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Abstract— Explainable robotics refers to the challenge of
designing robots that can make their decisions transparent
to humans. Recently, a number of approaches to task plan
explanation have been proposed, which enable robots to explain
each step in their plan to humans. These approaches have in
common that they are based on the causal links in the plan. We
discuss problems with using causal links for plan explanation.
Particularly, their inability to distinguish enabling actions from
requiring actions can lead to counter-intuitive explanations.
We propose an extension that allows for making this relevant
distinction and demonstrate how it can be applied to create a
robot that explains its actions.

I. INTRODUCTION

When robots are tasked with making decisions with po-
tentially critical outcomes, it is important that the decision-
making process can be made transparent to humans. Guide-
lines for the ethical design of autonomous systems, such as
The IEEE Global Initiative on Ethics of Autonomous and
Intelligent Systems [1], require robot designers to ensure that
“a particular robot’s decision should always be discoverable”
(i.e., transparency), and that robots “[...] shall be created
and operated to provide an unambiguous rationale for all
decisions made” (i.e., accountability). The capacity of robots
to explain their behavior to humans has also been argued to
be crucial for fostering trust during human-robot interaction
[2], [3]. Moreover, explanations can be useful for a robotics
engineer’s debugging task, or just for making the robot’s
behavior understandable to a curious person.

One line of research in explainability for robotics develops
methods for automatically generating explanations based on
actual action sequences a robot has planned to execute [4],
[5], [6], [7], [8]. Such approaches are applicable to robot
systems that make use of task planning systems to generate
high-level representations of their planned actions [9], [10],
[11], [12], [13]. A suitable explanation method can then be
used to generate a description of each action in the plan
along with a justification for why this action is in the plan. A
significant number of recent plan explanation methods make
use of causal links [14], [15], [5], [8], [16]. Technically,
causal links in action plans make transparent the connections
between two actions via their effects and preconditions.

We present an analysis of the causal-link approach and
argue that it is less suited for explaining robot action plans
than suggested by previous work. Particularly, the inability
to distinguish enabling actions from requiring actions can
lead to counter-intuitive explanations. The remainder of the
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paper is structured as follows: We first review recent work on
explainable robotics with a focus on causal-link-based plan
explanation. Section III introduces the technical framework
of task planning and causal links as far as needed to under-
stand our analysis. We then analyze the standard approach
and identify fundamental issues. In Sect. V, we present our
approach to plan explanation, present a demonstrator, and
discuss the approach’s advantages and disadvantages.

II. RELATED WORK

How people explain their own behavior to other people
has been studied in cognitive and social science for a long
time. Results from these research areas have been taken
up for proposals of high-level explanation frameworks for
robotics that emphasize the social-interactive and human
behavior aspects of explanation. Matarese and colleagues
[17] stress the importance of causal chains and contrastivity
for explaining a robot’s actions. The framework by de Graaf
and Malle [18] encompasses several types of explaining a
robot’s behavior by referring to causal histories, reasons,
enabling factors, and by making the distinction between
explaining intentional and unintentional actions. Both the
conceptual frameworks for behavior explanation have a focus
on causality, viz., what is it that caused the robot to execute
a to-be-explained action, or what is it that was intentionally
caused by that action.

One prominent way to computationally account for causal-
ity in plan explanation is to make use of causal links between
actions in the plan. Stulp and colleagues [5] explain the
actions of a robot’s task plan by following the causal link
chain through the plan. This way, the robot can explain
what it is doing, viz., by citing the current action, and
why it is executing an action by citing what other actions
it enables. PlanVerb [8] is a tool for verbalizing task plan
as natural language descriptions. The explanation generation
module relies on causal links as a representation of the causal
and temporal order of actions. Collins and colleagues [15]
suggest generating plan explanations by translating a plan’s
causal links to an argumentation structure, which can then be
queried for explanations of why some action is in the plan.
Seegebarth and colleagues [14] generate explanations based
on causal links but in a hierarchical planning context, and
Sreedharan and colleagues [16] use causal-link explanations
in conversational assistants.

The literature review reveals that employing causal links
for generating plan explanations is an idea that pops up
steadily in recent work. The work by Farrell and Ware [19]
analyzes an issue with causal-link explanations in the context
of narrative planning, viz., the selection of causal links for



explanation in case of overdetermination. We also briefly
discuss this problem in Sect. IV-B.2. We then point out
further problems and thereby strive to make a contribution
towards better understanding the relation between causal
links and plan explanations, but also to make a constructive
proposal for an alternative approach.

III. TECHNICAL PRELIMINARIES

A. Task Planning

The goal of task planning is to find a sequence of
actions that transforms an initial state into a goal state. The
application environment is represented by states, which are
described by propositional state variables v ∈ V , i.e., a state s
is a set of facts expressing which state variables are true and
which are false in s. A fact is a state variable or its negation.
The set of all facts is denoted by F . Actions can change one
state into another. An action A has preconditions pre(A) and
effects eff (A) that are also sets of the aforementioned facts.
An action is applicable in a state s if its preconditions are
satisfied, i.e., if pre(A) is a subset of s. The application of A
in s results in a new state s′ where s′ is obtained by updating
s according to eff (A), i.e., if there is v ∈ eff (A) but ¬v ∈ s
then ¬v is replaced by v and vice versa, if ¬v ∈ eff (A)
but v ∈ s then v is replaced by ¬v. A sequence of actions
A0 ◦ · · · ◦An−1 is applicable in a state s0 and results in sn
if the successive application changes the state step-by-step
so that all actions are applicable. Formally, this is the case
if A0 is applicable in s0 and every Ai is applicable in si,
where si results from applying Ai−1 in si−1. A planning
problem consists of an initial state s0, a set of actions, and
a goal description s⋆. The latter is also a set of facts. A plan
π = A0 ◦ . . .◦An−1 is a solution to a planning problem if π
is applicable in s0 and results in a state sn that satisfies the
goal condition, i.e., g ⊆ sn. We further assume that plans do
not contain superfluous actions, i.e., removing some action
from the plan results in the goal not being reached.

B. Causal Links

In recent times, causal links were mainly exploited for
plan explanations. Originally, they descended from least
commitment planning where they were used as a tool for
finding and validating partially-ordered plans [20], [21].

Let A1, A2 be two actions such that A1 happens before
A2 in plan π. A causal link (A1, e, A2) represents that A1

has e among its effects, that e is part of the precondition of
A2, and no other action between A1 and A2 invalidates e.
That is, A1 produces e for A2, hence, A1 is also called the
producer of this causal link and A2 is called the consumer.
At the beginning of a chain of causal links, a link with no
producer is allowed: (Init , e, A1) means that e is true in the
initial state, maintains its truth until A1 is executed, and is in
one of A1’s preconditions. Likewise, the causal link without
consumer (A1, e,Goal) is allowed at the end of a causal
chain representing that e is an actual effect of A1, remains
true until the final state, and is a goal fact (i.e., e ∈ s⋆).

If causal links are not already computed by the planning
procedure, one can infer them as follows: Consider a given

plan π = A0 ◦ . . .◦An−1 and goal description s⋆. For s⋆ and
every action Ai and every open precondition e of s⋆ or Ai (a
precondition not yet supported by a causal link) traverse the
actions A0, . . . , Ai−1 in inverse order and stop as soon as
you found an action Aj with e ∈ eff (Aj), then add the link
(Aj , e, Ai). Note that generally the choice of a producer of a
causal link is not always unique. In the described procedure
we pick the “nearest” action, which is in compliance with
the algorithm described by Stulp and colleagues [5].

IV. CAUSAL LINK EXPLANATIONS

A. The Standard Approach

Several authors [8], [14], [5] have proposed step-by-step
plan explanation methods based on the causal links of a
given plan. The main idea is to interpret causal links as
models of causal relationships between actions. For the sake
of explanation, causal links are given an intentional reading.
That is, a causal link of the form (A, e,B) is verbalized as
an explanation such as (1).
(1) The robot executes A in order to achieve e which enables

the execution of B.
We refer to this approach to plan explanations as the standard
approach. In the following, we scrutinize the standard ap-
proach and identify problem areas. Some but not all problems
originate from verbalizing causal links using intentional
speak. It will also turn out that causal links are no general
models of causality, and that they do not support inferences
schemes which are often assumed to work well.

B. The Problem With Intentional Language

1) Demanders: Consider a robot asked to serve some
coke from the fridge. Moreover, the robot is asked to
make sure that there is always coke in the fridge. The
robot first serves the coke (ServeCoke). As an effect,
the coke is served (cokeServed ) and there is no more
coke in the fridge (¬cokeInFridge). Consequently, the
robot puts some new coke into the fridge (RefillFridge),
which results in there being coke in the fridge again
(cokeInFridge). For the sake of the example, we assume
that the fridge provides space for only one coke at a
time. Therefore, RefillFridge has the precondition that there
is no coke in the fridge. We obtain, among others, the
causal links (ServeCoke,¬cokeInFridge,RefillFridge) and
(RefillFridge, cokeInFridge, Goal). The standard approach
thus generates explanations such as (2) or (3). (Here, expla-
nation (3) is an abstraction of (2) in line with the proposal
by Canal and colleagues [8].)
(2) The robot serves coke to achieve there is no coke in

the fridge, which enables refilling the fridge. Refilling
the fridge is executed to achieve there being coke in the
fridge.

(3) The robot serves coke to later refill the fridge to achieve
the goal of there being coke in the fridge.

Explanations (2) and (3) do not sound quite correct. The
problem is that the standard approach assumes that every
effect which is a precondition of a later action is an intended



effect and thus can be verbalized using intentional language.
As the example shows, this is not always the case. Some
effects are unintended facts that call for repair actions later
on. We call this kind of facts demanders. In fact, demanders
are omnipresent, e.g., they occur when a robot is navigating
an indoor environment while making sure the doors are kept
shut, or when robots utter excuses for social norm violations
they may commit.

That said, explanation (4) appears way more appropriate.
(4) Serving coke results in there being no coke in the fridge.

This requires refilling the fridge. Refilling the fridge
achieves there being coke in the fridge (again).

It is worth stressing that generating explanation (4) is not
merely a verbalization problem but a problem of making
fundamental distinctions. Computationally generating it pre-
supposes a way to formally tell apart effects which bring
the plan closer to the goal from effects which call for
additional repair actions (demanders). It is impossible to
make this distinction based on causal links alone.1 If one
still wants to stick to causal-link explanations, one way out is
to refrain from intentional language and generate something
like explanation (5) instead.
(5) Serving coke results in there being no coke in the fridge.

This enables refilling the fridge. Refilling the fridge
achieves there being coke in the fridge.

This explanation only refers to preconditions and effects
and refrains from using words that signal achievements and
purpose. A downside of this kind of explanation in the
context of social robotics might be that it does not foster
the perception of a competently intentional agent.

2) Overdetermination: Overdetermination occurs when
a goal or precondition has multiple producers. Consider
a robot that has the goal to make sure the human has
something to drink (servedDrink ). The human orders cof-
fee with water. Hence, the robot computes a plan for
the goal that consists of the three facts servedDrink ,
servedCoffee, and servedWater . Two actions ServeCoffee
and ServeWater are executed. Serving coffee has the two
effects that some drink has been served (servedDrink )
and that coffee has been served (servedCoffee). Serv-
ing water has the two effects that some drink has been
served (servedDrink ) and that water has been served
(servedWater ). Among others, the robot’s plan gives rise
to two causal links (ServeCoffee, servedDrink , Goal) and
(ServeWater , servedDrink , Goal). Depending on which of
these causal links get verbalized, explanations (6) or (7) will
be generated (or both).
(6) Serving coffee is executed to achieve the goal of having

served a drink.

1There is also the causal link (ServeCoke, cokeServed , Goal). One
may have the idea that this causal link could be preferred for the explanation
over (ServeCoke,¬cokeInFridge,RefillFridge) by a simple heuristic
that favors goals rather than non-goals. However, this will not work in
general. For instance, the domain could be extended by a GettingPaid
action which has as precondition cokeServed and as effect getPaid ; And
getPaid is set as goal fact instead of cokeServed . Then, said problem
cannot be resolved by the heuristic.

(7) Serving water is executed to achieve the goal of having
served a drink.

There is no way to infer from the causal links alone which
of the two actions were executed under the intention of
serving a drink. To make a choice, the robot would need
to consider additional world knowledge, e.g., that coffee is
the main drink and the human prefers to have coffee with
a glass of water. Note that this problem cannot, in general,
be solved by imposing simple heuristics like, for instance,
that the first or the last production of an effect is inten-
tional. In fact, the two plans ServeCoffee ◦ServeWater and
ServeWater ◦ServeCoffee both achieve the three goal facts.
There is nothing that makes a planning system prioritize one
plan over the other.

Another way of dealing with overdetermination is, again,
to refrain from using intentional language altogether. Expla-
nation (8) just states the relations between actions and their
effects in a purely factual manner.
(8) Both serving coffee and serving water result in having

served a drink.

C. Causality Without Preconditions
We now turn to a problem of the standard approach to plan

explanation which does not originate from the lack of inten-
tionality of causal links. What might be even more surprising,
causal links are no good models of causality. Consider a
robot that uses a planner to navigate a social environment.
It therefore has navigational actions which are sensitive to
proxemic norms. The robot plans to pass by a human in close
vicinity (ClosePassby). The action has two effects, viz., the
robot reached the goal position (atGoalPose), and a prox-
emic violation has occurred (violation). As the robot has
the goal that there should be no uncompensated violations,
the robot planner adds the action SaySorry , which deletes
all violations (let us allow for this simplification for the
sake of giving a concise example). As SaySorry can always
get executed it possibly does not have any preconditions.
(It might have preconditions, such as that the text-to-speech
module is up running, or so, but, importantly, it does not
need to have violation among its preconditions because,
technically, nothing prevents the robot from saying sorry
even if it is not necessary to do so.) Explaining why the robot
said sorry by (9) seems both intuitively correct and desirable.
Unfortunately, though, there is no causal link whatsoever
between the passing-by action and the say-sorry action.
(9) The robot says sorry because it passed by closely.

In order to be able to computationally generate explanation
(9), a more sophisticated reasoning procedure is needed.
In fact, counterfactual reasoning can be applied to help
out: If ClosePassby had not produced a violation, then the
SaySorry action would not have been necessary. That is,
we have another case of demander facts like in Sect. IV-
B.1. This time, however, the question is not whether or not
a causal link can be interpreted as intentional. The causal
link is missing altogether, and therefore, under the standard
approach, no explanation can ever catch the causal relation
between the two actions.



D. Transitivity

Causal-link approaches to explanation often assume that
the causal-link relation is transitive [8], [14], [5]. Oftentimes,
making the transitive inference is appropriate: I turn on
the coffee machine to achieve that it is up working, which
enables pressing the “brew coffee” button, and pressing
that button achieves my having coffee. Therefore, the in-
ference goes, I turn on the coffee machine to achieve my
having coffee. More formally, the alleged inference scheme
allows inferring the causal link (A, y, C) from (A, x,B) and
(B, y, C). Some inference like this would be very useful for
plan explanation because it allows summarizing the plan by
skipping some intermediate actions. In general, however, the
transitive inference scheme is invalid for causal links. To see
that, reconsider the example from IV-B.1. There were two
causal links (ServeCoke,¬cokeInFridge,RefillFridge) and
(RefillFridge, cokeInFridge,Goal). Applying the inference
scheme, the causal link (ServeCoke, cokeInFridge, Goal)
is obtained. Verbalizing this causal link would result in
something like explanation (10).
(10) Serving coke achieves there being coke in the fridge.
This is clearly counter-intuitive under all imaginable read-
ings, intentional or not. This indicates that summarizing
plans by skipping intermediate causal links may result in
undesired explanations, and doing it right requires much
more sophisticated methods.

V. SEMANTIC ROLES FOR PLAN EXPLANATIONS

A. Semantic Roles Connecting Facts to Actions

The outlined analysis in the previous section leaves us
with the following problem we are going to propose a
solution for: We want to distinguish effects which ren-
der subsequent actions necessary from effects that render
subsequent actions possible. In the first case, we say that
the effect is playing the semantic role DEMANDER, and
in the second case, the effect is playing the semantic
role ENABLER. An effect can also play both roles at the
same time. For instance, in explanation (5), the empty
fridge makes the refilling both possible and necessary. We
thus write DEMANDER(¬cokeInFridge,RefillFridge) and
ENABLER(¬cokeInFridge,RefillFridge).

To define the demander role more formally, let π =
A0 ◦ . . . ◦An−1 be any plan of n actions. A fact e (positive
or negative) that holds at time t is a DEMANDER of action
At if and only if a subsequence2 of At+1 ◦ . . . ◦ An−1

could reach the goal if, counterfactually, ¬e held at t instead
of e. In other words, a shorter plan could reach the goal
when the negation of e held at t. In particular, action At

could then be omitted. In this sense, fact e made action
At necessary, and we write DEMANDER(e,At). Recon-
sider the coke-serving plan ServeCoke ◦RefillFridge . After
ServeCoke , the fact ¬cokeInFridge holds. If, counterfactu-
ally, cokeInFridge had held instead, then the goal could have
been reached by ServeCoke alone. That is, ¬cokeInFridge

2By subsequence of a plan we mean a plan that is obtained by deleting
a possibly empty set of actions from the plan.

makes RefillFridge necessary, and therefore ¬cokeInFridge
is the demander of RefillFridge .

Note that the demander definition does not require the
demander to be a precondition of the demanded action. This
can be the case (as in the coke example), but it could be oth-
erwise. Reconsider the socially navigating robot that utters
the excuse when passing close by. Here the fact violation
is the demander of action SaySorry , although violation
is no precondition of SaySorry . It is true that SaySorry
had not been necessary if, counterfactually, ¬violation had
held after ClosePassby . The definition of demander based
on counterfactual analysis thus allows for the distinction
between demanders and non-demanders even for actions that
have the demander not among their preconditions.

We call preconditions that are no demanders proper en-
ablers. That is, if e is a fact true at t, it is not a demander,
and action At has e among its preconditions, then e is a
proper enabler of At, and we write ENABLER∗(e,At).

Finally, we employ the producer relation introduced in
Sect. III-B. We said an action At1 is the producer of fact
e at t2 if and only if t1 < t2, e is an effect of At1 , and
none of the actions between t1 + 1 and t2 − 1 have ¬e
among its effects. If At1 is the producer of e at t2, we
write PRODUCER(At1 , et2). For example, ServeCoke is the
producer of cokeServed at goal state (t2) because none of
the actions in the plan between the ServeCoke action and
the goal have ¬cokeServed among their effects. Therefore,
we have that PRODUCER(ServeCoke, cokeServed t2) holds.

B. Semantic Roles Connecting Actions to Actions

Causal links connect actions to actions via effects. To
accomplish the same, we define two types of links based
on the semantic roles defined above. The first link type we
call enabler link, and we write E-LINK(A, e,B). Action A
is e-linked to action B via effect e if and only if A is the
producer of e and e is a proper enabler of B. The second link
type is called demander link, and we write D-LINK(A, e,B).
Action A is d-linked to action B via effect e if and only if
A is the producer of e and e is a demander of B.

E-LINK(A, e,B) ≡ PRODUCER(A, e) ∧ ENABLER∗(e,B)

D-LINK(A, e,B) ≡ PRODUCER(A, e) ∧ DEMANDER(e,B)

C. Using E-Links and D-Links for Explanation

Employing E-Links and D-Links, instead of the common
causal links, can solve the problems analyzed in Sections
IV-B.1 and IV-C. To give an idea about the validity of
this claim, we reconsider the examples from the previous
sections. Beforehand, we briefly introduce a verbalization
scheme that employs the distinction between E-Links and
D-Links. The following list provides a sample mapping
of E-Links and D-Links to natural language. This scheme
additionally is sensitive to the cases when the first argument
is the initial state or when the last argument is the goal.

• E-LINK(A, e,B)
A results in e, which enables B.



• E-LINK(Init, e, B)
e holds initially and enables B.

• E-LINK(A, e,Goal)
A results in e, which fulfills the goal.

• E-LINK(Init, e,Goal)
e holds initially and fulfills the goal.

• D-LINK(A, e,B)
A results in e, which requires B.

• D-LINK(Init, e, B)
e holds initially and requires B.

• D-LINK(A, e,Goal)
Cannot occur per definition.

• D-LINK(Init, e,Goal)
Cannot occur per definition.

We want to stress that natural-language generation is not our
main focus. Hence, the scheme should be understood as one
possible way of verbalizing E-Links and D-Links. We will
employ it to demonstrate how links systematically map to
explanations. Coming back to the analysis of the examples
from the previous sections, we obtain the following links for
the coke serving example:

E-LINK(Init , cokeInFridge,ServeCoke)

D-LINK(Init ,¬cokeServed ,ServeCoke)
E-LINK(ServeCoke, cokeServed ,Goal)

D-LINK(ServeCoke,¬cokeInFridge,RefillFridge)
E-LINK(RefillFridge, cokeInFridge,Goal)

These links represent the relevant distinction of demanding
and enabling actions, and thus warrant the explanation (11)
by employing the verbalization scheme.
(11) There being coke holds initially and enables serving

coke. That coke is not served holds initially and requires
serving the coke. Serving the coke results in coke being
served, which fulfills the goal. Serving coke results
in there not being coke in the fridge, which requires
refilling the fridge. Refilling the fridge results in there
being coke in the fridge, which fulfills the goal.

For the action plan of the proxemics-aware robot, the fol-
lowing links are generated:

D-LINK(Init ,¬atGoalPose,ClosePassby)

E-LINK(ClosePassby , atGoalPose,Goal)

D-LINK(ClosePassby , violation,SaySorry)

E-LINK(SaySorry ,¬violation,Goal)

The verbalization scheme leads to explanation (12).
(12) Not being at the goal pose holds initially, which requires

passing close by. Passing close by results in being at
the goal pose, which fulfills the goal. Passing close by
results in there being a violation, which requires saying
sorry. Saying sorry results in there not being a violation,
which fulfills the goal.

Interestingly, the modeling of the goal specification in the
planning problem can influence the explanation: A robot
picks up a chair in the office and puts it into the hallway.

Let BringChairToHallway be the action with precondition
chairInOffice and effects ¬chairInOffice, chairInHallway .
The goal could either be to bring the chair to the hallway,
or, alternatively, to bring the chair out of the office. Action
BringChairToHallway achieves both goals. Employing the
distinction between E-Links and D-Links, different explana-
tions are obtained depending on whether the plan is executed
for the purpose of the first or the second goal. When the goal
is to bring the chair to the hallway, then the chair in the office
is a proper enabler and explanation (13) is generated. In the
other case, the chair is a demander and explanation (14) is
generated.
(13) The chair being in the office holds initially and enables

bringing the chair from the office to the hallway.
(14) The chair being in the office holds initially and requires

bringing the chair from the office to the hallway.
This way, the distinction between demanding and merely
enabling is, in an intuitively appealing way, sensitive to how
the goal specification is formulated.

VI. DEMONSTRATOR

We have set up a demonstrator using the TIAGo robot
platform from PAL robotics, see Fig. 1. TIAGo has three
actions implemented: Asking a human to open the door to the
lab, asking a human to close the door to the lab, and moving
through the door. The actions are described in terms of their
preconditions and effects in a planning domain model:

ASKHUMANTOOPENLABDOOR

pre: ∅ eff: {labOpen,¬soundProtected}
ASKHUMANTOCLOSELABDOOR

pre: ∅ eff: {¬labOpen, soundProtected}
MOVEOFFICELAB

pre: {inOffice} eff: {¬inOffice, inLab}

In addition to the domain model, the planning problem
description contains a model of the current situation. The
planning problem that particularly describes the situation
depicted in Fig. 1 is given by:

s0 = {¬labOpen, inOffice,¬inLab, soundProtected}
s⋆ = {inLab, soundProtected}

The robot is initially located in the office and the door to
the lab is closed. Whenever the door to the lab is closed,
the office is sound-protected. There is this unwritten rule
saying that the door should be kept shut so that noise
from the lab does not disturb those people working in the
office. Hence, the goal of the planning problem is for the
robot to be in the lab and to make sure that the office
is sound-protected. Taking both the planning domain and
problem description as input, a task planner outputs the
plan ASKHUMANTOOPENLABDOOR ◦ MOVEOFFICELAB ◦
ASKHUMANTOCLOSELABDOOR.3

3We have used the FastDownward [22] task planner to automatically
compute the plan, but any other classical AI planner that takes PDDL as
input will work.



Fig. 1: The robot is executing a three-step plan while explaining each step to the human.

Each action in the plan is associated with a skill imple-
mented on the robot. The plan gets executed by invoking
the associated skills one after the other. Each skill accepts
an explanation as an additional parameter. Skills that output
speech send the explanation to the text-to-speech module
after the main utterance was spoken, The move skill starts the
explanation utterance in parallel to the movement. The tex-
tual explanations are generated according to the verbalization
scheme for E-Links and D-Links described in V-C with the
following additional considerations: Each explanation starts
with the D-Links first and then proceeds with the E-Links.
The robot first explains why an action is required and then
what it enables. Multiple links get merged to one explanation
if they all refer to a fact that initially holds (e.g., the first
sentence in the first explanation in Fig. 1). Moreover, when
a D-Link refers back to an action that was executed more
than one step before, we add the temporal marker earlier to
the explanation, as exemplified by the first sentence in the
last explanation in Fig. 1).

Regarding runtime behavior, computing the E-Links and
D-Links along with their verbalizations took 120ms in to-
tal. Given that the explanation procedure only needs to
run once, viz., after the planning phase, the additional
computational footprint is acceptable. All code implement-
ing the generation of E-Links and D-Links, our verbal-
ization procedure, as well as the planning domains and
problem specifications (in PDDL), have been made avail-
able in a github repository: https://github.com/
existenzquantor/plan-explainer.

VII. DISCUSSION
The primary aim of our work is to make aware of

possible problems that come with employing causal links
for plan explanations, and to propose an extension that
allows for making the crucial distinction between enabled
and demanded actions. Despite our criticism, we grant that
the standard approach based on causal links can work fine
in many domains. Causal links are computationally easy
to compute (viz., in polynomial time) and thus the first

choice for application domains where the problem areas
we have pointed out do not apply. Our approach to task
plan explanation comes with higher computational costs, as
deciding whether a fact is a demander of some action is
NP-complete (we provide a proof in the appendix). This
is unproblematic for shorter plans, but the computational
effort for computing D-Links and E-Links will increase
exponentially with the size of the plan. We leave a deeper
investigation of the computational aspects (runtime behavior,
optimizations etc.) for future work.

Our approach also does not provide a solution to sum-
marizing intermediate steps in a plan by transitive links,
as problematized in Sect. IV-D. It would be interesting
for future research to investigate conditions under which
transitive links are acceptable. Also, we leave open the
problem of overdetermination (Sect. IV-B.2). We believe that
a solution to this problem requires broader world knowledge
represented in the system (e.g., knowledge about the practice
that coffee gets served with a glass of water on the side, but
not the other way round).

While building the demonstrator (Sect. VI), we have iden-
tified several empirical research questions: One concerns the
timing of explanations, viz., whether an explanation should
be uttered before, during, or after the to-be-explained action,
or only when explicitly asked for. A second set of questions
concerns the modes of verbalizations: should D-Links appear
before E-Links in an explanation, or vice versa, should active
or passive voice be used, and could non-verbal explanations
be generated (e.g., a robot can point at the empty space in
the fridge to explain why it is putting a coke into the fridge).
We leave these questions for future work.

VIII. CONCLUSIONS
Task plan explanations are considered as one useful tool

for implementing explainable robots. Several recent com-
putational approaches to task plan explanations are based
on causal links in plans. We have pointed out conceptual
problems with this approach. A major issue is that causal
links do not allow for a distinction between enabling and

https://github.com/existenzquantor/plan-explainer
https://github.com/existenzquantor/plan-explainer


demanding an action, which can lead to counter-intuitive
explanations. We have presented a method, based on coun-
terfactual analysis, that allows for computing links that
explicitly refer to enabling and demanding actions in a
plan. Future research will focus on open problems such as
transitivity and overdetermination in link-based explanations,
as well as on empirical work on the timing, wording, content,
and modality of task plan explanations in human-robot
interaction scenarios.

APPENDIX
Let π = A0 ◦ . . . ◦ An−1 be a plan of n actions and s⋆

the goal. Deciding whether a fact e at step t is a demander
of action At is NP-complete.

Proof: Membership: Generate (non-deterministically)
a subsequence π′ of At+1 ◦ . . . ◦ An−1 so that π′ executed
in s′t results in s′n ⊇ s⋆, where s′t is obtained from st by
negating e. If such a π′ exists, e is a demander of action At

at step t. Validating that π′ reaches the goal can be done in
polynomial time, so the problem is in NP.

We show hardness by a reduction from 3SAT. Consider a
3SAT problem with clauses c1, . . . , cm over the variables
x1, . . . , xk, where each clause consists of three literals
lj1, lj2, lj3. We construct a plan together with an initial
state s0 and goal s⋆. Therefore we consider variables V =
{p, z, x⊤

1 , x
⊥
1 , ex 1, . . . , x

⊤
k , x

⊥
k , exk, c1, . . . , cm} ∪ Y , where

Y = {yx
iµ, y

c
jµ | 1 ≤ i ≤ k, 1 ≤ j ≤ m, 1 ≤ µ ≤ 3}.

For every variable xi there are three actions X⊤
i with

pre(X⊤
i ) = {ex i} and eff (X⊤

i ) = {x⊤
i , y

x
i1,¬ex i}, X⊥

i

with pre(X⊥
i ) = {ex i} and eff (X⊥

i ) = {x⊥
i , y

x
i2,¬ex i} and

eX i with pre(eX i) = {z}, eff (eX i) = {ex i, y
x
i3}. For every

literal ljµ in every clause cj there is an action Cjµ such that
eff (Cjµ) = {cj , yc

jµ} and if ljµ = xi then pre(Cjµ) = {x⊤
i }

and otherwise if ljµ = ¬xi then pre(Cjµ) = {x⊥
i }. Finally

there is an action P with pre(P ) = {p} and eff (P ) =
{z,¬p} ∪ {¬y | y ∈ Y}. Note that every action except
P adds a unique y ∈ Y and P negates all of them. Let
π = P ◦X⊤

1 ◦eX 1◦X⊥
1 ◦· · ·◦X⊤

k ◦eX k◦X⊥
k ◦C1◦· · ·◦C3m,

s0 = {p, ex 1 . . . exk}∪Y∪{¬z,¬x⊤
1 ,¬x⊥

1 , . . . ,¬x⊤
k ,¬x⊥

k }
and s⋆ = {¬p, c1, . . . , cm} ∪ Y . Now, π is applicable in
s0 and leads to state sn ⊇ s⋆. The plan does not have
superfluous actions as only P can negate p thereby also
negating all yi, which are needed in the goal. We check
whether p at step 0 is a demander of action P . Upon negating
p in s0 P is not applicable anymore, and consequently
all eX i are inapplicable. Now, either X⊤

i or X⊥
i must be

removed because the preconditions ex i can consumed only
once. Depending on which of X⊤

i or X⊥
i remain, only a

subset of the Cjµ remain applicable. The actions X⊤
i or

X⊥
i simulate whether xi is set to true or false in the 3SAT

problem. The 3SAT problem has a solution iff there is an
applicable subsequence of π, i.e., iff p at step 0 is a demander
of action P . Hence, the decision problem is NP-hard.
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