactive di-
alogue requires the attention of the user, it was no surprise that
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Dialogue Strategy
Proactive M (SD) Baseline M (SD)

male female overall male female overall
Trust* 4.49 (.33) 4.55 (.54) 4.52 (.45) 4.11 (1.01) 4.22 (.58) 4.18 (.72)
Acceptance* 3.71 (.94) 4.44 (.60) 4.14 (.81) 3.67 (.83) 3.88 (.73) 3.80 (.74)
Reliability 4.68 (1.65) 5.60 (.98) 5.22 (1.32) 4.76 (1.82) 5.18 (.82) 5.03 (1.22)
Competence 4.88 (1.40) 5.46 (1.14) 5.22 (1.23) 4.72 (2.11) 4.80 (.81) 4.77 (1.33)
Predictability 5.90 (1.21) 6.07 (1.05) 6.00 (1.07) 5.40 (1.42) 6.17 (.63) 5.89 (1.00)
Personal At-

tachment

2.28 (1.60) 3.23 (1.60) 2.83 (1.60) 4.56 (2.20) 2.93 (1.20) 3.51 (1.74)

Faith 3.36 (2.17) 4.49 (1.17) 4.02 (1.67) 4.40 (1.64) 4.82 (1.01) 4.67 (1.22)
Satisfaction 4.93 (1.50) 6.32 (.45) 5.74 (1.20) 5.44 (1.84) 5.14 (1.04) 5.25 (1.32)
Cognitive

Demand

4.96 (.90) 5.46 (.87) 5.25 (.88) 5.68 (1.21) 5.27 (1.13) 5.41 (1.13)

Annoyance 4.04 (.68) 5.20 (1.25) 4.72 (1.17) 4.92 (.93) 4.56 (1.08) 4.69 (1.01)
Habitability 5.00 (.77) 5.21 (1.64) 5.13 (1.30) 5.00 (1.76) 4.92 (1.41) 4.95 (1.47)
Speed 5.80 (1.10) 6.29 (1.29) 6.08 (1.18) 5.60 (1.52) 5.28 (1.18) 5.39 (1.26)

Table 1: Descriptive statistics of the measured dependent variables with reference to the the dialogue strategies. Results for

cognitive demand and annoyance are inverted (the higher, the better). *Trust and acceptancemeasured on 5-point Likert scales.

the non-proactive variant of robert was rated better regarding
cognitive demand.

Furthermore, gender-dependent effects of proactive meta-
dialogue were found. There was a significant difference between
proactive and baseline condition for satisfaction and system speed
rated by females. Additionally, females tended to accept the proac-
tive assistant more. These gender effects seemed to be due to dif-
ferences in the experience with DIY-tools and speech assistants
between males and females. The more experienced males showed
the tendency to prefer working with the non-proactive assistant, as
can be seen in the ratings of reliability, personal attachment, satis-
faction, and annoyance. This could be explained by the hypothesis
that men might have felt patronised by the active assistance and
found that the help offered was unnecessary, as they could work
independently based on their tool knowledge. Contrarily, females
tended to welcome the more communicative guidance by robert,
as they required a higher level of cooperation. Another explanation
could be that a female system voice was used. Hence, it could be
that males did not feel comfortable working under female guidance
on a stereotypical male task, as opposed to females. Gender stereo-
types have shown to play an important role in spoken human-robot
interaction [38]. Therefore, further investigation on their effect
on the perception of proactive behaviour could be an interesting
research topic.

Comparing the strengths and weaknesses of the study design,
the advantages of the setup formed a highly realistic test scenario
with a sophisticated CA. A disadvantage was the quite low number
of participants. Using a higher number could have provided more
comparable results between the two conditions. The complex study
setup was also a drawback. Besides the manipulation of proactive
assistant behaviour, also tests regarding the user-adaptive planning
functionality of robert were conducted simultaneously. Studying
these effects separately could have led to more significant results,
but was impracticable due to duration and cost of the study. Besides,

the quality of the speech synthesis was troublesome as several par-
ticipants of the study reported the synthetic voice to be unnatural
and even annoying. Another problem was that speech had to be
activated by "push-to-talk" for technical reasons. Even though users
were instructed to use this kind of voice activation in the tutorial,
they found this to be cumbersome and annoying.

8 CONCLUSION

In this paper, the integration of proactive meta-dialogue strategies
in the companion system robertwas presented. The effect of proac-
tive behaviour on the user’s perceived trust, acceptance, and user
experiences was evaluated in a realistic test scenario. Therefore, a
proactive version of robertwas compared to a non-proactive base-
line variant. The results showed that proactive meta-dialogue was
able to build user trust significantly better than a solely reactive sys-
tem. Additionally, gender-specific differences for the perception of
proactive meta-dialogue were found. However, differences between
overall scores were not significant. Although the scores showed a
tendency towards a positive effect of proactive dialogue on trust,
acceptance, and user experience, further experiments are necessary
to validate these tendencies. Therefore, studies in other application
domains need to be considered as well. Additionally, investigation
of proactive behaviour in the background of gender bias could form
a new interesting research topic.
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