
Revealing Hidden Preconditions and Effects of Compound HTN Planning Tasks
— A Complexity Analysis

Conny Olz,1 Susanne Biundo,1 Pascal Bercher2

1 Ulm University, Germany
2 The Australian National University, Australia

conny.olz@uni-ulm.de, susanne.biundo@uni-ulm.de, pascal.bercher@anu.edu.au

Abstract

In Hierarchical Task Network (HTN) planning, compound
tasks need to be refined into executable (primitive) action
sequences. In contrast to their primitive counterparts, com-
pound tasks do not show preconditions or effects. Thus, their
implications on the states in which they are applied are not
explicitly known: they are “hidden” in and depending on the
decomposition structure. We formalize several kinds of pre-
conditions and effects that can be inferred for compound tasks
in totally ordered HTN domains. As relevant special case we
introduce a problem relaxation which admits reasoning about
preconditions and effects in polynomial time. We provide
procedures for doing so, thereby extending previous work,
which could only deal with acyclic models. We prove our
procedures to be correct and complete for any totally ordered
input domain. The results are embedded into an encompass-
ing complexity analysis of the inference of preconditions and
effects of compound tasks, an investigation that has not been
made so far.

Introduction
Hierarchical Task Network (HTN) planning is a hierarchical
approach to planning, where compound tasks are step-wise
refined into more primitive tasks, until an executable plan
of action is obtained (Erol, Hendler, and Nau 1996; Ghal-
lab, Nau, and Traverso 2004). When modeling such planning
problems, often a planning language is used in which com-
pound tasks do neither show preconditions nor effects like
their primitive action counterparts. This is for example the
case in HDDL (Höller et al. 2020a), a standard description
language for HTN planning problems, which was also used
to describe the benchmark set of the International Planning
Competition 2020 (Behnke et al. 2019)1 on HTN planning.
This is also in line with one of the standard formalizations
of HTN planning (Geier and Bercher 2011; Alford, Bercher,
and Aha 2015) that HDDL bases upon, which is also used,
among others, for many of the more recent theoretical inves-
tigations (Bercher, Alford, and Höller 2019). Instead of de-
scribing state transitions, the decomposition of a compound
task introduces other primitive and/or compound tasks until

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1See ipc2020.hierarchical-task.net.

eventually a completely primitive plan is achieved featur-
ing all necessary preconditions and effects. So, while – due
to the eventual introduction of primitive tasks – compound
tasks do have an impact on states, it is not directly visible or
even specified in the model explicitly (Goldman 2009).

In contrast, a vast range of hierarchical planning for-
malisms do feature and exploit preconditions and effects
of compound tasks (Bercher et al. 2016), e.g., the hybrid
planning formalisms by Kambhampati, Mali, and Srivastava
(1998) and Biundo and Schattenberg (2001). For example
they are used to insert compound tasks and reason about ex-
ecutability in plan space-based hierarchical planning such
as PANDA (Biundo and Schattenberg 2001; Schattenberg
2009), FAPE (Dvor̆ák et al. 2014; Bit-Monnot, Smith, and
Do 2016) or UMCP (Tsuneto, Hendler, and Nau 1998); or
to generate solution plans that still contain compound tasks
(Clement, Durfee, and Barrett 2007; Marthi, Russell, and
Wolfe 2008; de Silva, Sardina, and Padgham 2009). Another
prominent example is the established HTN formalism by
Erol, Hendler, and Nau (1996). It features a rich set of con-
straints that can be expressed, such as the (immediately) be-
fore constraint, which enables one to define preconditions of
compound tasks, even preconditions which are not required
by actions of its primitive refinements. Similarly, it also al-
lows to use (immediately) after constraints constraining the
search to choose an refinement after which the specified state
properties hold (even if the chosen refinement itself did not
have them as effect, if some held already prior its execution).

In most of these works, the compound tasks’ precondi-
tions and effects are provided by the domain modeler, so it
is up to him or her to ensure completeness and correctness of
this information. Thus, the benefit of automated inference of
this information is twofold: it reduces modelling effort and
prevents modelling errors. Moreover, it provides informa-
tion that could be exploited for search, e.g., for the Upward
and Downward properties (Yang 1990) (which are essential
for generating abstract solutions), or heuristics.

There is a huge range of state-based heuristics for classi-
cal (i.e., non-hierarchical) planning, which all center around
properties of states. In HTN planning, however, it is un-
clear which impact a compound task’s hierarchy has on
states when not knowing its pre- and postconditions. Our
paper bridges the gap between both, so it can serve as a ba-
sis to compute such state properties. We are optimistic that

they can then be exploited by various kinds of HTN plan-
ners, such as heuristic state-based progression search (Höller
et al. 2018, 2020b), heuristic plan space search (Dvor̆ák
et al. 2014; Bit-Monnot, Smith, and Do 2016; Bercher et al.
2017) or SAT-based approaches (Behnke, Höller, and Bi-
undo 2018; Schreiber, Pellier, and Fiorino 2019) to compute
effective heuristics or to prune the search space. Past works
already show the benefit of incorporating some sort of pre-
conditions and/or effects in progression search (Nau et al.
2003; Waisbrot, Kuter, and Könik 2008; Goldman and Kuter
2019) (via the exploitation of method preconditions), plan
space search (Tsuneto, Hendler, and Nau 1998), plan space-
like search and plan coordination in a multi-agent setting
(Clement, Durfee, and Barrett 2007), as well as in a com-
pilation to SAT (Schreiber, Pellier, and Fiorino 2019) thus
showing the potential benefit of preconditions and effects of
compound tasks (or their methods).

Related Work Despite the potential of compound tasks’
preconditions and effects, only little work was done in au-
tomatically inferring them. Clement, Durfee, and Barrett
(2007) provide algorithms to compute such information for
partially ordered, acyclic HTN models that feature time.
Based on their and Thangarajah and Padgham (2011)’s work
de Silva, Sardina, and Padgham (2016) provide such al-
gorithms running in polynomial time for a Belief-Desire-
Intention (BDI) agent programming language, which is
a generalization of totally ordered HTN problems. Yao,
de Silva, and Logan (2016) extend this work to a non-
deterministic action model. Tsuneto, Hendler, and Nau
(1998) automatically extract what they call external condi-
tions, which can be regarded as preconditions of methods.
However, these are based on conditions that are predefined
by a domain modeler, i.e., their methods include specifica-
tions of several conditions given in the domain model upon
which these external conditions are defined. Moreover, their
algorithm is not complete, so they can not find all exter-
nal conditions. Ilghami et al. (2005) learn preconditions of
methods from user-provided training data.

Core Contributions We define various kinds of (inferred)
preconditions and effects of a compound task. These include
guaranteed effects, i.e., effects induced by all refinements of
the task as well as possible effects generated just by some of
them. We analyze the computational complexity of reason-
ing about these preconditions and effects, which range from
PSPACE- to EXPTIME-completeness depending on task
hierarchy properties. We furthermore introduce a new prob-
lem relaxation – executability-relaxed HTN problems – and
show that here reasoning about preconditions and effects can
be done in polynomial time. For this we describe procedures
that extend previous work from the literature in that they are
complete and can deal with arbitrary recursion.

Formal Framework
HTN Planning Formalism
We consider totally ordered (t.o.) HTN planning domains
and problems. We base our formalization on the one by

get-to(C)

drive(A,C)
at(C)

¬at(A)
at(A)

drive(B,C)
at(C)

¬at(B)
at(B)

get-to(B) drive(B,C)
at(C)

¬at(B)
at(B)

get-to(A) drive(A,C)
at(C)

¬at(A)
at(A)

m1 m4

m2 m3

Figure 1: A compound task get-to(C) together with its meth-
ods as part of a transportation domain, which models the task
to deliver packages to different locations.

Geier and Bercher (2011), simplified by Behnke, Höller, and
Biundo (2018) to totally ordered domains/problems.

A STRIPS planning domain D = (F,A) consists of a
finite set of facts F and actions A, respectively. An action
a = (prec, add , del) ∈ A is described by its preconditions
prec(a) ⊆ F and its effects add(a), del(a) ⊆ F (the add,
resp. delete effects). An action a ∈ A is applicable in a state
s ∈ 2F if prec(a) ⊆ s. If applicable to s and applied to it, it
produces the successor state s′ = (s \ del(a)) ∪ add(a). A
sequence of actions ā = 〈a0 . . . an〉with ai ∈ A for 0 ≤ i ≤
n is applicable in a state s0 if and only if for all 0 ≤ i < n
ai is applicable in si, where si+1 results from applying ai
in si. In addition to a planning domain, a STRIPS planning
problem Π = (D, sI , g) contains an initial state sI ∈ 2F

and a goal description g ⊆ F that implicitly specifies a set
of goal states s ⊇ g. A sequence of actions 〈a0 . . . an〉 is a
solution to Π if and only if it is applicable in sI and results
in a goal state.

In a t.o. HTN planning domain D = (F,A,C,M) the
sets F and A are defined as before, but the actions A are
now referred to as primitive tasks as well. D also contains
a finite set C of compound tasks, symbols that serve as ab-
stractions for a collection of primitive and compound tasks.
Together, they form the set of tasks T = A ∪ C. A t.o. task
network tn is a (possibly empty) finite sequence of tasks
t̄ = 〈t0 . . . tn〉 ∈ T ∗. Compound tasks can be refined by a
sequence of primitive and/or compound tasks according to
the set of decomposition methods M ⊆ C × T ∗. A method
m = (c, t̄) ∈ M decomposes a compound task c ∈ C
within a task network tn1 = 〈t̄1 c t̄2〉 into a task network
tn2 = 〈t̄1 t̄ t̄2〉, written tn1 →c,m tn2. We write tn → tn ′ if
there is a (possible empty) sequence of methods transform-
ing tn into tn ′. We then call tn ′ a refinement of tn . A t.o.
HTN planning problem Π = (D, sI , tnI , g) contains the do-
main D = (F,A,C,M), an initial state sI ∈ 2F , an initial
task network tnI ∈ T ∗, and a goal description g ⊆ F . Then,
a sequence of actions tn = 〈a0 . . . an〉 ∈ A∗ is a solution to
Π if and only if tnI → tn , tn is applicable in sI , and results
in a goal state.

As a running example we consider the part of a small
transportation domain, which plans the tour a truck needs
to take in order to deliver packages to different loca-
tions. A fraction of the domain is shown in Fig. 1. We
have three locations A, B, and C and therefore our set
of facts is F = {at(A), at(B), at(C)}. One can drive
from one location to another given by the primitive actions
drive(x, y) = ({at(x)}, {at(y)}, {at(x)}) for every com-

bination of x, y ∈ {A,B,C}, x 6= y. Note that we illus-
trate delete effects in pictures by a preceding ¬. Moreover,
there are three compound tasks get-to(A), get-to(B), and
get-to(C), each of which can be refined according to four
different decomposition methods. In Fig. 1 this is exemplar-
ily shown for the task get-to(C): Either we can drive directly
to location C (modeled by the two primitive actions in m1

and m2) or drive via a different location to C. The compound
tasks get-to(A) and get-to(B) can be decomposed likewise,
which causes cycles in the domain model.

Effects of Compound Tasks
Before we begin to define effects of compound task we need
to define the set of all states in which a given compound task
is executable and in which an execution can result:
Definition 1 (Executability-Enabling States). Let D =
(F,A,C,M) be a planning domain and c ∈ C a compound
task. Then E(c) ⊆ 2F is the set of all states s ∈ 2F for
which there exists a sequence of actions ā, such that c → ā
and ā is applicable in s.
Definition 2 (Resulting States). Let D = (F,A,C,M) be a
domain, c ∈ C a compound task, and s ∈ 2F a state. Then
Rs(c) ⊆ 2F is the set of all states into which the execution
of c in s can result, i.e., Rs(c) is the set of all (resulting)
states s′ ∈ 2F for which there exists a sequence of actions
ā, such that c→ ā, ā is applicable in s, and ā executed in s
results in s′.

Now we start with defining state-dependent postcondi-
tions, which are state properties (true or false facts) that are
guaranteed to hold directly after the execution of a com-
pound task in a given state. Our definition roughly resembles
Def. 4 by de Silva, Sardina, and Padgham (2016) defining
what they call Must Literals.
Definition 3 (State-Dependent Postconditions). Let D =
(F,A,C,M) be a domain, c ∈ C a compound task, and
s ∈ 2F a state. Then,
• the set of state-dependent positive postconditions of c

w.r.t. s is post+s (c) :=
⋂

s′∈Rs(c)
s′ and

• the set of state-dependent negative postconditions of c
w.r.t. s is post−s (c) := F \

⋃
s′∈Rs(c)

s′

if Rs(c) 6= ∅ and, else post+s (c) = post−s (c) := undef .
According to this definition, given some state s ∈ 2F , and

a compound task c ∈ C, the set of positive postconditions
is simply the set of all facts that hold in any state after the
successful execution of any primitive decomposition of c.
Similarly, the set of negative postconditions is the set of all
facts that do not hold in any such successor state. By defin-
ing them as undefined in case there does not exist an exe-
cutable refinement we can express the semantic difference to
the case where the sets are empty, i.e., where there do not ex-
ist common facts in the resulting states. Let us consider the
state s = {at(A)} and the task get-to(C) in our running ex-
ample. In every executable refinement the truck drives from
location A to C possibly via B or by passing some loca-
tions more than once. However, it will always result in the
state s′ = {at(C)}, so post+s (get-to(C)) = {at(C)} and
post−s (get-to(C)) = {at(A), at(B)}.

Now we obtain state-independent postconditions by con-
sidering those facts that hold independent of the chosen re-
finement and state as long as the refinement is executable,
i.e., post+∗ (c) :=

⋂
s∈E(c) post+s (c) and post−∗ (c) :=⋂

s∈E(c) post−s (c) if Rs(c) 6= ∅ and post
+/−
∗ (c) := undef

otherwise.
Some postcondition might only hold because it was al-

ready true in the state prior to execution and was not changed
by the compound task. In order to exclude such cases, we
differentiate between postconditions and effects.

Definition 4 (State-Independent Effects). Let D =
(F,A,C,M) be a planning domain and c ∈ C a compound
task. Then,
• the set of state-independent positive effects of c is

eff +
E(c)(c) :=

⋂
s∈E(c) post+s (c) \

⋂
s∈E(c) s and

• the set of state-independent negative effects of c is
eff −E(c)(c) :=

⋂
s∈E(c) post−s (c).

if E(c) 6= ∅, otherwise eff +
E(c)(c) = eff −E(c)(c) := undef .

Since we will later also introduce effects that hold only in
some refinements, we sometimes write guaranteed effects to
prevent confusion. To ease notation, we will write eff +

∗ (c)
and eff −∗ (c) as abbreviations for eff +

E(c)(c) and eff −E(c)(c),
respectively. We write eff +

s (c) and eff −s (c) when E(c) is
cut down to a singleton {s} in the above equations to de-
scribe state-dependent effects in analogy to the respective
postconditions of Def. 3.

In case of get-to(C) in our running example at(C) is even
a state-independent positive effect and postcondition since it
doesn’t matter at which location we start, we will always
end up at location C. Note that at(A) and at(B) are not
state-independent negative effects or postconditions because
executing the refinement using m1 (i.e., drive(A,C)) in the
state {at(A), at(B)} results in the state {at(B), at(C)} in
which at(B) does still hold. Since the state {at(A), at(B)}
would normally be considered inconsistent one can consider
restricting the set E(c) ⊆ 2F further, e.g., by exploiting mu-
tex relations.

So far, we were only concerned with definitions for post-
conditions and effects that are guaranteed to hold indepen-
dently of the chosen decomposition methods. We now con-
sider possible effects, effects the occurrence of which de-
pends on the chosen refinement.

Our definition will consider all effects that could possibly
hold after the execution of a suitable primitive refinement
of the compound task. This resembles the idea behind may
conditions as introduced by Clement, Durfee, and Barrett
(2007).

Definition 5 (Possible State-Independent Effects). Let D =
(F,A,C,M) be a domain, c ∈ C a compound task, and
s ∈ 2F a state. We first define possible postconditions:
• poss-post+s (c) :=

⋃
s′∈Rs(c)

s′ and
• poss-post−s (c) :=

⋃
s′∈Rs(c)

(F \ s′).
Now we can define possible effects:
• The set of possible state-independent positive effects of c

is poss-eff +
E(c)(c) :=

⋃
s∈E(c) (poss-post+s (c) \ s) and

• the set of possible state-independent negative effects of c
is poss-eff −E(c)(c) :=

⋃
s∈E(c) (poss-post−s (c) ∩ s)

if E(c) 6= ∅ and poss-eff +
E(c)(c) = poss-eff −E(c)(c) :=

undef otherwise.

We write poss-eff +
∗ (c) and poss-eff −∗ (c) when we

use E(c) as defined and we write poss-eff +
s (c) and

poss-eff −s (c) as a shorthand for using {s} in the subscript
instead of E(c) in order to refer to possible state-dependent
effects.

We have seen that at(A) and at(B) are no state-
independent negative effects of get-to(C) in our running ex-
ample but now we can say that they are at least possible
state-independent negative effects.

We also would like to make aware of a difference in the
semantics of guaranteed effects and possible effects. In both
definitions, effects are sets of facts. In case of guaranteed
effects, the respective set can be interpreted as a conjunction,
i.e., all of them hold in the same state. For possible effects,
however, our definition only provides the needs to state for
every single effect fact e that there is a state right after c’s
execution in which it holds. But two effects e1 and e2 might
only hold in two different states.

Preconditions of Compound Tasks
Similar to the effects of a compound task we can also define
their preconditions. We start with a basic definition in corre-
spondence to the state-independent (guaranteed) effects of a
compound task.

Definition 6 (Mandatory Preconditions). Let D =
(F,A,C,M) be a planning domain and c ∈ C a com-
pound task. Then, the set of mandatory preconditions of c
is prec(c) :=

⋂
s∈E(c) s if E(c) 6= ∅ and prec(c) := undef

otherwise.

Mandatory preconditions are the facts that are required to
hold in order to execute a compound task, i.e., none of them
may not hold. However, it is not guaranteed that there ex-
ists an executable refinement in a state in which only these
preconditions hold: They are necessary but not a sufficient
criteria for executability. We introduce a sufficient criterion
at the end of the subsection. The set of mandatory precon-
ditions of the compound task in Fig. 1, e.g., is empty as the
tasks in m1 and m2 do not have preconditions in common.

Our definition of preconditions is closely related to the
concept of method preconditions known from the SHOP
family (Nau et al. 2003; Goldman and Kuter 2019). These
systems attach each individual method their own (hand-
modeled) precondition, meaning that the respective method
can be used for decomposition only if this precondition
holds. We can infer these preconditions by introducing a
new artificial compound task for the method in question and
compute its precondition. This seems especially useful when
methods are learned in the first place (Lotinac and Jonsson
2016; Gopalakrishnan, Muñoz-Avila, and Kuter 2018; Xiao
et al. 2020).

As argued before, the preconditions are just a necessary
condition for executability. Sufficient conditions can be de-
fined in the following way, which is similar to what de Silva,

Sardina, and Padgham (2016) define as precondition of a
compound task:

Definition 7 (Executability-Enabling Precondition). Let
D = (F,A,C,M) be a domain and c ∈ C a compound
task. Then we call a set of facts executability-enabling pre-
condition of c, exEn(c) ⊆ F , if and only if for all states s
with exEn(c) ⊆ s there exists an executable refinement of c.

In our running example, the set {at(A)} would be an
executability-enabling precondition of get-to(C) because it
can be decomposed by using method m1 to a refinement ex-
ecutable in s = {at(A)}. For the same reason, {at(B)}
would also be such a precondition, because it allows an exe-
cutable refinement in s = {at(B)} using m2.

From the examples given, it is easy to see that there
is not just one unique executability-enabling precondition
since different refinements can be executable in arbitrar-
ily different states. We also note the property that F is an
executability-enabling precondition if and only if there ex-
ists an initial state such that the planning problem is solv-
able. This, however, does not tell us anything about which
facts are mandatory preconditions (if any), simply because
more actions can be executed in larger states due to restrict-
ing to positive preconditions.

General Complexity Results
Checking whether a fact is a precondition or effect implies
solving the induced plan existence problem for the respec-
tive compound task, i.e., checking whether there is a so-
lution. The hardness of doing so depends on properties of
the available methods and their tasks. We thus briefly recap
these structural properties.

Deciding arbitrary recursive HTN problems is undecid-
able (Erol, Hendler, and Nau 1996), yet it becomes de-
cidable in EXPTIME when restricting the initial task net-
work and all decomposition methods to total order (Erol,
Hendler, and Nau 1996). EXPTIME-hardness was shown
by Alford, Bercher, and Aha (2015). Erol, Hendler, and Nau
(1996) proved PSPACE-completeness for both totally and
partially ordered regular HTN problems, which are prob-
lems where in each decomposition method there is at most
one compound task, which has to be the last one. A general-
ization thereof was given by Alford et al. (2012), called tail-
recursive problems. Here, task networks may have more than
one compound task, but recursion is only allowed through
the very last task in any task network. In the total order
setting these problems remain PSPACE-complete (Alford,
Bercher, and Aha 2015). Also t.o. acyclic problems were
shown to be PSPACE-complete (Alford, Bercher, and Aha
2015). Remember that all those (deterministic) complexity
classes are closed under complement. This means that de-
ciding whether a problem does not have a solution is as
hard as deciding whether it has a solution. With structural
properties we refer to these properties required for an HTN
planning problem to be considered acyclic, regular, tail-
recursive, or arbitrarily recursive.

With D|c we denote the domain D restricted to all sub-
tasks and their methods contained in some refinement of c,
thereby eliminating all parts irrelevant for c.

Effects
Due to the way in which the respective proofs build upon
each other, we start by investigating possible effects.
Theorem 1. Let D = (F,A,C,M) be a planning do-
main, c ∈ C a compound task, and f ∈ F a fact. Let
Π′ = (D′, s′I , tn′I , g′) be a planning problem, where D|c
and D′ have the same structural properties. Deciding f ∈
poss-eff +

∗ (c) is as hard as (i.e., with matching lower and
upper bounds) deciding whether Π′ has a solution.

Proof. We show membership by transforming the decision
problem f ∈ poss-eff +

∗ (c) for D into a plan existence prob-
lem with the same structural properties as D. Therefore, we
construct a planning problem Π′ = (D′, s′I , tn′I , g′), where
D′ := D, s′I := F \ {f} and g′ = {f}. As we do not con-
sider negative preconditions we know that if there exists a
state (in which f does not hold) in which c is applicable then
c is also applicable in s′I . Thus, it holds f ∈ poss-eff +

∗ (c) if
and only if Π′ is solvable.

Hardness is obvious since deciding whether f is a possi-
ble effect contains the question whether there exists an ex-
ecutable refinement of c in at least one state, i.e., c can be
seen as the initial task of a planning problem.

As a special case we get the same result for one specific
state s by simply using s′I = s instead of s′I = F \ {f} in
the proof assuming that f /∈ s since otherwise f is clearly at
most a postcondition but not an effect.
Corollary 1. Thm. 1 also holds for f ∈ poss-eff +

s (c).

We can also decide f ∈ poss-eff −∗ (c) by adding a further
fact not-f (not-f encodes that f is false) to F and modi-
fying actions in the previous proof. All actions that delete
f additionally add not-f and all actions that add f delete
not-f . Setting the initial state to s′I = F and the goal to
g′ = {not-f } ensures that a plan deletes f .

Corollary 2. Thm. 1 also holds for f ∈ poss-eff −∗ (c) and,
consequently, for f ∈ poss-eff −s (c).
Theorem 2. Let D = (F,A,C,M) be a domain, c ∈ C a
compound task, and f ∈ F a fact. Let Π′ = (D′, s′I , tn′I , g′)
be a planning problem, where D|c and D′ have the same
structural properties mentioned earlier2. Deciding f ∈
eff +
∗ (c) is as hard as (i.e., with matching lower and upper

bounds) deciding whether Π′ has a solution.

Proof. This time we construct two planning problems to
show membership3. Let D = (F,A,C,M) be a planning
domain, c ∈ C a compound task, and f ∈ F a fact. First,
we check whether there actually exists an executable refine-
ment which has f as an effect, which we can do as shown
in the proof of Thm. 1. If the respective planning problem is
not solvable stop with f /∈ eff +

∗ (c). Otherwise, we need to
verify that executing c can never result in a state in which f
does not hold.

Therefore, we construct again a planning problem Π′ =
(D′, s′I , tn′I , g′) with D′ = (V ′, A′, C ′,M ′) := D so that

2For which the plan existence problem lies in a deterministic
complexity class X , where it holds that X = co-X .

we can find out whether the original problem can lead to
a state in which f does not hold, i.e. we check for unsolv-
ability. First set F ′ = F ∪ {not-f }, s′I = F \ {f}, and
set g′ = {not-f }. Then, modify every action a ∈ A′ with
f ∈ add(a) by adding not-f to del(a). Analogously, add
not-f to add(a) if f ∈ del(a). Moreover, we need to guar-
antee that exactly either f or not-f hold in the “initial” state.
This can be encoded by introducing a further compound
task c′ with two methods m1 = (c′, 〈(∅, {f}, ∅)c〉) and
m2 = (c′, 〈(∅, {not-f }, ∅)c〉). So we need to set tn′I = 〈c′〉.
Now, there are two kinds of plans solving the problem Π′

depending on whether m1 or m2 is chosen to decompose c′.
All executable plans resulting from using m1 (which lead
to f holding in the “initial” state) will delete f as not-f
must be added. In all executable plans resulting from de-
composing with m2 either f is never added (although it did
not hold initially) or f is added but deleted later again to en-
sure that not-f holds at the end. Thus, if Π′ is solvable we
get f /∈ eff +

∗ (c) and otherwise f ∈ eff +
∗ (c).

Hardness follows without adjustments to the hardness
proof of Thm. 1.

The case f ∈ eff +
s (c) can be shown again by using tn′I =

〈c〉 and s′I = s∪{not-f } instead of s′I = F \{f} in the last
proof assuming that f /∈ s. For similar reasons as for Cor. 2
the results also hold for the respective negative effects.

Corollary 3. Thm. 2 also holds for f ∈ eff +
s (c), f ∈

eff −s (c), and f ∈ eff −∗ (c).

Finally, we can state the complexity:

Corollary 4. Let c ∈ C and X ∈ {E(c)} ∪ {s | s ∈ 2F }.
Deciding f ∈ eff

+/−
X (c) and f ∈ poss-eff

+/−
X (c) is:

• PSPACE-complete if c is acyclic, regular, or tail-
recursive, and it is

• EXPTIME-complete in general.

Preconditions
Analogously to the effects, the computational complexity of
finding the set of mandatory preconditions of a compound
task is also as hard as the respective planning problem.

Theorem 3. Let D = (F,A,C,M) be a planning domain,
c ∈ C a compound task, s ∈ 2F a state, and f ∈ F a fact.
Let Π′ = (D′, s′I , tn′I , g′) be a planning problem, whereD|c
and D′ have the same structural properties mentioned ear-
lier2. Deciding whether f ∈ prec(c) is as hard as (i.e., with
matching lower and upper bounds) deciding whether Π′ has
a solution.

Proof. Like previously we show membership by transform-
ing the decision problem f ∈ prec(c) for D into two3 plan
existence problems with the same structural properties asD.
Therefore, let D = (F,A,C,M) be the given planning do-
main, c ∈ C a compound task, and f ∈ F a fact. First, we
construct the planning problem Π′ = (D, s′I , tn′I , g′), where
s′I = F \ {f}, tn′I is the task network containing just c and

3Calling two subroutines is valid since we consider only deter-
ministic complexity classes.

g′ = ∅. If Π′ is solvable we know that f /∈ prec(c). Other-
wise, i.e. if Π′ is unsolvable, we need to construct a second
planning problem Π′′ in order to check that Π′ was unsolv-
able because of f being absent from the initial state. So let
Π′′ = (D, s′′I , tn′I , g′) but this time s′′I = F . Now, if Π′′ is
solvable then f ∈ prec(c), otherwise there does not exist
any executable refinement of c, so prec(c) is undefined in
this case.

Hardness: Deciding whether a fact f is included in the set
of preconditions of a compound task involves the question
whether there exists an executable refinement in some state
in which f holds. So there must at least exist an executable
refinement in the state s = F , which needs to be solved by
the respective plan existence problem. Note that taking the
entire set F as initial state does not change the hardness.

There arise two decision problems regarding
executability-enabling preconditions: Deciding whether a
fact f is contained in at least one of those precondition
sets and deciding whether a set of facts is an executability-
enabling precondition. Clearly, the latter is simply the plan
existence problem. For the former, every fact f ∈ F is
contained in at least one executability-enabling precondition
if there exists an executable refinement (due to missing
negative preconditions). Thus:
Proposition 1. Let D = (F,A,C,M) be a domain,
c ∈ C a compound task, and f ∈ F a fact. Let Π′ =
(D′, s′I , tn′I , g′) be a planning problem, where D|c and D′
have the same structural properties. Deciding whether there
exists an executability-enabling precondition exEn(c) ⊆ F
with f ∈ exEn(c) is as hard as (i.e., with matching lower
and upper bounds) deciding whether Π′ has a solution.

In Thms. 2 and 3 we are explicitly restricted to domains
where the plan existence problem lies in a deterministic
complexity class. Here, in Prop. 1, as well as in Thm. 1 this
is not necessary because we perform just a many-one reduc-
tion and do not consider the complement problem.

The last proposition also shows us that deciding whether
there exists an initial state such that a planning domain to-
gether with an initial task network admits a solution is as
hard as the respective plan existence problem where the ini-
tial state is already given, simply by checking whether the
problem with F being the initial state is solvable.
Corollary 5. Let D = (F,A,C,M) be a planning do-
main, tnI a task network and g ⊆ F a goal description.
Moreover, let Π′ = (D′, s′I , tn′I , g′) be a planning problem,
whereD andD′ have the same structural properties. Decid-
ing whether there exists a state sI such that (D, sI , tnI , g)
is solvable is as hard as deciding whether Π′ has a solution.

Again, we sum up the complexity:
Corollary 6. Let c ∈ C. Deciding f ∈ prec(c) and
∃ exEn(c) : f ∈ exEn(c) is:
• PSPACE-complete if c is acyclic, regular, or tail-

recursive, and it is
• EXPTIME-complete in general.

We would like to mention an interesting relationship of
Cor. 4 and Cor. 6 to a recent result about landmarks. Var-
ious kinds of landmarks have been analyzed, one of them

are fact landmarks (Höller and Bercher 2021). Such a land-
mark is a fact that has to be true at some point in every HTN
solution. Thus, our guaranteed effects are clearly landmarks.
Höller and Bercher proved that checking whether a fact (or a
task, or a method) is a landmark of an HTN planning prob-
lem is exactly as hard as checking whether the respective
planning problem has no solution. This is in line with our
results, since the hierarchical restrictions we studied can all
be decided in a deterministic complexity class, where the
complement has the same complexity, so checking for land-
marks is as hard as checking for guaranteed effects in the
total order setting. This shows the close relationship to our
results. However, while guaranteed effects are landmarks,
a landmark must neither be a mandatory precondition nor a
guaranteed effect, since it could also be required or produced
“within” all refinements, but neither hold at its beginning nor
at its end.

Tractable Complexity Results
The main result from the previous section is that, unfortu-
nately, computing preconditions and effects of compound
tasks is as expensive as solving the planning problem in the
first place. To reduce this complexity we investigate novel
problem relaxations resulting in tractable algorithms.

Precondition-Relaxation (Basic Definitions)
We start by providing the necessary definitions for precon-
dition relaxation.

Definition 8 (Precondition Relaxation). Let D =
(F,A,C,M) be a planning domain. Its precondition-
relaxation is the domain D′ = (F,A′, C,M) with A′ =
{(∅, add , del) | (prec, add , del) ∈ A}.
Definition 9 (Effects of Precondition-Relaxed Tasks). LetD
be a planning domain and c ∈ C a compound task. We de-
fine eff ∅+∗ (c), eff ∅−∗ (c), poss-eff ∅+∗ (c) and poss-eff ∅−∗ (c)
as shorthand for eff +

∗ (c), eff −∗ (c), poss-eff +
∗ (c) and

poss-eff −∗ (c) that are based on the precondition-relaxed
variant of D, respectively.

We do not need to differentiate between state-dependent
and state-independent effects when ignoring preconditions,
since all refinements are always applicable. That is, eff ∅+∗ (c)

(eff ∅−∗ (c)) equals eff ∅+s (c) (eff ∅−s (c)) for any s ∈ 2F .
The next theorem is of major importance as it relates the

effects of relaxed problems to the original postconditions.

Theorem 4. Let D = (F,A,C,M) be a domain and
c ∈ C a compound task. Then, eff ∅+∗ (c) ⊆ post+∗ (c) and
eff ∅−∗ (c) ⊆ post−∗ (c) if post+∗ (c) and post−∗ (c) are defined.

Proof. We need to show that every f ∈ eff ∅+∗ (c) (eff ∅−∗ (c))
is also in post+∗ (c) (post−∗ (c)), so we fix some f ∈ F . If
f ∈ eff ∅+∗ (c)∪eff ∅−∗ (c) then for all states s in which the re-
finements of c are executed, f must (in case of f ∈ eff ∅+∗ (c)

– and must not in case of f ∈ eff ∅−∗ (c)) be contained in
the final state produced. In the non-relaxed domain, the set
of executable refinements in these states s can only be a

(not necessarily strict) subset. Thus, also the set of states
resulting from their application is a subset and hence the
guaranteed effect f in the relaxed domain is also one in the
non-relaxed domain, as long as there exists at least one ex-
ecutable refinement, i.e., if post+∗ (c) and post−∗ (c) are not
undefined.

The set of effects of the relaxed tasks might contain facts
that are also mandatory preconditions, so in this case they
are not considered state-independent effects according to
Def. 4. So the property eff ∅+∗ (c) ⊆ eff +

∗ (c) does not hold.
Unfortunately, the last theorem does not apply to possible

effects. This is easy to see because the precondition relax-
ation can make further refinements executable that produce
effects that can not be achieved in the non-relaxed domain.
Proposition 2. Let D = (F,A,C,M) be a planning do-
main and c ∈ C a compound task. Then, poss-eff ∅+∗ (c) ⊇
poss-eff +

∗ (c) and poss-eff ∅−∗ (c) ⊇ poss-eff −∗ (c).
This limits the usefulness of computing precondition-

relaxed possible effects. However, they can still be used to
rule out some of the effects that are simply “mentioned”
in a task’s sub hierarchy. That is, any fact not appearing in
poss-eff ∅+∗ (c) or poss-eff ∅−∗ (c) cannot be a possible effect
in the original domain.

We now investigate checking for preconditions. If we re-
laxed (i.e., removed) the preconditions, similar to Def. 8,
we could not infer them anymore – since they were gone.
So instead we introduce executability-relaxed preconditions,
which ignores preconditions regarding executability and
just looks at all primitive refinements. Note that the two
relaxations are semantically equivalent, so executability-
relaxation (defined next) is just a different formal tool to
express the same idea as for the effects. So we could also
have defined precondition-relaxation (Def. 8) in the same
way as in the following definition, but we decided not to,
because Def. 8 is more intuitive (but just doesn’t work for
identifying certain preconditions as mentioned before).

We regard a fact as precondition if there is an action in
every primitive refinement that requires this fact and none of
the other actions in the same refinement adds it beforehand.
This kind of precondition also resembles the idea behind a
must precondition by Clement, Durfee, and Barrett (2007).
Definition 10 (Executability-Relaxed Precondition). Let
D = (F,A,C,M) be a planning domain and c ∈ C a com-
pound task. We call a fact f an executability-relaxed pre-
condition of c if and only if for all primitive refinements (i.e.,
ignoring executability) 〈a0 . . . an〉 of c there exists an action
ai with f ∈ prec(ai) and there does not exist an action aj
with j < i and f ∈ add(aj), where i, j ∈ {0 . . . n}.
Definition 11. LetD = (F,A,C,M) be a planning domain
and c ∈ C a compound task. Then the set of executability-
relaxed preconditions of c is prec∅(c) := {f ∈ F |
f is an executability-relaxed precondition of c}.

Again, we ensure that this relaxation is of practical use-
fulness as all relaxed preconditions are also preconditions in
the original sense (provided the respective task is solvable at
all, as otherwise its precondition would be undefined).

Theorem 5. Let D = (F,A,C,M) be a planning domain
and c ∈ C a compound task. Then, prec∅(c) ⊆ prec(c) if
prec(c) is not undefined.

Proof. If f ∈ prec∅(c) then we know that in every refine-
ment of c there is an action a with f ∈ prec(a) and no
other action adds f before a is executed. This means f must
hold in a state in which the refinement is executed in order
to be executable at all. Therefore f ∈ prec(c) if there is at
least one executable refinement in some state as otherwise
prec(c) would be undefined.

Note that in some cases prec∅(c) = prec(c) might hold
(just take any problem without preconditions, then the sets
coincide), whereas it does not always as can be seen by
the following example: A compound task c might have two
primitive refinements but only one of them contains an ac-
tion having fact f in its preconditions. So in this case f /∈
prec∅(c). But if the second refinement is not executable, then
f ∈ prec(c).

Investigating the Computational Complexity
We now investigate the computational complexity of com-
puting preconditions and effects in precondition-relaxed
HTN planning (with goal condition). Closely related to this,
de Silva, Sardina, and Padgham (2016, Alg. 1) provided an
algorithm that computes a subset of their must literals for
acyclic domains in polynomial time. They specify reasons
for not being complete – one being not taking precondition
formulae into account – which makes the underlying domain
for which they implicitly compute postconditions closely re-
lated to precondition-relaxed domains. However, they do not
state formal properties of the subset of must literals that can
be found by their algorithm. Clement, Durfee, and Barrett
(2007) provide algorithms to compute pre- and postcondi-
tions of compound tasks for partially ordered temporal but
still acyclic HTN problems in polynomial time. While their
algorithm of extracting them does take the interactions of
preconditions and effects into account, they do not do so to
a full extent. They consider only the immediate methods of
tasks instead of the complete decomposition hierarchy, such
that information about the interplay between preconditions
and effects deeper in the hierarchy gets lost.

We provide proofs describing poly time-bounded pro-
cedures that decide whether a given fact is a (possible
or guaranteed) effect or precondition of a compound task
in a precondition-relaxed HTN domain. It can be used to
compute a complete set of preconditions and effects for a
precondition-relaxed HTN model (by running it for each
fact) thereby generalizing the work by de Silva, Sardina, and
Padgham (2016) and Clement, Durfee, and Barrett (2007) in
that it is provably complete and it works for all t.o. HTN
domains, including cyclic ones.

Effects We begin with checking for possible effects as
they can be used to compute the guaranteed effects.
Theorem 6. Let D = (F,A,C,M) be a planning domain,
c ∈ C, and f ∈ F . Deciding whether f ∈ poss-eff ∅+∗ (c)

(f ∈ poss-eff ∅−∗ (c)) holds can be done in polynomial time.

Proof. Let D = (F,A,C,M) be some planning domain,
D′ = (F ′, A′, C ′,M ′) its precondition-relaxation, c ∈ C
a compound task, and f ∈ F a fact. We will curtail this
domain in several steps such that we can gather our desired
information from the remaining domain.

Primitive tasks that do not affect f can be neglected in
the process of deciding whether f is a possible effect of c.
We construct a new domain D′′ = (F ′′, A′′, C ′′,M ′′) to ac-
count for this. We delete all actions a ∈ A′ except of those
with f ∈ add(a) ∪ del(a) from D′. Furthermore, we set
F ′′ := F ′ ∩ {f}, which includes restricting add(a) and
del(a) for each a ∈ A′′ to add(a) ∩ {f} and del(a) ∩ {f},
respectively. C ′′ = C ′ remains unaffected, but M ′′ differs
from M ′ due to restricting the action set to A′′.

Based on this model our main observation is: If it were
not possible to refine a compound task into an empty task
network, then it would always be the very last task in the
method that determines the outcome of a method, and the
possible outcomes of a compound task would simply be the
union of all outcomes of all its methods. Overall, we could
simply propagate these effects in a bottom-up manner start-
ing with the primitive task networks. However, tasks that can
be refined into empty task networks are more complicated.
So, instead, we need to identify which task could be respon-
sible for adding or deleting f : If the last task of a method
is primitive, the method behaves according to this action’s
effects. Otherwise, there are two cases that we need to con-
sider: (1) It cannot be refined into an empty task network
and thus results into a non-empty primitive plan. (2) It can
be refined into an empty task network (which is likely due to
our task elimination). Case (1) is analogous to the last task
being primitive, as in each sub method there will be a last
task adding an effect. We just have to check all the possibil-
ities. In case (2), however, we need to investigate both the
refinement of the task itself and its predecessor because of
the possible refinement into an empty task sequence.

Therefore, we need to know whether a compound task
can be decomposed into an empty task network ε. We do
so by a simple bottom-up propagation that runs in polyno-
mial time – an adaptation of Alford et al.’s (2014) proce-
dure for deciding TIHTN problems without negative effects
(Thm. 3.1). We start with all methods (c′, tn ′) that have an
empty task network tn ′ = ε and mark their compound task
c′ as admitting an empty refinement. We continue marking
all tasks c′′ as admitting an empty refinement that have a
method (c′′, tn ′′) with a task network tn ′′ that consists only
of compound tasks, which all must admit an empty refine-
ment. We continue doing so until no more propagations are
possible. In the worst case we mark just one compound task
in each iteration resulting into a runtime of O(|M | · |C|).

We can use this information to restrict the method set M ′′
further (to a set M ′′′). Then, we can simply infer the the
possible effects by checking which primitive tasks remain
reachable from c. So, for every method m1 = (c1, tn1 =
〈t1 . . . tn〉) ∈ M ′′ we identify the right-most task ti with
n ≤ i ≤ 1 that is primitive or compound without admit-
ting an empty refinement (if such a ti exists). Then we re-
move all remaining tasks t1 . . . ti−1 from the task network
tn1 as only ti to tn can be responsible for the outcome of the

given method m1 (add the resulting method to M ′′′, also add
methods for which no ti exists). This ensures that every re-
maining primitive task in a task network that can be reached
from c could be the last task of a refinement of c which al-
lows us to infer the possible effects later on. To prove this
claim assume we restricted the set M ′′′ to M ′′′′, where only
methods from M ′′′ reside that are reachable from c (cutting
off some prefixes can result in various tasks becoming un-
reachable). Now let m2 = (c2, tn2 = 〈at̄2〉) ∈ M ′′′′ be
a method with a primitive task. We show that a can be a
last task in some refinement of c. By construction, no tasks
can occur before a, and t̄2 must be a sequence of com-
pound tasks that admit an empty refinement (or they are
ε, i.e., tn2 = 〈a〉). Because m2 is reachable by assump-
tion c2 must be contained in a number of task networks (at
least one) of the form tn3 = 〈t̄31c2t̄32〉 of some method(s)
m3 = (c3, tn3) ∈M ′′′′, where t̄31 and t̄32 are again (possi-
bly empty) sequences of tasks and t̄32 can also be decom-
posed to ε by construction. We can repeat this argument
inductively until we reach a method m = (c, tn), where
w.l.o.g. tn = 〈t̄1c3t̄2〉. Since t̄2 can also be decomposed to
ε, there is a refinement of c with a being its last task.

We can conclude f ∈ poss-eff ∅+∗ (c) (f ∈ poss-eff ∅−∗ (c))
if there is a method in M ′′′′ that contains an action a with
f ∈ add(a) (f ∈ del(a)). All operations (including check-
ing reachability of methods and compound tasks) can clearly
be done in polynomial time, which proves the claim.

Corollary 7. Given a planning domain D = (F,A,C,M)

and a compound task c ∈ C we can decide f ∈ eff ∅+∗ (c)

(f ∈ eff ∅−∗ (c)) in polynomial time.

Proof. It holds f ∈ eff ∅+∗ (c) if and only if (1) f ∈
poss-eff ∅+∗ (c), (2) f /∈ poss-eff ∅−∗ (c), and (3) c does
not admit an empty refinement. Analogously, it holds f ∈
eff ∅−∗ (c) if and only if (1) f ∈ poss-eff ∅−∗ (c), (2) f /∈
poss-eff ∅+∗ (c), and (3) c does not admit an empty refine-
ment. (1) and (2) can be decided in polynomial time (P) ac-
cording to Thm. 6, and checking for an empty refinement is
also in P as outlined in the proof of Thm. 6.

Note that we can use the decision procedures described in
the proofs of Thm. 6 and Cor. 7 to compute a complete set
of possible and guaranteed effects simply by applying them
to all f ∈ F and adding them to the respective effect sets.

Regarding our example in Fig. 1 we illustrate how one
can check whether at(C) is a relaxed positive effect of get-
to(C). First we delete all primitive actions that do not af-
fect at(C), which would be drive(A,B) and drive(B,A).
The two compound tasks get-to(A) and get-to(B) admit an
empty refinement afterwards since the two methods’ task
networks containing only drive(A,B) and drive(B,A), re-
spectively, become empty. However, get-to(C) still does not
admit an empty refinement, as the primitive tasks in the
methods decomposing it are still there. Now we restrict the
method set further (to M ′′′ in the proof of Thm. 6). There-
fore, we delete get-to(A) and get-to(B) from m3 and m4

because the rightmost tasks in those methods’ task networks

are already primitive. We do not need to proceed with the re-
maining methods as we can see that no more task networks
other than those of m1 to m4 are reachable from get-to(C)
now. So we can conclude that indeed at(C) is a possible
and even guaranteed positive relaxed effect since every task
network still reachable from get-to(C) contains an action
adding it.

We can use the described polynomial-time procedure to
find the same effects in the relaxed domain of the running
example as in the original one. As future work it would be
interesting to analyze to which extent this does also hold in
benchmark and real world planning problems.

Preconditions Calculating the set of executability-relaxed
preconditions can be done quite similarly.

Theorem 7. Let D = (F,A,C,M) be a planning domain,
c ∈ C, and f ∈ F . It can be decided in polynomial time
whether f ∈ prec∅(c) holds.

Proof sketch. In contrast to the proof of Thm. 6 we now ana-
lyze the beginning of the refinements whether a primitive ac-
tion adds f before another action requires f as precondition.
By verifying that c does not admit an empty refinement after
deleting all actions a ∈ A except of those with f ∈ prec(a)
we ensure that in every refinement of c there must exist an
action that requires f as precondition. Afterwards we again
take the original domain and delete all actions a ∈ A except
of those with f ∈ prec(a) or f ∈ add(a). Moreover, we
curtail the methods like in the proof of Thm. 6 but instead
of going from right to left we curtail them from left to right.
Then we check whether there exists a method containing a
primitive action adding f that is reachable from c via decom-
position. If not (and only then) f is an executability-relaxed
precondition of c. A more detailed proof can be found in the
appendix.

Conclusion
For totally ordered HTN planning, we provided formal def-
initions for a compound task’s preconditions and effects to
enable reasoning about them. We provided tight complex-
ity bounds for computing these, which are PSPACE- or
EXPTIME-complete depending on the hierarchical decom-
position structure of the respective task. This means com-
puting preconditions and effects is exactly as hard as solv-
ing the respective plan existence problem for the structural
properties analyzed. We introduced executability-relaxation
as a means to compute preconditions and effects in P. The
respective algorithms extend work from the literature in the
sense that they are provably complete and are not restricted
to acyclic HTN models.

Appendix
Full Proof of Thm. 7. Let D = (F,A,C,M) be some plan-
ning domain, c ∈ C a compound task and f ∈ F a fact. In
the previous proof of Thm. 6 we analyzed the refinements of
c in terms of which tasks are the last ones affecting f . Now
we have to look at the beginning of the refinements whether
a primitive action adds f before another action requires f as

precondition. Therefore, we can make use of the same pro-
cedure as described before but instead of looking at methods
from right to left we curtail them from left to right.

We have to verify two things. Firstly, in every refinement
of c there must exist an action that requires f as precon-
dition. Secondly, there must not exist a refinement of c in
which f is added by a primitive task before another action
requires it.

We can check the first by considering the domain D′ =
(F ′, A′, C ′,M ′) that is obtained from D by deleting all ac-
tions a ∈ A except of those with f ∈ prec(a) and setting
F ′ := F ∩{f}, which again includes restricting add(a) and
del(a) for each a ∈ A′ to add(a) ∩ {f}, del(a) ∩ {f} and
prec(a) ∩ {f}, respectively. C ′ = C remains unaffected,
but M ′ differs from M due to restricting the action set to
A′. If c admits an empty refinement in D′ (the procedure is
described in the last proof) we can conclude that there ex-
ists an refinement that does not require f for executability.
In this case f is not an executability-relaxed precondition.

So assume c does not admit an empty refinement in D′.
We construct a new domain D′′ = (F ′′, A′′, C ′′,M ′′). It is
again an adaption of D but this time we delete all actions
a ∈ A except of those with f ∈ prec(a) or f ∈ add(a). The
remaining sets are restricted like before to F ′ := F ∩ {f}
and a ∈ A′′. Like in the proof of Thm. 6 we calculate all
compound tasks that admit an empty refinement. Moreover,
for every method m1 = (c1, tn1 = 〈t1 . . . tn〉) ∈ M ′′ we
identify the left-most task ti with 1 ≤ i ≤ n that is primitive
or compound without admitting an empty refinement (if such
a ti exists) and we remove all remaining tasks ti+1 . . . tn
from the task network tn1. With the same arguments like
before we can conclude that there exists a refinement of c
that contains a primitive task adding f before it is required
by another task if and only if there still exists a method’s
task network in M ′′ containing a primitive action adding f
that is reachable from c via decomposition. Thus, f is an
executability-relaxed precondition of c if and only if no such
method exists.

References
Alford, R.; Bercher, P.; and Aha, D. W. 2015. Tight Bounds
for HTN Planning. In ICAPS, 7–15. AAAI Press.

Alford, R.; Shivashankar, V.; Kuter, U.; and Nau, D. 2012.
HTN Problem Spaces: Structure, Algorithms, Termination.
In SoCS, 2–9. AAAI Press.

Alford, R.; Shivashankar, V.; Kuter, U.; and Nau, D. 2014.
On the Feasibility of Planning Graph Style Heuristics for
HTN Planning. In ICAPS, 2–10. AAAI Press.

Behnke, G.; Höller, D.; Bercher, P.; Biundo, S.; Pellier, D.;
Fiorino, H.; and Alford, R. 2019. Hierarchical Planning in
the IPC. In Proc. of the Workshop on the International Plan-
ning Competition.

Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT –
Totally-Ordered Hierarchical Planning through SAT. In
AAAI, 6110–6118. AAAI Press.

Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on

Hierarchical Planning – One Abstract Idea, Many Concrete
Realizations. In IJCAI, 6267–6275. IJCAI.

Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017. An
Admissible HTN Planning Heuristic. In IJCAI, 480–488.
IJCAI.

Bercher, P.; Höller, D.; Behnke, G.; and Biundo, S. 2016.
More than a Name? On Implications of Preconditions and
Effects of Compound HTN Planning Tasks. In ECAI, 225–
233. IOS Press.

Bit-Monnot, A.; Smith, D. E.; and Do, M. 2016. Delete-
Free Reachability Analysis for Temporal and Hierarchical
Planning. In ECAI, 1698–1699. IOS Press.

Biundo, S.; and Schattenberg, B. 2001. From Abstract Cri-
sis to Concrete Relief (A Preliminary Report on Combining
State Abstraction and HTN Planning). In ECP, 157–168.
AAAI Press.

Clement, B. J.; Durfee, E. H.; and Barrett, A. C. 2007. Ab-
stract Reasoning for Planning and Coordination. Journal of
Artificial Intelligence Research (JAIR) 28: 453–515.

de Silva, L.; Sardina, S.; and Padgham, L. 2009. First Prin-
ciples Planning in BDI Systems. In AAMAS, 1105–1112.
IFAAMAS.

de Silva, L.; Sardina, S.; and Padgham, L. 2016. Summary
Information for Reasoning About Hierarchical Plans. In
ECAI, 1300–1308. IOS Press.

Dvor̆ák, F.; Barták, R.; Bit-Monnot, A.; Ingrand, F.; and
Ghallab, M. 2014. Planning and Acting with Temporal and
Hierarchical Decomposition Models. In ICTAI, 115–121.
IEEE.

Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complexity
results for HTN planning. Annals of Mathematics and AI
(AMAI) 18(1): 69–93.

Geier, T.; and Bercher, P. 2011. On the Decidability of HTN
Planning with Task Insertion. In IJCAI, 1955–1961. AAAI
Press.

Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.

Goldman, R. P. 2009. A Semantics for HTN Methods. In
ICAPS, 146–153. AAAI Press.

Goldman, R. P.; and Kuter, U. 2019. Hierarchical Task Net-
work Planning in Common Lisp: the case of SHOP3. In
Proc. of the 12th European Lisp Symposium (ELS 2019), 73–
80. ACM.

Gopalakrishnan, S.; Muñoz-Avila, H.; and Kuter, U. 2018.
Learning Task Hierarchies Using Statistical Semantics and
Goal Reasoning. AI Communications 31(2): 167–180.

Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020a. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
AAAI, 9883–9891. AAAI Press.

Höller, D.; and Bercher, P. 2021. Landmark Generation in
HTN Planning. In AAAI. AAAI Press.

Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018.
A Generic Method to Guide HTN Progression Search with
Classical Heuristics. In ICAPS, 114–122. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020b.
HTN Planning as Heuristic Progression Search. Journal of
Artificial Intelligence Research (JAIR) 67: 835–880.
Ilghami, O.; Muñoz-Avila, H.; Nau, D. S.; and Aha, D. W.
2005. Learning Approximate Preconditions for Methods in
Hierarchical Plans. In Proc. of the 22nd Int. Conference on
Machine Learning (ICML), 337–344. ACM.
Kambhampati, S.; Mali, A.; and Srivastava, B. 1998. Hybrid
Planning for Partially Hierarchical Domains. In AAAI, 882–
888. AAAI Press.
Lotinac, D.; and Jonsson, A. 2016. Constructing Hierarchi-
cal Task Models Using Invariance Analysis. In ECAI, 1274–
1282. IOS Press.
Marthi, B.; Russell, S.; and Wolfe, J. 2008. Angelic Hierar-
chical Planning: Optimal and Online Algorithms. In ICAPS,
222–231. AAAI Press.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN Planning
System. Journal of Artificial Intelligence Research (JAIR)
20: 379–404.
Schattenberg, B. 2009. Hybrid Planning & Scheduling.
Ph.D. thesis, Ulm University, Germany.
Schreiber, D.; Pellier, D.; and Fiorino, H. 2019. Tree-REX:
SAT-Based Tree Explorationfor Efficient and High-Quality
HTN Planning. In ICAPS, 382–390. AAAI Press.
Thangarajah, J.; and Padgham, L. 2011. Computationally
Effective Reasoning About Goal Interactions. Journal of
Automated Reasoning 47(1): 17–56.
Tsuneto, R.; Hendler, J.; and Nau, D. 1998. Analyzing Ex-
ternal Conditions to Improve the Efficiency of HTN Plan-
ning. In AAAI, 913–920. AAAI Press.
Waisbrot, N.; Kuter, U.; and Könik, T. 2008. Combining
Heuristic Search with Hierarchical Task-Network Planning:
A Preliminary Report. In Proc. of the 21st Int. Florida Ar-
tificial Intelligence Research Society Conference (FLAIRS
2008), 577–578. AAAI Press.
Xiao, Z.; Wan, H.; Zhuo, H. H.; Herzig, A.; Perrussel, L.;
and Chen, P. 2020. Refining HTN Methods via Task Inser-
tion with Preferences. In AAAI, 10009–10016. AAAI Press.
Yang, Q. 1990. Formalizing planning knowledge for hierar-
chical planning. Computational Intelligence 6(1): 12–24.
Yao, Y.; de Silva, L.; and Logan, B. 2016. Reasoning about
the Executability of Goal-Plan Trees. In Proc. of the 4th
Int. Workshop on Engineering Multi-Agent Systems (EMAS
2016), 176–191. Springer.

