
Computing Concept Referring Expressions for Queries on Horn ALC Ontologies

Moritz Illich , Birte Glimm
Institute of Artificial Intelligence, Ulm University, Germany

moritz.illich@uni-ulm.de, birte.glimm@uni-ulm.de

Abstract

Classical instance queries over an ontology only
consider explicitly named individuals. Concept re-
ferring expressions (CREs) also allow for returning
answers in the form of concepts that describe im-
plicitly given individuals in terms of their relation
to an explicitly named one. Existing approaches,
e.g., based on tree automata, can neither be inte-
grated into state-of-the-art OWL reasoners nor are
they directly amenable for an efficient implemen-
tation. To address this, we devise a novel algo-
rithm that uses highly optimized OWL reasoners
as a black box. In addition to the standard crite-
ria of singularity and certainty for CREs, we devise
and consider the criterion of uniqueness of CREs
for Horn ALC ontologies. The evaluation of our
prototypical implementation shows that computing
CREs for the most general concept (⊤) can be done
in less than one minute for ontologies with thou-
sands of individuals and concepts.

1 Introduction
Description Logics (DLs) are a family of logic-based repre-
sentation formalisms that provide the logical underpinning
of the well-known Web Ontology Language (OWL) [Hitzler
et al., 2009]. The expressed knowledge is typically sepa-
rated into terminological (aka TBox or schema) and asser-
tional knowledge (aka ABox or facts). The TBox describes
the relationships between concepts (representing sets of indi-
viduals with common characteristics) as well as roles (spec-
ifying the relationships between pairs of individuals). The
ABox defines concrete instances of concepts and roles. Auto-
mated reasoning systems derive implicit consequences of the
explicitly stated information, e.g., when answering queries
for concept instances. Classically, answers to such queries
consist of individual names that are used in the knowledge
base. Consider, for example, a knowledge base that states
that every person has a mother who is a person and that John
is a person (in DL syntax: Person ⊑ ∃hasMother.Person
and Person(john), where Person is a concept, hasMother is
a role, and john is an individual). Obviously, john is an an-
swer to the query for instances of the concept Person and

such names are also called referring expressions as they re-
fer to elements in the models of the knowledge base. In
each model of the knowledge base, however, there is also
an element that represents the mother of John. This anony-
mous element can be described by a concept referring ex-
pression (CRE) [Areces et al., 2008; Borgida et al., 2016;
Toman and Weddell, 2019], i.e., by a concept that describes
an anonymous element w.r.t. a named individual. For our ex-
ample, we can use the CRE the person who is the mother
of John (as DL concept: Person ⊓ ∃hasMother−.{john},
where hasMother− denotes the inverse relation is mother of
of hasMother). The reasoning task of generalized instance
retrieval refers to computing entailed named and anonymous
answers in the form of CREs for a concept instance query,
which allows for more comprehensive query results.

Usually, CREs are meant to identify a single element (e.g.,
John’s mother and not some set of elements as, e.g., the con-
cept Person itself). While some approaches for computing
CREs rely on functionality of roles and of role paths in order
to guarantee singularity, e.g., [Borgida et al., 2016], we do
not make this restriction as also the recent work of Toman and
Weddell [2019]. Another challenge when computing CREs is
describing all entailed answers to (concept instance) queries.
While the approach of Toman and Weddell based on tree au-
tomata addresses this problem, it is not well-suited for an effi-
cient implementation. Moreover, the applied constraints that
ensure the construction of only singular CREs are actually too
strict, thus neglecting query answers in some cases, while an
explicit prevention of duplicate answers referring to different,
but semantically equivalent, CREs is also not provided. In
this paper, we address these issues and present the first prac-
tical method for generalized instance retrieval that uses highly
optimized reasoners as a black box for computing CREs.

At first, we introduce DLs, knowledge bases, and CREs in
more detail. We then present the algorithm for computing an-
swers to generalized instance queries and prove its properties
in Section 3. In Section 4, we show the results of our empir-
ical evaluation, followed by a discussion of related work in
Section 5 and conclusions in Section 6.

2 Preliminaries
Before we can describe our algorithm, we first have to con-
sider some relevant definitions concerning both DLs and
CREs.

2.1 Description Logics
The syntax of the DL ALCIO is defined using a vocabulary
consisting of countably infinite disjoint sets NC of atomic
concepts, NR of atomic roles, and NI of individuals. A role is
either an atomic or an inverse role r−, r ∈ NR. An ALCIO
concept is defined as

C ::= ⊤ | ⊥ | A | {o} | ¬C | C1 ⊓ C2 | C1 ⊔ C2 |
∀R.C | ∃R.C,

where A ∈ NC , o ∈ NI , and R is a role. The concepts ∃R.C
and ∀R.C are called existential and universal restriction, re-
spectively. The DL ALC is obtained from ALCIO by dis-
allowing the use of nominals ({o}) and inverse roles. In the
remainder, we use a, b for individuals, A,B for atomic and
C,D for (possibly) complex concepts, and r for an atomic
and R for a (possibly) non-atomic role.

A TBox is a set of concept inclusion axioms C ⊑ D. An
ABox is a set of (concept and role) assertions of the form C(a)
and R(a, b), respectively. A knowledge base (or ontology)
K = T ∪ A consists of a TBox T and an ABox A. We use
C ≡ D to abbreviate C ⊑ D and D ⊑ C. With cons(K),
rols(K), and inds(K), we denote the sets of atomic concepts,
atomic roles, and individuals occurring in K, respectively.

An interpretation I = (∆I , ·I) consists of a non-empty
set ∆I , the domain of I, and an interpretation function ·I ,
that assigns to each A ∈ NC a subset AI ⊆ ∆I , to each
r ∈ NR a binary relation rI ⊆ ∆I×∆I , and to each a ∈ NI

an element aI ∈ ∆I . This assignment is extended to inverse
roles by (r−)I = {⟨e, d⟩ | ⟨d, e⟩ ∈ rI} and, inductively,
to complex concepts as ⊤I = ∆I , ⊥I = ∅, {o}I = {oI},
(¬C)I = ∆I \ CI , (C ⊓ D)I = CI ∩ DI , (C ⊔ D)I =
CI ∪DI , (∀r.C)I = {d ∈ ∆I | ⟨d, e⟩ ∈ rI → e ∈ CI} and
(∃r.C)I = {d ∈ ∆I | e ∈ CI : ⟨d, e⟩ ∈ rI}.

An interpretation I satisfies an axiom α, written I |= α,
if α = C ⊑ D and CI ⊆ DI , α = C(a) and aI ∈ CI , or
α = R(a, b) and ⟨aI , bI⟩ ∈ RI ; I is a model of a knowledge
base K, written I |= K, if I |= α for each α ∈ K; K entails
an axiom α, written K |= α, if every model of K satisfies α.

For a knowledge base K = T ∪ A, we say that K is (con-
cept) materialized if K |= A(a) implies A(a) ∈ K for each
A ∈ cons(K)∪{⊤} and a ∈ inds(K);A is reduced if there is
no A′ ⊂ A such that A′ ∪ {B(a) | A(a) ∈ A and K |= A ⊑
B,A,B ∈ cons(K)} is materialized, i.e., a reduced ABox is
materialized with the most specific atomic concepts.

An ALC knowledge base K = T ∪ A is Horn and in
normalized form if C ∈ NC for every C(a) ∈ K, and ev-
ery C ⊑ D ∈ K is in one of the forms ⊤ ⊑ A,A ⊑
B,A ⊑ ⊥, A ⊓ B ⊑ A′,∃r.A ⊑ B,A ⊑ ∃r.B,A ⊑ ∀r.B,
where A,A′, B ∈ NC and r ∈ NR. We use K∀ to denote
{∀r.B | A ⊑ ∀r.B ∈ T }. W.l.o.g., we assume in the remain-
der that Horn ALC knowledge bases are normalized by ap-
plying a structural transformation (see e.g. [Kazakov, 2009])
and that the ABox is reduced.

Each consistent Horn ALC knowledge base K has a so-
called universal model U which is minimal and unique, and
contains all the implied facts. In particular, the universal
model has a tree-like form of role-connected (anonymous) in-
dividuals with named individuals as roots where individuals

are only made equal if it is necessarily entailed by the knowl-
edge base. For query answering, it suffices to consider this
universal model [Toman and Weddell, 2019].

2.2 Concept Referring Expressions
Principally, referring expressions serve the purpose of
uniquely identifying an object in a certain context through its
properties, that also include relations to other objects [Krah-
mer and van Deemter, 2012]. In DLs, this can be realized by
a conjunction of concepts with relations modeled as existen-
tial restrictions over inverse roles, which relate an anonymous
individual to a named one (expressed as nominal):
Definition 1. Let K be a normalized ontology, C = A1 ⊓
. . . ⊓ An with Ai ∈ cons(K), r ∈ rols(K), and a ∈ inds(K),
then a concept referring expression E is defined as

E ::= {a} E ::= C ⊓ ∃r−.(E)

and we call a the base individual of E.
The reason for describing referring expressions this way

lies in the tree model property of DLs, which allows us to
identify an anonymous object in terms of a named individual
(the base individual) and the (inverse) role path that connects
the former to the latter [Toman and Weddell, 2019]. Consider
the example taken from Toman and Weddell [2019]:
Example 1. Let K = T ∪ A consist of the TBox
T = {A ⊑ ∃r.C, A ⊑ ∃r.D, A ⊑ ∀r.B} and the
ABox A = {A(a)}, with the three (tree) models of K:

aA

B,C B,C B,D

r r r
aA

B,C B,D

r r
aA

B,C,D

r

The model in the middle is the universal model as it can be
embedded into any other model of K.

When we consider the generalized instance query for the
concept B, the universal model makes it reasonable to con-
sider the r-successor of a labeled C and the r-successor of
a labeled D as singular certain answers to the query. We
can describe these answers as the CREs C ⊓ ∃r−.{a} and
D ⊓ ∃r−.{a}, respectively. Note that we use an ALCIO
concept to describe the CRE, whereas K is in Horn ALC.

For a CRE to qualify as an answer to a generalized instance
query, we impose some requirements, following the definition
of Toman and Weddell [2019] for singularity and certainty:
Definition 2. A generalized instance query is an atomic con-
cept Q ∈ NC . A set ans(Q) of CREs is an answer to Q over
a consistent knowledge base K if, for each E,E′ ∈ ans(Q),
certainty K |= E ⊑ Q and |EI | > 0 for all models I of K,

singularity |EU | = 1 in the universal model U of K, and

uniqueness EU ̸= E′U in the universal model U of K.
Here, the additional uniqueness property ensures that we

do not obtain any duplicate answers, since we are only in-
terested in the individual (semantically) represented by some
CRE rather than the actual (syntactic) form of the latter. Be-
sides, note that the above definition of singularity is a weak-
ening of the property defined by Borgida et al. [2016], where
a CRE was required to denote a singleton set in all models of

the knowledge base. This weakening, however, is essential in
DLs that do not support counting (e.g., through number re-
strictions or functional roles) such asALCIO. Note also that
unreachable objects cannot be certain answers. Furthermore,
a complex concept may still be considered as query if it can
be represented by means of a new atomic concept and addi-
tional appropriate axioms in the ontology. For instance, the
query ⊤ may be realized by asking for some new concept A
and adding ⊤ ⊑ A to the ontology.

Example 2 (Ex. 1 cont.). Consider again the knowledge
base K of Example 1. Formally, the set {C ⊓ ∃r−.{a}, D ⊓
∃r−.{a}} is an answer to the generalized instance query B
as both concept expressions are singular certain answers that
identify different anonymous individuals. The CRE ∃r−.{a}
does not satisfy the singularity requirement and the CRE
C ⊓D ⊓ ∃r−.{a} violates the certainty requirement.

Note that if we were to add C ≡ D to T , the universal
model would be the right-most model of Example 1. In ad-
dition to the two CREs from above, also C ⊓ D ⊓ ∃r−.{a}
becomes a certain singular answer. All three CREs, how-
ever, identify the same anonymous individual in the univer-
sal model (in different syntactic variants) and our proposed
uniqueness criterion requires that ans(Q) consists of only one
of them.

3 Answering Generalized Instance Queries
We propose an algorithm for computing CREs for a general-
ized instance query given by an atomic concept Q over a (nor-
malized) HornALC ontologyK = T ∪Awith reduced ABox
A. An important aspect of the algorithm is that it employs an
OWL reasoner as a black box as only standard reasoning tasks
(e.g., as foreseen in the OWL API [Horridge and Bechhofer,
2011]) are required and the concrete approach being applied
to answer generalized instance queries is not known to the
reasoner. For example, we retrieve super-concepts of a con-
cept or the most specific concepts (w.r.t. to the subsumption
hierarchy) that an individual is an instance of (corresponding
to those concepts in a reduced ABox). This provides great
flexibility concerning the choice of the applied reasoner and
allows for using optimized strategies for different ontologies.

To construct CREs serving as answers for Q, we start with
a CRE E = {a} for each a ∈ inds(K) and a correspond-
ing current concept C = A1 ⊓ . . . ⊓ An such that, for each
1 ≤ i ≤ n, Ai(a) ∈ A. We then look for suitable existential
restrictions ∃r.D which satisfy K |= C ⊑ ∃r.D and, thus,
allow us to extend the current CRE to E′ = D ⊓ ∃r−.(E).
This procedure is repeated and each time the newly related
D is chosen as next current concept until no more appropri-
ate restrictions can be found to further extend the generated
CREs. Here, a current concept C does not just enable us to
further expand a CRE, but moreover serves as an indicator if
the latter represents an answer for the query Q, which is the
case if K |= C ⊑ Q as shown later in Lemma 1.

3.1 Initialization
Algorithm 1 describes the main algorithm that constructs, for
each individual a occurring in the knowledge base, the initial

Algorithm 1 Answering generalized instance queries

procedure GENERALIZEDINSTANCEQUERY(K, Q)
input: K = T ∪ A: an ontology, Q: a generalized in-
stance query
output: ans(Q)

1: ans← ∅
2: for all a ∈ inds(K) do
3: Ca ←

d
A(a)∈A A

4: ans← ans ∪ GETCRES(K, Q, Ca, {a}, ∅)
5: return ans

current concept and then calls the algorithm to generate CREs
w.r.t. this (base) individual.

3.2 Constructing Concept Referring Expressions
Algorithm 2 uses five steps to construct CREs for a given base
individual that serve as certain, singular and unique answers
for the considered query:

Step 1: At first, in Line 2, we look for suitable existential
restrictions ∃r.B that allow us to relate the current concept C
to the concept B in order to establish a link to a new anony-
mous individual, thus requiring K |= C ⊑ ∃r.B. Since we
are only interested in producing singular CREs, a restriction
∃r.B should only be considered if there is no restriction ∃r.A
(using the same role r) such that K |= A ⊑ B. We capture
this by introducing reduced (sets of) existential restrictions:
Definition 3 (Reduced Existential Restrictions). Let K be
a normalized Horn ALC ontology and C a concept, then
K∃(C) = {∃r.B | K |= C ⊑ ∃r.B,B ∈ NC , r ∈ NR}.
We denote with Kmin

∃ (C) a smallest subset of K∃(C) such
that, for each ∃r.B ∈ K∃(C) \ Kmin

∃ (C), there is some
∃r.A ∈ Kmin

∃ (C) s.t. K |= A ⊑ B.

Note that an instance of ∃r.B ∈ K∃(C) \ Kmin
∃ (C) is con-

nected to more than one instance of B, which means that a
CRE using this existential restriction is non-singular as it rep-
resents more than one individual. Moreover, if there are two
candidates ∃r.A, ∃r.B ∈ K∃(C) such thatK |= A ≡ B, only
one of them should be chosen, because applying both may
lead to CREs that describe the same anonymous individual
and, hence, represent unnecessary duplicate answers.

Step 2: For each selected existential restriction that in-
duces a successor for an instance of the current concept C,
we next consider universal restrictions that further specify
these successors (see Lines 4–5) and we add these concepts
to the set of successor concepts for the role in the sc rela-
tion. After this step, each (r, S) ∈ sc is such that K |= C ⊑
∃r.(B1 ⊓ . . . ⊓Bn) for S = {B1, . . . , Bn}.

Step 3: In this step of the algorithm, we determine those
existential restrictions that can actually be applied to further
construct CREs leading to singular, unique answers of the
query and collect them in the set next. If we encounter an
entry (r, S) ∈ sc for which we already have another entry
(r, S′) ∈ next such that K |=

d
B∈S B ≡

d
B′∈S′ B′, we do

not consider (r, S) any further to prevent duplicate answers,
i.e., if the check in Line 11 fails, the entry (r, S) is not added
to the set next. Even though we already consider only the re-
duced set of existential restrictions in Step 1, this check is still

Algorithm 2 Computing CREs for a base individual

procedure GETCRES(K, Q, C, E, used)
input: K = T ∪ A: an ontology, Q: a query, C: the cur-
rent concept, E: the current CRE, used: a set of already
applied existential restrictions
output: CREs from ans(Q) that build upon E

1: // Step 1: find suitable existential restrictions
2: sc← {(r, {B}) | ∃r.B ∈ Kmin

∃ (C)}
3: // Step 2: find related universal restrictions
4: for all (r, S) ∈ sc do
5: S ← S ∪ {B | ∀r.B ∈ K∀ and K |= C ⊑ ∀r.B}
6: // Step 3: filter found existential restrictions
7: next← ∅
8: for all (r, S) ∈ sc do
9: // check for potential duplicates

10: sc′ ← {(r, S′) ∈ next | K |=
d

B∈S B ≡
d

B′∈S′ B′}
11: if sc′ = ∅ then
12: if E = {a} then
13: if {b | r(a, b) ∈ A,∀B ∈ S : K |= B(b)} = ∅ then
14: next← next ∪ {(r, S)}
15: else
16: // look for cycle in current CRE
17: if (r, S) ∈ used then
18: E ← MARKCYCLE(E, r, S)
19: else
20: next← next ∪ {(r, S)}
21: // Step 4: check if current CRE is an answer
22: ans← ∅
23: if K |= C ⊑ Q then
24: ans← ans ∪ {E}
25: // Step 5: extend CRE recursively
26: for all (r, S) ∈ next do
27: C ′ ←

d
B∈S B

28: E′ ← C ′ ⊓ ∃r−.(E)
29: ans← ans ∪ GETCRES(K, Q, C ′, E′, used∪{(r, S)})
30: return ans

necessary. Consider, for example, that K |= C ⊑ ∃r.A and
K |= C ⊑ ∃r.B for the current concept C and K ̸|= A ≡ B.
Hence, we have two entries (r, {A}) and (r, {B}) ∈ sc. As-
sume, furthermore, thatK |= C ⊑ ∀r.A andK |= C ⊑ ∀r.B.
This means, however, that for both (r, {A}), (r, {B}) ∈ sc,
we have K |= C ⊑ ∃r.(A ⊓B).

To guarantee the uniqueness property, an existential restric-
tion should also be ignored for the initial extension of a CRE
only consisting of a nominal {a} if the existential restriction
is already satisfied through a named individual b. This is han-
dled in Line 13. Due to the tree model property of HornALC
this situation can only occur for the initial CREs.

For cyclic knowledge bases, it may be the case that for two,
possibly equal, current concepts C and C ′ that occur during
the algorithm processing, the same existential restriction is
applicable. This may lead to an arbitrarily long repetition of
the same sequence of existential restrictions that originally
led from C to C ′, hence, giving rise to an infinitely large
number of possible CREs (of increasing length). Analogous

to blocking in tableau algorithms [Baader et al., 2003], we
ensure termination of the algorithm by detecting such cycles
and by preventing the reuse of an already processed existen-
tial restriction. Instead, we compactly represent such CREs
using a cycle notation in form of surrounding square brack-
ets ”[...]+” to mark the sequence that may occur several times
repeatedly (indicated by a call to the procedure MARKCY-
CLE in Line 18). For an example, consider K = T ∪ A with
T = {A ⊑ ∃r.A} andA = {A(a)}, where [A⊓∃r−.(]+{a})
is an answer for the generalized instance query A and serves
as single representative for the infinitely many CREs of the
form A ⊓ ∃r−.(A ⊓ ∃r−.(...{a}). Note that cycles only ap-
pear on a syntactic level, because semantically every CRE
represents a path in the tree-like universal model.

Step 4: In this step, we check if the current CRE already
represents an answer for the query Q. For a standard instance
query, this would usually require to check K |= Q(a) for a
named individual a, but since we are considering anonymous
individuals represented by some CRE E, we want to know
whether K |= E ⊑ Q. This is actually realized by checking
K |= C ⊑ Q in Line 23 for the related current concept C
based on the following lemma.

Lemma 1. Given a Horn ALC ontology K, a generalized
instance query Q, a CRE E, and its associated (Horn ALC)
current concept C,1 then K |= E ⊑ Q⇔ K |= C ⊑ Q.

Proof sketch. (⇐) Per definition, a current concept C of
some CRE E always satisfies K |= E ⊑ C.
(⇒) K |= C ⊑ Q requires that C is at least as specific
as Q. Therefore, we show that the current concept C is
actually the most specific (Horn ALC) concept such that
K |= E ⊑ C and that for any other most specific candidate
D with K |= E ⊑ D, we have K |= C ≡ D, which is mainly
based on the fact that we only work with reduced existential
restrictions (see Line 2 in Algorithm 2, and Definition 3).

Step 5: Even if an answer has been identified, the process-
ing of the CRE does still proceed, because it may be possible
that the continuing construction leads to another answer later
on. Therefore, the algorithm is eventually called recursively
using appropriately updated arguments, like an extended CRE
E′ and the new current concept C ′.

3.3 Properties
In the following, we discuss why the described algorithm
works properly in the way that for a generalized instance
query, only certain, singular, and unique answers are pro-
duced w.r.t. Definition 2. Additionally, we show that the algo-
rithm returns every such answer and, furthermore, always ter-
minates. Due to space limitations, we mainly provide proof
sketches, while more details are given in an online appendix.2

Certainty. In Line 23 of Algorithm 2, a CRE E is selected
as answer if K |= C ⊑ Q, which implies K |= E ⊑ Q ac-
cording to Lemma 1. In addition, a CRE basically describes

1if E = {a}, then C = A1 ⊓ . . . ⊓ An with Ai(a) ∈ A, else if
E = D ⊓ ∃r−.(...), then C = D

2https://www.uni-ulm.de/fileadmin/website uni ulm/iui.inst.
090/Publikationen/2022/IlGl22a appendix.pdf

https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.090/Publikationen/2022/IlGl22a_appendix.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.090/Publikationen/2022/IlGl22a_appendix.pdf

a chain of linked individuals where the existence of one indi-
vidual ensures the presence of the next one being referenced
through an existential restriction. Since we start with an ex-
plicitly present individual as base for E, there is always at
least on element in EI for each model I.
Singularity. For an initial CRE E = {a}, we directly get
|EU | = 1 for the universal model U . In the more general case
E = C ⊓ ∃r−.(E′) with E′ as the (recursive) part leading
to the base individual, we show that the non-singular situa-
tion |EU | > 1 is never achieved: This would require that
there is some part C ′ ⊓ ∃r′−.(E′′) in E where one individual
from E′′U has r′-relations to (at least) two different individu-
als in C ′U . The necessary conditions for this are described in
Lemma 2 below (with C ′ as D), but since the algorithm only
selects reduced existential restrictions w.r.t. Definition 3, i.e.,
some ∃r.B is only chosen if there is no candidate ∃r.A with
K |= A ⊑ B, this situation never occurs.
Lemma 2. Let K be a Horn ALC ontology, U the universal
model of K, and assume that ⟨c, a⟩, ⟨c, b⟩ ∈ rU for some role
r, and (anonymous) a, b ∈ DU for some concept D. We have
a ̸= b iff there exist some concepts A,B,C such that c ∈ CU ,
K |= C ⊑ ∃r.A, K |= C ⊑ ∃r.B, K |= A ⊑ D, K |= B ⊑
D, and K ̸|= A ≡ B.

Proof sketch. This basically follows from the characteristics
of the universal model U .

Uniqueness. Considering the tree-like universal model U ,
having two different CREs E,E′ with EU = E′U means that
i) they both describe the same path in the tree using different
concepts or ii) one refers to a sub-path of the other leading
to the same anonymous individual: i) Because an edge in a
tree path relates to some ∃r.B, E′ might describe the same
path as E if it uses some ∃r.B′ with B ⊑ B′ (including B ≡
B′) for the associated edge instead. In Algorithm 2, this is
prevented in Lines 2 and 11. ii) Assuming that a and a′ are
the base individuals of E and E′, respectively, there must
be some r(a, a′) such that E′ refers to a sub-path of E. If
a′U ∈ BU for some B, some ∃r.B would describe the same
edge as r(a, a′), given that aU ∈ (∃r.B)U , which is why such
existential restrictions are not chosen (Line 13).
Completeness. It is not required to construct every possi-
ble CRE that represents an answer for the stated query, but
rather to find one unique, singular CRE for every, possibly
anonymous, individual that serves as an answer. For that, we
assume there may exist some CRE E describing a correct,
singular and unique answer, but which cannot be constructed
by the algorithm and prove that this is not possible: Since
the considered E is not generated by the algorithm, it must
possess a unique subpart that does not occur in any of the
constructed answers. As we already consider all individu-
als during the initialization, this part must refer to some part
C ′ ⊓ ∃r−.(C ⊓ . . .), where the existential restriction ∃r.C ′

was applied for the concept C. By considering all the cases
where C is not used as current concept or ∃r.C ′ is not selected
(or constructed), respectively, we can see that either the cer-
tainty, singularity or uniqueness property would be violated
by regarding E as an answer. The employed cycle notation
may be seen as a compromise to implicitly return a possibly

infinite number of CREs in form of just one compact instance
in order to ensure the termination of the algorithm.

Termination. As the given ontology always consists of a
finite number of axioms and concepts, all the applied search
and iteration processes come to a halt. Therefore, non-
termination may only be realized by the repeated usage of an
existential restriction during a recursive call, which, however,
is prevented by the cycle detection in Line 17 of Algorithm 2.

4 Implementation and Evaluation
A prototypical Java implementation of our algorithm is avail-
able online3 and also includes some optimizations. One of
them refers to the ordering of existential and universal re-
strictions by means of separate subsumption hierarchies. This
allows us to reduce the number of performed subsumption
tests in the way that if, for example, K ̸|= C ⊑ ∃r.B,
we do not need to further check K |= C ⊑ ∃r′.A for any
∃r′.A that is below ∃r.B in the hierarchy, i.e., for which
K |= ∃r′.A ⊑ ∃r.B. Usually, reasoners are only concerned
with computing subsumption hierarchies for atomic concepts,
referred to as classification (see e.g. [Baader et al., 2003]).
Therefore, we introduce a new atomic concept for each exis-
tential (or universal) restriction such that the reasoner can (in-
ternally) compute the hierarchies for those new atomic con-
cepts, based on which the actual hierarchies for existential
(or universal) restrictions can then be derived. Due to the
associated additional overhead, we also implemented the (ex-
plicit) Enhanced Traversal Method [Baader et al., 1994] to
efficiently deal with smaller number of elements.

Another improvement is achieved by combining base indi-
viduals into one set if they share an equivalent initial current
concept and furthermore possess analogous given role asser-
tions. Since these properties result in the same computations
for each individual, we can avoid unnecessary repetitions by
calling the algorithm only once for such a combined set and
just generate different versions of the constructed CRE for
each base individual in the end.

For a general performance assessment, the implementa-
tion was tested on different ontologies listed in Table 1 with
codinteraction-A and the separate ore ont 2608/4516/3313
being part of the ORE 2015 Reasoner Competition Corpus
[Matentzoglu and Parsia, 2015], while HAO (v2021-03-05),
VO (v1.1.171) and DTO (v1.1.1) were taken from BioPor-
tal4. If necessary, axioms not adhering to Horn ALC were
removed and ontologies merged with their imports to obtain
one complete ontology.

Tests showed that subsumption checking has a huge in-
fluence on the performance, which is why we considered
two different reasoners, namely HermiT5 (v1.3.8) and JFact6
(v5.0.3). In general, HermiT achieved better runtime results
than JFact, except for the larger ontologies VO and DTO,
where JFact was faster in determining the earlier mentioned
subsumption hierarchies. Since both VO and DTO, however,

3https://github.com/M-Illich/Computing-CREs
4https://bioportal.bioontology.org/ontologies
5http://www.hermit-reasoner.com/
6http://jfact.sourceforge.net/

https://github.com/M-Illich/Computing-CREs
https://bioportal.bioontology.org/ontologies
http://www.hermit-reasoner.com/
http://jfact.sourceforge.net/

Ontology #con #ind #sets #∃ #∀ Runtime
codinteraction-A 6 21 13 3 0 71
ore ont 2608 453 212 212 10 10 265
ore ont 4516 509 217 217 10 10 185
ore ont 3313 865 2,070 858 114 0 57,966
HAO 2,548 2,764 687 522 1 37,965
VO 6,828 167 4 1,513 237 460∗

DTO 10,075 3 1 7,958 114 738∗

Table 1: Overview of adapted ontologies with their number of
atomic concepts (#con), individuals (#ind), combined individual sets
(#sets), considered existential/universal restrictions (#∃/#∀), and av-
erage runtime in ms for ⊤ as query (∗no subsumption hierarchies)

possess many existential restrictions but only few individuals
(especially in form of combined sets), the performance was
actually best if no subsumption hierarchies are computed. Ta-
ble 1 shows the obtained runtime measurements (average of
five runs) for computing all CREs, i.e., using⊤ as query, with
HermiT as reasoner, based on an AMD Ryzen 7 3700X 3.59
GHz processor with 16 GB RAM on Windows 10 (64-Bit).

5 Related Work
Krahmer and van Deemter [2012] provide a survey on refer-
ring expressions and their computational generation, given by
a historic overview of research developments. Here, the prob-
lem of generating referring expressions is defined as finding
a description in form of combined properties that uniquely
identify a given individual in a certain context, which differs
from our work in that we intend to describe unknown, anony-
mous individuals rather than explicitly named ones.

A related approach that works with DLs is provided by
Areces et al. [2008] introducing an algorithm that takes as
input a model M and tries to find formulas (concepts) that
represent the individuals inM. The basic idea is that, start-
ing with ⊤ as formula for which the interpretation contains
every domain element, new formulas are created by succes-
sively refining the already given ones by appending new con-
juncts to reduce the number of elements in the formulas’ in-
terpretations. At first, only atomic concepts are added as con-
juncts, before existential restrictions relating to already com-
puted formulas are considered until the formulas’ interpreta-
tions are singular or no further adaptations are possible.

Unlike in our work, the individuals to be described are al-
ready stated and the occurrence of cycles in referring expres-
sions is not considered. However, both approaches make use
of relations between individuals, but with the distinction that
Areces et al. start from the individual a described by the re-
ferring expression and go to another one b (a→ b), while we
utilize the inverse case where another (present) individual b
refers to a, the (anonymous) one being described (a← b).

The work that comes closest to ours is given by Toman
and Weddell [2019] dealing with (generalized) instance re-
trieval queries on (Horn ALC) ontologies, based on a tree
automaton for which a state S is given by a set of atomic
concepts, while transitions are defined by so-called matching
tuples (S, S0, ..., Sk) stating that some Si with 0 ⩽ i ⩽ k
can be reached when in the current state S a certain ex-

istential restriction ∃ri.Ci is applied. Starting with a set
Sa = {A | A(a) ∈ A} for some individual a, a tree can
be unfolded using those matching tuples. In order to answer
a query B, this tree is traversed beginning with some Sa until
a state Sk is reached where K |=

d
A∈Sk

A ⊑ B, for which
the sequence r1A1...rkAk (called certain path) referring to
the applied existential restrictions is then transformed into a
CRE Ak ⊓ ∃r−k .(... A1 ⊓ ∃r−1 .{a}) serving as answer for B.

Like in our algorithm, the tree automaton starts the con-
struction of CREs with a given individual and also takes care
of occurring cycles. Furthermore, both approaches only use
minimal existential restrictions to ensure singularity, although
the definitions for minimality are different: while Toman and
Weddell rely on the general subsumption of the whole restric-
tion ∃r.C, we consider subsumption for the inner concept C
instead w.r.t. Definition 3, because only then singularity can
be guaranteed (based on Lemma 2). In this respect, the tree
automaton approach does not fulfill the completeness prop-
erty due to only working with the most specific existential
restrictions, even though some other ones might lead to sin-
gular CREs, too, as illustrated in Example 3 below. Besides,
we are only interested in producing unique CREs, which is
not explicitly handled by Toman and Weddell.
Example 3. Let K = T ∪ A consist of A = {A(a)} and
T = {A ⊑ ∃r.C, ∃r.C ⊑ B,B ⊑ ∃r.D,C ⊑ Q,D ⊑ Q}.
For the generalized instance query Q, we get ans(Q) = {C⊓
∃r−.{a}, D ⊓ ∃r−.{a}}, even though ∃r.D is not minimal
w.r.t. subsumption due to K |= ∃r.C ⊑ ∃r.D.

6 Conclusion
We presented an algorithm that generates concept referring
expressions to identify both named and anonymous individ-
uals serving as certain, singular and unique answers for an
instance retrieval query on a Horn ALC ontology. For that,
we start with a named individual and recursively determine
appropriate existential restrictions to create a chain of rela-
tions that defines an implicitly given individual based on its
connection to an explicit one. A crucial factor here is the
selection based on reduced existential restrictions (cf. Defini-
tion 3), enabling us to construct every desired singular CRE.
Besides, the black box consideration of the applied reasoner
provides more flexibility in choosing optimal reasoning ap-
proaches for different situations.
Future Research In general, the question which reasoner
should be selected for the considered ontologies is not an easy
one and requires further investigations. On the other side,
there may be some advantages of directly integrating the al-
gorithm into a particular reasoner as the algorithm can then
utilize the reasoner’s internal data structures and be optimized
accordingly. Moreover, it may be of interest to consider ex-
tensions of Horn ALC, too. While some features might be
already supported with none or only small adaptations in the
algorithm, others probably require more examination, espe-
cially since we might lose the existence of the tree-like uni-
versal model and thus can no longer make use of our original
singularity definition.

References
[Areces et al., 2008] Carlos Areces, Alexander Koller, and

Kristina Striegnitz. Referring Expressions as Formulas
of Description Logic. In Proceedings of the Fifth Inter-
national Natural Language Generation Conference, pages
42–49, 2008.

[Baader et al., 1994] Franz Baader, Bernhard Hollunder,
Bernhard Nebel, Hans-Jürgen Profitlich, and Enrico Fran-
coni. An Empirical Analysis of Optimization Techniques
for Terminological Representation Systems. Applied In-
telligence, 4(2):109–132, 05 1994.

[Baader et al., 2003] Franz Baader, Diego Calvanese, Deb-
orah McGuinness, Peter Patel-Schneider, Daniele Nardi,
et al. The Description Logic Handbook: Theory, imple-
mentation and applications. Cambridge University Press,
2003.

[Borgida et al., 2016] Alexander Borgida, David Toman, and
Grant Weddell. On Referring Expressions in Query An-
swering over First Order Knowledge Bases. In Proceed-
ings of the 15th International Conference on Principles of
Knowledge Representation and Reasoning (KR’16), pages
319–328. AAAI Press, 2016.

[Hitzler et al., 2009] Pascal Hitzler, Markus Krötzsch, Bijan
Parsia, Peter F. Patel-Schneider, and Sebastian Rudolph,
editors. OWL 2 Web Ontology Language: Primer. W3C
Recommendation, 2009. Available at http://www.w3.org/
TR/owl2-primer/.

[Horridge and Bechhofer, 2011] Matthew Horridge and
Sean Bechhofer. The OWL API: A Java API for OWL
ontologies. Semant. Web, 2(1):11–21, Jan 2011.

[Kazakov, 2009] Yevgeny Kazakov. Consequence-Driven
Reasoning for Horn SHIQ Ontologies. In Proc. of the
21st Int. Joint Conf. on Artificial Intelligence, IJCAI 2009,
pages 2040–2045, 2009.

[Krahmer and van Deemter, 2012] Emiel Krahmer and Kees
van Deemter. Computational Generation of Referring
Expressions: A Survey. Computational Linguistics,
38(1):173–218, 2012.

[Matentzoglu and Parsia, 2015] Nicolas Matentzoglu and
Bijan Parsia. ORE 2015 Reasoner Competition Corpus,
June 2015.

[Toman and Weddell, 2019] David Toman and Grant Wed-
dell. Finding ALL Answers to OBDA Queries Using Re-
ferring Expressions. In AI 2019: Advances in Artificial
Intelligence, pages 117–129, Cham, 2019. Springer Inter-
national Publishing.

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/

	Introduction
	Preliminaries
	Description Logics
	Concept Referring Expressions

	Answering Generalized Instance Queries
	Initialization
	Constructing Concept Referring Expressions
	Properties

	Implementation and Evaluation
	Related Work
	Conclusion

