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Abstract. Automated reasoning support is an important aspect of logic-based
knowledge representation. The development of specialised procedures and so-
phisticated optimisation techniques significantly improved the performance even
for complex reasoning tasks such as conjunctive query answering. Reasoning and
query answering over knowledge bases with a large number of facts and expres-
sive schemata remains, however, challenging.
We propose a novel approach where the reasoning over assertional knowledge is
split into small, similarly sized work packages to enable a parallelised processing
with tableau algorithms, which are dominantly used for reasoning with more ex-
pressive Description Logics. To retain completeness in the presence of expressive
schemata, we propose a specifically designed cache that allows for controlling
and synchronising the interaction between the constructed partial models. We
further report on encouraging performance improvements for the implementation
of the techniques in the tableau-based reasoning system Konclude.

1 Introduction

Description Logics (DLs) are a family of logic-based representation formalisms that
provide the logical underpinning of the well-known Web Ontology Language (OWL).
The knowledge expressed with DLs is typically separated into terminological (aka
TBox or schema) and assertional knowledge (aka ABox or facts), where the former
describes the relationships between concepts (representing sets of individuals with com-
mon characteristics) as well as roles (specifying the relationships between pairs of in-
dividuals) and the latter asserts these concepts and roles to concrete individuals of the
application domain. Automated reasoning systems derive implicit consequences of the
explicitly stated information, which, for example, allows for detecting modelling er-
rors and for enriching queries by additional answers that are implied by the knowledge.
Expressive DLs, such as SROIQ [16], allow for describing the application domain
in more detail, but require sophisticated reasoning algorithms and are typically more
costly in terms of computational resources. Nevertheless state-of-the-art reasoning sys-
tems (e.g., FaCT++ [34], HermiT [12], Konclude [33], Sequoia [8], or Pellet [27]) are
usually able to handle real-world ontologies, which often also use expressive language
features, due to a large range of developed optimisation techniques (e.g., dependency
directed backtracking [35], absorption [17,30], caching [32], pseudo model merging
[15], or blocking strategies [24]).
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The increasing volume of data in many application domains leads, however, also
to larger amounts of assertional knowledge. For less expressive schemata (where rea-
soning is usually deterministic), the interest in ontology-based data access (OBDA)
led to several advancements, e.g., via query rewriting [5], materialization techniques
[20,21,23], or combined approaches [19,22]. To cope with the reasoning challenges in
the presence of an expressive schema, where reasoning has a high worst-case complex-
ity [18], several techniques have been developed, which often complement each other.
There are, for example, summarisation [3,9] and abstraction techniques [13], which de-
rive consequences for representative individuals and transfer the results to many other
individuals with the same or a similar (syntactical) structure. These techniques do not
necessarily work well for all ontologies, may be limited to certain queries or (fragments
of) DLs, or require expensive computations, e.g., justifications. Several techniques also
reduce reasoning to datalog [1,7,43] since datalog engines are targeted towards data
intensive applications. This reduction, however, often leads to some additional over-
head and, in some cases, it can be necessary to fall back to a fully-fledged DL reasoner,
e.g., for handling non-deterministic features. Other approaches partition the ABox or
extract modules out of it [38] such that each part can be processed independently [37].
Moreover, approaches based on big data principles such as map and reduce have been
proposed [36]. However, they are typically also limited to specific language features
and/or queries and do not work for arbitrary ontologies. In some cases, one can further
rewrite the knowledge base such that the reasoner only has to consider a few assertions
for answering queries [39], but this rewriting introduces additional non-determinism,
which can be problematic for the performance, and presumes that the knowledge base
is consistent. Particularly challenging is the support of conjunctive queries with com-
plex concept atoms or with existential variables that may bind to anonymous individ-
uals, which are only implied by the knowledge base. These features typically make it
difficult to split the ABox upfront in such a way that queries can correctly be answered
without too much data exchange.

Many state-of-the-art reasoners directly integrate techniques that improve ABox
reasoning, e.g., (pseudo) model checking [15] or bulk processing with binary retrieval
[14]. Most reasoners for expressive DLs are based on (variants of) tableau algorithms,
which construct abstractions of models called completion graphs. By caching (parts of)
the completion graph from the initial consistency check, subsequent reasoning tasks and
queries can be answered more efficiently [26,31]. However, constructing and caching
entire completion graphs for knowledge bases with large ABoxes requires significant
amounts of (main) memory, which may be more than what is typically available.

There exist several attempts to parallelise tableau-based systems in order to speed up
reasoning, but they typically focus on parallelism on a higher level. For example, clas-
sification is the reasoning task where we are interested in the subsumption hierarchy of
the (atomic) concepts of an ontology and the reasoner usually has to solve many satisfi-
ability/consistency check in order to determine this hierarchy. Hence, one can compute
several of these satisfiability/consistency checks in parallel (see, e.g., [25,33,42]), but
these techniques are not applicable to all reasoning tasks and do not improve the han-
dling of large ABoxes. Moreover, it has been attempted to directly parallelise the rule
applications for tableau algorithms [40,41], but they are restricted to certain DLs and/or
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do typically not consider all optimisations that are usually required to handle real-world
ontologies. One can even parallelise more specific aspects of tableau algorithms, such
as the non-deterministic branching [11], but this also limits the applicability to certain
ontologies/test cases. Although other reasoning techniques, such as consequence-based
reasoning [4,8], have been extended to very expressive DLs, seem more suitable for par-
allelisation, and have successfully been implemented in practical systems, it is unclear
so far how more sophisticated reasoning task, such as conjunctive query answering, can
efficiently be realised with them.

In this paper, we propose to dynamically split the model construction process for
tableau algorithms. This allows for (i) handling larger ABoxes since not everything
has to be handled at once and for (ii) exploiting parallelisation. The proposed splits
lead to similarly sized work packages that can be processed concurrently without direct
synchronisation. To ensure that the partial models constructed in parallel are “compat-
ible” with each other, we employ a cache where selected consequences for individuals
are stored. For processing new or reprocessing incompatible parts of the knowledge
base, we retrieve cached consequences and ensure with appropriate reuse and expan-
sion strategies that the constructed partial models are eventually compatible with the
cache, such that it can (asynchronously) be updated. Conjunctive query answering is
supported by adapting the expansion criteria and by appropriately splitting the propa-
gation work through the (partial) models for determining query answers.

The paper is organised as follows: Section 2 introduces some preliminaries about
DLs and tableau algorithms; Section 3 describes the cache; Section 4 discusses the
adaptations for query answering and Section 5 presents implementation details and re-
sults of experiments before we conclude in Section 6.

2 Preliminaries

We only give a brief introduction into DLs and reasoning techniques (see, e.g., [2], for
more details).

2.1 Description Logics and Conjunctive Queries

The syntax of DLs is defined using a vocabulary consisting of countably infinite pair-
wise disjoint sets NC of atomic concepts, NR of atomic roles, and NI of individuals. A
role is either atomic or an inverse role r−, r ∈ NR. The syntax and semantics of complex
concepts and axioms are defined in Table 1. Note that we omit the presentation of some
features (e.g., datatypes) and restrictions (e.g., number restrictions may not use “com-
plex roles”, i.e., roles that occur on the right-hand side of role chains or are implied
by such roles) for brevity. A knowledge base/ontology K is a finite set of axioms. One
typically distinguishes terminological axioms in the TBox T (e.g., C v D) and asser-
tions in the ABox A (e.g., C(a)) of K , i.e., K = (T ,A). We use inds(K) to refer to
the individuals of K . An interpretation I = (∆I, ·I) consists of a non-empty domain
∆I and an interpretation function ·I. We say that I satisfies a general concept inclusion
(GCI) C v D, written I |= C v D, if CI ⊆ DI (analogously for other axioms and asser-
tions as shown in Table 1). If I satisfies all axioms of K , I is a model of K and K is
consistent/satisfiable if it has a model.
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Table 1: Core features of SROIQ (#M denotes the cardinality of the set M)
Syntax Semantics

Individuals: individual a aI ∈ ∆I

Roles: atomic role r rI ⊆ ∆I × ∆I

inverse role r− {〈γ, δ〉 | 〈δ, γ〉 ∈ rI}
Concepts: atomic concept A AI ⊆ ∆I

nominal {a} {aI}
top > ∆I

bottom ⊥ ∅

negation ¬C ∆I \CI

conjunction C u D CI ∩ DI

disjunction C t D CI ∪ DI

existential restriction ∃r.C {δ | ∃γ ∈ CI : 〈δ, γ〉 ∈ rI}
universal restriction ∀r.C {δ | 〈δ, γ〉 ∈ rI → γ ∈ CI}
number restriction, ./ ∈ {6 ,>} ./ n r.C {δ | #{〈δ, γ〉 ∈ rI and γ ∈ CI} ./ n}

Axioms: general concept inclusion C v D CI ⊆ DI

role inclusion r v s rI ⊆ sI

role chains r1 ◦ . . . ◦ rn v S rI1 ◦ . . . ◦ rIn ⊆ S I

Assertions: concept assertion C(a) aI ∈ CI

role assertion r(a, b) 〈aI, bI〉 ∈ rI

equality assertion a ≈ b aI = bI

inequality assertion a 0 b aI , bI

A conjunctive query Q(X,Y) consists of a set of query terms q1, . . . , qk, where X
denotes the tuples of answer variables, Y the tuple of existential variables (disjoint to
X), and each qi is either a concept term of the form C(z) or a role term of the form
r(z1, z2) with z, z1, z2 variables from X or Y . Note that we omit the tuple of existential
variables, e.g., by writing Q(X), if they are clear from the context. A Boolean query
Q(〈〉,Y), short Q, is a query without answer variables. To simplify the handling with
inverse roles, we consider r(x, y) ∈ Q as equivalent to r−(y, x) ∈ Q. For an interpretation
I = (∆I, ·I) and a total function π : vars(Q) 7→ ∆I, we say that π is a match for I and
Q if, for every C(z) ∈ Q, π(z) ∈ CI and, for every r(z1, z2) ∈ Q, 〈π(z1), π(z2)〉 ∈ rI. We
say that an n-ary tuple A of the form 〈a1, . . . , an〉 with a1, . . . , an individuals of K is an
answer for Q(〈x1, . . . , xn〉,Y) w.r.t.K if, for every model I = (∆I, ·I) ofK , there exists
a total function π that is a match for I and Q and for which π(xi) = aIi for 1 ≤ i ≤ n.
If a query Q(X,Y) (Q(〈〉,Y)) has an answer (the empty answer 〈〉) w.r.t. K , then we say
that K entails Q and with query answering (query entailment checking) we refer to the
reasoning task that computes all answers (the entailment of the empty answer). W.l.o.g.
we use individual names only in nominal concept terms, i.e., not as constants in query
terms, and we assume that all variables are connected via role terms.

2.2 Tableau Algorithm

Tableau algorithms are dominantly used for reasoning with more expressive DLs and
they decide the consistency of a knowledge baseK by trying to construct an abstraction
of a model for K , a so-called “completion graph”. A completion graph G is a tuple
(V, E,L, ,̇), where each node v ∈ V (edge 〈v,w〉 ∈ E) represents one or more (pairs
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of) individuals. Each node v (edge 〈v,w〉) is labelled with a set of concepts (roles), L(v)
(L(〈v,w〉)), which the individuals represented by v (〈v,w〉) are instances of. The relation
,̇ records inequalities between nodes. We call C ∈ L(v) (r ∈ L(〈v,w〉)) a concept (role)
fact, for which we also use the notation C(v) (r(v,w)). We say a node v is a nominal node
if {a} ∈ L(v) and, otherwise, a blockable node. For r ∈ L(〈v,w〉) and r v∗ s, with v∗ the
reflexive, transitive closure over role inclusions of K (including their inverses), we call
w an s-successor of v and v an s-predecessor of w. A node w is called an s-neighbour of
v if w is an s-successor of v or v an s−-successor of w. We use ancestor and descendant
as the transitive closure of the predecessor and successor relation, respectively. We say
that vn is an implied descendant of v0 if there is a path v0, v1, . . . , vn such that vi+1 is a
successor of vi for 0 ≤ i < n and each v j with j > 0 does not represent an individual of
inds(K). Analogously, w is an implied neighbour of v if w is a neighbour of v and does
not represent an individual of inds(K), i.e., w is blockable or a new nominal node.

The algorithm works by initialising the graph with one nominal node for each indi-
vidual in the input knowledge base and adding concepts and roles to the node and edge
labels as specified by concept and role assertions. For simplicity, we assume that, for
each individual a ∈ inds(K), a nominal {a} is added toL(va). This allows for easily han-
dling inequality and equality assertions, e.g., by adding ¬{b} toL(va) for a 0 b ∈ A and
{b} to L(va) for a ≈ b ∈ A. As a convention, we write va to refer to the node represent-
ing a ∈ inds(K), i.e., {a} ∈ L(va). Note that va and vb can refer to the same node if {a}
and {b} are in its label. Complex concepts are then decomposed using expansion rules of
the tableau algorithm, where each rule application can add new concepts to node labels
and/or new nodes and edges to the completion graph, thereby explicating the structure
of a model. The rules are applied until either the graph is fully expanded (no more rules
are applicable), in which case the graph can be used to construct a model that is a wit-
ness to the consistency of K , or an obvious contradiction (called a clash) is discovered
(e.g., both C and ¬C in a node label), proving that the completion graph does not cor-
respond to a model. K is consistent if the rules (some of which are non-deterministic)
can be applied such that they build a fully expanded, clash-free completion graph. The
infinite generation of new nodes is prevented with cycle detection techniques such as
pairwise blocking [16].

For a concept of the form 6n r.C in the label of a node v, the tableau algorithm has
to ensure that v has at most r-neighbours with C in their label. This is realised by (non-
deterministically) choosing C or ¬C for each r-neighbour and then by merging some
neighbours (if there are more than n). If v is a nominal node and there exists a blockable
r−-predecessor, i.e., an edge to the nominal node was created from a blockable node,
then the tableau algorithm has to fix the number of potential neighbour nodes. This is
realised with a fixed number of new nominal nodes that are added as r-neighbours of
v, i.e., nodes with new nominals in their label that do not yet occur in the completion
graph. In particular, the blockable node could be caused from a cyclic concept such that
identical blockable nodes are repeatedly required. Since these blockable node have to be
merged into the new nominal nodes, pairwise blocking cannot prevent an expansion that
could result in a clash (e.g., if the number of neighbours for a nominal is limited with
an atmost restriction, but a cyclic concept requires an infinite path of certain successors
with links to the nominal). As one can see, new nominals may only be required if inverse
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roles, atmost number restrictions, and nominals are used in certain combinations in the
knowledge base. For SROIQ, there exists an upper bound of potentially required new
nominals [16], which depends on the maximum length of paths of blockable nodes that
can be constructed before they are blocked.

For handling axioms of the form A v C, one typically uses special lazy unfolding
rules in the tableau algorithm, which add the concept C to a node label if it contains
the atomic concept A. Axioms that cannot directly be handled with these lazy unfolding
rules must be internalised, which can be realised by expressing a GCI C v D by > v
¬C t D. Given that > is satisfied at each node, the disjunction is then also added to all
node labels. Since internalisation is quite inefficient, one typically uses a preprocessing
step called absorption. Basically, axioms are rewritten into (possibly several) simpler
concept inclusion axioms such that lazy unfolding rules in the tableau algorithm can
be used and, therefore, internalisation of axioms is often not required, which typically
results in less non-determinism. Absorption algorithms based on binary absorption [17]
allow for and create axioms of the form A1 u A2 v C, whereby also more complex
axioms can be absorbed. This requires the addition of a (binary) unfolding rule that
adds C to node labels if A1 and A2 are present.

3 Caching Individual Derivations

Since tableau-based reasoning algorithms reduce (most) reasoning tasks to consistency
checking, parallelising the completion graph construction has general benefits on the
now ubiquitous multi-core processor systems. Partitioning the ABox upfront such that
no or little interaction is required between the partitions [37] no longer works for ex-
pressive DLs, such as SROIQ, or complex reasoning tasks, such as conjunctive query
answering (with complex concepts and/or existential variables). This is, for example,
due to implied connections between individuals (e.g., due to nominals) or due to the
consideration of new concept expressions at query time. The effect of parallelisation
is further hindered by the multitude of optimisations, required to properly deal with
real-world ontologies, which often introduce dependencies between rules and (parts
of) completion graphs, resulting in the need of data synchronisation. For example, the
anywhere blocking optimisation (cycle detection) [24] investigates all previously con-
structed nodes in the completion graph in order to determine whether a node is blocked.
Hence, a parallelisation approach where a completion graph is modified in parallel can
be difficult to realise since it could require a lot of synchronisation.

For ontologies with large ABoxes, it seems more suitable to build completion graphs
for parts of the ABox separately (by independent threads) and, since independence of
the parts cannot be assumed, to align the results afterwards. Such an alignment can,
however, be non-trivial on several levels: For example, if different non-deterministic
decisions have been made for individuals in overlapping parts or due to technical details
of the often complex data structures for completion graphs, e.g., efficient processing
queues, caching status of node labels, etc.

Our parallelisation approach focuses on aligning completion graphs for ABox parts
and we address the challenges by employing a cache for certain derivations for indi-
viduals, which facilitates the alignment process. For this, consistency checking roughly
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proceeds as follows: We randomly split the ABox into equally sized parts that are dis-
tributed to worker threads. When a thread begins to process one of these ABox parts,
it retrieves stored derivations from the cache for (possibly) affected individuals in that
part. The thread then tries to construct a fully expanded and clash-free local comple-
tion graph for the ABox part by reusing cached derivations and/or by expanding the
processing to individuals until they are “compatible” with the cache. Compatibility re-
quires that the local completion graph is fully expanded as well as clash-free and that
it can be expanded such that it matches the derivations for the remaining individuals in
the cache. If it is required to extend the processing to some “neighbouring” individuals
for achieving compatibility (e.g., if different non-deterministic decisions are required
for the already processed individuals), then also the cached derivations for these indi-
viduals are retrieved and considered. If this process succeeds, the cache is updated with
the new or changed derivations for the processed individuals.

If compatibility cannot be obtained (e.g., due to expansion limitations that ensure
similarly sized work packages), then the cache entries of incompletely handled indi-
viduals are marked such that they are considered later separately. For this, a thread
loads the data for (some) marked individuals and tries to construct a fully expanded
and clash-free completion graph for them until full compatibility is obtained. If clashes
occur that depend on reused (non-deterministic) derivations from the cache, then the
corresponding individuals can be identified such that their expansion can be prioritized
and/or the reuse of their derivations can be avoided. As a result, (in)consistency of the
knowledge base can eventually be detected, as soon as all problematic individuals are
directly expanded and all relevant non-deterministic decisions are investigated together.

The relatively simple structure of the cache is a suitable basis for establishing a
completion graph in parallel as it allows for efficient access and updates. In particular,
asynchronous updates (by marking individuals if derivations do not match) avoid that
threads must be blocked for read and write access. Moreover, the cache entries can be
used as an index to obtain suitable candidates for query answering.

Before describing the different aspects of the approach and the work-flow in more
detail, we define a basic version of the cache and how derivations are stored and used.

Definition 1 (Individual Derivations Cache). Let K be a knowledge base. We use
fclos(K), rols(K), and inds(K) for the sets of concepts, roles, and individuals that can
occur in K or in a completion graph for K . An individual derivations cache C is a
(partial) mapping of individuals from inds(K) to cache entries, where the cache entry
for an individual a ∈ inds(K) consists of:

• KC ⊆ 2fclos(K) and PC ⊆ 2fclos(K): the sets of known and possibly instantiated con-
cepts of a, respectively,

• I ⊆ 2inds(K): the individuals that are (indirectly) connected via nominals to a,
• ∃ : rols(K) → IN0: mapping a role r to the number of existentially derived succes-

sors for a and r, and
• KR : rols(K) → 2inds(K) and PR : rols(K) → 2inds(K): mapping a role r to the sets

of known and possible neighbours of a and r, respectively.

We write KC(a,C), PC(a,C), I(a,C), ∃(a,C), KR(a,C), and PR(a,C) to refer to the in-
dividual parts of the cache entry C(a). We write a ∈ C if C is defined for a.
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If the cache is clear from the context, we write, for example, just KC (a) or KR(a)(r),
where the latter returns the known (deterministically derived) r-neighbours of a. We
use subscripts for the mappings as shortcut for different versions of the cache C. For
example, KR

i (a)(r) refers to the known r-neighbours of a in the (individual deriva-
tions) cache Ci, i.e., to KR(a,Ci)(r). Note that we distinguish between known and
possible information in the cache, which mostly correspond to the deterministically
and non-deterministically derived consequences in completion graphs. The precise ex-
traction and separation of known and possible information from completion graphs
is, however, difficult in some cases. In fact, the set I(a) stands for the individuals for
which the nominal {a} occurred in the label of an implied descendant node, i.e., indi-
viduals with a “nominal dependence”. This nominal dependence information is typ-
ically only collected by propagating one set of (possibly) used nominals to ances-
tors (until the nodes representing individuals are reached) since it is quite rare that
these dependencies are derived deterministically (e.g., due to blocking, where we sim-
ply assume that the node can be expanded analogously with the same nominal de-
pendence). Non-deterministically derived facts in completion graphs can usually be
identified via branching tags for dependency directed backtracking [2,35]. We use the
function detm that takes a set of facts and a completion graph G as input and re-
turns true iff all given facts have been derived deterministically in G. For example,
detm({C(v), r(v,w), v,̇w},G) returns true if C has deterministically been added toL(v),
s deterministically to L(〈v,w〉) for s v∗ r ∈ K , and v,̇w has been derived determinis-
tically. We omit the set notation for single facts and G if the completion graph is clear
from the context.

Let K = (T ,A) be a knowledge base and A j ⊆ A the processed ABox part. In
addition to the usual initialisation of a completion graph G = (V, E,L, ,̇) for K =

(T ,A j), we add KC (a) to L(va) and r to L(〈va, vb〉) if b ∈ KR(a)(r), for each va, vb ∈ V .
If a node v ∈ V exists with {c} ∈ L(v) or ¬{c} ∈ L(v), but vc < V , then we add vc with
{c} ∈ L(vc) to V and initialise vc analogously. Once G is extended into a fully expanded
and clash-free completion graph, we identify the derivations for cache entries for each
individual a with va ∈ V via the following auxiliary functions:

• consk
`(va) = {C ∈ L(va) | detm({C(va), {a}(va)})} ∪ {¬{b} | detm({{a}(va), vb,̇va,

{b}(vb)})}, i.e., the function returns the “subset of the label of va” that corresponds
to deterministically derived concepts;

• consp
` (va) corresponds, analogously to consk

`(va), to the non-deterministically deriv-
able concepts, i.e., consp

` (va) = {C ∈ L(va) | ¬detm({C(va), {a}(va)})} ∪ {¬{b} |
vb,̇va ∧ ¬detm({{a}(va), vb,̇va, {b}(vb)})};

• ind2O(va) = {b | {b} ∈ L(vb)∧ v is an implied descendant of vb ∧ v is a predecessor
of va}, i.e., the function returns the set of individuals that are (possibly indirectly)
connected to va by using nominals;

• #exrolsr(va) = #{v | v is an r-neighbour of va ∧ there is no {o} ∈ L(v) with o ∈
inds(K)}, i.e., the function returns the number of va’s implied r-neighbour nodes
(i.e., neighbours that do only represent anonymous individuals);

• neighbk
r (va) = {b | detm({{a}(va), r(va, vb), {b}(vb)})}, i.e., the function returns the

deterministically derived neighbour individuals for r;
• neighbp

r (va) = {b | vb is an r-neighbour of va ∧ ¬detm({{a}(va), r(va, vb), {b}(vb)})},
i.e., the function identifies the non-deterministically derived neighbours for r;
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These auxiliary functions directly deliver the elements for cache entries in order to up-
date the cache. Updating a cache Ci can be seen as creating a new version Ci+1, where
the processed individuals are mapped to new cache entries with some changed and
some new elements. Since deterministically derived consequences remain valid for all
possible completion graphs, we update corresponding elements by adding the determin-
istically derived consequences (e.g., KC(a,Ci+1) = KC(a,Ci)∪consk

`(va)), whereas non-
deterministically derived consequences may change and, thus, must be replaced (e.g.,
PC(a,Ci+1) = consp

` (va)). Note that previous versions of the cache can be discarded
after the update and, hence, consequences of previously chosen non-deterministic de-
cisions may be lost. The indirectly connected individuals must only be updated for
the processed individuals, i.e., I(a,Ci+1) = (I(a,Ci) \ {a1, . . . , an}) ∪ ind2O(va), where
a1, . . . , an are the processed individuals in the constructed completion graph.

A completion graph for (T ,A j) is compatible with the cache if it can be extended
to a fully expanded and clash-free completion graph for (T ,A1 ∪ . . . ∪ A j), where
A1 ∪ . . . ∪ A j−1 are the previously processed (and cached) ABox parts. As argued
above, this might require the integration and processing of individuals from the cache
during the completion graph expansion. Hence, we define when individuals in the cache
potentially influence or are influenced by the completion graph.

Definition 2 (Cache Influence and Compatibility). Let K = (T ,A) be a knowledge
base, G = (V, E,L, ,̇) a completion graph for (T ,A j) with A j ⊆ A, and va ∈ V. For
an individual derivations cache C (c.f. Def. 1), an individual b ∈ C with vb < V is
potentially influenced by G if

D1 ∀r.C ∈ L(va), b ∈ KR(a)(r) ∪ PR(a)(r), and C < KC (b) ∪ PC (b);
D2 6n r.C ∈ L(va), b ∈ KR(a)(r) ∪ PR(a)(r), and {C,¬C} ∩ (KC (b) ∪ PC (b)) = ∅;
D3 6n r.C ∈ L(va), b ∈ KR(a)(r)∪PR(a)(r), and #[{d | d ∈ KR(c)(r)∪PR(c)(r) with {c} ∈
L(va)} ∪ neighbk

r (va) ∪ neighbp
r (va)] + #exrolsr(va) > n;

D4 b ∈ I(a) and C ∈ L(va),C < KC (a) ∪ PC (a) or 6n r.C ∈ L(va) with ∃(a)(r) > 0; or
D5 {c} ∈ L(va), {c} < KC (a)∪PC (a), a ∈ KR(b)(r)∪PR(b)(r) and c < KR(b)(r)∪PR(b)(r)

or b ∈ KR(a)(s) ∪ PR(a)(s) and b < KR(c)(s) ∪ PR(c)(s).

An individual b ∈ C with vb < V is potentially influencing the completion graph G if
G1 b ∈ PR(a)(r);
G2 b ∈ KR(a)(r), C ∈ PC (a), C < L(va);

G3 b ∈ I(a), C ∈ PC (a), C < L(va); or
G4 {a} ∈ PC (b) or ¬{a} ∈ PC (b);

We say that G is compatible with a cache C if there is no individual b that is potentially
influenced by G or potentially influencing G.

Roughly speaking, an individual is potentially influenced by a completion graph if
integrating it into the completion graph could lead to new consequences being prop-
agated to it. In contrast, an individual potentially influences a completion graph if the
integration of it could result in new consequences for the local completion graph (which
could, for example, result in unsatisfiability).

Most of the conditions for determining influenced individuals are straightforward.
Condition D1 checks whether a universal restriction could propagate a concept to a
neighbour node if it is expanded with the neighbouring information (encoded via KR

and PR) of the cache. Analogously, Condition D2 checks whether the choose-rule of the
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tableau algorithm is applicable, i.e., whether it has to be decided whether the neighbour
is an instance of C or ¬C for an at-most restriction of the form 6n r.C. Complementary
to Condition D2, D3 determines whether some merging of individual neighbours from
the cache could be required for an at-most restriction by counting corresponding neigh-
bours in the completion graph together with the neighbours in the cache. The first part
of Condition D4 checks whether some individual is indirectly connected to a via a nom-
inal in an implied descendant of an individual b and whether the label for a differs to
the consequences in the cache such that new consequences could be propagated to b (or
a descendant of b). The second part handles potential cases where new nominals may
have to be introduced and may influence b or descendants of b. Finally, Condition D5
ensures that neighbours are integrated if individuals are newly merged such that their
neighbour relations in the cache can be updated.

Conditions D1–D4, could, in principle, just be mirrored for determining influencing
individuals. However, the structure of the cache must be kept simple such that updates
are efficient and, hence, not all checks can easily and efficiently be supported. For ex-
ample, every time that the conditions have to be checked for a node in the completion
graph, it would be necessary to iterate through the neighbour individuals in the cache
and to test all their concepts whether there is a universal restriction that could propa-
gate a new concept to the node. Clearly, there is a lot of room for optimisations, but
they seem to require sophisticated data structures. In addition, once the cache entry for
an individual is retrieved, the creation and initialisation of a corresponding node in the
completion graph is of little effort. As a consequence, we use the relatively simple Con-
ditions G1–G4. More precisely, Condition G1 simply checks whether the connection to
a neighbour individual constitutes a possible instance of a role. In addition, if a concept
is missing that has been derived previously for an individual, then Condition G2 iden-
tifies all neighbouring individuals as potentially influencing. In fact, a neighbour could
have a (non-deterministically) derived universal or at-most cardinality restriction that
could propagate consequences to the node in the completion graph. Condition G3 anal-
ogously checks for a potentially influencing individual b that is indirectly connected via
the nominal {a} in the label of an implied descendant of b. Last but not least, Condi-
tion G4 checks for merges and inequality information caused by non-deterministically
derived nominal expressions for other individuals.

The following example, inspired by the well-known UOBM ontology, illustrates
consistency checking with the cache.

Example 1. Suppose an ABox consisting of the two parts:

A1 = { ∀enr−.(∀takes.GC t ∀takes.UGC)(uni), likes(stud, soccer), enr(stud, uni),
∀likes−.SoccerFan(soccer), takes(stud, course)},

A2 = { ∃hc.∃likes.{soccer}(prof), teaches(prof, course),
∀teaches.∀takes−.¬TennisFan(prof), likes(prof, soccer)}.

We abbreviate Undergraduate Course as UGC, Graduate Course as GC, enrolled in
as enr, has child as hc, and student as stud. For checking A1, we initialise a comple-
tion graph with nodes and edges that reflect the individuals and assertions in A1 (cf.
upper part of Figure 1). To satisfy the universal restriction for vsoccer, which encodes
that everyone who likes soccer is a soccer fan, we apply the ∀-rule, which propagates
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vuni
{{uni},∀enr−.(∀takes.GC t ∀takes.UGC)}

vstud

{
{stud}, SoccerFan,∀takes.GC t
∀takes.UGC,∀takes.GC

}
vcourse
{{course},GC}

vsoccer
{{soccer},∀likes−.SoccerFan}

enr takes

likes

uni KC {uni}, ∀enr−.(∀takes.GC t ∀takes.UGC) PC – I –
KR enr− 7→ {stud} PR – ∃ –

stud KC {stud}, SoccerFan,∀takes.GC t ∀takes.UGC PC ∀takes.GC I –
KR enr 7→ {uni}, takes 7→ {course}, likes 7→ {soccer} PR – ∃ –

course KC {course} PC GC I –
KR takes− 7→ {stud} PR – ∃ –

soccer KC {soccer},∀likes−.SoccerFan PC – I –
KR likes− 7→ {stud} PR – ∃ –

Fig. 1: Local completion graph (upper part) and entries of the individual derivations
cache (lower part) for handling ABoxA1 of Example 1

SoccerFan to vstud. Analogously, the universal restriction for the university vuni, which
states that each student enrolled in the university has to take either only graduate or only
undergraduate courses, propagates ∀takes.GC t ∀takes.UGC to vstud. We assume that
the disjunct ∀takes.GC is checked first, i.e., it is non-deterministically added toL(vstud).
Then the concept GC is propagated to vcourse. The completion graph forA1 is now fully
expanded and clash-free. We next extract the data for the cache (as shown in the lower
part of Figure 1).

The completion graph forA2 is analogously initialised (cf. upper part of Figure 2).
For the concept ∃hc.∃likes.{soccer} ∈ L(vprof), stating that the professor prof has a child
that likes soccer, the ∃-rule of the tableau algorithm builds a blockable hc-successor
for vprof with ∃likes.{soccer} in its label, for which another successor is created that is
merged with vsoccer (due to the nominal) leading to the depicted edge to vsoccer. Due
to the universal restriction ∀likes−.SoccerFan in L(vsoccer), SoccerFan is propagated to
v1 and to vprof. For the universal restriction ∀teaches.∀takes−.¬TennisFan ∈ L(vprof),
stating that all students that take a course taught by him/her must not be a tennis fan,
we propagate ∀takes−.¬TennisFan to vcourse. Now, there are no more tableau expansion
rules applicable to the constructed completion graph, but it is not yet compatible with
the cache and we have to integrate (potentially) influenced or influencing individuals.
In fact, course causes two incompatibilities: On the one hand, Condition D1 identifies
stud as (potentially) influenced due to ∀takes−.¬TennisFan ∈ L(vcourse) and because
stud is a takes−-neighbour of course according to the cache (cf. Figure 1). On the other
hand, Condition G2 is satisfied (since GC < L(vcourse) but GC ∈ PC (course)) and,
therefore, the neighbour stud listed in KR(course)(takes−) is identified as potentially
influencing. We integrate stud by creating the node vstud, by adding the concepts {stud}
and ∀takes.GC t ∀takes.UGC from the cache to L(vstud), and by creating an edge to
vcourse labelled with takes as well as an edge to vsoccer labelled with likes. Now, the rule
application for ∀takes−.¬TennisFan ∈ L(course) propagates ¬TennisFan to vstud. In
addition, by reprocessing the disjunction ∀takes.GC t ∀takes.UGC for vstud, we obtain
GC ∈ L(vcourse) if the same disjunct is chosen. As a result, the completion graph is fully
expanded and clash-free w.r.t.A2 and it is compatible with the cache. Hence, the cache
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vstud


{stud}, SoccerFan,

∀takes.GC t ∀takes.UGC,
¬TennisFan,∀takes.GC



vcourse
{{course},∀takes−.¬TennisFan, GC}

vsoccer
{{soccer}, ∀likes−.SoccerFan}

vprof


{prof},∃hc.∃likes.{soccer},
∀teaches.∀takes−.¬TennisFan,

SoccerFan


v1
{∃likes.{soccer}, SoccerFan}

teaches

likes hclikes
likes

takes

uni KC {uni}, ∀enr−.(∀takes.GC t ∀takes.UGC) PC – I –
KR enr− 7→ {stud} PR – ∃ –

stud
KC {stud}, SoccerFan,∀takes.GC t ∀takes.UGC, PC ∀takes.GC I –
¬TennisFan

KR enr 7→ {uni}, takes 7→ {course}, likes 7→ {soccer} PR – ∃ –
course KC {course},∀takes−.¬TennisFan PC GC I –

KR takes− 7→ {stud},teaches− 7→ {prof} PR – ∃ –
soccer KC {soccer},∀likes−.SoccerFan PC – I prof

KR likes− 7→ {stud,prof} PR – ∃ likes− 7→ 1

prof
KC {prof},∃hc.∃likes.{soccer}, PC – I –
∀teaches.∀takes−.¬TennisFan, SoccerFan

KR teaches 7→ {course} PR – ∃ hc 7→ 1

Fig. 2: Local completion graph (upper part, expansions from cache due to incompatibil-
ities in red) and entries of the individual derivations cache (lower part, changes in blue)
for handling ABoxA2 of Example 1

can be updated resulting in the entries depicted in the lower part of Figure 2. Note that
only vuni has not been integrated in the completion graph for A2, but there is usually a
bigger gain for larger ABoxes.

It is clear that the processing of the local completion graph should directly be ex-
tended to (potentially) influenced individuals from the cache. The new consequences
that are likely propagated to them, have to be considered in the model construction pro-
cess and might lead to changed entries in a subsequent cache update. Hence, influenced
individuals should be integrated in the completion graph with a high priority by adding
their known, deterministically derived consequences from the cache. In contrast, the
expansion to (potentially) influencing individuals should usually be delayed since they
can require many additional expansions (until the cause of the non-deterministically
derived consequences is integrated in the local completion graph) and there are other,
more efficient ways to get and integrate these consequences. For example, it might
be possible that the missing consequences are derived locally in other ways and we
can also (non-deterministically) reuse consequences from the cache. Nevertheless, even
just expanding all (potentially) influenced individuals can lead to very large completion
graphs, e.g., if new universal restrictions propagate concepts over complex (transitive)
roles. This can obviously also be problematic for parallelisation since one thread might
be required to access and update all cache entries. In the following, we present several
extensions of the presented approach in order to address these issues and make it more
suitable for parallelisation.
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3.1 Parallelised Work-Flow

To make the described model construction process with the individual derivations cache
well-suited for parallelisation, some minor adjustments and extensions are useful. As
mentioned, our goal is it to handle multiple parts of the ABox in parallel by building lo-
cal completion graphs that are expanded until compatibility with the cache is achieved.
Since the criteria for this depend on non-deterministically derived consequences in
cache entries (which can change through an update), the access of such entries must be
synchronised in order to know or avoid that other threads modify them while they are
used by one thread in the completion graph for guaranteeing compatibility. For example,
if the cache has PC (c) = {A,¬B}, KR(c)(r−) = {a, b}, KR(a)(r) = KR(b)(r) = {c}, and we
process, in parallel, the ABoxes A1 = {(∀r.A t ∀r.B)(a)} and A2 = {(∀r.A t ∀r.B)(b)},
then the thread that handlesA1, say T1, initialises a completion graph and may chose the
disjunct ∀r.A for the node representing a. Since the cache contains A as a possible/non-
deterministic consequence for the individual c, Condition D1 is not satisfied although c
is an r-neighbour of a. Hence, c is not influenced by the completion graph that is con-
structed by T1 and, therefore, it is not required to extend the processing to c. Since the
constructed completion graph can be considered fully expanded and clash-free (w.r.t.
A1), T1 prepares to update the cache. Let us assume that, in the meantime, T2 constructs
a completion graph for A2 and chooses the disjunct ∀r.B for the node representing b.
Since c is influenced by this completion graph, T2 extends the processing to c and now
derives B for the node vc representing c. Since some cached consequences are missing
for vc, the remaining neighbours of c must also be integrated (due to Condition G2), i.e.,
a node for a is initialised and this completion graph can now also be considered fully
expanded and clash-free (regarding A2). Now, if T2 updates the cache first, then we
have PC (c) = {B}, PC (b) = {∀r.B}. If the changes for c are not recognised by T1, then it
would just further update the cache with PC (a) = {∀r.A}, which obviously leaves c in an
inconsistent/problematic state, especially if we have an axiom of the form A v ¬B in the
knowledge base. Consequently, also any read access must be logged and appropriately
considered in cache updates.

It can obviously also be problematic if several threads update different parts of the
cache concurrently since this could also leave the cache in an inconsistent state. Sup-
pose, for example, that the threads T1 and T2 finished the construction of completion
graphs containing nodes for the individuals a and b and that T1 begins modifying the
cache entry for a while thread T2 first modifies the entry for b. After that, they could
both update the entries for the other individuals simultaneously, i.e, T1 could modify
the entry for b and T2 for a, which could also result in an inconsistent state since some
consequences were obtained from the completion graph constructed by T1 and some
from the one constructed by T2. Since the updates can compromise many individuals, it
also does not seem to be a good idea to lock the entire cache or all involved individuals
for each update (where the latter also bears the danger of deadlocks if realised naively).
However, if we want to avoid general locks, then we need to handle cases where up-
dates cannot directly be integrated in case cache entries got changed after they were
retrieved by the updating thread. Although one could reconstruct the local completion
graph with the new information in the cache until an update is possible, this can easily
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be problematic if the completion graphs compromise (many) overlapping individuals,
i.e., individuals that have to be considered in many or all local completion graphs.

To address these issues, we allow some “inconsistency” for cache entries for indi-
viduals, but we mark these entries such that we can reprocess them later. In addition, we
annotate each entry with an update id, which is used in updates to check for modifica-
tions by other threads. Last but not least, we propose to (asynchronously) “outsource”
the cache updates, i.e., threads merely extract updates for the constructed completion
graphs and send these in form of “messages” to a designated thread that integrates these
updates. While these updates are being integrated, the other threads can continue to con-
struct completion graphs for new parts of the ABox. This makes locking individuals or
cache entries unnecessary and further facilitates more sophisticated update mechanisms
(see Section 3.4). In the following, we define the modifications for the cache in more
detail since it is also used by other extensions.

Definition 3 (Cache Inconsistency and Update Ids). LetK be a knowledge base and
inds(K) the individuals that occur inK . We call C an (extended) individual derivations
cache, if the cache entries (as specified in Definition 1) are annotated by an update id
u ∈ IN0. An individual a or its cache entry has an inconsistent state if ⊥ ∈ PC (a).

While building a (local) completion graph, we collect all accessed cache entries
in a separate, initially empty “update cache” U. For example, if we check whether
a ∈ KR(b)(r), then we atomically copy the cache entry for a to the update cache U.
Furthermore, we ensure that all cache entry accesses for the same individual stem from
the same update, e.g., by first trying to retrieve the entry from the update cache. If the
local completion graph is fully expanded and clash-free, then we extract the update data
with the defined auxiliary functions and we replace the corresponding elements in the
entries for the individuals in the update cache. For newly handled individuals, we use
0 for the update id in the newly extracted cache entries. Now, the actual cache can ba-
sically be updated by “merging” the update cache into it, which can be realised by a
separate thread. If the update id for a cache entry is the same, then (most) possible in-
formation is simply replaced and, otherwise, the possible information is merged (known
consequences are always merged) and the inconsistency status flag is set.

Definition 4 (Cache Update). Let K be a knowledge base and C j and U (extended)
individual derivations caches for K . The update of C j with U is an extended cache
C j+1 that contains, for each individual a ∈ C j \ U, C j(a) with the same update id as
annotated with C j(a); for each individual a ∈ U \ C j, U(a) with the update id set to
1; for each individual a ∈ U ∩ C j with update id u for U(a) and u j for C j(a), a cache
entry such that

KC(a,C j+1) = KC(a,C j) ∪ KC(a,U)

PC(a,C j+1) =

PC(a,U) if u = u j

PC(a,C j) ∪ PC(a,U) ∪ {⊥} otherwise

I(a,C j+1) = (I(a,C j) \ {b | b ∈ U}) ∪ I(a,U)
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and for each role r

∃(a,C j+1)(r) =

∃(a,U)(r) if u = u j

max(∃(a,C j)(r),∃(a,U)(r)) otherwise

KR(a,C j+1)(r) = KR(a,C j)(r) ∪ KR(a,U)(r)

PR(a,C j+1)(r) =

PR(a,U)(r) if u = u j

PR(a,C j)(r) ∪ PR(a,U)(r) otherwise

annotated with the update id u j + 1 if the cache entries (modulo their update id) C j+1(a)
andU(a) differ and with u j otherwise.

This asynchronous update procedure requires a few more adaptations to the pro-
cessing work-flow. It is now required to (repeatedly) retrieve inconsistent entries from
the cache and reschedule the corresponding individuals for processing. Since most on-
tologies are consistent, it makes sense to do this after all ABox parts are processed.
Otherwise it may be required to reprocess the same individuals multiple times (if more
and more restrictions from the ABox are being added). To enable parallelisation, one
can split the individuals with inconsistent entries in multiple work packaged that can
be processed by different threads. If the next round of inconsistent entries is retrieved
from the cache (while some threads still try to construct completion graphs), then it has
to be ensured that individuals are not rescheduled while the update from the previous
round has not been integrated. If the inconsistency of cache entries cannot be resolved
even after several reprocessing attempts (e.g., since they have to be used differently
in concurrent completion graph construction processes), then we increase the limit of
individuals that are scheduled to be reprocessed by one thread. In the worst case, one
thread finally reprocesses all individuals with inconsistent cache entries at the same
time and either detects inconsistency of the ontology or extracts an update that resolves
all inconsistent entries.

Note that the update procedure as a whole does not have to be atomic, i.e., we can
simply maintain one cache, where only the entries are (atomically) exchanged through
the integration of updates. Consequently, other threads may access some new and some
old entries for constructing the next completion graphs, but since the access of entries
is recoded through the update id, inconsistent states can be recognised in subsequent
updates.

It is worth discussing that the update procedure can cause some inefficiency for on-
tologies that intensively imply nominals for anonymous individuals due to the “nominal
dependency” encoded with I. In fact, if a nominal {a} occurs in the label of an implied
descendant of an individual b, then the referenced individual a must be integrated and
b must be added to I(a). If the nominal {a} is often implied for blockable nodes, then
the corresponding cache entry for a is regularly updated and, due to parallelisation, it
is likely that the cache entry for a becomes inconsistent, e.g., due to non-matching up-
date ids from accessing different (versions of) cache entries for a. As a consequence, it
would be necessary to eventually reprocess the individual a in a completion graph and
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due to Condition G3 it would be necessary to also integrate all individuals that are de-
pendent on the nominal {a}, i.e., all individuals in I(a), which could be quite many. This
can be addressed by separately managing, for each cache entry, an “integration id” that
encodes, based on the update id, the last required integration of indirectly connected
individuals into a local completion graph. As long as only new indirectly connected
individuals are added to a cache entry and the integration id stays the same (i.e., it is not
required to integrate the indirectly connected individuals into local completion graphs),
we can leave the cache entry in a consistent state even if the update ids do not match.

More precisely, if u is the update id that is associated with the cache entry U(a) in
the update cache U, then we annotate U(a) with an integration id i set to u if it was
necessary to integrate the indirectly connected individuals in the constructed completion
graph (e.g., due to Condition G3 for newly derived concepts for the individual a). If a
is a newly handled individual or it was not necessary to integrate indirectly connected
individuals, then the integration id i forU(a) is set to 0. When the update is integrated
into a new cache 0version C j+1, then the cache entry for a is interpreted inconsistent if
the integration id changed, i.e., i > 0 and i , i j with i j representing the integration id
of the current entry in the cache, i.e., C j(a). If there was no entry for a in C j, then the
integration id is set to 1, i.e., i j+1 = 1 (analogous to the update id). If the integration of
indirectly connected individuals was not necessary for a in the constructed completion
graph that led to the update, i.e., i = 0, then the previous value of the integration id
is kept, i.e., i j+1 = i j. In all cases, the new indirectly connected individuals are added
(I j+1(a) = I j(a) ∪ IU(a)). Even if the update ids do not match (i.e., u , u j), the cache
entry can now be considered consistent if the update does not change the integration id
and all parts, except the indirectly connected individuals, stay the same.

It is further possible to avoid interpreting a cache entry as inconsistent in some
other scenarios. Most notably, as long as only deterministic consequences are derived,
the concepts are the same, and there are no (possibly problematic) at-most restrictions,
then we can simply merge the entries without marking them inconsistent. Note that
typically also other language features are associated with SROIQ that may need more
intensive checks whether the entries possibly have to be considered inconsistent, e.g.,
disjoint roles. Nonetheless, this is very handy for a “preprocessing step”, where a simple
but efficient procedure is used to derive (most) deterministic consequences. Of course,
if such a procedure is possibly incomplete, then the corresponding cache entry for an
individual has to be considered inconsistent, but it nevertheless allows us to avoid the
processing of many “simple parts” of typical knowledge bases with fully-fledged pro-
cedures, such as tableau algorithms.

3.2 (Non-deterministic) Derivations Reuse

The presented influence criteria at the beginning of this section ensure that all individu-
als are expanded that may contribute some non-deterministic consequences to the cur-
rently handled part of the ABox. This is important when many or all non-deterministic
alternatives have to be investigated to check whether there exists a satisfiable solution
of the imposed restrictions or whether the knowledge base is inconsistent. At the same
time, this can easily enforce the reprocessing of many individuals to get the required
consequences for ensuring compatibility with the cache. As an example, let us assume
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that we have the individuals a0, . . . , am in the knowledge base, which form a chain
of instances w.r.t. the role r, i.e., we have r(ai, ai+1) for 0 ≤ i < m, and we have a
concept assertion of the form (A t B)(a0) with A v ∀r.A in the knowledge base. Let
us further assume that we first construct a local completion graph for the ABox part
{(A t B)(a0), r(a0, a1)}, where we (non-deterministically) derive the facts A(va0 ) and
∀r.A(va0 ) for the node va0 representing the individual a0, which are then stored in the
cache. If we now continue with the construction of a completion graph for {r(a1, a2)},
then a0 must be expanded again (due to Condition G2) in order to rederive ∀r.A for
a0. In the worst-case, we process the role assertions in the chain in such an order that,
for each completion graph construction, all previously handled individuals must be ex-
panded again to rederive ∀r.A for these previous individuals. This inefficiency can be
addressed by reusing non-deterministically derived consequences from cache entries,
which is, in principle, quite straightforward. In fact, for a node va, we simply add PC (a)
to L(va) and we add the role r to L(〈va, vb〉) if b ∈ PR(a)(r). If a new individual, say c,
is later integrated into the local completion graph and it is a possible r-neighbour of the
individual a (i.e., c ∈ PR(a)(r)) for which consequences are being reused, then the label
of the edge between these nodes (i.e.,L(〈vc, va〉)) must also be extended by the possible
role instantiation (i.e., r) from the cache entry. It is worth noting that Conditions G1–G4
do not have to be checked for nodes that represent individuals for which consequences
are being reused since the expansion of their potentially influencing individuals would
not lead to new consequences (at least it would be possible to expand the potentially
influencing individuals with the same consequences as stored in the cache). Hence, the
reuse of non-deterministically derived consequences from the cache typically allows us
to establish compatibility much faster and with less individuals that are to be integrated.

We have to be careful, however, how and when to reuse these consequences. By pri-
oritising the reuse of non-deterministic consequences (e.g., by adding PC (a) as soon as
we create a node for a), the thread would directly try to build a local completion graph
that is compatible with the cache without expanding many nodes. This can be inefficient
if the restrictions in the local completion graph require a lot of processing (e.g., due to
a hard combinatorial problem encoded with these restrictions) and lead to clashes with
the reused consequences. If the clashed facts are analysed and (dependency directed)
backtracking is applied, i.e., the relevant non-deterministic decisions are identified, then
it can be learned that reusing the consequences of corresponding cache entries should be
avoided. As a consequence, the local completion graph would further be expanded and
the thread may try to (non-deterministically) reuse consequences of other individuals.
Due to the backtracking, it would be required to reprocess the restrictions of the local
completion graph and this may have to be repeated many times until it has been learned
for all possibly influencing individuals that their (non-deterministic) consequences are
causing clashes for the newly handled part of the ABox. In contrast, if the reuse of
(non-deterministic) consequences is delayed (i.e., the application of non-deterministic
rules for already present concepts in the local completion graphs is prioritised), then it
would be required to expand so far as the (non-deterministic) consequences of influ-
encing individuals do not disturb the found solution for the already present restrictions
in the local completion graph. Consequently, a lot of expansion to potentially influenc-
ing individuals could be required again. A compromise between both strategies clearly

17



makes sense, where we first try to find a local solution for the reused consequences
(such that only a few expansion are required) and, if this fails, then our priority is to
find a solution of the local restrictions and reuse only those consequences that do not
contradict with the found solution.

To implement the idea of the proposed compromise, we can create two branches
of the completion graph (before the first reuse and the first non-deterministic decision),
where the first branch corresponds to the case where the reuse of non-deterministic con-
sequences is prioritised and which is processed first. If this first “fixed-reuse” branch
fails (i.e., all non-deterministic decisions only results in clashes), then the second branch
is attempted, where one tries to reuse non-deterministic consequences once and, if this
leads to a clash, one simply further expands (and may try to reuse only consequences of
other individuals). For this second ”prioritised-reuse” branch, the expansion and reuse
is delayed until all restrictions and facts in the existing completion graph are fully pro-
cessed, i.e., the expansion and the reuse are processed with a low priority. Moreover, if
the “fixed-reuse” branch only leads to clashes, we identify the involved individuals for
which consequences have been reused and mark these individuals or their cache entries
problematic. Problematic individuals or their problematic cache entries can then be used
to handle them more carefully, e.g., by expanding to them first (since it is “more likely”
that they cause problems) and/or avoiding the reuse of their consequences (since they
“probably” lead to clashes). Note that the problematic individuals/cache entries should
be reported to the cache such that it can reorder neighbours with the next update. For
this, we can extend the cache to keep an order among the recorded neighbouring indi-
viduals (e.g., for KR and PR). This allows for prioritising problematic individuals such
that they are expanded first. Also note that it is a good idea to identify all involved in-
dividuals of clashes (not only those for which consequences are reused) such that the
causes of clashes can more easily be found. This can be realised with a precise depen-
dency tracking between facts in completion graphs [32], where the causes of facts are
stored, i.e., for each fact it is stored which other facts are its cause. If a clash occurs, then
one simply tracks back the involved facts to their causes and identifies all individuals to
which these facts belong.

For the update extraction, we have to consider that possible neighbour individuals
are not identified by the neighb function if these individuals are not integrated into
the local completion graph and that the cache usually just “replaces” the possible/non-
deterministic information. Hence, if we reuse the possible consequences of an individ-
ual a, which has a possible r-neighbour b w.r.t. the cache that may not be integrated into
the local completion graph due to the non-deterministic reuse, then we have to extend
the possible neighbours extracted with neighb by b for the role r in order to get a correct
cache update.

Example 2 (Example 1 continued). Let us assume that we have now, in addition to part
1 and 2 of Example 1, the ABox partA3 consisting of the axioms

∀likes−.FootballFan(football), ¬SoccerFan(stud2), takes(stud2, course),
enr(stud2, uni), and likes(stud2, football).

Some of the assertions (e.g., around the individual football) mainly become relevant
in the continuation of this example (Example 3), whereas here, we first focus on the

18



vuni
{
{uni},∀enr−.(∀takes.GCt

∀takes.UGC)

}
vstud2


{stud2},¬SoccerFan,FootballFan,
∀takes.GC t ∀takes.UGC,
¬TennisFan,∀takes.GC



vcourse
{{course},∀takes−.¬TennisFan,GC,UGC}

vfootball
{{football},∀likes−.FootballFan}

enrtakes

likes

uni KC {uni}, ∀enr−.(∀takes.GC t ∀takes.UGC) PC – I –
KR enr− 7→ {stud,stud2} PR – ∃ –

stud
KC {stud}, SoccerFan,∀takes.GC t ∀takes.UGC, PC ∀takes.GC I –
¬TennisFan

KR enr 7→ {uni}, takes 7→ {course}, likes 7→ {soccer} PR – ∃ –
course KC {course},∀takes−.¬TennisFan PC GC,UGC I –

KR takes− 7→ {stud,stud2}, teaches− 7→ {prof} PR – ∃ –
soccer KC {soccer},∀likes−.SoccerFan PC – I prof

KR likes− 7→ {stud, prof} PR – ∃ likes− 7→ 1

prof
KC {prof},∃hc.∃likes.{soccer}, PC – I –
∀teaches.∀takes−.¬TennisFan, SoccerFan

KR teaches 7→ {course} PR – ∃ hc 7→ 1

stud2
KC {stud2},¬SoccerFan,FootballFan, PC ∀takes.UGC I –
∀takes.GC t ∀takes.UGC,¬TennisFan

KR enr 7→ {uni}, takes 7→ {course}, likes 7→ {football} PR – ∃ –
football KC {football},∀likes−.FootballFan PC – I –

KR likes− 7→ {stud2} PR – ∃ –

Fig. 3: Local completion graph with non-deterministically reused consequences (upper
part) and the obtained individual derivations cache (lower part, changes in blue) for
handling ABoxA3 of Example 2

aspects of reusing cached non-deterministic derivations. As usual, we initialise a local
completion graph by creating nodes for the individuals stud2, course, uni, and football
that occur inA3, for which then the concepts and roles from assertions and from deter-
ministic/known elements of cache entries are added to node and edge labels (cf. upper
part of Figure 3). Since the cache entry for course is consistent (i.e., ⊥ < PC (course)),
we can further reuse the non-deterministically derived/possible consequences of course,
i.e., we create two branches and add PC (course) to L(vcourse) for the first “fixed-reuse”
branch. If these possible consequences were not reused, then it would again be neces-
sary to expand to the individual stud (due to Condition G2) such that the disjunction
that caused the missing consequence can be processed. Since the student stud2 is en-
rolled in the university uni, the disjunction ∀takes.GCt∀takes.UGC is also propagated
to vstud2 and must be processed there. Let us assume that the tableau algorithm adds
here the second disjunct such that UGC is propagated to vcourse, which is, however, not
problematic since a course can be a graduate as well as an undergraduate course (in our
model). Hence, the fixed-reuse branch is satisfiable and we can update the cache with
the extracted data (cf. lower part of Figure 3).

If the knowledge base were to contain the axiom UGC v ¬GC and the asser-
tions takes(stud2, course2) as well as ¬GC(course2) were in A3, then the fixed-reuse
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branch would not be satisfiable. In fact, if the tableau algorithm was to try the disjunct
∀takes.GC for stud2, then we would obtain a clash for course2 (since there would be
GC and ¬GC), and, for the disjunct ∀takes.UGC, we would obtain a clash for course
(since we would have GC and UGC in the label of course2, which is not permitted by
the axiom UGC v ¬GC). By tracing back the causes of the clashes, we would identify
the individuals stud2, course2, and course as problematic, i.e., we would prioritise their
expansion/processing in future completion graphs such that clashes could be discov-
ered faster. Since the fixed-reuse branch would be unsatisfiable, we would try to build
the completion graph with the prioritised-reuse branch, where first the local completion
graph is entirely processed (i.e., the disjunct ∀takes.UGC would be added) and then
we would expand the processing to the individual stud (since GC would be missing
for course). Again, the algorithm would try to also reuse possible consequences for
stud, which would propagate GC to vcourse and, thus, would again result in a clash. For
the prioritised-reuse branch, we would then backtrack and avoid the non-deterministic
reuse also for stud such that the disjunction could be satisfied by adding the disjunct
∀takes.UGC, which would result in a fully expanded and clash-free completion graph
forA3 (extended by takes(stud2, course2) and ¬GC(course2)).

3.3 Restricting Processing

If nodes for individuals have the same consequences as the cache entries of these in-
dividuals (and the cache entries are consistent), then it can be possible to restrict the
processing of these nodes and their descendants. In fact, it could already be clear that
these nodes can be expanded as before such that they yield the same consequences as
stored in the cache.

Definition 5 (Cached Expansion Blocked). Let G = (V, E,L, ,̇) be a completion
graph for a knowledge base K and C the individual derivations cache. A node va ∈ V
is cached expansion blocked if the cache entry for a is consistent and

B1 L(va) = KC (a) ∪ PC (a),
B2 there is no vb ∈ V such that b ∈ PR(a)(r) and r < L(〈va, vb〉)
B3 for each 6 n r.C ∈ L(va), ∃(a)(r) + #exrolsr(va) > 0, and #{KR(a)(r) ∪ PR(a)(r) ∪

neighbp
r (va)} + ∃(a)(r) + #exrolsr(va) ≤ n;

B4 a is not potentially influenced due to Condition D4 and is not potentially influencing
due to Condition G3.

As long as a node is cached expansion blocked, then it is not necessary to apply gen-
erating tableau rules for the concepts in its label, i.e., we do not have to generate new
successors with the ∃- or with the >-rule. The ∀-rule for universal restrictions must,
however, still be applied to propagate the qualified concept to new neighbours. As long
as the node is cached expansion blocked, the 6-rule is not applicable for an at-most re-
striction of the form 6n r.C since Condition B3 ensures that the number of appropriate
successors is less than n. Note that even nodes for individuals that are used as nominals
can be cached expansion blocked as long as Conditions D4 and G3 are not satisfied,
i.e., they only propagate the same consequences to new blockable predecessors.
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The processing restriction is particularly useful in combination with a (non-deter-
ministic) reuse of consequences from the cache. In fact, by reusing (non-deterministic)
consequences, the nodes are often directly cache expansion blocked and the tableau
algorithm can focus on applying rules for the newly handled part of the ABox. Anal-
ogously to the update extraction with reused consequences, we may have to integrate
some data from the used cache entry for the update. In particular, the #exrols function
may not return the correct number of potentially existing successors, but by adding the
values from the mapping ∃ of the corresponding cache entry, we can ensure a correct
upper bound.

3.4 Propagation Expansion Cut

The model construction work-flow with the individual derivations cache allows for
splitting the ABox in many small parts that are well-suited for a parallelised processing.
However, it is not guaranteed that each work package (consisting of a small part of the
ABox or some individuals with inconsistent cache entries) requires a similar amount
of work, which can be problematic for parallelisation. Clearly, it is generally difficult
to avoid any imbalance since there could be a hard combinatorial problem encoded for
a few individuals, whereas the remaining individuals only imply some trivial conse-
quences. It is, nevertheless, desirable to have a limit on the number of individuals to
which the local completion graph can be expanded such that it is less likely to have a
work imbalance, where one thread has to do much more work than the others. For exam-
ple, a universal restriction of the form ∀t.C for a transitive role t is typically “unfolded”
to ∀t.F and F v C u ∀t.F (with F a fresh atomic concept). If the universal restric-
tion is derived for an individual, then the concepts F and C must be propagated to all
nodes in the transitive closure for this individual w.r.t. t, which can obviously be many
or even all individuals of the knowledge base. Hence, if one thread derives such a uni-
versal restriction for an individual with a large transitive closure, then all individuals in
the transitive closure are step-by-step identified as “influenced” (due to Condition D1)
and are expanded in the same completion graph, which eventually leads to one large
update. Other causes that could require an expansion to many individuals are, for ex-
ample, propagations over highly connected individuals or merges with these. Besides
the fact that a required expansion to many individuals could lead to an imbalanced work
distribution, it can also make it much more problematic to process such ontologies with
ordinary/commodity machines that only provide a limited amount of main memory. In
fact, the construction of large completion graphs that involve many individuals usu-
ally requires a significant amount of memory since many processing details must be
stored (e.g., processing queues, branching tags for dependency directed backtracking,
caching status, etc.). In the worst case scenario, each thread could be required to ex-
pand the processing to all individuals at the same time, i.e., the parallelisation could
even multiply the memory requirements by the number of parallel working threads. In
contrast, the data of the individual derivations cache is significantly reduced and has a
simpler structure such that it can more easily be compressed or even outsourced into a
database. Hence, by introducing ways for limiting the required expansion, we not only
ensure a more balanced parallelisation, but also reduce the memory requirements for
the processing of (large) ontologies.
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Since the (extended) individual derivations cache can already mark cache entries
as inconsistent such that they have to be reprocessed later (see Section 3.1), we could
simply stop the processing of individuals if we reach an expansion limit and mark the
cache entries for these individuals in the update cache inconsistent. Unfortunately, this
does only solve the issue to some extend. In fact, for highly connected individuals, i.e.,
individuals with many neighbours, it is either required to expand to all neighbours such
that their cache entries can be marked inconsistent of we can directly mark the cache
entry of the highly connected individual inconsistent, but then it would be required
to expand to all neighbours when the individual is reprocessed to solve the inconsistent
state. Due to nominals, we can easily get such highly connected individuals even if there
are no explicit role assertions in the ontology that often involve the same individuals.

As a remedy, one can make the update process slightly more sophisticated such
that the correct handling is ensured by the designated thread that integrates the update.
Roughly speaking, if the expansion limit is reached, then the current iterator over the to
be expanded neighbours for an individual is stored in the update. In addition, also other
iterators for neighbouring individuals (to which an expansion is required) are added
to the update even if they are still pointing to the first element, i.e., the iteration has
not started. It must, however, be ensured that links between the integrated individuals
are created in the local completion graph, which is, for example, possible by checking
for all “propagation cut” individuals (i.e., individuals with unfinished iterators over to
be expanded neighbours) whether a link has to be created for the individuals that are
already in the completion graph. Now, while integrating the update, we use these it-
erators to find all individuals to which an expansion was required (but which were not
integrated in the completion graph) and mark their cache entries as inconsistent. In addi-
tion, we add the propagation cut individuals as possible neighbour for an artificial/fresh
role (e.g., PR(a)(s) = b if b is the propagation cut individual, a the expansion required
individual, and s the artificial role), which can be used in the reprocessing for (quickly)
determining from which individuals consequences still have to be propagated.

The propagation cuts allow, in combination with the proposed reuse of non-determi-
nistically derived consequences (cf. Section 3.2), for limiting the number of individuals
that may have to be integrated in local completion graphs while still being able to detect
inconsistencies (as long as the number of individuals that are involved in the clashes are
within this limit). This is illustrated with the following example.

Example 3 (Example 2 continued). Let us assume that we have now, in addition to part
1, 2, and 3 of Example 1 and Example 2, the ABox partA4 consisting of the axioms

∀likes−.TennisFan(tennis), 62 likes.>(studx), likes(studx, football),
likes(studx, soccer), likes(studx, tennis),

and several other students, say stud3, . . . , studm, that only like the activity football in
order to keep the example simple. We further assume that stud3, . . . , studm are already
processed, i.e., we have cache entries of the form KR(studi)(likes) = {football} and
KC (studi) = {{studi}, FootballFan} for 3 ≤ i ≤ m as well as KR(football)(likes) =

{stud2, . . . , studm}. Due to the statement that student studx has at-most 2 hobbies (en-
coded with 6 2 likes.>(studx)), the tableau algorithm has to merge two activities of
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{studx},62 likes.>,

SoccerFan,FootballFan,
TennisFan

 vstudx

{{stud3},FootballFan,TennisFan}
vstud3 ... vstudn

{. . .}

{{soccer},∀likes−.SoccerFan}
vsoccer vtennis,football

{
{tennis},∀likes−.TennisFan,
{football},∀likes−.FootballFan

}likes likes likes

uni
KC {uni}, ∀enr−.(∀takes.GC t ∀takes.UGC) PC –
KR enr− 7→ {stud, stud2} PR –
I – ∃ –

stud
KC {stud}, SoccerFan,∀takes.GC t ∀takes.UGC, PC ∀takes.GC
¬TennisFan

KR enr 7→ {uni}, takes 7→ {course}, likes 7→ {soccer} PR –
I – ∃ –

course
KC {course},∀takes−.¬TennisFan PC GC,UGC
KR takes− 7→ {stud, stud2}, teaches− 7→ {prof} PR –
I – ∃ –

soccer
KC {soccer},∀likes−.SoccerFan PC –
KR likes− 7→ {stud, prof,studx} PR –
I prof ∃ likes− 7→ 1

prof
KC {prof},∃hc.∃likes.{soccer}, PC –
∀teaches.∀takes−.¬TennisFan, SoccerFan

KR teaches 7→ {course} PR –
I – ∃ hc 7→ 1

stud2

KC {stud2},¬SoccerFan,FootballFan, PC ∀takes.UGC,⊥
∀takes.GC t ∀takes.UGC,¬TennisFan

KR enr 7→ {uni}, takes 7→ {course}, likes 7→ {football} PR t 7→ {football}
I – ∃ –

football
KC {football},∀likes−.FootballFan PC {tennis},∀likes−.TennisFan
KR likes− 7→ {stud3, . . . , studm, stud2,studx} PR –
I – ∃ –

stud3
KC {stud3},FootballFan PC TennisFan
KR likes 7→ {football} PR likes 7→ {tennis}
I – ∃ –

. . . . . . . . . . . . . . .

studn
KC {studn},FootballFan PC TennisFan
KR likes 7→ {football} PR likes 7→ {tennis}
I – ∃ –

studn+1
KC {studn+1},FootballFan PC ⊥
KR likes 7→ {football} PR t 7→ {football}
I – ∃ –

. . . . . . . . . . . . . . .

studm
KC {studm},FootballFan PC ⊥
KR likes 7→ {football} PR t 7→ {football}
I – ∃ –

tennis
KC {tennis},∀likes−.TennisFan PC {football},∀likes−.FootballFan
KR likes− 7→ {studx} PR likes− 7→ {stud3, . . . , studn}
I – ∃ –

studx
KC {studx}, SoccerFan,TennisFan,FootballFan PC –
KR likes 7→ {soccer, tennis, football} PR –
I – ∃ –

Fig. 4: Local completion graph with a propagation cut (upper part) and the obtained
individual derivations cache (lower part, changes in blue) for handling ABox A4 of
Example 3

studx, i.e., two of the three nodes vfootball, vsoccer, vtennis must (non-deterministically) be

23



merged together. This would obviously result in clashes since we derived for stud2 that
he/she likes football, but is neither a soccer fan nor a tennis fan (preventing that vfootball

is merged with vtennis or vsoccer), and for stud that he/she is also not a tennis fan, but
likes soccer (preventing that vtennis is merged with vsoccer). Consequently, the activities
cannot be merged and the knowledge base is inconsistent, which is, however, quite dif-
ficult to detect if we have many students (which may like different activities) and if we
want to limit the expansion, i.e., by only processing a limited number of individuals
in completion graphs. For example, let us assume that the tableau algorithm tries to
merge the node vfootball into vtennis (cf. upper part of Figure 4), which yields a node that
has ∀likes−.TennisFan as well as ∀likes−.FootballFan in its label. As a consequence, we
identify all likes−-neighbours of tennis as influenced if it is not stored in the cache that
FootballFan has been derived for them (due to Condition D1). Analogously, all likes−-
neighbours of football must be considered influenced if the cache does not contain
TennisFan for them. (Due to Condition D5, we must also integrate all likes−-neighbours
of tennis and football if they are not already likes−-neighbours of both activities such
that the neighbour relation can be updated correctly. In our example, however, these
are exactly those individuals that are already identified as influenced by Condition D1.)
Since there can be a lot of students that do not have both activities as hobbies, this can
easily exceed the limitations of the currently handled model construction process (e.g.,
due to memory constraints). With the propagation cut technique, we would use iterators
over lists of individuals that require integration and would process as many of these
individuals as possible until the expansion limit is reached. For example, let us assume
that the likes−-neighbour iterator for football first returns stud3 for which we have not
yet derived that he/she likes tennis. Consequently, it is required to integrate stud3 such
that also TennisFan can be propagated to it. The integration of influenced individuals
from the iterator is continued until we reach the limit, which could, for example, be
studn with n << m, i.e., studn is the last individual that is integrated and processed in
the local completion graph. After that, the completion graph is considered processed
and we send the update and the remaining iterators (or their positions) to the thread
that manages the cache. The update is integrated as usual, but the updating thread also
iterates over the remaining neighbours (or other lists of potentially influenced individ-
uals) and makes their cache entries inconsistent, i.e., we add ⊥ to PC (studi) for each
studi with i > n referred to by the remaining iterators if studi has not been integrated
in the local completion graph. In addition, we add a possible neighbour relation for an
artificial role, say t, to the individual from which the iterator stems (i.e., the individual
for which the propagation has been cut), such that we know that consequences from
the referenced individual are missing when we start the reprocessing for it. If studi is
an individual that is referred to by a remaining iterator (that has not been integrated in
the local completion graph) and football is the individual for which the propagation has
been cut, then we add football to PR(studi)(t). As a result, we obtain the cache entries
that are depicted in the lower part of Figure 4.

For the next reprocessing phase, we retrieve some individuals with an inconsistent
state from the cache, say studn+1, . . . , studo with o < m, and we try to build a fully
expanded and clash-free completion graph for them (cf. upper part of Figure 5). Since
these individuals have an inconsistent state, we cannot reuse possible consequences for
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{{studn+1},FootballFan,TennisFan, }
vstudn+1

... {{studo},FootballFan,TennisFan, }
vstudo

vtennis,football

{
{tennis},∀likes−.TennisFan,
{football},∀likes−.FootballFan

}likes likes

uni
KC {uni}, ∀enr−.(∀takes.GC t ∀takes.UGC) PC –
KR enr− 7→ {stud, stud2} PR –
I – ∃ –

stud
KC {stud}, SoccerFan,∀takes.GC t ∀takes.UGC, PC ∀takes.GC
¬TennisFan

KR enr 7→ {uni}, takes 7→ {course}, likes 7→ {soccer} PR –
I – ∃ –

course
KC {course},∀takes−.¬TennisFan PC GC,UGC
KR takes− 7→ {stud, stud2}, teaches− 7→ {prof} PR –
I – ∃ –

soccer
KC {soccer},∀likes−.SoccerFan PC –
KR likes− 7→ {stud, prof, studx} PR –
I prof ∃ likes− 7→ 1

prof
KC {prof},∃hc.∃likes.{soccer}, PC –
∀teaches.∀takes−.¬TennisFan, SoccerFan

KR teaches 7→ {course} PR –
I – ∃ hc 7→ 1

stud2

KC {stud2},¬SoccerFan,FootballFan, PC ∀takes.UGC,⊥
∀takes.GC t ∀takes.UGC,¬TennisFan

KR enr 7→ {uni}, takes 7→ {course}, likes 7→ {football} PR t 7→ {football}
I – ∃ –

football
KC {football},∀likes−.FootballFan PC {tennis},∀likes−.TennisFan
KR likes− 7→ {stud3, . . . , studm, stud2, studx} PR –
I – ∃ –

stud3
KC {stud3},FootballFan PC TennisFan
KR likes 7→ {football} PR likes 7→ {tennis}
I – ∃ –

. . . . . . . . . . . . . . .

studn
KC {studn},FootballFan PC TennisFan
KR likes 7→ {football} PR likes 7→ {tennis}
I – ∃ –

studn+1
KC {studn+1},FootballFan PC TennisFan
KR likes 7→ {football} PR likes 7→ {tennis}
I – ∃ –

. . . . . . . . . . . . . . .

studo
KC {studo},FootballFan PC TennisFan
KR likes 7→ {football} PR likes 7→ {tennis}
I – ∃ –

studo+1
KC {studo},FootballFan PC ⊥
KR likes 7→ {football} PR t 7→ {football}
I – ∃ –

. . . . . . . . . . . . . . .

studm
KC {studm},FootballFan PC ⊥
KR likes 7→ {football} PR t 7→ {football}
I – ∃ –

tennis
KC {tennis},∀likes−.TennisFan PC {football},∀likes−.FootballFan
KR likes− 7→ {studx} PR likes− 7→ {stud3, . . . , studn}
I – ∃ –

studx
KC {studx}, SoccerFan,TennisFan,FootballFan PC –
KR likes 7→ {soccer, tennis, football} PR –
I – ∃ –

Fig. 5: Local completion graph (upper part) and the obtained individual derivations
cache (lower part, changes in blue) for the first reprocessing step from Example 3
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them. Due to the possible neighbour relation to football for the artificial role t, we know
that we have to expand to football to get all consequences. Since football and tennis
have consistent states, we can reuse their consequences, i.e., we (non-deterministically)
add the possible consequences from the cache in the fixed-reuse branch, for which these
nodes are merged together. Now, we can basically continue to propagate FootballFan
or TennisFan to those students that could not be handled in the previous parts due to
the expansion limit. After processing the completion graph, we can update the cache,
which results in the entries depicted in the lower part of Figure 5. Note that the cache
entries for studn+1, . . . , studo have a consistent state now.

At some point, we also reprocess stud2 and by trying to reuse the possible conse-
quences for tennis and football in the fixed-reuse branch, we discover a clash (since
¬TennisFan has been derived for stud2). By tracing back the causes of the clash, we
can identify the involved individuals stud2, tennis, and football and mark them “prob-
lematic”. In the prioritised-reuse branch, we have to expand to football and tennis and
even further since possible consequences are missing (which cannot be reused as al-
ready determined in the fixed-reuse branch). Again, we cannot integrate all (possible)
neighbours of football and tennis due to the expansion limit and, due to the amount
of students, it is unlikely that we integrate studx that forces us to merge the activities.
Nevertheless, we can integrate as many individuals as possible and then we can cut the
propagation again, i.e., we send, in addition to the next update, iterators to the cache,
where the cache entries for the remaining individuals are marked inconsistent. Let us
assume, that studx has indeed not been integrated, but its cache entry has been marked
inconsistent due to the propagation cut. Hence, we have to reprocess studx at some
point, for which the activities have to be merged again. Let us assume that the tableau
algorithms tries again to merge the node for football into the node for tennis, such that
their neighbours must be checked and integrated. Since stud2 is identified problematic
and it is a neighbour of football, we prioritise the expansion to it. As a consequence,
the previously discovered clash can immediately be detected and the tableau algorithm
has to check whether a different merging can be satisfied. This may result in steps that
are similar to the previous ones (with possibly several propagation cuts) until all clash
causing individuals are identified problematic. Nevertheless, we can eventually detect
the inconsistency of the knowledge base if we try to merge some of these activities and
directly expand to all these problematic individuals. Note that the expansion to prob-
lematic individuals is prioritised and we even expand to them if the expansion limit
is already reached in order to ensure that consistency can correctly be checked. In the
worst case, we have to reprocess all individuals for each non-deterministic alternative
that results in a clash with new involved individuals until all of them are identified as
problematic. Another worst-case scenario is that the reuse of non-deterministic conse-
quences often leads to clashes such that most individuals are identified problematic.
Consequently, it can become necessary to expand to all these individuals, which by-
passes the expansion limit.

It is worth pointing out that some propagation cuts can be realised more efficiently.
For example, if we cut the propagation for a deterministically added universal restric-
tion, then we can directly add the propagated concept to all remaining neighbours in the
cache while installing the update and marking their entries incomplete. If some of these
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neighbours are reprocessed, then it may not be necessary to expand to the individual for
which the propagation was cut in order to achieve compatibility.

3.5 Termination and Correctness

The repeated (possibly parallel) reprocessing of individuals from the cache threatens
the termination of the consistency checking procedure. In particular, the tableau algo-
rithm may repeatedly derive different consequences for the same individuals in different
completion graphs, which could be incompatible with each other, such that we get os-
cillating cache entries. This effect can even be amplified with techniques for limiting
the expansion (e.g., the propagation cut technique presented in Section 3.4), where only
parts of the (possibly) affected individuals are handled as well as their cache entries
updated and the possible consequences may or may not be reused in subsequent com-
pletion graph construction processes. However, as already discussed, termination can
easily be ensured by stepwise increasing the (limit of the) number of individuals that
are reprocessed together in one completion graph. Consequently, we would, in the worst
case, eventually build a completion graph that includes all individuals and their asser-
tions, which would yield an update that leaves all entries in a consistent state. In case
of parallelisation, one must further ensure that the last completion graph is based on
the last version of the cache and that there are no other parallel completion graph con-
struction processes (which may result in updates that make entries inconsistent again).
This can easily be achieved by prohibiting parallelisation and by synchronising with the
cache updating thread if the number of potential inconsistent entries is lower than the
current limit, which is increased with each scheduled model construction task.

It is further clear that the consistency checking procedure with the cache is sound,
i.e., if there is a model of the knowledge base, then it will eventually guarantee the exis-
tence of a fully expanded and clash-free completion graph. In fact, it is well-known that
the tableau algorithm for SROIQ is sound [16] and since we apply it for parts of the
ABox and only reuse deterministically derived facts in subsequent model construction
processes, we cannot derive invalid consequences. Note that we propose to also reuse
non-deterministically derived consequences as an extension of our approach (cf. Sec-
tion 3.2), but since they are also reused non-deterministically, it would be necessary to
rederive them directly with the tableau algorithm if they had an actual impact on the
result.

It remains to show completeness, i.e., the resulting cache entries guarantee the exis-
tence of a fully expanded and clash-free completion graph (considering all individuals),
which can be unravelled to a model of the knowledge base. We show this in the follow-
ing for the base version of the proposed procedure since the discussed extensions rely
on it and fall back to the base version if they are not applicable or do not optimise the
work-flow. For this, we use the following notation: Let C be the individual derivations
cache and G1 = (V1, E1,L1, ,̇1), . . . ,Gn = (Vn, En,Ln, ,̇n) the local completion graphs
that are constructed for (re)processing the ABox assertions and the individuals with in-
consistent cache entries. We assume that the completion graph number reflects the order
in which the updates are integrated into the cache. Moreover, let b be the function that
returns the number on which a completion graph cache entry is based, i.e., b(a) returns
k if va ∈ Vk and there is no l > k with va ∈ V l such that the extracted update may or
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may not change the cache entry for a. We write vk
a for node va ∈ Vk, i.e., vb(a)

a is the
node from the completion graph with the last integrated update for the cache entry for
a. Now we can build a fully expanded and clash-free completion graph G = (V, E,L, ,̇)
w.r.t. the entire knowledge base K by borrowing the appropriate nodes and edges from
the local completion graphs on which the cache entries are based as follows:

Definition 6 (Full Completion Graph). LetK be a knowledge base and C the individ-
ual derivations cache that is obtained with updates from the local completion graphs
G1 = (V1, E1,L1, ,̇1), . . . ,Gn = (Vn, En,Ln, ,̇n), which are fully expanded and clash-
free w.r.t. the processed individuals/assertions. W.l.o.g. we assume that the new nomi-
nals are differently named for all local completion graphs. The full completion graph
G = (V, E,L, ,̇) is obtained by setting V, E,L, and ,̇ as follows:
• V =

⋃
1≤k≤n

(Wk
inds(K) ∪Wk

impl), (V1)

with Wk
inds(K) = {vk

a | a ∈ inds(K) and b(a) = k} are the individual
nodes and Wk

impl = {vk | vk is an implied descendant of Wk
inds(K)} the

implied nodes of Gk;
• E =

⋃
1≤k≤n
{〈v1, v2〉 ∈ Ek | v1, v2 ∈ V ∩ Vk} ∪ (E1)⋃

1≤k≤n
{〈vk, vb(a)

a 〉 | a ∈ inds(K), b(a) , k, vk ∈ V ∩Wk
impl, 〈v

k, vk
a〉 ∈ Ek} ∪ (E2)

{〈vb(a)
a , vb(c)

c 〉 | b(a) , b(c), c ∈ KR(a)(r) ∪ PR(a)(r) for some r ∈ rols(K)}; (E3)
• L =

⋃
1≤k≤n
{v 7→ Lk(v) | v ∈ V ∩ Vk} ∪ (LV1)⋃

1≤k≤n
{〈v1, v2〉 7→ L

k(〈v1, v2〉) | v1, v2 ∈ V ∩ Vk and 〈v1, v2〉 ∈ E ∩ Ek} ∪ (LE1)⋃
1≤k≤n
{〈vk, vb(a)

a 〉 7→ L
k(〈vk, vk

a〉) | a ∈ inds(K), b(a) , k, vk ∈ V ∩Wk
impl,

and 〈vk, vk
a〉 ∈ Ek} ∪ (LE2)

{〈vb(a)
a , vb(c)

c 〉 7→ {s ∈ rols(K) | c ∈ KR(a)(s) ∪ PR(a)(s)} | b(a) , b(c)}; (LE3)

• ,̇ =
⋃

1≤k≤n
{〈v1, v2〉 ∈ ,̇

k
| v1, v2 ∈ V ∩ Vk} ∪ (IE1)⋃

1≤k≤n
{〈vk, vb(a)

a 〉 | a ∈ inds(K), b(a) , k, vk ∈ V ∩Wk
impl, 〈v

k, vk
a〉 ∈ ,̇

k
} ∪ (IE2)

{〈vb(a)
a , vb(c)

c 〉 | b(a) , b(c) and ¬{c} ∈ KC (a) ∪ PC (a)(r)}, (IE3)
where the ,̇ relation is symmetric, i.e., 〈v1, v2〉 ∈ ,̇ if 〈v2, v1〉 ∈ ,̇ .

We can now prove completeness of the approach by showing that none of the tableau
expansion rules can be applied to the full completion graph and that it is clash-free.

Lemma 1 (Completeness). Let K be a knowledge base and C the individual deriva-
tions cache that is obtained via updates from the constructed local completion graphs
G1 = (V1, E1,L1, ,̇1), . . . ,Gn = (Vn, En,Ln, ,̇n) for certain individuals/assertions. If
G1, . . . ,Gn are clash-free and fully expanded w.r.t. the integrated individuals/assertions
under the compatibility/expansion criteria of Definition 2, then there exists a model of
the knowledge base K .

Proof. Let G = (V, E,L, ,̇) be the full completion graph as defined in Definition 6. We
first show that the clash conditions (cf. [16]) are not satisfied for G:
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• Clash Condition 1 and 2 are trivially not satisfied since each node label is taken
from exactly one local completion graph, i.e., if Clash Condition 1 and 2 were
satisfied for G, then a completion graph of G1, . . . ,Gn would already contain a
clash, which contradicts our assumption.

• Clash Condition 3 is not satisfied since only Part E1 of the definition of E can
lead to loops/self-edges of a node, which are labelled through LE1. Hence, the
clash condition cannot be satisfied since these edges (with their labels) stem from
the same local completion graph as the associated nodes (with their labels), i.e.,
the clash would already be in the local completion graph, which contradicts our
assumption.

• Clash Condition 4 can also not be satisfied for the full completion graph, as revealed
by the following case-by-case analysis of the definition of E and L. The edges
and edge labels from E1 and LE1 stem from one completion graph, i.e., the clash
would already be in a local completion graph, which contradicts our assumption.
For E2 and LE2, we can only obtain an edge that is labelled with roles r and s
for clash-free local completion graphs with Disj(r, s) ∈ K if vb(a)

a = vb(c)
c for some

a, c ∈ inds(K). However, due to Condition D4, all indirect connected individuals
would be integrated if there is a (later) local completion graph with vl

a = vl
c and,

therefore, we would have k = l, which is, however, excluded for E2 and LE2 (cf.
b(a) , k). Analogously for E3 and LE3, we can only obtain an edge labelled with r
and s for clash-free local completion graphs with Disj(r, s) ∈ K if there are a, c, d ∈
inds(K) such that c ∈ KR(a)(r)∪PR(a)(r), d ∈ KR(a)(s)∪PR(a)(s), and vb(c)

c = vb(d)
d

with b(c) , b(a) (otherwise they would stem from the same completion graph).
However, if vl

c = vl
d for a local completion graph, then Condition D5 ensures that a

would be integrated if a is not yet a (possible) r−- as well as s−-neighbour, i.e., we
would have b(a) = b(c) = b(d), which is, however, excluded by LE3.

• For Clash Condition 5, we observe that the “trees” of blockable nodes (including
new nominal nodes) are taken as a whole from local completion graphs (cf. V1).
Moreover, the edges and ,̇-relations between these blockable as well as new nom-
inal nodes (and the associated node and edge labels) are analogously taken over
from the local completion graphs. Hence, Clash Condition 5 can only be satisfied
if nodes that represent individuals are involved. If there is an at-most restriction of
the form 6m r.C in a blockable or new nominal node v ∈ V , then we can observe
from E2, LE2, and IE2 that there can be at-most the same number of connected/re-
lated individual nodes as in the local completion graph from which the blockable
node has been taken. In fact, we could have vb(a)

a = vb(c)
c such that less neighbours

exists in G (which certainly does not introduce a clash) or that we have an entry
for the ,̇-relation that is not present in the local completion graph. The latter is,
however, also not problematic since the local completion graph would not be fully
expanded if there there are more r-neighbours than allowed by 6 m r.C ∈ L(v),
which contradicts our assumption. If we have 6 m r.C ∈ L(vb(a)

a ), then we know,
due to Condition D4, that all blockable/new nominal nodes that are r-predecessors
of vb(a)

a stem from the same local completion graph as vb(a)
a . Consequently, Clash

Condition 5 can only be satisfied if there are new corresponding r-neighbours that
represent individuals for vb(a)

a in G or if some of these neighbours are now related
w.r.t. ,̇ in G. A clash for the latter can easily be excluded since this would mean that
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there are more r-neighbours than allowed and the 6-rule would be applicable for
the local completion graph, which contradicts our assumption that the local com-
pletion graphs are fully expanded. If there were new corresponding r-neighbours
that represent individuals for vb(a)

a , then they would have been added through E3
and LE3, i.e., there would be some c ∈ inds(K) with c ∈ KR(a)(r)∪PR(a)(r). How-
ever, we can only add c to KR(a)(r) or PR(a)(r) if a and c are integrated in a local
completion graph. Since E3 and LE3 only adds edges and labels that stem from dif-
ferent local completion graphs and, due to Condition D3, we know that the (number
or) r-neighbours has been considered in the local completion graph Gb(a). Conse-
quently, if the number of (new) corresponding r-neighbours were greater than n in
G, then there would already be a clash in the local completion graph Gb(a), which
contradicts our assumption.

• For Clash Condition 6, we observe that an occurrence of a nominal {a} in the label
of a node forces us to integrate the individual a (from the cache) and the o-rule
of the tableau algorithm ensures that there exists only one node for {a}. Moreover,
we have to integrate all individuals which are (already) possible instances of {a}
w.r.t. the cache (due to Condition G4) and, hence, all individuals that are (possible)
instances of {a} w.r.t. the cache are based on the same node from one local com-
pletion graph. Since 〈v, v〉 is only added to ,̇ for nodes, where the relation already
holds in the local completion graph, the local completion graph would have a clash
or would not be fully expanded, which contradicts our assumption.

Next, we show that the tableau expansion rules (cf. [16]) are not applicable to G:

• The u- and the t-rule are trivially not applicable since all node labels are taken
from the local completion graphs, which are fully expanded.

• For the ∃-rule w.r.t. a concept ∃r.C ∈ L(vk), we have two cases: If there exists an
implied r-successor wk of vk with C ∈ Lk(wk) in Gk, then, through V1, LV1, E1,
and LE1, we must have wk ∈ V with C ∈ L(wk), 〈vk,wk〉 ∈ E, and r ∈ L(〈vk,wk〉).
In contrast, if ∃r.C ∈ Lk(vk) is satisfied by an individual node in Gk, say vk

a, then
we have 〈vk, vb(a)

a 〉 ∈ E, r ∈ L(〈vk, vb(a)
a 〉), and C ∈ L(vb(a)

a ). In fact, the former
holds by Condition G1 (which leads to the integration of all neighbours if non-
deterministically derived links are missing) and E3 as well as LE3 if vk is an in-
dividual node. If vk is an implied node, then the same is ensured by Part E2 and
LE2 of the full completion graph definition as well as the fact that we only re-
move indirectly connected individuals from the same update (i.e., if they no longer
have the nominal as “dependency” in the local completion graph). C ∈ L(vb(a)

a )
holds by Condition G2 (which leads to the integration of all neighbours if a non-
deterministically derived concept is missing) and E3 as well as LE3 if vk is an
individual node. If vk is an implied node, then this is analogously ensured by Con-
dition G3 (which leads to the integration of all indirectly connected individuals if a
non-deterministically derived concept is missing) and Part E2 as well as LE2 of the
full completion graph definition. We further observe that nodes in G are blocked by
the same nodes as in the local completion graph from which they stem and, thus,
we can observe that the ∃-rule is not applicable for G.

• The Self-rule is not applicable for a concept ∃r.Self ∈ L(vk) since loops/self-edges
(and their labels) are copied with the nodes (see E1 and LV1), i.e., if the Self-rule
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was applicable for vk, then it would have been applicable in Gk, which contradicts
our assumption that Gk is fully expanded. Note that the handling of a reflexive role
is typically “absorbed” via an axiom ∃r.> v ∃r.Self.

• The ∀-rule is similar to the ∃-rule. We consider only cases that involve individual
nodes since the “trees” of implied nodes are taken as a whole from local completion
graphs, which are fully expanded by assumption. If we have ∀r.C ∈ L(vk) with vk

an implied node and 〈vk, vb(a)
a 〉 ∈ E as well as r ∈ L(〈vk, vb(a)

a 〉), then it must hold that
C ∈ L(vb(a)

a ). This is the case since Gk is fully expanded, i.e., C ∈ Lk(vk
a), and, due

to Condition G3, which would lead to the integration of all indirectly connected
individuals for a in a later completion graph if a (non-deterministically) derived
concept was missing. In contrast, if ∀r.C ∈ L(vk

a) with vk
a an individual node, then

we have two cases: If there is an implied r-predecessor wl ∈ V of vk
a (from Part E2

and LE2), then we have ∀r.C ∈ Ll(vl) (otherwise Condition D4 would have forced
us to integrate all indirectly connected individuals for vk

a such that we would have
l = k, which is, however, excluded by E2 and LE2) and, thus, C ∈ Ll(wl), which
implies C ∈ L(wl) from the definition of the full completion graph. If there is an
r-neighbour wl

c ∈ V of vk
a (from Part E3 and LE3) with wl

c an individual node, then
C ∈ Ll(wl

c) must hold due to Condition D1 (if l < k, i.e., the later processing of vk
a

as an r−-neighbour ensures the integration of wl
c if the concept C has not already

been derived for it) and due to fact that vk
a must be integrated if vl

c is later established
as an r-neighbour (which would mean l = k, but this is excluded by E3 and LE3).
As a consequence, we have C ∈ L(wl

c) and, thus, the ∀-rule is not applicable.
• The choose-rule is, analogously to the ∀-rule, not applicable (by using Condi-

tion D2 instead of Condition D1).
• The applicability of the >-rule is similar to the case of the ∃-rule, but needs addi-

tional consideration of the defined ,̇ relation. Again, we only consider cases that in-
volve individual nodes and stem from different completion graphs since the “trees”
of implied nodes are taken as a whole from the local completion graphs. For two
individual nodes, say vk

a and vk
c, with vk

a,̇
kvk

c, we observe that vb(a)
a ,̇vb(c)

c must hold
due to IE3 and because vk

a,̇
kvk

c is encoded as ¬{c} for a as well as ¬{a} for c and
Condition G2 as well as Condition G3 ensure that the neighbours and/or indirectly
connected individuals are integrated if such a concept is missing in a later comple-
tion graph such that the ,̇ causing >-rule is reapplied. In contrast, if we have an
implied node, say vk ∈ V with vk,̇

kvk
a, then vk,̇vb(a)

a must also hold due to IE2. As
a consequence, ,̇-relations for nodes that are taken from local completion graphs
can also be found in the full completion graph and, therefore, the >-rule is not
applicable.

• The argumentation of the non-applicability of the 6-rule is analogous to case of
Clash Condition 5.

• As already argued for Clash Condition 6, there is only one node for each nominal
such that the o-rule is not applicable for the full completion graph.

• For the NN-rule, we can observe that, due to Condition D4, the new nominal nodes
stem from the same local completion graph as the node for which the NN-rule
has been applied to create these new nominal nodes. Note that new nominals are
added to new nominal nodes such that, due to Condition D1, all neighbours must be
integrated if an individual node is (re)processed that has been merged with a new
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nominal node and, thus, the (individual) node that requires the application of the
NN-rule must also be integrated and reprocessed. As a consequence, the NN-rule
is not applicable for the full completion graph.

Since the full completion graph is fully expanded and clash-free, it can be unravelled to
a model of the knowledge base.

4 Query Answering Support

Compared to other more sophisticated reasoning tasks, conjunctive query answering is
typically more challenging since an efficient reduction to consistency checking is not
easy. However, a new approach for answering (conjunctive) queries has recently been
introduced, where the query atoms are “absorbed” into several simple DL-axioms [28].
These “query axioms” are of the form C v ↓x.Sx, Sx v∀r.Sx

r , Sx u Av Sx
A, and Sx u Sy v

Sxy, where ↓x.Sx is a binder concept that triggers the creation of variable mappings in
the extended tableau algorithm and S (possibly with sub- and/or superscripts) are so-
called query state concepts that are associated with variable mappings, as defined in the
following, in order to keep track of partial matches of the query in a completion graph.

Definition 7 (Variable Mappings). A variable mapping µ is a (partial) function from
variable names to nodes. Let G = (V, E,L, ,̇,M) be an (extended) completion graph,
whereM(C, v) denotes the sets of variable mappings that are associated with a concept
C in L(v). A variable mapping µ1 ∪ µ2 is defined by setting (µ1 ∪ µ2)(x) = µ1(x) if x is
in the domain of µ1, and (µ1 ∪ µ2)(x) = µ2(x) otherwise. Two variable mappings µ1 and
µ2 are compatible if µ1(x) = µ2(x) for all x in the domain of µ1 as well as µ2. The join
M1 1M2 between the sets of variable mappingsM1 andM2 is defined as:

M1 1M2 = {µ1 ∪ µ2 | µ1 ∈ M1, µ2 ∈ M2 and µ1 is compatible with µ2}.

Rules of the extended tableau algorithm are shown in Table 2 (without considering
blocking), which handle the new axioms and concepts by correspondingly creating and
propagating variable mappings. For example, a binder concept ↓x.Sx ∈ L(v) is handled
by adding Sx to L(v) and by creating a mapping {x 7→ v} that is associated with Sx for
v, i.e., {x 7→ v} ∈ M(Sx, v). In contrast, variable mappings associated with a concept
∀r.Sx

r for a node v are propagated (in addition to Sx
r ) to all r-neighbours, i.e., Sx

r ∈

L(w) withM(Sx
r ,w) ⊇ M(∀r.Sx

r , v) if w is an r-neighbour of v. For (binary) inclusion
axioms with query state concepts, the variable mappings are propagated to the implied
concept if the left hand-side is satisfied for a node. For example, Sx

A ∈ L(v) with µ ∈
M(Sx

A, v) if Sx, A ∈ L(v) and µ ∈ M(Sx, v) for an axiom Sx u A v Sx
A. Note that only

compatible variable mappings of Sx and Sy are propagated to Sxy for Sx u Sy v Sxy.
Although conjunctive query answering with arbitrary existential variables is still open
for SROIQ, the approach works for knowledge bases where only a limited number of
new nominal nodes is enforced (by using an extended analogous propagation blocking
technique) [28], which is generally the case in practice (also see [28] for more details
w.r.t. correctness and termination of this approach).

As an example, a simple query with only the atoms r(x, y) and s(y, x) (with x, y
both answer variables) can systematically be absorbed into the axioms > v ↓x.Sx, Sx v
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x

y

z

likes−

hc

likes

> v ↓x.Sx Sx v ∀likes−.Sx
likes− Sx

likes− v ↓y.S
y

Sx
likes− u Sy v Sxy Sxy v ∀hc.Sxy

hc Sxy
hc v ∀likes.Sxy

likes

Sxy
likes u Sx v Sxyx

Fig. 6: Illustration of query Q(x, y) = {likes−(x, y), hc(y, z), likes(z, x)} (left-hand side)
and the axioms generated by “absorbing” Q(x, y) (right-hand side) of Example 4

∀r.Sx
r , Sx

r v ↓y.S
y, Sx

r u Sy v Sxy, Sxy v ∀s.Sxy
s , and Sxy

s u Sx v Sxyx. The query state
concept Sx

r , for example, represents the state where bindings for x are propagated to
r-successors, i.e., r(x, y) is satisfied. For bindings that are propagated back over s-edges
via ∀s.Sxy

s , the final binary inclusion axiom checks whether the cycle is closed. If it is,
the joined variable mappings are associated with Sxyx from which answer candidates
can be extracted once a fully expanded and clash-free completion graph is found.

Note that with sophisticated absorption techniques, variable mappings can often be
derived deterministically, i.e., they directly constitute query answers. Non-determinis-
tically obtained variable mappings do, however, require a separate entailment check to
verify that there exist no counter example with the query variables equally bound as in
the non-deterministically derived variable mapping. This can be realised by restricting
the generated binder concepts of the absorption process to only create corresponding
bindings and by triggering a clash with the additional axiom Sxyx v ⊥.

While query answering by absorption is able to process queries for many (expres-
sive) real-world ontologies [28], especially queries with existential variables can require
a substantial amount of computation. A significant bottleneck is often the (variable
mappings) propagation task, i.e., the creation and propagation of the variable mappings
to get all potential answers from a completion graph. Building and using completion
graphs for partial ABoxes (possibly in parallel) is difficult since it is unclear which
joins of bindings can occur in answers and, hence, how the ABox can suitably be parti-
tioned.

Example 4. The query Q(x, y) = {likes−(x, y), hc(y, z), likes(z, x)} (cf. left-hand side of
Figure 6) retrieves all persons (y) with their hobbies (x) that they have in common
with their children (z) from the knowledge base. For the answer variables x and y, the
reasoner has to return those pairs of individuals that constitute an instance of the role
likes− and for which a possibly implied individual exist such that the restrictions for the
existential variable z are satisfied.

The query can be absorbed by choosing a starting variable, say x, for which a binder
concept is implied (see first axiom of right-hand side of Figure 6). All role atoms are
now successively “absorbed” by generating a universal restriction that propagates the
next query sate concept over the corresponding role. For the role atom likes−(x, y), we
generate Sx v ∀likes−.Sx

likes− such that Sx
likes− in a node label (associated with some vari-

able mappings) indicates that the state of the query is reached, where this role atom is
satisfied. Since y is an answer variable, we also have to collect bindings for y which
is realised through the axiom Sx

likes− v ↓y.S
y. In order to join/concatenate the new bind-
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ings for y with the existing propagating (with bindings for x), we generate a binary
inclusion axiom of the form Sx

likes− u Sy v Sxy. The role atoms hc(y, z) and likes(z, x)
are analogously absorbed via propagation axioms with universal restrictions over the
corresponding roles. Note that z is only an existential variable and it is not required
to join different propagations at the position of z and, therefore, bindings for z are not
required, i.e., we do not have to imply a binder concept for z. In order to ensure that is
correctly checked whether the cycle is closed, we use the the binary inclusion axiom
Sxy

likes u Sx v Sxyx for which the join of compatible variable mappings is propagated to
Sxyx, where compatibility means that bindings for common variables map to the same
nodes of the completion graph. By building a completion graph for a knowledge base
that is extended by the absorbed query axioms, we can extract the answer candidates
from the variable mappings that are associated with Sxyx.

Interestingly, the work-flow with the individual derivations cache is quite handy
to improve different aspects of the discussed query answering approach. Although the
techniques may also be applicable with other completion graph caching techniques,
they lead to a particularly nice combination with our caching technique since only small
parts of the ABox are simultaneously considered (i.e., we do not maintain a completion
graph for the entire knowledge base, but only have a few cached consequences for
the remaining parts). This allows for handling much larger knowledge bases for which
parallelisation is particularly useful (since queries for small knowledge bases can often
trivially be answered within a few milliseconds).

The techniques in the following focus on splitting the propagation work such that
each thread can completely determine a few answer candidates while considering only
a small part of the ABox. As an alternative, one could propagate (possibly the same)
variable mappings with several threads over different parts of the ABox, which would,
again, require some kind of synchronisation. Although we could extend the individ-
ual derivations cache to also handle this kind of synchronisation (it is already used to
synchronise ordinary consequences such as implied concepts), variable mappings are
much more problematic. In fact, variable mappings have a more complex structure and
can refer arbitrary individuals. Moreover, it is difficult to store variable mappings with
existential variables bound to anonymous individuals (i.e., blockable or new nominal
nodes in the completion graph), for which it is unclear how to represent these bindings
such that variable mappings can correctly be reused.

It is clear that the (creation of) bindings for the first (answer) variable can be re-
stricted,1 i.e., the first binder concept is restricted such that it can only bind to a few
predefined individuals, which is already utilised by the original approach to restrict
the creation of variable mappings with results from the realisation reasoning task. This
can also be used for parallelisation (by partitioning the individuals for the first answer
variable such that, for each propagation task, only bindings to a few individuals are al-
lowed), but this can easily lead to a work imbalance if all or almost all answers consist
of the same individual for the first variable. Using binding restrictions for the second

1 For simplicity, we assume that the first answer variable is also the first one for which the ab-
sorption generates the first binder concept, but in practise the variables are typically reordered
based on statistics for the concept and role atoms of the query such that the propagation effort
through the completion graph is minimised or at least reduced.
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Table 2: Tableau rule extensions
↓-rule:

if ↓x.C ∈ L(v), and C < L(v) or {x 7→ v} <M(C, v)
thenL(v) = L(v)∪{C},M(C, v) =M(C, v)∪{{x 7→ v}}

∀-rule:
if ∀r.C ∈ L(v), there is an r-neighbour w of v with

C < L(w) orM(∀r.C, v) *M(C,w)
thenL(w) = L(w) ∪ {C}, M(C,w) = M(C,w) ∪
M(∀r.C, v)

v1-rule:
if Sx1 ...xn v C ∈ K , Sx1 ...xn ∈ L(v), and C < L(v) or
M(Sx1 ...xn , v) *M(C, v)

thenL(v) = L(v) ∪ {C}, M(C, v) = M(C, v) ∪
M(Sx1 ...xn , v)

v2-rule:
if Sx1 ...xn u A v C ∈ K , {Sx1 ...xn , A} ⊆ L(v), and

C < L(v) orM(Sx1 ...xn , v) *M(C, v)
thenL(v) = L(v) ∪ {C}, M(C, v) = M(C, v) ∪
M(Sx1 ...xn , v)

v3-rule:
if Sx1 ...xn

1 u Sy1 ...ym
2 v C ∈ K , {Sx1 ...xn

1 , Sy1 ...ym
2 } ⊆ L(v),

and (M(Sx1 ...xn
1 , v) 1M(Sy1 ...ym

2 , v)) *M(C, v)
thenL(v) = L(v) ∪ {C}, M(C, v) = M(C, v) ∪

(M(Sx1 ...xn
1 , v) 1M(Sy1 ...ym

2 , v))

Algorithm 1 recPropTask(R, i)
Input: Variable binding restrictions R

and the index of the next to be han-
dled variable

1: if i ≤ n then
2: B← recPropTask(R, i + 1)
3: for each x j with 1 ≤ j < i do
4: R(x j)← B(x j)
5: end for
6: while |B(xi)| ≥ l do
7: R(xi)← R(xi) \ B(xi)
8: Bt ← recPropTask(R, i + 1)
9: B(xi)← Bt(xi)

10: end while
11: B(xi)← ∅
12: else
13: G ← buildComplGraph(R, l)
14: C ← C ∪ answerCands(G)
15: B← extractBoundIndis(G)
16: end if
17: return B . Returning

the bound individuals from the last
constructed completion graph

variable (or for even more variables) is not easily possible since we do not directly know
upfront, to which individuals the second variable can be bound if we have certain bind-
ings for the first variable. Of course, one could generate and compute sub-queries where
we ask for bindings of the second variable given one or several bindings for the first, but
this would result in many additional queries and, hence, is likely that this would cause
a significant overhead.

We can, however, use a dynamic approach, where we limit the number of indi-
viduals to which a variable can be bound. Each individual bound to such a “binding-
limited” variable is recorded and in the next propagation task we exclude bindings to
already tested individuals. This can, for example, be realised with the recursive function
recPropTask shown in Algorithm 1, which takes as input a mapping R from variables
to (still) allowed bindings for individuals and the index i of the current variable (assum-
ing that the variables are sorted in the order in which they are absorbed, i.e., x1 denotes
the variable that is absorbed first). The function accesses and modifies some variables
via side effects, namely l, denoting the limit for the number of allowed bindings for
each variable, n, standing for the number of variables in the query, and C, denoting the
set of answer candidates. The function is initially called with R(x) = inds(K) for each
variable x in the query and with i = 1 such that the restrictions for the first variable are
managed first. As long as there are more variables to handle, the function calls itself
recursively for the next variable (cf. Line 2) and checks for the returned sets of bound
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individuals, denoted with B, from the last generated completion graph whether the limit
l has been reached for the current variable. If this is the case, then the bindings for
previous variables are “frozen”, i.e., they are interpreted as the only allowed bindings
(cf. Line 3–5), and the used bindings for the current variable are excluded for the next
propagation task (cf. Line 7). This ensures that all combinations are tested step-by-step
and that each propagation task only creates and propagates a limited amount of variable
mappings. In fact, if the restrictions for all variables are set, then they are used for con-
structing the next completion graph (Line 13), where R and l are checked by an adapted
↓-rule. Subsequently, we can extract the additionally found answer candidates (Line 14)
and the individuals that have been used for bindings (Line 15), which may or may not
be part of answer candidates. For the completion graph construction, we only pass the
binding restrictions R and the binding limit l in the algorithm, but it obviously also
relies on the axioms of the knowledge base and the query absorption. Although the pre-
sented variant for splitting and limiting the propagation task is sequential, it can easily
be parallelised by partitioning the allowed bindings for the next variable beforehand.

Note that, in addition to a separate limit for each variable, one can further impose an
overall limit for bindings (independently from a variable), but it has to be ensured that
at least for all variables some bindings are possible. If it is unclear how to determine
these limits, one can start with small ones and can increase them step-by-step as long as
the propagation tasks can still easily be managed (e.g., w.r.t. the memory consumption
and the computation time).

Note that the cached non-deterministic consequences from the consistency check
can directly be reused for the propagation tasks since the new concepts from the query
absorption do not lead to (new) clashes. This is different, however, for the separate
query entailment checks, where the query absorption implies ⊥ at the end to trigger the
investigation of different (non-deterministic) alternatives. On the other hand, the con-
cepts from the query absorption typically cause an expansion of the local completion
graph due to influence criteria, e.g., if ∀r.Sx

r is in the label of some node, then Condi-
tion G1 identifies all r-neighbours from the cache as (potentially) influenced and the
corresponding nodes need to be integrated into the completion graph to propagate the
associated variable mappings to them. This can result in significant propagation work,
in particular, for complex roles and individuals with many neighbours. Moreover, ex-
hausted binding restrictions for the next variable might prevent us from actually using
the mappings. To address this, one can impose propagation restrictions for universal
restrictions of the form ∀r.Sx

r such that the local completion graph is only expanded
to nodes for which bindings are possible for the next variable. This can easily be im-
plemented by adapting the query absorption to annotate universal restrictions with the
variable of the role atom to which the propagation occurs. For example, a concept of the
form ∀r.Sx

r resulting from the query atom r(x, y) is annotated with y, denoted as ∀r→y.Sx
r .

Condition D1 is then adapted to only identify individuals as influenced that are allowed
as bindings for the labelled variable of the universal restriction.

Definition 8 (Query Propagation Influence). Let G = (V, E,L, ,̇,M) be an (ex-
tended) completion graph for a knowledge base K , C an individual derivations cache
(c.f. Def. 1), va ∈ V a node representing the individual a, and y a query variable. A
restriction set R(y) ⊆ inds(K) for y restricts the individuals to which y can be bound,

36





{soccer},∀likes−.SoccerFan,
↓x.Sx, S x {{x 7→vsoccer}},

∀likes−→y.S
x
likes−

{{x 7→vsoccer}},

S xy
likes

{{x 7→vsoccer ,y7→vprof}},

S xyx {{x 7→vsoccer ,y7→vprof}}

 vsoccer

vprof



{prof},∃hc.∃likes.{soccer},
∀teaches.∀takes−.¬TennisFan,

S x
likes−

{{x 7→vsoccer}}, ↓y.Sy,

S xy {{x 7→vsoccer ,y7→vprof}},

∀hc.S xy
hc
{{x 7→vsoccer ,y7→vprof}}


v1


∃likes.{soccer}, SoccerFan,

S xy
hc
{{x 7→vsoccer ,y7→vprof}},

∀likes→x.S
xy
likes

{{x 7→vsoccer ,y7→vprof}}


hc

likes

likes

Fig. 7: Local completion graph for a query propagation task of Example 5

i.e., only to a node va if a ∈ R(y). An individual b ∈ C such that no node in V contains
{b} in its label is (query propagation) influenced if

Q1 ∀r→y.S
x1,...,xn
r ∈ L(va), b ∈ KR(a)(r) ∪ PR(a)(r), and b ∈ R(y).

As mentioned, if the restrictions for a variable are not known upfront, then one can
collect them dynamically by only imposing a limit for the number of individuals for
the restriction set. While we check whether an individual b is query propagation in-
fluenced w.r.t. a variable y and the amount of individuals in the restriction set R(y) is
less than the limit, we simply add b to R(y) such that Condition Q1 is satisfied. Analo-
gously, we add b to R(y) when we test whether we can bind y to b for ↓-concepts and
the limit is not yet reached. When the limit is reached, no more individuals are added
to the restriction set and, therefore, no other (combinations of) variable mappings are
created and the completion graph is not further expanded to other individuals. The col-
lected restrictions are then used in the next propagation task to enforce the exploration
of other (combinations of) variable mappings. Note, however, that the expansion with
the query propagation influence does not work for roles with recursive role inclusion
axioms (such as transitive roles) due to the unfolding process and due to the fact that it
would be too restrictive. In principle, it would be possible to limit the expansion also
for complex/transitive roles to some extent by checking query propagation influence in
a depth-first based manner, but this would require some non-trivial adaptations to the
tableau algorithm, where the propagation depth is managed, and also a more sophis-
ticated management of binding restrictions. For simplicity, we, therefore, assume that
only universal restrictions with simple roles are labelled in the absorption process such
that influenced individuals for universal restrictions with complex roles are identified
with Condition D1. Consequently, complex/transitive roles can lead to an unnecessary
expansion to individuals for which the propagation of the query is not further continued
by the ↓-rule (since it adheres the binding restrictions for the next variable).

Example 5 (Example 1 and 4 continued). In order to restrict the expansions for prop-
agation tasks for query Q(x, y) of Example 4, we replace the universal restrictions
∀likes−.Sx

likes− and ∀likes.Sxy
likes with ∀likes−→y.S

x
likes− and ∀likes→x.S

xy
likes, respectively. We

do not replace ∀hc.Sxy
hc since z is an existential variable that only binds to blockable

nodes in our example for which we do not have to restrict the expansion. In order to
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show the approach with the small example, let us assume that the expansion is restricted
to only one individual for each variable. By analysing/indexing the cache entries of Ex-
ample 1, we already know that only the activities (i.e., soccer, tennis, football) have out-
going links for the role likes−. Hence, we can partition the propagation tasks w.r.t. the
activities by asserting ↓x.Sx only to one of them (instead of using the axiom >v↓x.Sx).
For soccer, the rule for ↓x.Sx creates the variable mapping {x 7→ vsoccer}, where x is
mapped to soccer, and associates it with Sx, which is denoted with S x {{x 7→vsoccer}} in
the label of node vsoccer of Figure 7. After unfolding Sx to the universal restriction
∀likes−→y.S

x
likes− ∈ L(vsoccer), for which we keep the associated variable mappings, we

have to check for influenced individuals from the cache. In principle, the individuals
stud and prof of KR(soccer)(likes−) are influenced, but due to our expansion restriction,
we cannot integrate both. In fact, while checking Condition Q1 for the first individ-
ual, say prof, we add it to R(y) and prohibit the addition of other individuals since we
reached the limit of one individual per variable. Since the Condition Q1 then identifies
prof influenced, we integrate it into the completion graph. Now, the application of the ∀-
rule for ∀likes−→y.S

x
likes− ∈ L(vsoccer) adds S x

likes−
{{x 7→vsoccer}} to vprof, where the query state

concept is unfolded to ↓y.Sy. After creating the variable mapping {y 7→ vprof} for the
binder concept ↓y.Sy, we join it with the one associated with Sx

likes− and propagate the
joined variable mapping {x 7→ vsoccer, y 7→ vprof} to Sxy in order to satisfy Sx

likes−uSyvSxy.
After unfolding the query state concept to the next universal restriction, we propagate
the associated variable mapping to Sxy

hc ∈ L(v1) and, after one more unfolding, it is
propagated back to vsoccer. Since the join of {{x 7→ vsoccer, y 7→ vprof}} and {{x 7→ vsoccer}}

is {{x 7→ vsoccer, y 7→ vprof}} (and obviously non-empty), we propagate it to Sxyx. Since
the variable mapping has deterministically been propagated to Sxyx, we can directly
identify 〈soccer, prof〉 as an answer for Q(x, y). For soccer, it remains to repeat the
propagation tasks, where prof is prohibited for R(y), which results in the integration of
stud. However, there are no children for stud and, hence, the query propagation cannot
be completed. Note that prof must also be integrated due to Condition D4, but we only
create a variable mapping for the binder concept for y if prof is in R(y) (or if prof can
still be added to R(y)). The propagation tasks for the other activities are analogous but
do not lead to additional answers. Nevertheless, all these propagation tasks only require
the integration of a limited number of individuals, which makes them (more) suitable
for parallelisation.

It is worth pointing out that the presented mechanisms can also be used for ex-
istential variables. As mentioned, existential variables can bind to blockable nodes in
completion graphs, which cannot easily be restricted, but if their binder concepts occur
in the label of a node that represents a known individual of the knowledge base, then
we can use the dynamic binding restrictions. Additionally, we can also use the query
propagation influence condition for universal restrictions towards existential variables.
If answer candidates are extracted, then we have to validate the candidates with query
entailment checks, where bindings for (answer) variables are restricted to the individu-
als of the answer candidates, and, therefore, the query propagation influence condition
can further be used for these entailment checks to ensure that only few individuals have
to be integrated into the local completion graph.
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In principle, these mechanisms can even be used for “pure” query entailment check-
ing with only existential variables in the query. For this, we assume that the generating
rules (i.e., the ∃-, the >-, and the NN-rule) of the tableau algorithm add an artificial,
symmetric super role u∃ to the edge labels towards newly generated nodes. Now, the ab-
sorption can generate axioms of the form Fv∀u∃.F and Fv↓x.Sx (instead of >v↓x.Sx)
to force the addition of the first binder concept. By partitioning the individuals of the
knowledge base, we can then create many entailment checking tasks, where the con-
cept F is only asserted to the individuals of the corresponding partition. Again, we
can label universal restrictions with variables such that the query propagation influence
condition usually expands only a small part of the entire ABox via the dynamic bind-
ing restrictions/limits. Note, however, that the u∃ role may be added to the labels of
edges between nodes that represent individuals (e.g., if nominals are used or blockable
nodes are merged), which could result in a redundant evaluation of the query for some
individuals. Nevertheless, this helps in splitting the propagation work such that query
entailment checking (and also the answer candidate propagations) can be realised with
several small batches instead one batch (which may not be reasonably processable if
the ontology is very large and also not easily parallelisable).

5 Implementation and Experiments

We implemented the individual derivations cache with the presented extensions in the
tableau-based reasoning system Konclude with minor adaptations to fit the architec-
ture and the optimisations of Konclude. In particular, we use Konclude’s efficient, but
incomplete saturation procedure [29] to initialise the cache entries for all individuals.
If completeness of the saturation cannot be guaranteed for an individual, we mark the
corresponding cache entry as inconsistent such that it is reprocessed with the tableau
algorithm. Parallel processing (via small batches) is straightforward for the saturation
as individuals with their assertions are handled separately. This automatically leads to
a very efficient handling of the “simple parts” of an ABox and it only remains to imple-
ment the (repeated) reprocessing of individuals with inconsistent cache entries.

For ontologies that intensively state many individuals as identical or for which many
and large same individual clusters must be derived, a naive implementation of the cache
can lead to an (exponential) blow up in the number of neighbour relations that have to be
stored, which can be quite problematic in practise. To address this, we choose a repre-
sentative individual among the individuals that are deterministically derived as the same
and establish a data sharing mechanism such that only the representative individual can
be updated and the associated cache entries also appear for the other individuals. To
make this more efficient, we use special entries for (possibly) same individuals instead
of encoding them as nominals within KC and PC . In case of certain language features
(such as functional roles), the same individual clusters may frequently be extended from
different completion graphs, which may also change the representative individual (e.g.,
if it is determined by the smallest/largest individual id/hash). As a consequence, paral-
lelisation may not work since the entries of individuals are often identified as inconsis-
tent, which also prevents the establishment of the data sharing mechanism and could
make the reprocessing phase even slower than without parallelisation. As a remedy, it
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Table 3: Evaluated ontologies, number of queries (from the PAGOdA+VLog evalua-
tion), and parsing times with different number of threads in seconds (speedup factor in
parentheses)
Ontology DL #Axioms #Assertions #Q K-1 K-2 K-4 K-8

ChEMBL SRIQ(D) 3, 171 255.8 · 106 6 + 3 1830 935 (2.0) 497 (3.7) 268 (6.8)
LUBM800 ALEHI+(D) 93 110.5 · 106 35 + 3 363 184 (2.0) 102 (3.6) 56 (6.5)
Reactome SHIN(D) 600 87.6 · 106 7 + 3 66 34 (1.9) 19 (3.6) 11 (6.2)
Uniprot100 ALCHOIQ(D) 608 109.5 · 106 –3 409 229 (1.8) 119 (3.5) 63 (6.7)
Uniprot40 ALCHOIQ(D) 608 42.8 · 106 13 + 3 215 113 (1.9) 59 (3.6) 33 (6.5)
UOBM500 SHIN(D) 246 127.4 · 106 20 + 0 431 227 (1.9) 121 (3.5) 66 (6.5)

seems a good idea to introduce an additional phase, where all inconsistent individuals
from the saturation phase are reprocessed based on their initial cache entries.

Since tableau algorithms are usually quite memory intensive, scalability of the par-
allelisation not only depends on the CPUs but also on the memory bandwidth and ac-
cess. Hence, the memory allocator must scale well and the data must be organised in a
way that allows for effectively using the CPU caches (e.g., by writing the data of entries
with one thread in cohesive memory areas). We investigated different memory alloca-
tors (hoard, tcmalloc, jemalloc) and integrated jemalloc [10] since it seems to work best
in our scenario. The worker threads for constructing completion graphs only extract the
data for cache updates. A designated thread then integrates the cache updates, based
on the update ids introduced on page 14, which reduces blocking, improves memory
management, and allows for more sophisticated update mechanisms.

To further improve the utilisation of multi-processor systems and to avoid bottle-
necks, we also parallelised some other processing steps, e.g., parsing of large RDF triple
files, some preprocessing aspects (i.e., extracting internal representations from RDF
triples), and indexing of the cache entries for retrieving candidates for query answering.
Also note that some higher-level reasoning tasks of Konclude are already (naively) par-
allelised by creating and processing several consistency checking problems in parallel.

For evaluating the approach,2 we used the large ontologies and the appertaining
queries from the PAGOdA evaluation [43], which includes the well-known LUBM
and UOBM benchmarks as well as the real-world ontologies ChEMBL, Reactome, and
Uniprot3 from the European Bioinformatics Institute. To improve the evaluation w.r.t.
the computation of large amounts of answers, we further include the queries from tests
for the datalog engine VLog [6], but we use them w.r.t. the original TBoxes. We run the
evaluations on a Dell PowerEdge R730 server with two Intel Xeon E5-2660V3 CPUs
at 2.4 GHz and 512 GB RAM under a 64bit Ubuntu 18.04.3 LTS. For security reasons
and due to multi user restrictions, we could, however, only utilise 480 GB RAM and 8
CPU cores of the server in a containerised environment (via LXD).

2 Source code, evaluation data, all results, and a Docker image (koncludeeval/parqa) are avail-
able at online, e.g., at https://zenodo.org/record/4606566.

3 We evaluated query answering on a sample (denoted with Uniprot40) since the full Uniprot on-
tology (Uniprot100) is inconsistent and, hence, not interesting for evaluating query answering.
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Metrics of the evaluated ontologies are depicted on the left-hand side of Table 3,
whereas the right-hand side shows the (concurrent) parsing times for the ontologies in
seconds, where K-1, K-2, K-4, and K-8 stand for the versions of Konclude, where 1,
2, 4, and 8 threads are used, respectively. Since the parallel parsing hardly requires any
synchronisation and only accesses the memory in a very restricted way, it can be seen
as a baseline for the achievable scalability (there are minor differences based on how
often the different types of assertions occur).

The left-hand side of Table 4 shows the (concurrent) pre-computation times, i.e.,
the time that is required to get ready for query answering after parsing the ontology,
which includes the creation of the internal representation, preprocessing the ontology
(e.g., absorption), saturating the concepts and individuals, repeatedly reprocessing the
individuals with inconsistent cache entries, classifying the ontology, and preparing data
structures for an on-demand/lazy realization. Consistency checking clearly dominates
the (pre-)computation time such that the other steps can mostly be neglected for the
evaluation (e.g., classification takes only a few milliseconds for these ontologies). As
shown in Table 4, our parallelisation approach with the individual derivations cache is
able to significantly reduce the time required for consistency checking, but the scala-
bility w.r.t. the number of threads depends on the ontology. For LUBM and ChEMBL,
the approach scales almost as well as the parsing process, whereas the scalability w.r.t.
Reactome seems limited. The Reactome ontology intensively relies on (inverse) func-
tional roles such that many and large clusters of same individuals are derived in the
reasoning process. With a naive implementation of the cache, we would store, for each
individual in a cluster, all derived neighbour relations, which easily becomes infeasible
if large clusters of same individuals are linked. For our implementation of the cache,
we identify and utilise representative individuals to store the neighbour relations more
effectively, but we require consistent cache entries for this. If the clusters of same in-
dividuals are updated in parallel, which often leads to inconsistent cache entries, more
neighbour relations must be managed and, thus, the parallelisation of ontologies such
as Reactome only works to a limited extent with the current implementation. Also note
that the enormous amounts of individuals in these ontologies make it impossible for the
previous version of Konclude to build full completion graphs covering the entire ABox,
i.e., the version of Konclude without the cache quickly runs out of memory for these
ontologies. Also note that the individuals from the cache are mostly picked in the order
in which they are indexed, i.e., more or less randomly due to hashing of pointers. Nomi-
nals, however, are indexed first and, hence, are prioritised in the (re-)processing. Clearly,
the processing order can have a significant influence on how much (re-)processing is re-
quired, but the runs for the evaluated real-world ontologies showed hardly any variance
since most consequences could be derived locally.

The right-hand side of Table 4 reveals the query answering times (and scalability),
accumulated for each ontology. Since not all steps are parallelised and the version of
Konclude with only one thread uses specialised and more efficient implementations
in some cases (e.g., an optimised join algorithm for results from several sub-queries,
whereas the parallelised version is based on several in-memory map-reduce steps),
query answering scalability leaves still room for improvement. Nevertheless, without
splitting the propagation tasks, several queries cannot be computed, i.e., the version of
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Table 4: (Pre-)computation and accumulated query answering times for the evaluated
ontologies with different numbers of threads in seconds (speedup factor in parentheses)

Ontology
(Pre-)computing Query answering

K-1 K-2 K-4 K-8 K-1 K-2 K-4 K-8

ChEMBL 2421 1244 (1.9) 663 (3.7) 397 (6.1) 12767 8927 (1.4) 4507 (2.8) 3231 (4.0)
LUBM800 2793 1658 (1.7) 831 (3.4) 437 (6.4) 2777 1829 (1.5) 1026 (2.7) 569 (4.8)
Reactome 1408 687 (2.0) 427 (3.3) 361 (3.9) 935 524 (1.8) 333 (2.8) 232 (4.0)
Uniprot100 1343 742 (1.8) 429 (3.1) 302 (4.4) N/A3 N/A3 N/A3 N/A3

Uniprot40 1090 532 (2.0) 289 (3.7) 198 (5.5) 28 21 (1.3) 16 (1.8) 14 (2.0)
UOBM500 1317 735 (1.8) 394 (3.3) 245 (5.4) 3774 1799 (2.1) 947 (4.0) 554 (6.8)

Konclude without the presented (query answering) splitting techniques cannot answer
all of the queries within the given memory and time limits. Moreover, the parallelisation
significantly improves the query answering times and the improvements are larger, the
more computation is required. For ChEMBL, there is one very challenging query that
results in around 2.4 billion answers, which requires the majority of the time and almost
all of the available memory (447 GB). Note that the query answers must be serialised
and sent to the evaluation client, which communicates with the reasoner via the loop-
back device and simply discards all received parts of the query results if they exceed a
certain size. For large results (e.g., the 2.4 billion answers require roughly 500 GByte
in the SPARQL XML result serialization), Konclude streams the answers to the client
via the HTTP chunked transfer encoding. Due to the relatively small batches in which
tasks are processed, the parallelisation does not require significantly more memory.

To the best of our knowledge, the only other system that is able to handle such enor-
mous and expressive ontologies is PAGOdA, which delegates most of the workload
to an efficient datalog engine (such as RDFox) by utilising different (lower and upper
bound) optimisations as well as rewriting techniques and only falls back to a fully-
fledged reasoner if required by the query. Note that we used PAGOdA with RDFox as
the underlying datalog engine, which, in principle, supports parallelisation, but it seem
that this is hardly utilised by PAGOdA. We verified the correctness of the implemen-
tation by comparing the results with PAGOdA (as long as the serialised results do not
exceed 1 GByte) and created a comparison of the required processing times, which is
shown in Table 5. Since it is not easily possible to separate the parsing of the ontolo-
gies from other steps for PAGOdA, we summarize all the time that is required until the
system is ready for query answering as preprocessing time.

As one can observe, PAGOdA and Konclude have different strengths and weak-
nesses w.r.t. the preprocessing of these ontologies. As mentioned, Reactome leads to
many and large clusters of same individuals, which are difficult to handle with the in-
dividual derivations cache. In addition, PAGOdA ignores several data range axioms
with disjunctions, which lead to a significant amount of non-determinism for Konclude.
The type of inconsistency in Uniprot100 (multiple values for functional data properties)
seems to be checked much earlier with PAGOdA than for Konclude. In principle, one
could extend the saturation in Konclude to check (values for) data properties more pre-
cisely such that the inconsistency is detected much faster, but this does not seem very

42



Table 5: Comparison between Konclude and PAGOdA w.r.t. the preprocessing and ac-
cumulated query answering times for the evaluated ontologies in seconds

Ontology
Preprocessing Query answering

K-1 K-8 PAGOdA K-1 K-8 PAGOdA

ChEMBL 4250 665 6553 12767 3231 ≥ 17424
LUBM800 3156 493 1552 2777 569 ≥ 45291
Âŕ Reac-
tome

1473 371 1032 935 232 2649

Uniprot100 1769 366 550 – – –
Uniprot40 1305 231 2206 28 14 28
UOBM500 1747 311 7773 3774 554 ≥ 36425

relevant given the fact that most ontologies are indeed consistent. For LUBM, it can
be assumed that the more direct handling with the datalog engine under the relative
trivial TBox is more efficient than the handling with the individual derivations cache in
Konclude. In contrast, the preprocessing of Konclude with one thread is more efficient
for ChEMBL, Uniprot40, and UOBM500 than the one of PAGOdA and the parallelised
version of Konclude is significantly faster in most cases. Moreover, query answering
seems faster and more reliable with Konclude than with PAGOdA. In fact, PAGOdA
reached the time limit of 10 hours for two queries, which may be caused by the fully-
fledged reasoner (HermiT) in cases where the query cannot fully be answered with the
datalog engine (under the use of rewriting techniques). Although PAGOdA usually re-
quire significantly less memory, it reached the memory limit for the ChEMBL query
that results in around 2.4 billion answers. Regarding the memory consumption, it also
has to be noted that the parsed axioms and assertions are kept in memory for Konclude
even after the internal representation is created, which is more than 100 GByte for the
larger ontologies and is not really required for the evaluated application scenarios.

6 Conclusions

We presented an approach for splitting the reasoning work w.r.t. the assertional knowl-
edge of an ontology, which includes reasoning tasks such as consistency checking
and (conjunctive) query answering. This is particularly useful to enable parallelisation,
which benefits from uniformly sized work packages. The foundation of the presented
approach is a cache that stores specifically chosen consequences derived for individuals.
By reusing cached consequences and by employing appropriate expansion strategies, it
is ensured that the partial models constructed in parallel for small parts of the knowledge
base are compatible with each other such that the existence of a model considering all
individuals and assertions of the knowledge base is guaranteed. We also presented tech-
niques to support and improve (conjunctive) query answering, which utilise and restrict
the expansion of these partial models to gather a limited amount of (possible) answers in
order to enable a uniform parallelisation. As a result, the reasoning work can be organ-
ised in several small batches instead of doing all in one pass, which cannot directly be
parallelised and can easily become problematic for large ontologies. We integrated the
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presented techniques in the reasoning system Konclude and our experiments with large
and expressive ontologies show some promising performance improvements, especially
by utilising parallelisation. Given the fact that multi-core processors are ubiquitous now,
this are some important advancements to speed up reasoning with expressive Descrip-
tion Logics. The approach may even be a suitable basis for distributed reasoning in a
compute cluster, which may require to split the cache entries onto different machines,
which should, however, be straightforward by using an appropriate partitioning based
on hash values of individuals. Moreover, the approach also seems interesting for real-
ising incremental/stream reasoning, where a few assertions are (frequently) added or
removed, which remains to be investigated in future works.
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