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Abstract

Recently, inferred effects of compound (totally ordered) HTN
planning tasks were introduced. Guaranteed effects are those
which hold true after all executable refinements of such a
task, whereas possible effects are only required to hold after
some of them. It is known that we can decide in P whether
a single fact is a precondition-relaxed possible effect. For
this relaxation, it was not clear whether groups of effects
could be determined in P as well. We show that the problem
turns NP-complete for conjunctive possible effects of arbi-
trary size. A more positive result is that this problem is fixed-
parameter tractable, i.e., for any fixed number of possible ef-
fects, we can verify (and compute) them in P. As a side prod-
uct of our investigations, we obtain novel results for total-
order HTN planning problems with goal description: When
ignoring action preconditions, plan existence is NP-complete
and remains NP-hard even when the problem is additionally
acyclic, regular, and delete-relaxed.

Introduction
Hierarchical Task Network (HTN) planning is a field of
planning where plans are built by transferring abstract plans
into more concrete ones until a solution plan is found that
consists of executable actions (Erol, Hendler, and Nau 1996;
Ghallab, Nau, and Traverso 2004; Bercher, Alford, and
Höller 2019). So-called compound tasks are key in this pro-
cess as they define the rules of refinement. More precisely, a
compound task gets realized by different sets of other primi-
tive or compound tasks, where the former are simply actions
known from classical planning. While there are formalisms
of HTN planning where domain modelers state explicit pre-
conditions and effects of compound tasks (Bercher et al.
2016), in the currently most commonly used formalism com-
pound tasks are not considered to have any. This is also the
case in HDDL (Höller et al. 2020), the official domain mod-
eling language of the last and upcoming International Plan-
ning Competition (IPC). Olz, Biundo, and Bercher (2021),
however, introduced inferred preconditions and effects of
compound tasks based on their possible refinements in total-
order (t.o.) HTN planning in order to make their potential
state transitioning visible. Their benefits are manifold: They
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can draw a domain modeler’s attention to flaws in the pro-
cess of modeling, they can increase the comprehension of
given domains (Olz et al. 2021), they can be exploited to de-
tect dead-ends and for finding solution plans on an abstract
level (Marthi, Russell, and Wolfe 2007; de Silva, Sardina,
and Padgham 2009) – also known as Upward and Down-
ward properties (Yang 1990). Lastly, they provide additional
information that can be exploited by heuristics and planners
(Nau et al. 2003; Waisbrot, Kuter, and Könik 2008; de Silva,
Sardina, and Padgham 2009; Bit-Monnot, Smith, and Do
2016; Goldman and Kuter 2019; Magnaguagno, Meneguzzi,
and de Silva 2021; Schreiber 2021).

Olz, Biundo, and Bercher (2021) defined two types of
effects. First, guaranteed effects, which are facts that are
added or deleted by every executable refinement of a com-
pound task, respectively. Second, possible effects, which are
facts that are added or deleted by at least one (but not neces-
sarily all) executable refinement. For the latter, however, we
do not have information about which of the effects may ac-
tually occur together, i.e., were added or deleted by actions
within the same refinement. Thus, the information given by
this kind of effect is rather vague and overpredicting, espe-
cially if a compound task admits many refinements contain-
ing different kinds of actions. We advance this situation by
introducing a generalized version of possible size-k effects
that are sets of facts (of size k). They state which facts can
be produced together by a single refinement, i.e., they can
be viewed as a kind of conjunctive possible effects. Con-
sider the situation (e.g., in the context of dead-end detection
or finding solutions on abstract levels) in which we want to
know whether a certain set of facts holds after the execu-
tion of a compound task to make some later task executable.
The size-k effects allow a much preciser answer on whether
the compound task can satisfy that demand than the ones by
Olz, Biundo, and Bercher do since the latter only list possi-
ble effects independently of each other.

Generally, the inferred effects are computationally hard to
compute. In order to make them accessible in practice, Olz,
Biundo, and Bercher considered them under precondition-
relaxation so that one can decide in P whether one fact
is such a possible effect. Now, we show that the prob-
lem turns NP-complete when considering possible size-k ef-
fects for arbitrary k, also for an even stronger relaxation:
precondition- and delete-relaxation. On the positive side, we
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also prove that the problem is fixed-parameter tractable (for
both relaxations). For fixed k we can verify a size-k effect in
polynomial time. We state the respective algorithm, which
allows the efficient calculation and exploitation for small k.
A summary of the results with pointers to the respective the-
orems can be found in Table 1.

Since deciding if a set of facts is a possible size-k effect is
very similar to the plan existence problem with goal descrip-
tion we get two new results as a side product: We show that
the total-order plan existence problem under precondition-
relaxation is in NP and already NP-hard for acyclic and
regular precondition- and delete-relaxed problems, i.e. both
problems and the intermediate ones are NP-complete.

Related work Several authors inferred preconditions and
effects of abstract tasks in different settings like tempo-
ral partially ordered, acyclic HTN models (Clement, Dur-
fee, and Barrett 2007), Belief-Desire-Intention (BDI) agent-
oriented programming (Thangarajah and Padgham 2011;
de Silva, Sardina, and Padgham 2016; de Silva, Meneguzzi,
and Logan 2020) and non-deterministic action models (Yao,
de Silva, and Logan 2016). Magnaguagno, Meneguzzi, and
de Silva (2021) compute preconditions similar to Olz, Bi-
undo, and Bercher’s executability-relaxed preconditions but
in a lifted manner. Tsuneto, Hendler, and Nau (1998) extract
some sort of method preconditions from conditions prede-
fined by the domain modeler. However, those of the men-
tioned authors who consider possible effects at all, do so in
the sense like Olz, Biundo, and Bercher do, i.e., they do not
know which of the effects occur together.

Marthi, Russell, and Wolfe (2007) define exact reachable
sets (of states) of abstract tasks and compact approximations
of them that can be computed more efficiently to exploit
them by a top-down search algorithm. However, they do not
state how to come up with or verify these sets. Our conjunc-
tive effects might serve as a basis for this purpose.

Theoretical Background
In this chapter we formally introduce t.o. HTN planning and
(inferred) preconditions and effects of compound tasks.

Total-order HTN Planning Formalism
We use a formalism for totally ordered (t.o.) HTN plan-
ning, which is based on the ones by Geier and Bercher
(2011) and Behnke, Höller, and Biundo (2018). A t.o. plan-
ning domain D = (F,A,C,M) consists of a finite set
of facts F , primitive tasks (or actions) A, compound tasks
C (also called abstract tasks), and decomposition methods

M ⊆ C × T ∗, where T = (A ∪ C) is the set of all tasks
and T ∗ refers to the set of all sequences of tasks includ-
ing the empty one (like for regular expressions). Primitive
tasks a = (prec, add , del) ∈ A are like actions in classical
planning described by their preconditions prec(a) ⊆ F , add
and delete effects add(a), del(a) ⊆ F . An action a ∈ A
is applicable in a state s ∈ 2F if prec(a) ⊆ s. If ap-
plicable the application of a in s results in the successor
state δ(s, a) = (s \ del(a)) ∪ add(a). For sequences of
actions ā = ⟨a0 . . . an⟩ with ai ∈ A it holds ā is ap-
plicable in a state s0 if a0 is applicable in s0 and for all
1 ≤ i ≤ n, ai is applicable in si = δ(si−1, ai−1). A com-
pound task c ∈ C represents sequences of primitive and/or
compound tasks t̄ ∈ T ∗, which is specified by their methods
m = (c, t̄) ∈ M . Such (possibly empty) sequences of tasks
are called task networks. Then given a method m = (c, t̄)
we can decompose a compound task c within a task network
tn1 = ⟨t̄1 c t̄2⟩ ∈ T ∗ into a task network tn2 = ⟨t̄1 t̄ t̄2⟩,
denoted tn1 →c,m tn2. If we can transform tn into tn ′ by a
(possible empty) sequence of decompositions, we denote it
tn → tn ′ and call tn ′ a refinement of tn . A t.o. HTN plan-
ning problem Π = (D, sI , tnI , g) contains a domain D, an
initial state sI ∈ 2F , an initial task network tnI ∈ T ∗, and
a goal description g ⊆ F . A solution to Π is a sequence of
actions tn = ⟨a0 . . . an⟩ ∈ A∗ if and only if tnI → tn , tn
is applicable in sI , and results in a goal state s ⊇ g.

We defined the HTN planning problem with goal descrip-
tion since we will use it throughout this paper. There are,
however, also formalisms and benchmark problems without
a goal description. Nevertheless, one can simulate a goal de-
scription by introducing a primitive task ag = (g, ∅, ∅) and
adding it as last task into tnI .

Effects of Compound Tasks
We furthermore recapitulate some of the definitions by Olz,
Biundo, and Bercher (2021) concerning effects of compound
tasks as they form a basis on which we build upon.

The set of executability-enabling states of a compound
task c ∈ C is E(c) = {s ∈ 2F | ∃ ā ∈ A∗ :
c → ā and ā is applicable in s} and the set of all states
into which the execution of c in a state s ∈ 2F can re-
sult is given by Rs(c) = {s′ ∈ 2F | ∃ ā ∈ A∗ : c →
ā, ā is applicable in s and results in s′}.

Facts that were added or deleted, resp., by every exe-
cutable refinement of a compound task c – independent of
the initial state – are called state-independent positive and
negative effects:
• eff +

∗ (c) := (
⋂

s∈E(c)

⋂
s′∈Rs(c)

s′) \
⋂

s∈E(c) s

• eff −
∗ (c) :=

⋂
s∈E(c)(F \

⋃
s′∈Rs(c)

s′)

if E(c) ̸= ∅, otherwise eff +/−
∗ (c) := undef .

On the other hand, facts that are only added or deleted,
resp., by some but not necessarily all executable refinements
are called possible state-independent effects:
• poss-eff +

∗ (c) :=
⋃

s∈E(c)(
⋃

s′∈Rs(c)
s′ \ s)

• poss-eff −
∗ (c) :=

⋃
s∈E(c)((

⋃
s′∈Rs(c)

(F \ s′)) ∩ s)

if E(c) ̸= ∅ and poss-eff +/−
∗ (c) := undef otherwise.



Generalized Effects of Compound Tasks
Generally, the set of guaranteed effects defined by Olz, Bi-
undo, and Bercher (2021) is an underapproximation whereas
the possible effects are an overapproximation of the facts
that one concrete refinement of a compound task c produces.
More precisely, a refinement of cwill add all guaranteed and
some but likely not all of the possible effects. In order to get
more fine-grained information on the interplay we would
like to know which of the possible effects occur together,
i.e., were produced by the same refinement in contrast to
sets of facts that can never be added together. This leads us
to the following definition:

Definition 1. Let D = (F,A,C,M) be a planning domain,
c ∈ C a compound task, and Fk ⊆ F a set of facts of size
k ∈ N. Then Fk is a

• positive-size-k effect of c iff
∃ s ∈ E(c) ∧ ∃ s′ ∈ Rs(c) : Fk ⊆ s′ ∧ s ∩ Fk = ∅.

• negative-size-k effect of c iff
∃ s ∈ E(c) ∧ ∃ s′ ∈ Rs(c) : Fk ∩ s′ = ∅ ∧ Fk ⊆ s.

• positive-size-k postcondition of c iff
∃ s ∈ E(c) ∧ ∃ s′ ∈ Rs(c) : Fk ⊆ s′.

• negative-size-k postcondition of c iff
∃ s ∈ E(c) ∧ ∃ s′ ∈ Rs(c) : Fk ∩ s′ = ∅.

One can differentiate between effects and postconditions.
The latter additionally contain facts that (don’t) hold al-
ready prior to execution and (don’t) hold afterwards as well.
This paper focuses on effects. For that, we denote the set of
all positive-size-k and negative-size-k effects k-eff +(c) and
k-eff −(c), respectively. Sometimes we write k-eff +/−(c)
as shorthand if we refer to both but still consider them as
separate sets. Note that 1-eff +/− = ∪

f∈poss-eff +/−
∗ (c)

{f}.

Possible vs. Guaranteed Semantically a size-k effect is a
possible but not necessarily a guaranteed effect because we
only know that it can be produced by some (but not neces-
sarily all) refinements of a compound task. We did not re-
flect this in its symbol (k -eff vs. poss-k -eff ) because we
do not need to define guaranteed size-k effects explicitly
as they are already captured by the state-independent ef-
fects: Since every guaranteed effect f ∈ eff +

∗ (c) is added
by every executable refinement of c we know that all facts in
eff +

∗ (c) were added together by every executable refinement
and there is no other set of facts F ′ ⊆ F with F ′ ̸⊆ eff +

∗ (c)
that is added simultaneously by all refinements of c. Simi-
lar arguments hold for negative effects. Thus, when talking
about size-k effects we always refer to possible effects.

Preconditions As a counterpart to the effects Olz, Biundo,
and Bercher also introduced inferred preconditions, i.e. facts
that are required by every refinement of a compound task to
be executable. Semantically they resemble guaranteed ef-
fects since always all of them must hold. So far there is no
version of “possible preconditions”. Informally, they could
be defined as a set of facts that are demanded by one refine-
ment so that it is executable. So all of them of a compound
task together form some sort of disjunctive landmark. How-
ever, since we focus on effects here, we regard the formal
definition and analysis to be future work.

Complexity Olz, Biundo, and Bercher showed that deter-
mining whether a fact is a possible state-independent pre-
condition or effect is as hard as solving a plan existence
problem (with matching upper and lower bounds), i.e., rang-
ing from PSPACE- to EXPTIME-complete, depending on
the hierarchy structure of the decomposition methods. Our
case now is very similar because deciding whether a set of
facts Fk is a size-k effect of some compound task c within
domain D = (F,A,C,M) contains the question of whether
there exists an executable refinement (hardness). Moreover,
it is also not harder than solving a planning problem since
Fk is a positive size-k effect if and only if the problem
(D, F \ Fk, ⟨c⟩, Fk) has a solution, which shows member-
ship. The same can be shown for negative size-k effects by
introducing new facts for every such effect.

Relaxations For many applications like planning algo-
rithms the above-mentioned computation of effects of
compound tasks is too costly. Therefore Olz, Biundo,
and Bercher introduced a version based on precondition-
relaxation that can be computed in polynomial time. While
they approximate the actual preconditions and effects they
still maintain properties so that they can be exploited in prac-
tice. In this paper, we investigate size-k effects under the
same relaxation and also under an even stronger relaxation:
precondition- and delete-relaxation.

Let D = (F,A,C,M) be a domain. The
precondition-relaxation (P-relaxation) of D is the do-
main D′ = (F,A′, C,M) with A′ = {(∅, add , del) |
(prec, add , del) ∈ A}. The precondition- and
delete-relaxation (PD-relaxation) of D is the do-
main D′′ = (F,A′′, C,M) with A′′ = {(∅, add , ∅) |
(prec, add , del) ∈ A}.

Now we can define relaxed size-k effects:

Definition 2. LetD = (F,A,C,M) be a domain and c ∈ C
a compound task. Then, k-eff +/−

P (c) and k-eff +/−
PD (c) are

P-relaxed and PD-relaxed size-k effects of c and are defined
just like the original ones but based on the P-relaxed and
PD-relaxed variant of D, respectively.

The set k-eff −
PD(c) is actually empty for all compound

tasks because actions do not have delete effects any-
more under PD-relaxation. Semantically, an effect Fk ∈
k-eff +

PD(c) means that there is a refinement of c such that
for every fact f ∈ Fk there is an action adding it but we ig-
nore whether this refinement is executable or whether facts
get deleted again. The same consideration could be done for
delete effects, i.e., guaranteeing that there is a refinement
with actions deleting all facts while ignoring preconditions
and add effects, which would lead to a precondition- and
add-relaxation. Since we do not see much potential for ex-
ploiting them, we will not define or consider them explic-
itly but rather implicitly with k-eff −

PD(c). The arguments to
come for k-eff +

PD apply quite similarly to such k-eff −
PD.

For the purpose of exploitation, it is important that the
relaxed versions do not produce “wrong” candidates. For-
tunately, Olz, Biundo, and Bercher could show that subset
properties are preserved, which is also true for the general
effects:



Proposition 1. It holds k-eff +/−(c) ⊆ k-eff +/−
PD (c),

k-eff +/−(c) ⊆ k-eff +/−
P (c) and k-eff +

P(c) ⊆ k-eff +
PD(c).

Proof. Let Fk ∈ k-eff +(c). Then there exists a state s ∈
E(c) and s′ ∈ Rs(c) such that Fk ⊆ s′. The refinement
of c that transforms s to s′ is still executable under P and
PD-relaxation since all preconditions are gone. The result-
ing state is the same under P relaxation since effects did not
change. For PD relaxation we may end up with a state s′′ ⊇
s′ since facts were not deleted anymore but it still holds
Fk ⊆ s′′. Thus, Fk ∈ k-eff +

P(c) and Fk ∈ k-eff +
PD(c).

Similar arguments apply to negative effects.

Hierarchy Classes The main purpose of this paper is to
investigate how hard it is to compute size-k effects under
different relaxations and to identify tractable cases. Gener-
ally in HTN planning, the structure of the hierarchy influ-
ences the complexity of the plan existence problem. Four
kinds of such classes are considered in the literature so far,
which we will also take into account in our analysis. We
now introduce them briefly together with the complexity of
the respective total-order plan existence problem given in
brackets. Planning problems are called acyclic if the num-
ber of possible decompositions is finite, i.e., there are no
recursions within the methods (PSPACE-complete (Alford,
Bercher, and Aha 2015)). A problem is regular if in the ini-
tial task network and in all methods’ task networks only
one task is compound and if so it must be the last one
(PSPACE-complete (Erol, Hendler, and Nau 1996)). A gen-
eralization of those are tail-recursive problems (PSPACE-
complete (Alford, Bercher, and Aha 2015)). Since they are
not explicitly considered in this paper, we refrain from the
exact (and rather complicated) definition here. Lastly and
for completeness, one considers arbitrary problems without
any restrictions (EXPTIME-complete (Alford, Bercher, and
Aha 2015)).

Effects of Methods Alongside effects of compound tasks
one can also define effects of decomposition methods as al-
ready mentioned by Olz, Biundo, and Bercher. This is not
only possible for the former effects defined by them but also
for our generalized version, the size-k effects. For that, intro-
duce a new compound task c′, “copy” the task network of a
method m = (c, tn), and build a new method m′ = (c′, tn).
Now the effects of m are equal to the ones of c′, which has
only one method, namely m′.

Complexity of PD-relaxed Effects
We start with considering precondition- and delete-relaxed
HTN planning domains and problems, i.e., primitive actions
have only add effects. Such problems are simpler than just
precondition-relaxations.

Olz, Biundo, and Bercher (2021) showed that com-
puting precondition-relaxed effects of compound tasks
(1-eff +/−

P (c)) is possible in polynomial time. By addition-
ally relaxing the delete effects the problem becomes easier
and one can still use their proposed polynomial algorithm
for computation. Thus, we can conclude:

φ =

C1︷ ︸︸ ︷
(. . . ,¬xi, . . . )∧ · · · ∧

Cj︷ ︸︸ ︷
(. . . , xi, . . . )∧ · · · ∧

Ck︷ ︸︸ ︷
(. . . , xi, . . . )

f1 fj fk

ui

x>i

fj
fk ui+1 x⊥i

f1 ui+1

m1 m2

Figure 1: Illustration of the proof idea behind Theorem 1.

Corollary 1. Deciding whether f ∈ 1-eff +/−
PD (c) for some

compound task c and fact f can be done in polynomial time
for arbitrary recursion.

We go on to the more general effects. It turns out that
deciding whether a set of facts of arbitrary size is a PD-
relaxed effect of a compound task is already NP-hard even
for the simplest class, acyclic and regular hierarchies:
Theorem 1. Let D = (F,A,C,M) be an acyclic and reg-
ular domain, c ∈ C a compound task, and Fk ⊆ F a set of
facts. Deciding whether Fk ∈ k-eff +/−

PD (c) is NP-hard.

Proof. To prove hardness we reduce from 3SAT. The idea
is illustrated in Fig. 1. So let C1 . . . Ck be the clauses of a
3SAT formula ϕ in conjunctive normal form consisting of
the propositional variables x1 . . . xn. We construct the fol-
lowing planning domain: For every clause Cj (1 ≤ j ≤ k)
there is a fact fj . For every variable xi (1 ≤ i ≤ n)
there is a compound task ui and two primitive tasks x⊤i ,
x⊥i with add effects add(x⊤i ) = {fl | xi ∈ Cl} and
add(x⊥i ) = {fl | ¬xi ∈ Cl}, respectively. The precon-
ditions and delete effects are empty. Each compound task
ui (1 ≤ i ≤ n − 1) has two decomposition methods m1

i =
(ui, ⟨x⊤i ui+1⟩) andm2

i = (ui, ⟨x⊥i ui+1⟩); un has two meth-
ods m1

n = (un, ⟨x⊤i ⟩) and m2
n = (ui, ⟨x⊥i ⟩). At last there

is one compound task c∗ with one method m∗ = (c∗, ⟨u1⟩).
The constructed domain is clearly acyclic since every com-
pound task will be added exactly once. Moreover, every
method contains at most one compound task and the task
is ordered last. Thus, the domain is also regular.

We claim that ϕ is satisfiable if and only if {f1, . . . , fk}
is a possible size-k effect of c∗. Consider a model of ϕ, i.e.,
a truth assignment of the variables xi so that ϕ evaluates to
true. Then, by choosing method m1

i if xi = true and m2
i if

xi = false for all i = 1 . . . n we get a refinement of c∗ such
that all f1 . . . fk hold after execution since for every clause
Cl there is at least one variable xl′ that evaluates Cl to true
and therefore the corresponding action x⊤l′ or x⊥l′ (depending
on whether xl′ is true or false) adds fl.

The other way around follows the same argumentation.
Every fact fl must be added by some action x⊤l′ or x⊥l′ , which
corresponds to setting xl′ to true or false in order to satisfy
clause Cl. Because all facts f1 . . . fk were added, all clauses
are made true and therefore the whole formula ϕ as well.

As previously mentioned, the problem of deciding
whether Fk ∈ k-eff +/−(c) is quite related to the plan ex-



istence problem. Given a problem (D, sI , tnI , g) we can
solve it by asking whether g ∈ k-eff +(c∗), where c∗ is
a new compound task with one method (c∗, ⟨aI , tnI⟩) and
aI = (∅, sI , ∅) is a new primitive task simulating the initial
state. Thus, we determine the complexity of the plan exis-
tence problem under PD-relaxation as a side product.

Corollary 2. The plan existence problem of acyclic and reg-
ular PD-relaxed HTN planning problems is NP-hard.

Alford et al. (2014) showed NP-completeness of the HTN
plan existence problem under delete-relaxation. It is inter-
esting to see that the problem remains NP-hard even when
additionally there are no preconditions or cycles in the do-
main, which seems to make the problem much simpler.
Closely related, Höller, Bercher, and Behnke (2020) proved
that the delete- and ordering-free HTN plan existence prob-
lem (in the context of partially ordered domains) is also NP-
complete.

In order to show NP-completeness of PD-relaxed prob-
lems it remains to prove that it is also in NP. It does not
directly follow from the membership result by Alford et al.
(2014) because, in contrast to our formalism, theirs does not
allow for empty task networks (e.g., in the methods). More-
over, it is still open and should be investigated whether there
is a fixed k for which deciding whether Fk ∈ k-eff +/−

PD (c)
is NP-hard. We saw that it is polynomial for k = 1 and there
might be a number k′ so that deciding Fk′ ∈ k′-eff +/−

PD (c) is
polynomial but Fk′+1 ∈ (k′ +1)-eff +/−

PD (c) is NP-hard like
it is the case for the prominent problems 2SAT and 3SAT.
We will look at both problems in the next section, which
focuses on precondition-relaxed domains. Since those re-
sults are to come, transfer to PD-relaxation we do not re-
dundantly state them here as well.

Complexity of P-relaxed Effects
In this section, we consider only precondition-relaxation (no
delete-relaxation). Since this is a less restricted relaxation
than PD-relaxation (which we considered in the last sec-
tion), we can conclude that the plan existence problem and
also deciding k-eff +/−

P (c) must also be at least NP-hard:

Corollary 3. Deciding whether Fk ∈ k-eff +/−
P (c) and de-

ciding the plan existence problem of acyclic and regular P-
relaxed domains are NP-hard.

Deciding Fk ∈ k-eff +/−
P (c) for arbitrary recursion seems

much more complicated than Fk ∈ k-eff +/−
PD (c) for acyclic

domains but it turns out that it is still in NP. The first part of
this section is concerned with proving the NP membership.
Afterwards, we show its fixed-parameter tractability.

NP Membership
We show that the plan existence problem of precondition-
relaxed HTN planning problems is in NP, which is non-
trivial since even acyclic problems can lead to exponential
plans (e.g., c1 → ⟨c2, c2⟩, c2 → ⟨c3, c3⟩, etc.). Then the NP
membership of deciding Fk ∈ k-eff +/−

P (c) follows easily.

t2t1
f2
¬f4 t3

f4
f5 t4 t5

f1, f6
¬f3 t6 t7 f3

c

. . . . . .

del ∩Ψ(1) = ∅ del ∩Ψ(3) = ∅

del ∩Ψ(5)
= ∅

par.-ach.
solution

witness

Tach

Figure 2: A witness that the given problem
(D, ∅, ⟨c⟩, {f1 . . . f6}) is solvable (D is only depicted
partially) to illustrate the proof idea of Theorem 2. Ellipses
embody compound tasks, rectangles are primitive ones.

We need to show that there is a witness of polynomial size
that can be verified in polynomial time if the plan existence
problem is solvable. For that, we generate a witness that is
composed of two parts: a sequence of (potentially primitive
and compound) tasks that can definitely be refined into a
solution and a tree representing the decompositions leading
to that partial plan. The idea is sketched in Fig. 2 with an
exemplary partial plan. Our proof follows the idea by Alford
et al. (2014) to show NP membership of solving delete-free
HTN problems. We state the main adaptations later on.

Abstract Solutions We start with introducing the first
part, a sequence of (potentially primitive and compound)
tasks that represents an abstract solution plan. Solutions of
even acyclic (P-relaxed) HTN planning problems can be ex-
ponentially long. To represent such a solution in polynomial
size our witness contains a task network that still contains
compound tasks and it can be verified in polynomial time
that this task network can be refined into a solution. Gener-
ally, primitive solutions ⟨a1 . . . an⟩ ∈ A∗ of P-relaxed prob-
lems are of the following structure. For every fact f ∈ g
there is a primitive task ai such that f ∈ add(ai) and none
of the tasks ai+1 . . . an deletes f . We call these facts and the
corresponding tasks achiever facts and tasks, respectively.
The tasks are later referred to by their indices stored in Tach .
This can be generalized to task networks, which contain also
compound tasks. We call them partial-achiever solutions (of
a P-relaxed planning problem). Such a partial-achiever solu-
tion is a task network tn ∈ T ∗ with the following properties.
In parentheses, we state the constraint numbers of the sub-
sequent formal definition. For every goal fact f ∈ g there is
exactly one primitive achiever task (1.+2.) that adds f (3.),
none of the subsequently ordered primitive tasks deletes f
(4.) and every compound task tc ∈ tn has a refinement such
that none of its tasks deletes any of the previously achieved
facts (5.). To define them formally we introduce two func-
tions: ψ maps achiever tasks to the respective goal facts that
they satisfy; Ψ is based on ψ and maps achiever tasks to
the set of goal facts that they and their predecessor achiever
tasks add. So Ψ is for convenience to state which facts are
achieved up to the respective index. Note that according to
our definition, the task network of a partial-achiever solution
does not necessarily need to be a refinement of the initial



task network. We will only cover this property in the next
subsection. To ease notation we assume w.l.o.g. that sI is
empty and asserted by an action right at the beginning of the
task network.
Definition 3. Let
• Π = (D, sI , tnI , g) be a P-relaxed planning problem,
• tn = ⟨t1 . . . tn⟩ ∈ T ∗ a sequence of tasks,
• Tach ⊆ {1 . . . n} a subset of the indices of tasks in tn ,

called achiever indices, defining the achiever tasks, and
• ψ,Ψ : Tach → 2g with Ψ(i) =

⋃
j∈Tach :j≤i ψ(j) map-

pings from achiever indices to sets of goal facts.
Then (tn,Tach , ψ) is called a partial-achiever solution iff
1. ∀ f ∈ g ∃ i ∈ Tach : f ∈ ψ(i)
2. ∀ i ̸= j ∈ Tach : ψ(i) ∩ ψ(j) = ∅
3. ∀ i ∈ Tach : ti ∈ A and ψ(i) ⊆ add(ti)
4. ∀ i ∈ Tach ∀ j > i with tj ∈ A : del(tj) ∩Ψ(i) = ∅
5. ∀i ∈ Tach ∀ j > i with tj ∈ C : ∃ a primitive refinement
ā = ⟨a1 . . . am⟩ of tj s.t. ∀a ∈ ā : del(a) ∩Ψ(i) = ∅

For the example in Fig. 2 it holds: Tach = {1, 3, 5, 7} and
• ψ(1) = {f2}, Ψ(1) = {f2}
• ψ(3) = {f4, f5}, Ψ(3) = {f2, f4, f5}
• ψ(5) = {f1, f6}, Ψ(5) = {f1, f2, f4, f5, f6}
• ψ(7) = {f3}, Ψ(7) = {f1, . . . , f6}

A partial-achiever solution can be viewed as an abstract
solution to a P-relaxed planning problem since it can be re-
fined into a primitive solution by construction (if it is a re-
finement of tnI , which is what we will consider in the next
subsection). Moreover, for every primitive solution tns of a
P-relaxed planning problem there is a Tach and ψ such that
(tns,Tach , ψ) is a partial-achiever solution.
Corollary 4. Let Π = (D, sI , tnI , g) be a P-relaxed prob-
lem. Π is solvable if and only if there exists a refinement tn
of tnI and Tach , ψ so that (tn,Tach , ψ) is a partial-achiever
solution.

In order to use it as a witness we need to show that we can
check the properties of a partial-achiever solution in polyno-
mial time.
Proposition 2. Given a P-relaxed planning problem Π
and a tuple (tn,Tach , ψ) we can verify in polynomial time
whether (tn,Tach , ψ) is a partial-achiever solution.

Proof. We only show how to verify the last condition (5.)
since the other ones can clearly be checked in polynomial
time. For that, let ti ∈ tn with i ∈ Tach be some achiever
task and Ψ(i) =

⋃
i′∈Tach :i′≤i ψ(i

′). Let tj ∈ tn be some
task with j > i, tj ∈ C, and D′ = (F,A′, C,M ′) be the
domain restricted to primitive tasks deleting some of the al-
ready achieved facts, i.e.A′ = {a ∈ A | del(a)∩Ψ(i) ̸= ∅}
and M ′ is equal to M but restricted to the tasks in A′ in-
stead of A. If tj in D′ can be refined into an empty refine-
ment, then tj fulfills the desired property. To check whether
this is the case one can start with methods having empty task
networks. We mark the respective compound task with that
property. Now, we might identify and mark further meth-
ods admitting empty refinements, i.e. those that contain only
compound tasks and all of them admit an empty refine-
ment. Iteratively, this marking can be propagated through

the hierarchy until a fixpoint is reached, which takes at most
O(|M |2) iterations. We can check the other subsequent tasks
of ti with the same restricted and marked domain D′.

All in all, we need to do this for all i ∈ Tach but as we can
check all of them independently we are still polynomial.

Decomposition Trees We defined partial-achiever solu-
tions and showed that they can be verified in polynomial
time. Now we need to show that there is such a partial-
achiever solution of polynomial size and that it is a refine-
ment of the initial task network. Therefore, we use so-called
decomposition trees introduced by Geier and Bercher (2011)
to represent the chosen decompositions.

Definition 4 (Decomposition Tree). Given a planning prob-
lem Π = (D, sI , ⟨cI⟩, g)1 and a sequence of tasks tn , then
a decomposition tree T = (N,E, β) for Π and tn is a tree
with the following properties:

• N is a set of nodes,
• E : N → N∗ is an edge function that maps every node

to an ordered list of children ⟨e1, . . . , ek⟩,
• β : N → T is a function, which assigns a task to every

node. The root node nr is β(nr) = cI . For every inner
node n it holds β(n) ∈ C and for leaf nodes β(n) ∈ T ,

• ∀ inner nodes n ∃ (β(n), ⟨t1 . . . tm⟩) ∈ M s.t. |E(n)| =
m and ti = β(ei)∀ei ∈ E(n) = ⟨e1, . . . , em⟩,

• Let ⟨n1 . . . nl⟩ be the sequence of leaf nodes2, then it
holds tn = ⟨β(n1) . . . β(nl)⟩.

So, a decomposition tree embodies which decompositions
need to be chosen in order to refine tnI to tn . Thereby, con-
ditions (2.+4.) ensure that each inner node is decomposed
according to an applicable decomposition method. We call
tn the yield of a decomposition tree yield(T). Note that
yield(T) is not necessarily executable and it can still con-
tain compound tasks. The last condition is only relevant if
an explicit yield is given. Note that this definition can not
express that a compound task is decomposed by a method
with an empty task network. The respective compound task
will just be a leaf node and thus in the yield. However, this
does not cause an issue in what follows.

Combined Witness Now we combine both concepts. To
form a witness we take a decomposition tree whose yield is a
partial-achiever solution. Geier and Bercher (2011) already
proved that given a planning problem Π = (D, sI , tnI , g)
and a task network tn ∈ T ∗, there exists a decomposition
tree T with yield(T) = tn , if and only if tnI → tn .3

Definition 5. Let Π = (D, sI , tnI , g) be a P-relaxed plan-
ning problem, T a decomposition tree of Π whose yield tn
is part of a partial-achiever solution pas = (tn,Tach , ψ).
Then the pair (T, pas) is a witness to the solvability of Π.

1We assume that the initial task network contains only one task,
otherwise let cI be a new compound task with method (cI , tnI).

2We assume that the ordering is inherited from E.
3They relied on a formalism that excluded methods with empty

task networks. The result can still be used here by assuming that
the respective compound tasks are still in tn .



It remains to show that there is always such a witness ver-
ifiable in polynomial time. A decomposition tree can be ver-
ified in polynomial time in the size of the tree.4

So we have to show that there is always a decomposi-
tion tree of polynomial size. Its yield and thus the partial-
achiever solution are then polynomial as well. We start with
a witness that might have exponential size, which must exist
if the planning problem is solvable according to Geier and
Bercher (2011) and show by transforming it that there must
also exist a smaller one of polynomial size.

A partial-achiever solution has at most |Tach | ≤ |g|
achiever tasks. By keeping the other tasks as abstract as pos-
sible we can represent exponential parts of a primitive so-
lution in a polynomial number of compound tasks. To form
such a partial-achiever solution we make use of so-called
saplings, which were introduced by Alford et al. (2014):

Definition 6 (Saplings). Let T = (N,E, β) be a decompo-
sition tree and S ⊆ N a set of nodes. Moreover, letN ′ be the
set of nodes along any path from a node in S to the root of T
(inclusively) and the siblings of each and every node along
the path, i.e., N ′ is the smallest subtree of N such that:

• S ⊆ N ′

• ∀n, n′ ∈ N : n′ ∈ N ′ ∧ n′ ∈ E(n)⇒ n ∈ N ′

• ∀n, n1, n2 ∈ N : n1 ∈ N ′∧n1, n2 ∈ E(n)⇒ n2 ∈ N ′

Then the S-sapling of T is (N ′, E|N ′ , β|N ′)5.

Alford et al. (2014) proved a useful property:

Proposition 3. Let T = (N,E, β) be a decomposition tree
(DT) and S ⊆ N . Then the S-sapling of T is also a valid DT.

Given a witness (T, (tn,Tach , ψ)) we can create a smaller
witness by building an S-sapling, where S is the set of nodes
corresponding to the achiever tasks defined by Tach . In the
following definition, we abuse notation by using β−1(ti),
which actually does not exist because β is not injective, i.e.,
several nodes might map to the same task. However, it could
instead be defined using a depth-first search over the tree
stopping at the ith leaf node.

Proposition 4. Let Π = (D, sI , tnI , g) be a
solvable P-relaxed planning problem, (T, (tn =
⟨t1 . . . t|tn|⟩,Tach , ψ)) a witness of its solvability.
Then the yield tn ′ of the S-sapling T′ of T, where
S = {n ∈ N | ∃i ∈ Tach : β−1(ti) = n}, also
forms a partial-achiever solution (tn ′,Tach

′, ψ′). Together,
(T′, (tn ′,Tach

′, ψ′)) is a witness of the same size or smaller.

Proof. We first check the conditions of Def. 3: Since S is
the set of nodes corresponding to tasks defined by Tach

we know that the achiever tasks are still in tn ′, which are
now defined by Tach

′ (only indices might have changed).
The mappings ψ′ (and thus also Ψ′) adapt to the potentially
new indices but should map the tasks to the same facts as
ψ does, which fulfills conditions (1.+2.+3.). Condition (4.)
is also satisfied since only a subset of the primitive tasks
of tn can be in tn ′ and the ordering has not changed. To

4This is only true for t.o. domains since for partially ordered
ones, graph isomorphisms need to be checked.

5E|N′ and β|N′ denotes E and β restricted to N ′, resp.

check condition (5.), let ti ∈ tn ′ be some compound task
and n ∈ T′ be the node such that n = β−1(ti). All of n’s
leaf nodes in T fulfill condition (5.) and are ordered between
the same achiever tasks as n (which is relevant with regard
to the considered Ψ). So we know that tc must also satisfy
(5.) because it can be decomposed to this sequence of leaf
nodes according to T. So, (4.+5.) hold for all t ∈ tn ′. Thus,
(tn ′,Tach

′, ψ′) is also a partial-achiever solution. Accord-
ing to Prop. 3 T′ is a valid decomposition tree, which con-
tains less or equally many nodes. So, (T′, (tn ′,Tach

′, ψ′))
is also a witness of the same size or smaller.

The size of the resulting tree (and also its yield, i.e., the
partial-achiever solution) is then bounded by |Tach | · |path| ·
|mmax |, where |path| is the length of the longest path from
the root to an achiever task in T and |mmax | is the number
of tasks of the method with the most tasks. So the witness
has polynomial size as long as |path| is polynomial, which
we have not shown so far.

To prove NP membership of delete-relaxed HTN plan-
ning Alford et al. (2014) used a similar witness, it was also
composed of a decomposition tree whose yield had a cer-
tain structure but instead of the partial-achiever solution they
considered task networks with properties suited for their
case. The arguments that there is a decomposition tree of
polynomial size can be adapted straightforwardly to our case
with one exception: Alford et al. (2014) assumed – in con-
trast to us – that there are no empty methods. So we have to
slightly adapt it but the main idea is still the same. This is
why we would like to claim that there is always a valid tree
with bounded height, i.e., polynomial |path|, here and prove
it formally in the appendix.

Since we showed that there is always a poly-sized wit-
ness for the solvability of P-relaxed problems verifiable in
polynomial time we proved NP-membership and conclude:

Theorem 2. The plan existence problem of P-relaxed HTN
planning problems is NP-complete.

Because PD-relaxed problems are a simpler special case
of P-relaxed ones and the decision problem of size-k effects
can be reduced to a plan existence problem we can state the
following corollary:

Corollary 5. Deciding whether Fk ∈ k-eff +/−
PD (c) and the

plan existence problem of PD-relaxed HTN planning prob-
lems are NP-complete for acyclic, regular, tail-recursive,
and arbitrary hierarchies.

P-relaxed HTN planning problems without goal descrip-
tion can be solved in P since one only needs to find some
primitive refinement. It is interesting to see that it turns NP-
complete when there is a single action at the end having pre-
conditions that need to be satisfied.

Fixed-Parameter Tractability
We showed that deciding Fk ∈ k-eff +/−

P (c) is NP-complete
for arbitrary k. Remember that it is decidable in polyno-
mial time for k = 1. Now, it is interesting to know whether
there is a concrete number for k so that the problem turns
from polynomial to NP-completeness. However, it turned



Algorithm 1: Fixed-Parameter Algorithm
Input: A planning domain D = (F,A,C,M), a compound
task c∗ ∈ C, and a set of facts Fk = {f1 . . . fk} ⊆ F
Output: True, if Fk ∈ k-eff +

P(c
∗), false otherwise

1: updatedTasks = ∅
2: Initialize Φ(tp) acc. to (add(tp), del(tp))∀ tp ∈ A
3: Φ(tc) = ∅ ∀ tc ∈ C
4: for all m = (c′, t̄) ∈M do
5: if ∀t ∈ t̄ : t ∈ A then
6: EVALUATE(m)
7: updatedTasks = updatedTasks ∪ {c′}
8: while updatedTasks ̸= ∅ do
9: Select and remove c ∈ updatedTasks

10: for all m = (c′, t̄) : c ∈ t̄ do
11: if ∀t ∈ t̄ : Φ(t) ̸= ∅ then
12: if EVALUATE(m) then
13: updatedTasks = updatedTasks ∪ {c′}
14: if (1, . . . , 1) ∈ Φ(c∗) then
15: return True
16: else
17: return False

18: function EVALUATE(m = (c′, ⟨t1 . . . tl⟩))
19: Φold = Φ(tl), Φnew = ∅
20: for j = l − 1 . . . 1 do
21: for all ϕold ∈ Φold do
22: for all ϕj ∈ Φ(tj) do ▷ Build new tuple ϕnew
23: for i = 1 . . . k do
24: if ϕoldi ̸= 0 then
25: ϕnewi = ϕoldi
26: else
27: ϕnewi = ϕji
28: Φnew = Φnew ∪ {ϕnew}
29: Φold = Φnew

30: Φnew = ∅
31: if Φold \ Φ(c′) ̸= ∅ then
32: Φ(c′) = Φ(c′) ∪ Φold

33: return true
34: return false

out there is no such k, which means that deciding Fk ∈
k-eff +/−

P (c) is fixed-parameter tractable, i.e., for fixed k it
is polytime-decidable. To prove this we present an algorithm
that is polynomial for fixed k. The respective pseudo code is
presented in Algorithm 1, which we now explain.

Let k ∈ N be fixed, D = (F,A,C,M) a domain, c∗ ∈ C
a compound task, and Fk = {f1 . . . fk} ⊆ F a set of facts.
We want to determine whether Fk ∈ k-eff +/−

P (c∗). First,
we restrict the domain to only those facts that are contained
in Fk since all others are irrelevant (because there are no
preconditions). For every primitive and compound task t ∈
A ∪ C we keep a set of information over facts Φ(t) that a
task can add and delete simultaneously, resp. Therefore, the
elements of Φ are k-tuples ϕ = (ϕ1, . . . , ϕk) ∈ {1, 0,−1}k,
where ϕi = −1 represents that fact fi is deleted, ϕi = 0
means that it is neither added nor deleted, and ϕi = 1 if

fi is added. For primitive tasks tp ∈ A we define Φ(tp) =

{ϕtp}, where ϕtpi = 1 if fi ∈ add(tp), ϕ
tp
i = −1 if fi ∈

del(tp) and ϕtpi = 0 otherwise. For compound tasks tc ∈ C
the sets Φ(tp) are empty in the beginning and filled step-
by-step until a fixpoint is reached. The overall idea is that
we keep track of all possible outcomes of tasks with the aid
of Φ, where different refinements were kept separately (the
ϕs). This information gets built and propagated in an upward
manner through the hierarchy.

We begin with methodsm = (c, t̄) that contain only prim-
itive tasks and evaluate their outcome. We do so by consid-
ering one fact after another and checking whether it is added
or deleted eventually or never touched at all when applying
the methods’ sequence of actions. The result is then stored in
a new k-tuple ϕ according to the semantics above, which is
added to Φ(c) if it is not already contained. We keep track of
compound tasks that got new information, since those need
to be propagated further through the hierarchy. As data struc-
ture, we use the set updatedTasks ⊆ C that is empty ini-
tially. So if a new tuple ϕ is added to some Φ(c) then c is
also added to updatedTasks (if it is not already contained).

After all methods with only primitive tasks are eval-
uated the main propagation phase can start. As long
as updatedTasks is not empty a compound task c ∈
updatedTasks is picked and removed from the set. Then all
methods m = (c′, t̄) that contain c (c ∈ t̄) and for which
it holds Φ(t) ̸= ∅ for all t ∈ t̄ are evaluated according to
EVALUATE that simulates the application of the tasks in the
method depending on the different refinement choices:

Let t̄ = ⟨t1 . . . tl⟩. We want the outcomes of m for ev-
ery combination of task outcomes (ϕ1, . . . , ϕl), where ϕj ∈
Φ(tj). For that, compute a new tuple ϕ′ as follows. Consider
ϕ′i, i.e. the ith entry of ϕ′. If ϕji = 0 for all j ∈ {1 . . . l} then
ϕ′i = 0. Otherwise, let j′ = max({j ∈ {1 . . . l} | ϕji ̸= 0}),
then ϕ′i = ϕj

′

i . Basically, for every fact we check whether
it is added or deleted eventually or never touched at all.
Now, if ϕ′ ̸∈ Φ(c) then add ϕ′ to Φ(c) and add c to the
set updatedTasks (if not already contained). However, sim-
ply considering and evaluating every such combination sep-
arately ends up in a run-time exponential in l, which is con-
tradicting a polynomial algorithm. However, one can also
calculate it differently as stated in EVALUATE: We can “ap-
ply” task by task instead of considering the whole sequence
at once. We start with tl and tl−1 since for all i = 1 . . . k it
is always the rightmost task with a non-zero entry that deter-
mines the entry of the new tuple. For that, we consider every
combination of task outcomes in Φ(tl) and Φ(tl−1) and cal-
culate the resulting tuples ϕnew (lines 23-27). We go on and
combine those with the ones of Φ(tl−2) and so forth down
to Φ(t1). The resulting set then contains all outcomes of m.

When updatedTasks is empty a fixpoint is reached and
no more information can be propagated. Now, we can
read off Φ(c∗): If and only if (1, . . . , 1) ∈ Φ(c∗) then
Fk ∈ k-eff +

P(c
∗) and Fk ∈ k-eff −

P(c
∗) if and only if

(−1, . . . ,−1) ∈ Φ(c∗).

Theorem 3. Algorithm 1 is sound and complete and runs in
O(|C| · |M | · |mmax | · k · 33k).



Proof. Runtime: Consider the function EVALUATE(m =
(c′, ⟨t1 . . . tl⟩)) first. A set Φ can contain at most 3k ele-
ments. Thus, EVALUATE has a runtime of O(l · k · 32·k). In
the overall algorithm, the lines 8 to 13 are computationally
the most expensive ones. Since every compound task can be
added to updatedTasks at most 3k times we end up with a
runtime of roughlyO(|C| ·3k · |M | · |mmax | ·k ·32k), where
|mmax | is the number of tasks in the longest method.

Completeness: Assume it holds Fk ∈ k-eff +
P(c

∗). Then
there is a refinement t̄ and a sequence of decompositions
such that t̄ adds all f ∈ Fk. Considering those methods and
intermediate tasks in a bottom-up order within Algorithm 1
produces (1, . . . , 1) ∈ Φ(c∗).

Soundness: Since we track the outcome of all possible re-
finements of a compound task separately within the Φs and
we propagate them according to the methods’ tasks and or-
der we do not produce wrong outcomes. Note that the prop-
agation is only possible because we do not consider any pre-
conditions, which, in a general planning problem, massively
restrict the executability of refinements.

Corollary 6. Deciding Fk ∈ k-eff +/−
P (c) and Fk ∈

k-eff +/−
PD (c) is in P for fixed k and thus fixed-parameter

tractable.
The algorithm computes actually more than

k-eff +/−
P (c∗): We get every combination of added, deleted,

and not touched facts (under precondition-relaxation).

Conclusion
We have seen that deciding whether a set of facts is a con-
junctive possible effect of a compound task and the plan ex-
istence problem (with goal description) under P- and PD-
relaxation is NP-complete. Interestingly, this ranges from
the simplest case – acyclic and regular PD-relaxed domains
– to arbitrary P-relaxed ones even though the problems do
not seem equally hard. Additionally, we presented a polyno-
mial algorithm for fixed k to compute size-k effects. Thus,
for small k they can be calculated efficiently with the hope
of offering valuable information that can be exploited by
heuristics, pruning, or reachability analyses.

Appendix
In the process of proving NP membership of P-relaxed HTN
planning problems, we concluded that there is a decompo-
sition tree of size at most |Tach | · |path| · |mmax | and it
remained to show that there is a tree such that |path| is poly-
nomial. Alford et al. (2014) showed that in a similar scenario
for delete-relaxed HTN planning problems but they assume
that methods do not have empty task networks. So we have
to slightly adapt the proof but can still use the same idea.

The main argument rests on the fact that we can concate-
nate trees that are higher than |path|. For that, we use subtree
substitutions introduced by Geier and Bercher (2011), which
preserve the property of being a decomposition tree.

Let T = (N,E, β) be a decomposition tree and n ∈ N
a node. The subtree of T induced by n, written T[n], is
T[n] := (N ′, E′, β|N ′), where (N ′, E′) is the subtree in

(N,E) that is rooted at n. The next definition states how
subtrees can be substituted by other subtrees. Note that the
given definition is only meaningful under certain circum-
stances that follow in the subsequent proposition by Geier
and Bercher (2011). In the general case, one should replace
T[ni] with an isomorphic copy of T[nj ].
Definition 7 (Subtree Substitution). Let T = (N,E, β) be a
decomposition tree and ni, nj ∈ N be two nodes. If ni is the
root node of T, we define the result of the subtree substitution
on T that substitutes ni by nj , written T[ni←nj ], as T[ni←
nj ] := T[nj ]; otherwise, T[ni←nj ] := (N ′, E′, β|N ′) with
• N ′ := (N \N(T[ni])) ∪N(T[nj ])
• E′ := E|N ′ and ni is replaced by nj in E(p), where p is

the parent node of ni
Proposition 5. Let T = (N,E, β) be a decomposition tree
for a P-relaxed planning problem Π = (D, sI , tnI , g) and
ni ∈ N , nj ∈ N(T[ni]) two nodes with β(ni) = β(nj).
Then T[ni←nj ] is also a decomposition tree for Π.

Now we can state and prove the main theorem that we can
always find a witness of bounded height, which is similar to
Theorem 5.10 by Alford et al. (2014).
Theorem 4. Let Π = (D, sI , tnI , g) be a solvable P-
relaxed problem having a minimal solution of size l. Then
there exists a witness (T, (tn, ψ)) that Π has a solution of
size ≤ l with |N(T)| ≤ |g| · |C| · |A| · |mmax |.

Proof. Let Π be solvable with an optimal solution of
size l. Then there exists a decomposition tree Tpre =
(Npre , Epre , βpre) whose yield is a primitive task network
tnpre = ⟨t1 . . . tl⟩, which can form a partial-achiever solu-
tion (tnpre , T

pre
ach , ψpre). Assume that Tpre is such a tree of

minimal height and let T be the S-sapling of Tpre with S =
{n ∈ Npre | ∃i ∈ T pre

ach : β−1
pre(ti) = n}. The yield tn of T

also forms a partial-achiever solution (tn,Tach , ψ), where
T pre
ach ,Tach and ψpre , ψ, resp., are the same but adapted to

new indices. So the tuple (T, (tn,Tach , ψ)) is a witness for
Π’s solvability of size at most |Tach | · |path| · |mmax |, where
|path| is the height of T.

Assume that T has a height greater than |C| · |A|. Then
there must exist a path from the root to some node ns ∈
S of that length. Let n1, . . . , ns be the nodes of that path.
Since all inner nodes of the tree represent compound tasks
and there are |C| many of them we know that always after
at most |C| nodes on that path two nodes ni and nj map to
the same compound task, i.e., β(ni) = β(nj). Furthermore,
the path n1, . . . , ns is joined at most |S| − 1 ≤ |A| times
by other paths from S to the root. Since |path| > |C| · |A|
there must be some segment ni and nj with β(ni) = β(nj)
between joins such that none of the descendants of ni that
are not also descendant of nj are in S \ {ns}.

So we can concatenate T by substituting ni by nj , which
gives us T′ = T[ni← nj ]. Since we did not remove any of
the achiever tasks the new tree T′ also forms a witness with
its yield tn ′, which has a smaller height and contains fewer
nodes than T. We can repeat this procedure as long as the
height of the tree is greater than |C| · |A| until we end up
with a tree of height at most |C| · |A|.
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Höller, D.; Bercher, P.; and Behnke, G. 2020. Delete- and
Ordering-Relaxation Heuristics for HTN Planning. In Proc.
of IJCAI, 4076–4083. IJCAI.
Magnaguagno, M. C.; Meneguzzi, F. R.; and de Silva, L.
2021. HyperTensioN: A three-stage compiler for planning.
In Proc. of the 10th International Planning Competition:
Planner and Domain Abstracts – Hierarchical Task Network
(HTN) Planning Track (IPC 2020).

Marthi, B.; Russell, S. J.; and Wolfe, J. A. 2007. Angelic
Semantics for High-Level Actions. In Proc. of ICAPS, 232–
239. AAAI Press.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN Planning
System. Journal of Artificial Intelligence Research (JAIR),
20: 379–404.
Olz, C.; Biundo, S.; and Bercher, P. 2021. Revealing Hid-
den Preconditions and Effects of Compound HTN Planning
Tasks – A Complexity Analysis. In Proc. of AAAI, 11903–
11912. AAAI Press.
Olz, C.; Wierzba, E.; Bercher, P.; and Lindner, F. 2021. To-
wards Improving the Comprehension of HTN Planning Do-
mains by Means of Preconditions and Effects of Compound
Tasks. In Proc. of the 10th Workshop on Knowledge Engi-
neering for Planning and Scheduling (KEPS 2021).
Schreiber, D. 2021. Lilotane: A Lifted SAT-Based Approach
to Hierarchical Planning. Journal of Artificial Intelligence
Research (JAIR), 70: 1117–1181.
Thangarajah, J.; and Padgham, L. 2011. Computationally
Effective Reasoning About Goal Interactions. Journal of
Automated Reasoning, 47(1): 17–56.
Tsuneto, R.; Hendler, J.; and Nau, D. 1998. Analyzing Ex-
ternal Conditions to Improve the Efficiency of HTN Plan-
ning. In Proc. of AAAI, 913–920. AAAI Press.
Waisbrot, N.; Kuter, U.; and Könik, T. 2008. Combining
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