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Abstract

In HTN planning the choice of decomposition methods used
to refine compound tasks is key to finding a valid plan. Based
on inferred preconditions and effects of compound tasks, we
propose a look-ahead technique for search-based total-order
HTN planning that can identify inevitable refinement choices
and in some cases dead-ends. The former occurs when all
but one decomposition method for some task are proven in-
feasible for turning a task network into a solution, whereas
the latter occurs when all methods are proven infeasible. We
show how it can be used for pruning, as well as to strengthen
heuristics and to reduce the search branching factor. An em-
pirical evaluation proves its potential as incorporating it im-
proves an existing HTN planner such that it is the currently
best performing one in terms of coverage and IPC score.

Introduction
Hierarchical Task Network (HTN) planning aims to find
an executable sequence of actions that is a refinement of
some initial abstract tasks (Erol, Hendler, and Nau 1996;
Ghallab, Nau, and Traverso 2004; Alford, Bercher, and Aha
2015). HTN planning problems can be solved in various
ways (Bercher, Alford, and Höller 2019), but one of the most
successful ones at the moment is phrasing it – just like in
classical planning – as a heuristic search problem (Höller
and Behnke 2021). In a progression search-based HTN plan-
ner search nodes consist of a current state and a task net-
work, which is a collection of primitive and/or abstract tasks
(Nau et al. 2003; Höller et al. 2020b). When a search node
is selected from the fringe new search nodes are generated
by always processing the first task of the task network, i.e.
primitive ones are applied and change the current state, com-
pound ones are decomposed according to their decomposi-
tion methods producing usually multiple new search nodes.

As a consequence of this strict progression procedure, in-
evitable decomposition choices for compound tasks that oc-
cur later in the current search node (non-first tasks) cannot
be chosen earlier. So, if we knew due to some reasoning
process which (single) decomposition method of some com-
pound task had to be chosen, we could still only choose it
once its compound task has become the first, i.e., after all
its predecessor tasks have been processed. Performing such
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a unique choice early on in the back part of the search node
can however have a great impact on the choices that have to
be made in the front part, most notably, performing these in-
evitable decompositions early on will make heuristics more
accurate, because they do not become “distracted” by the
other method choices that have been shown infeasible.

For the setting of totally ordered HTN planning, we pro-
pose a look-ahead technique that detects cases when only
one method of a compound task may lead to a solution so
that we can decompose them right away – even if they are
non-first tasks. Additionally, as a special case, we can de-
tect dead-ends when all decomposition methods for a task
are detected infeasible. The first case is put into practice by
generalizing the standard HTN progression algorithm by al-
lowing to decompose non-first tasks right away (for all tasks
with only one feasible method). Our look-ahead technique
exploits so-called mandatory preconditions of compound
tasks and methods as well as (positive and negative) effects
(state changes) that will occur due to the decomposition of a
compound task, which can be computed in polynomial time
(Olz, Biundo, and Bercher 2021). Our technique, therefore,
does not rely on any of the HTN heuristics’ typical prob-
lem relaxations: delete-relaxation, ordering-relaxation, task
insertion, or task sharing (Alford et al. 2014; Bercher et al.
2017; Höller et al. 2020b; Höller, Bercher, and Behnke 2020;
Höller and Bercher 2021). The technique thus nicely com-
plements existing heuristics as it relies on different problem
relaxations thus strengthening current reasoning techniques.
It further reduces the size of the search space by detecting
previously unrecognized dead-ends, while also reducing the
branching factor and making heuristics more informed due
to eliminating provably infeasible method choices.

We implemented the look-ahead technique as well as the
generalized progression procedure on top of the PANDA pro-
gression planner (Höller and Behnke 2021; Höller et al.
2020b). We conducted a comprehensive empirical evalu-
ation on the benchmark set of the International Planning
Competition (IPC) 2020, which shows that our proposed
technique outperforms the state of the art in terms of solved
instances and IPC score.

Related Work
Reasoning on an abstract level has been done before.
Loosely related work is on the downward-unlinearizable cri-



terion for partially ordered (p.o.) task networks (Yang 1990),
which tries to identify situations in which an abstract p.o.
plan can not be turned into a solution because of unresolv-
able ordering constraints. Also in the context of p.o. task net-
works external conditions (i.e., constraints similar to method
preconditions) were used to prioritize which abstract task is
decomposed next during search to heuristically avoid back-
tracking (Tsuneto, Hendler, and Nau 1998). We however
deal with totally ordered task networks in the first place, so
these results do not transfer.

Summary information (including among others pre-, in-,
and postconditions) is a concept similar to external condi-
tions. They have been used to reason about abstract plans
in a non-recursive, temporal, partial-order multi-agent set-
ting (Clement, Durfee, and Barrett 2007), as well as to im-
prove the performance of Belief-Desire-Intention (BDI) sys-
tems, for example, by detecting conflicts between an agent’s
top-level goals (de Silva, Meneguzzi, and Logan 2020).

Marthi, Russell, and Wolfe (2007) present a top-down
(depth-first) search algorithm that also takes advantage of
preconditions and effects of compound tasks (which they
call high-level actions, HLAs). One main difference to our
approach is that these preconditions and effects are given in
their input. The authors do not explain how they could be
inferred or verified. Another difference of major importance
is that they do not adhere the standard HTN semantics. They
assume that the hierarchy does not generate primitive non-
solutions since in their case primitive actions just vanish if
their preconditions are not met in a state. This changes the
standard HTN semantics heavily and likely also the com-
plexity of the plan existance problem so that results are not
fully comparable anymore.

The lifted planner HyperTensioN (Magnaguagno,
Meneguzzi, and de Silva 2021, 2022) finds preconditions
similar to Olz, Biundo, and Bercher’s executability-relaxed
preconditions (Olz, Biundo, and Bercher 2021) (which
we exploit in this paper) in a preprocessing step called
“Pullup”. HyperTensioN exploits those preconditions in a
lifted and blind (depth-first) progression search, whereas
we exploit them to improve a heuristic progression search,
specifically, among others, heuristic accuracy. In particular,
HyperTensioN uses them in two ways: 1) Before search for
model reduction, if preconditions of tasks or methods (no
matter where they appear in the domain) are never satis-
fiable, the task or method gets removed completely. This
should be compared to preprocessing procedures like, e.g.,
the PANDAPIGROUNDER (Behnke et al. 2020). It already
compiles predefined method preconditions into the model
(by means of artificial actions) and performs some reacha-
bility analyses based on the hierarchy, delete-relaxation, and
task insertion. The grounder could potentially be improved
by incorporating inferred preconditions. However, this is
out of scope of this paper as we are not aiming at domain
model reductions, but on how search can be improved.
2) During search for each search node HyperTensioN
checks methods’ preconditions of the first tasks (i.e., the
first task in the sequence of tasks of the respective task
network) with respect to the current search node’s initial
state before decomposition to identify dead-ends. In con-

trast, we check (also for each search node during search)
method applicability of all tasks, including non-first ones
to ignore those that are inapplicable. In order to do so, we
propagate different kinds of (inferred) effects through the
entire task network to check for executability issues of any
intermediate state. Therefore we may find more dead-ends
than HyperTensioN because of inapplicable actions in the
middle and back of the task network. Additionally, this
can lead to early refinements, which HyperTensioN is not
capable of. Examples 1 and 2 illustrate both cases.

In SAT-based planners the encoding is based on a tree
representing all possible refinements up to some depth limit
together with the executability constraints of the primitive
tasks in the leaf nodes. The problem is solved incremen-
tally by increasing the depth bound. The lifted SAT-based
planner Lilotane (Schreiber 2021) incorporates some reach-
ability analysis to prune unreachable actions or methods
based on preconditions similar to the ones used by us. To
check their satisfiability, mentioned effects (effects that oc-
cur somewhere in the children of a task) were computed for
every new depth layer. It is a weaker check compared to our
approach since the interplay with delete effects is not taken
into account and the problem is considered as a whole with
the initial state and all possible refinement choices, whereas
in our case tasks are already decomposed and applied.

Theoretical Background
Here we provide the definitions for total-order HTN plan-
ning, dead-ends, and a recap of (inferred) preconditions and
effects of compound tasks and methods.

HTN Planning Formalism
We consider totally ordered (t.o.) HTN planning and use a
formalism based on the ones by Geier and Bercher (2011)
and Behnke, Höller, and Biundo (2018). T.o. HTN planning
domains are tuples D = (F,A,C,M), consisting of a finite
set of facts F , primitive tasks A, compound tasks C (also
called abstract tasks), and decomposition methods M ⊆
C ×T ∗1. We denote the union of both types of tasks as T =
A ∪ C. Primitive tasks or actions a = (prec, add , del) ∈ A
are tuples, which describe their preconditions prec(a) ⊆ F
and effects add(a), del(a) ⊆ F (the add and delete effects,
resp.). We say that an action a ∈ A is applicable in a state
s ∈ 2F if prec(a) ⊆ s. In that case, applying it to s results
in the successor state δ(s, a) = (s \ del(a)) ∪ add(a). This
can be generalized to sequences of actions ā = ⟨a0 . . . an⟩
with ai ∈ A, which are applicable in a state s0 if a0 is ap-
plicable in s0 and for all 1 ≤ i ≤ n, ai is applicable in
si = δ(si−1, ai−1). Besides primitive tasks, there are also
compound tasks in HTN planning. Such a task c ∈ C can be
viewed as abstraction of primitive and/or compound tasks,
which are further specified by methods m = (c, t̄) ∈ M
that decompose a compound task c within a task network
tn1 = ⟨t̄1 c t̄2⟩ ∈ T ∗ into a task network tn2 = ⟨t̄1 t̄ t̄2⟩
(denoted by tn1 →c,m tn2), where task networks are (pos-
sibly empty) finite sequences of tasks. We denote a (possi-

1In reference to Kleene star, T ∗ denotes the set containing the
empty and all finite-length sequences of tasks of T .



ble empty) sequence of methods transforming tn into tn ′ by
tn → tn ′ and call tn ′ a refinement of tn . A solution to a t.o.
HTN planning problem Π = (D, sI , tnI , g) – containing the
domain D, an initial state sI ∈ 2F , an initial task network
tnI ∈ T ∗, and a goal description g ⊆ F – is a sequence of
actions tn = ⟨a0 . . . an⟩ ∈ A∗ if and only if tnI → tn , tn
is applicable in sI , and results in a goal state s ⊇ g.

From Olz, Biundo, and Bercher (2021) we take also
the following definitions. The set of executability-enabling
states of a compound task c ∈ C is E(c) = {s ∈ 2F |
∃ ā ∈ A∗ : c → ā and ā is applicable in s} and the set of
all states into which the execution of c in a state s ∈ 2F can
result is given by Rs(c) = {s′ ∈ 2F | ∃ ā ∈ A∗ : c →
ā, ā is applicable in s and results in s′}.

A dead-end is a search node from which there does not
exist a path in the search tree to a solution. Formally, a tuple
(s, tn) ∈ 2F × T ∗ is a dead-end of a t.o. HTN planning
problem Π = (D, sI , tnI , g) if and only if (D, s, tn, g) does
not have a solution.

Preconditions and Effects of Compound Tasks
Our look-ahead technique is based on inferred preconditions
and effects of compound tasks. Compound tasks (in the used
formalization) do not have preconditions or effects, instead
they are just placeholders for task networks that substitute
them during planning.2 By investigating into which action
sequences compound tasks may be decomposed one can in-
fer which state features must hold before the execution of
any refinement, and likewise which state features are ‘pro-
duced’ by all of the refinements. The relevant definitions, as
introduced in our previous work (Olz, Biundo, and Bercher
2021), are reproduced herein as necessary for this paper.

State-independent positive and negative effects (cf.
Def. 4) of a compound task c are facts that are added or
deleted, resp., by the successful execution of a refinement of
c, independent of the state in which the task is executed, i.e.,

eff +
∗ (c) := (∩s∈E(c)∩s′∈Rs(c)s

′) \∩s∈E(c)s

eff −
∗ (c) := ∩s∈E(c)(F \∩s′∈Rs(c)s

′)

if E(c) ̸= ∅, otherwise eff +/−
∗ (c) := undef .

Possible state-independent effects (cf. Def. 5) of a com-
pound task c are not guaranteed to hold (or not hold, resp.,)
after every refinement of c but after at least one:

poss-eff +
∗ (c) := ∪s∈E(c)(∪s′∈Rs(c)s

′ \ s)

poss-eff −
∗ (c) := ∪s∈E(c)((∪s′∈Rs(c)(F \ s′)) ∩ s)

if E(c) ̸= ∅ and poss-eff +/−
∗ (c) := undef otherwise.

2There are also hierarchical planning formalizations, which per-
mit to specify preconditions and/or effects for compound tasks in
the model (see, e.g., some overviews by Bercher et al. (2016) and
Olz, Biundo, and Bercher (2021)), but we can say little about these
formalizations because they do not have common semantics. Such
preconditions and effects are also not reflected in current standard
benchmark domains as described by HDDL (Höller et al. 2020a),
which was used for the IPC 2020 on HTN planning.

Mandatory preconditions (cf. Def. 6) of c are facts that
hold in every state for which there exists an executable re-
finement. So, they are required in every state in which a re-
finement of c shall be executed: prec(c) :=

⋂
s∈E(c) s if

E(c) ̸= ∅ and prec(c) := undef otherwise.
Since these definitions rely on executable refinements de-

termining the preconditions and effects is computationally
hard, ranging from PSPACE- to EXPTIME-complete – it
is basically as hard as solving the respective planning prob-
lem in the first place (Olz, Biundo, and Bercher 2021). As
we want to use these preconditions and effects for our look-
ahead technique, using these exact preconditions and ef-
fects is not reasonable for the goal of speeding up search
– it would be too costly and would not pay off. However,
previously, we also introduced a variant of such precondi-
tions and effects that can be computed in polynomial time
based on what we called precondition-relaxation, which
essentially analyzes preconditions and effects while com-
pletely ignoring executability (Olz, Biundo, and Bercher
2021). Formally, the precondition-relaxation of a domain
D = (F,A,C,M) is the domain D′ = (F,A′, C,M)
with A′ = {(∅, add , del) | (prec, add , del) ∈ A}. Then,
eff ∅+

∗ (c), eff ∅−
∗ (c), poss-eff ∅+

∗ (c) and poss-eff ∅−
∗ (c) are

precondition-relaxed effects (cf. Def. 9) and are defined just
like the original ones but based on the precondition-relaxed
variant of D.

There is also a tractable variant of preconditions, which
are called executability-relaxed preconditions (cf. Def. 10).
A fact f ∈ F is such a precondition of c, denoted f ∈
prec∅(c), if and only if for all primitive refinements (i.e.,
ignoring executability) ⟨a0 . . . an⟩ of c there exists an action
ai with f ∈ prec(ai) and there does not exist an action aj
with j < i and f ∈ add(aj), where i, j ∈ {0 . . . n}. In
other words, a fact is a precondition of a compound task if it
is needed by at least one primitive task in every refinement
of it and no other task adds it beforehand.

Procedures to infer precondition-relaxed effects and
executability-relaxed preconditions in polynomial time were
described in the proofs of Theorems 6 (on the poly-time de-
cidability of possible effects) and Corollary 7 (guaranteed
effects) as well as of Theorem 7 (on the poly-time decidabil-
ity of preconditions) by Olz, Biundo, and Bercher (2021).
We also mentioned that one can define inferred precondi-
tions and effects of decomposition methods (rather than of
compound tasks) as follows: Given a method m = (c, tn)
introduce a new compound task cm̃ together with a new
method m̃ = (cm̃, tn). In essence, cm̃ represents tn as it has
only this single method. Then the preconditions and effects
of m are equal to the ones of cm̃. We will exploit this later in
our proposed technique. Very recently, we introduced con-
junctive possible effects (Olz and Bercher 2023a), which are
a generalization of the possible ones. They could potentially
be used to further improve our technique in the future.

Look-Ahead Technique
We now describe our proposed look-ahead technique to de-
tect inevitable decomposition choices and dead-ends and
how it can be integrated into a search-based HTN system.



Algorithm 1: Look-ahead algorithm
Input: A planning problem Π = (D, sI , tnI , g), task net-
work tn = ⟨t1 . . . tn⟩ ∈ T ∗, and a state s
Output: (−1,−1), if (s, tn) is a dead-end, otherwise a (pos-
sibly empty) list of tuples (k,m) ∈ [n]×M

1: function UNIQUEREFINE((s, tn = ⟨t1 . . . tn⟩))
2: uniqueMethods = ∅
3: for i = 1, . . . , n do
4: if ti ∈ A then
5: if prec(ti) ⊈ s then return (−1 ,−1 )
6: s = (s \ del(ti)) ∪ add(ti)
7: else
8: M ′ = {m = (ti, tn

′) ∈ M | prec∅(m) ⊆ s}
9: if M ′ = ∅ then return (−1 ,−1 )

10: if |M ′| = 1,M ′ = {m′} then
11: uniqueMethods = uniqueMethods ∪

{(i,m′)}
12: s = s ∪

⋃
m∈M ′ poss-eff ∅+

∗ (m)

13: s = s \
⋂

m∈M ′ eff
∅−
∗ (m)

14: if g ⊈ s then return (−1 ,−1 )
15: return uniqueMethods

Look-ahead Procedure
We start by presenting pseudo code (Alg. 1), followed by an
explanation, an example, and a proof of soundness.

We want to analyze search nodes, so our input is a task
network tn = ⟨t1 . . . tn⟩ ∈ T ∗, and a state s. As a result, the
procedure either returns that the search node is a dead-end or
it returns a (possibly empty) list of tasks, for which always
only one method can turn the current task network into a so-
lution, together with the respective method. The idea is to
consider the compound tasks like primitive ones with the in-
ferred preconditions and effects of their methods and check
whether the sequence is applicable in s and leads to a goal
state. Therefore, we go through the tasks in the network from
left to right, so we consider one ti, i ∈ {1 . . . n}, after an-
other and do the following:
• If the current task ti is primitive we just check whether

its preconditions are satisfied in s, as usual. If this is not
the case, we’ve detected a dead-end and return (−1,−1).
Otherwise, we delete all its delete effects and add its add
effects to s, just like applying it.

• If ti is a compound task, we check which of its meth-
ods are applicable in s (denoted by the set M ′), i.e. we
check their inferred preconditions like for primitive tasks.
If none of them are applicable, we have again found a
dead-end, stop and return (−1,−1). If one or multiple
methods are applicable, we update s by adding all possi-
ble positive precondition-relaxed effects and deleting the
intersection of all guaranteed negative ones of all meth-
ods of ti that were not proven inapplicable. Additionally,
if only one method is applicable, we save the combina-
tion of task and method in a list uniqueMethods .

At the end – after we have propagated all tasks of tn –
we test whether the resulting state is a goal state. If it is
not a goal state, we know that it is a dead-end and return

s0 =

{
A
D

}
s1 =

{
B
D

}
s2 =

{
B
E

}
s3 =

 A
B
E

 ⊇
{

A
E

}

=

g
c1 c2 a3 AE

m1
1

AC m2
1

B

¬A
A

m3
1

¬A
¬D m1

2

E

¬D
B

m2
2

DA

Figure 1: An example illustrating the look-ahead procedure.
Tasks c1 and c2 are compound, a3 is primitive. The de-
picted positive effects of all methods are possible positive
precondition-relaxed effects, the negative effects are guar-
anteed ones.

(−1,−1), otherwise, we return the list uniqueMethods of
compound tasks with inevitable decomposition choices.

Example 1 Let’s consider the example in Figure 1, where
the task network tn = ⟨c1c2a3⟩ and state s0 are given and to
be analyzed. We start with c1. It has three methods m1

1, m2
1,

and m3
1 but only m2

1 and m3
1 are applicable as C, the precon-

dition of m1
1, does not hold in s0. So we add B and delete

A to generate s1 = {B,D}. We do not delete D because it
is not a negative effect of both methods, m2

1 and m3
1. When

we go on to c2 we see that the precondition of m2
2 does not

hold in s1 but the ones of m1
2 do. Thus now there is only a

single applicable method left for c2, so we add (2,m1
2) to

uniqueMethods and we apply m2
2 according to its effects in

s1, which gives us s2 = {B,E}. Now, a3 is primitive, so we
can handle it as usual in planning (and like unique methods):
it is applicable in s2 and turns it into s3 = {A,B,E}, which
is a goal state. As we have not encountered a dead-end, the
algorithm would return uniqueMethods = {(2,m1

2)}. We
could, thus, decompose c2 directly using method m1

2. If in
contrast any compound task would not have any method left,
or if any primitive task could not be executed (cf. Example
2 later on), then the procedure would return (−1,−1), i.e.
the detection of a dead-end, and the search node would be
discarded.

Theorem 1. Algorithm 1 is sound.

Proof. Given Π = (D, sI , tnI , g), task network tn =
⟨t1 . . . tn⟩ ∈ T ∗, and a state s, we have to show that when
Algorithm 1 returns (−1,−1) then (s, tn) is a dead-end, and
when it returns a (possibly empty) list uniqueMethods of
tuples (k,m) ∈ [n] ×M , then all other methods (not listed
in uniqueMethods) for those tasks listed in uniqueMethods
lead to a dead-end. Formally, let (k,m) ∈ uniqueMethods ,
then we must show that for all m′ = (tk, tn

′) ∈ M \ {m}
with tn →tk,m′ tn ′′, tn ′′ is a dead-end.

W.l.o.g. assume t0 is compound. If we considered
its mandatory preconditions (instead of the executability-
relaxed preconditions) it follows immediately from their
definitions that tn in combination with s can not be turned
into a solution if s does not contain all these preconditions.
Moreover, if we considered the state-independent effects of
t0 to generate the next state s′, it follows analogously that



s′ ⊇ s′′ for all s′′ that result from applying any executable
refinement of t0 in s as we add all possible positive effects
and delete only the guaranteed negative ones. So the new
state is a (non-necessarily strict) superset of the actual one
covering all possible refinements of the compound task. In-
ductively this holds for all tasks in tn because if a task is not
applicable in a superset of the actual state, then it can not be
applicable in the actual one either.

Olz, Biundo, and Bercher (2021) showed that prec∅(c) ⊆
prec(c), poss-eff ∅+

∗ (c) ⊇ poss-eff +
∗ (c) and eff ∅−

∗ (c) ⊆
eff −

∗ (c) (= post−∗ (c)) for all c ∈ C. Therefore, the above
arguments still hold even if we consider the relaxed version
of inferred preconditions and effects – which we do.

By relying on the inferred preconditions and
effects of methods we are more precise since
prec∅(c) =

⋂
m=(c,tn)∈M prec∅(m), poss-eff ∅+

∗ (c) =⋃
m=(c,tn)∈M poss-eff ∅+

∗ (m) and eff ∅−
∗ (c) =⋂

m=(c,tn)∈M eff ∅−
∗ (m) and we exclude some of them

in the propagating process, i.e. when their preconditions do
not hold in the current superstate. They can be omitted as
they can not turn the current task network into a solution
because of the same arguments as before.

Integration in Search Algorithm
We propose to use our look-ahead-technique in any HTN
progression planner (Alford et al. 2012), such as SHOP2 and
SHOP3 (Nau et al. 2003; Goldman and Kuter 2019), or in
the progression subplanner of PANDAπ (Höller et al. 2020b).
In principle, however, it can also be used for other search-
based techniques, like plan space search.

We integrated our technique (i.e., Alg. 1) into the
progression-based PANDA planner. Note that Höller et al.
(2020b) propose three different versions of the algorithm for
partially ordered domains, with increasing level of system-
aticity (the level of redundancy in the search space (Kamb-
hampati, Knoblock, and Yang 1995)). In the simplest ver-
sion, multiple paths through the search space could lead
to the same plan since decisions concerning ordering con-
straints and decompositions are just made in a different or-
der but lead to the same result. Höller et al. propose two
improved algorithms that reduce the search space (without
losing solutions) by identifying and eliminating those re-
dundant paths. However, as Höller et al. state, in total-order
HTN planning all these versions collapse into one.

Pseudo code of our extended t.o. HTN progression search
procedure is povided in Alg. 2. Lines 8-12 and 19-23 show
our modifications to the original by Höller et al. (2020b).

The standard progression search algorithm that we extend
works as follows: Search nodes consist of a state together
with a task network, i.e., a sequence of tasks in t.o. HTN
planning. They are organized in a fringe that is sorted ac-
cording to some search strategy and potentially a heuristic.
Search nodes are selected from that fringe and handled as
follows. If the first task is primitive, we apply it if possible,
else discard the node. Otherwise, i.e. if the first task is com-
pound, we generate a new successor search node for each

Algorithm 2: Modified progression-based HTN planning
Input: A planning problem Π = (D, sI , tnI , g)
Output: A search node with the solution to Π or unsolvable

1: fringe = {(sI , tnI)}
2: while fringe ̸= ∅ do
3: n = (s, tn = ⟨t0 . . . tk⟩) := fringe.pop()
4: if n.isGoal then return n
5: if isPrimitive(t0) then
6: if n.Applicable then
7: n′ := n.apply(t0)
8: if UNIQUEREFINE(s′, tn ′) == (−1,−1) then
9: return unsolvable

10: else
11: for all (j,m′) ∈ UNIQUEREFINE(s′, tn ′) do
12: n′ = n′.decompose(tj ,m′)
13: n′.calcHvalue()
14: fringe.add(n′)
15: else continue
16: else ▷ t0 is compound
17: for m = (t0, tn) ∈ M do
18: n′ = (s′, tn ′) := n.decompose(t0,m)
19: if UNIQUEREFINE(s′, tn ′) == (−1,−1) then
20: continue
21: else
22: for all (j,m′) ∈ UNIQUEREFINE(s′, tn ′) do
23: n′ = n′.decompose(tj ,m′)
24: n′.calcHvalue()
25: fringe.add(n′)
26: return unsolvable

of its methods by decomposing it accordingly. Before they
are inserted into the fringe their heuristic value (if any) gets
computed. All successors with a finite heuristic value are
added to the fringe and the procedure starts over.

Now, our look-ahead technique can be integrated as fol-
lows. After a new node n′ is generated – i.e., before one
would normally compute its heuristic – we call UNIQUERE-
FINE to analyze it. If it is identified to be a dead-end (lines
8 and 19), then the node will be discarded, i.e., the heuris-
tic will not get called (saving its computation time) and
it will not get added to the fringe. Otherwise, when n′

passes the dead-end check, we consider the returned list
uniqueMethods containing all identified unique decompo-
sition choices and decompose for all these entries (j,m′) ∈
uniqueMethods the respective tasks tj with the respective
method m′ (lines 12 and 23). Note that all these decom-
positions are done directly for the current search node, no
matter how many these are or at which position within the
sequence. Once all these inevitable choices have been ap-
plied directly, the heuristic gets computed and the resulting
node is added to the fringe.

The benefits of our technique are manifold: (1) We can
detect dead-ends that were not recognized by the heuristic
as both procedures may operate on different problem relax-
ations as pointed out in the introduction. Since such dead-
ends will not get expanded further the search space gets
smaller. (2) The identification of unique refinement choices
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Figure 2: A task network, which shows that the early de-
composition can complement a heuristic. Method m3 is not
applicable, so c2 can only be decomposed by m4. A heuris-
tic estimate can get more exact given the information that
the subtasks of m3 are not available anymore.

can also reduce the search space as fruitless search nodes
will never be generated and added to the fringe. (3) By ap-
plying unique decomposition choices in the back of the task
network earlier than usual we can improve the heuristic’s es-
timates as it must then evaluate a search node on a smaller
(and thus more exact) set of available actions thus tighten-
ing informedness. (In an extreme case this could even make
a heuristic capable to detect dead-ends.) Least importantly,
but still worth mentioning, (4) applying a range of unique
decompositions at once (cf. lines 11–12 and 22–23) reduces
the number of heuristic calls (which may be expensive) and
insertions into the search fringe, where each of the latter nor-
mally costs O(log(n)), n being the size of the fringe.

We showcase some of the advantages with two examples.

Example 2 Consider again Figure 1 and assume that a3
has another precondition, say D. Then, our technique iden-
tifies a dead-end since it notices that a3 can’t be executed in
s2 – independently of which methods are chosen prior to its
execution. All currently existing HTN planning heuristics,
however, cannot possibly recognize this, this because they
all rely on delete-relaxation – so they do not realize that D
gets deleted by every executable refinement of c2. Even if
there were heuristics that do not perform delete-relaxation
(which is not yet the case), such heuristics might ignore the
ordering relations – which indeed is being done by all ex-
isting HTN planning heuristics. Then they can erroneously
elude the dead-end situation by executing a3 before c2.

Example 3 As another example consider Figure 2, where
a task network ⟨c1a1c2⟩ is given. Given as input to Alg. 1
it returns that c2 can only be refined using m4 because
P is deleted by a1, which is needed in m3. The heuristic
estimate for this search node becomes more accurate when
c2 is already decomposed into a4 because of two points.
(1) Task c1 will have to produce B: Assume that the plans
become very costly when m2 is chosen to decompose c1 as
a2 might have lots of preconditions that need to be fulfilled
somehow by the refinement of c3, whereas m1 leads to a
cheap plan but does not add B. Based on the original task
network a delete-relaxing heuristic would therefore build
a plan based on m1 and m3 as it does not see that P gets
deleted, i.e., the heuristic value will be way too small. (2)
The early decomposition does also prevent heuristics from

using the subtasks of c4 to find further oversimplified plans.
So the heuristic value is more accurate – due to the combi-
nation of the look-ahead technique and early decomposition.

The progression algorithm we extended is known to be
sound and complete (Höller et al. 2020b). Due to Theorem 1
we know that the integration of our look-ahead procedure
only eliminates parts of the search space that provably do
not lead to a solution. Performing certain decompositions at
once rather than doing it sequentially as it would normally
have been done, also neither influences soundness, nor could
it lead to the elimination of possible solutions. Thus:
Proposition 1. Algorithm 2 is sound and complete.

Evaluation
We implemented our proposed technique in the latest
progression-based version of the PANDAπ system3 (Höller
and Behnke 2021; Höller et al. 2020b) and conducted an
evaluation on the whole total-order IPC 2020 benchmark
set4. While the code was not integrated into the public
repository upon publication, a reference to the code is pro-
vided in our repository containing all produced data (Olz
and Bercher 2023b). We selected the currently two best-
performing configurations (Höller and Behnke 2021), i.e.
GBFS in combination with the Relaxed Composition (RC)
heuristic (Höller et al. 2020b) together with the classical
heuristics Add (Bonet and Geffner 2001) and FF (Hoffmann
and Nebel 2001). Our version is denoted PANDAAdd

π -reach
and PANDAFF

π -reach. The results were compared to the stan-
dard (progression-based) version of this planning algorithm
with the same configurations PANDAAdd

π and PANDAFF
π , Hy-

perTensioN (Magnaguagno, Meneguzzi, and de Silva 2021)
and Lilotane (Schreiber 2021) (the winner and runner-up
of the IPC 2020 total-order track), three planners that were
published after the IPC 2020 TOAD (Höller 2021), PANDAπ-
BDD (Behnke and Speck 2021) and HTN2SAS (Behnke
et al. 2022), as well as PANDAπ-SAT (Behnke, Höller, and
Biundo 2018; Behnke 2021), which did not compete at the
IPC 2020 but solves more instances than the winner.

Experiments ran on Xeon E5-2660 v3 with 2.60GHz and
40 CPUs using 1 core, 8 GB of memory, and 30 minutes time
limit per instance (time/memory limits of the IPC 2020).

Table 1 shows detailed results. Coverage reports on the
number of solved instances within the time and memory
limits. Normalized coverage ensures that all domains have
equal weight thus making sure that domains with large
numbers of instances do not contribute more than those
with just a few. The IPC score is computed by min{1, 1 −
log(t)/log(1800)}, where t is the time required to solve the
problem in seconds. It rewards solving problems quickly.

Regarding previously existing planners, our experiments
mainly confirm the findings by Behnke et al. (2022):
The two variants of the progression-based HTN planner
PANDAAdd

π and PANDAFF
π , respectively, and HTN2SAS5

perform best, followed by PANDAπ-SAT, TOAD, and
3http://panda.hierarchical-task.net
4https://ipc2020.hierarchical-task.net
5We evaluated a newer version we received from the authors in
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1) 30 30 27 30 30 25 6 30 3 5
2) 20 16 18 16 13 18 18 16 20 16
3) 30 30 29 30 27 30 23 22 16 21
4) 30 30 26 26 20 23 6 21 30 1
5) 30 23 21 23 25 21 23 23 30 29
6) 30 22 27 22 22 27 27 24 24 23
7) 147 147 147 147 147 147 147 141 147 147
8) 12 12 12 12 12 12 12 12 8 2
9) 20 11 8 8 6 7 8 5 3 4
10) 60 16 25 18 0 14 10 0 0 7
11) 30 25 25 25 23 26 22 22 25 21
12) 80 80 80 48 45 47 76 47 22 41
13) 20 4 4 4 3 4 3 1 5 1
14) 59 42 42 42 42 42 33 39 57 28
15) 20 20 20 20 20 20 20 0 20 20
16) 20 13 13 11 16 11 19 0 0 20
17) 74 74 40 74 72 27 19 74 8 4
18) 20 20 20 20 20 20 11 20 20 11
19) 30 27 26 29 16 26 22 8 30 21
20) 20 19 15 19 19 16 19 10 20 14
21) 20 20 20 20 20 20 19 14 20 17
22) 20 13 13 13 14 13 7 9 13 10
23) 40 22 23 25 28 19 38 36 40 34
24) 30 28 30 27 20 30 26 30 7 30

Cov. 892 744 711 709 660 645 614 604 568 527
Norm. 19.50 18.83 18.85 17.60 17.76 16.25 14.86 15.57 13.86

IPC Sc. 15.32 14.77 14.63 12.40 13.75 12.97 11.57 14.84 9.27

Table 1: A table showing coverage and IPC score. For the
names of domains, please consult Table 3.

the winner and runner-up of the IPC (HyperTensioN and
Lilotane, respectively).

The overall best-performing planners are the ones that
incorporate the proposed technique: PANDAAdd

π -reach and
PANDAFF

π -reach. We can thus see that our technique in-
creases the number of solved instances by 35 from 709 to
744 (the IPC score from 14.63 to 15.32) for the Add heuris-
tic and by 66 from 645 to 711 (and the IPC score from 13.75
to 14.77) for the FF heuristic. An interesting observation is
that even with the weaker FF heuristic our technique outper-
forms the better original planner (using the Add heuristic).

When looking at individual domains we see that in almost
all domains coverage stays the same or increases. There
were also a few domains in which the coverage dropped
slightly. We speculate that the preprocessing technique that
computes preconditions and effects does not pay off in these
domains (too few dead-ends or too few detectable inferred
preconditions/effects), though further investigations are re-
quired to identify when and why it pays off.

which a bug has been resolved. This results in a slightly weaker
performance compared to their paper.

Domain

Dead-ends Early dec.

total (%) only (%)

reach h(Add) reach h(Add) nodes(%) T/N

1) 27.15 16.20 18.64 7.70 1.11 1.00
2) 6.69 0.00 6.69 0.00 74.18 1.45
3) 20.92 3.65 17.26 0.00 29.74 5.17
4) 18.65 0.00 18.65 0.00 49.80 1.00
5) 0.00 0.00 0.00 0.00 1.76 1.02
6) 19.06 14.27 4.78 0.00 66.72 1.57
7) 2.39 0.00 2.39 0.00 12.83 16.47
8) 12.86 9.39 6.79 3.33 37.23 1.34
9) 9.03 2.36 6.67 0.00 64.03 1.21
10) 46.13 10.07 37.56 1.51 31.41 1.46
11) 1.61 10.56 0.33 9.28 4.00 1.33
12) 23.95 0.00 23.95 0.00 59.83 1.39
13) 18.09 0.08 18.00 0.00 32.97 1.01
14) 0.00 0.00 0.00 0.00 0.49 1.00
15) 41.21 30.04 23.36 12.19 27.82 1.91
16) 44.60 47.51 10.59 13.50 30.03 1.54
17) 58.99 3.44 55.55 0.00 22.17 1.35
18) 25.76 13.31 12.46 0.00 13.69 1.10
19) 2.76 0.00 2.76 0.00 21.93 1.21
20) 0.00 0.00 0.00 0.00 23.32 1.01
21) 41.07 10.80 30.91 0.65 35.48 1.50
22) 24.92 0.00 24.92 0.00 33.61 1.50
23) 0.00 0.00 0.00 0.00 23.42 1.42
24) 41.62 38.83 6.40 3.61 15.54 1.02

Table 2: PANDAAdd
π -reach: Number of dead-ends and early

decompositions (% of evaluated search nodes) detected in
total or only by our technique and the heuristic, resp. Last
column shows how many tasks per node were decomposed.
For the names of domains, please consult Table 3.

Detailed Analysis To give an insight into how often dead-
ends or early decompositions were performed, we report the
respective numbers for PANDAAdd

π -reach in Table 2.
The first two columns show how many of the search

nodes are detected dead in total (in percentage of the overall
checked search nodes6) by our look-ahead technique (reach)
and the Add heuristic (h(Add)), respectively. In the third
and fourth column we report how many search nodes are
proven unsolvable only by our technique or only the heuris-
tic. Normally, the heuristic will not get called on search
nodes that are detected dead by our technique but for the pur-
pose of this statistic, we evaluated them with both. So con-
sider, e.g., Freecell: Without our technique 10.07% of the
evaluated search nodes would have been detected dead by
h(add) and thus pruned. With our technique (46.13+1.51)%
of the evaluated search nodes were pruned. By looking at
the data we can see that pruning increased at most from
3.44% to 58.99% for Multiarm-Blocksworld, which is an
increase by a factor of 17. The second last column shows
in how many search nodes early decomposition was per-

6Note that the used progression search often generates and pro-
cesses search nodes without evaluating them by the heuristic (in
case of unique decisions). Since they are also not analyzed by our
technique we excluded them from this statistic.
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Figure 3: Scatterplot showing generated search nodes of the
PANDAAdd

π planner with standard progression against gener-
alized progression with reachability analysis. Be aware of
the log scale.

formed. Since sometimes several tasks in one node were de-
composed directly, we report how many tasks per node were
decomposed in the last column, i.e., a number 2 means that
if we perform early decomposition in a search node then on
average two tasks were decomposed. For all domains we re-
port the mean of the mentioned metrics over all instances.

If we compare Tables 1 and 2 we see some correlations.
For example, in Childsnack, Hiking, and Minecraft Reg. al-
most no dead-ends or early decompositions were detected
and also coverage did not increase. On the other hand, do-
mains that benefited from our technique like Blocksworld,
Freecell, and Logistic also show a higher number of detected
dead-ends and lookaheads. Since numbers are also high for
Snake and Monroe FO it is likely that we could increase the
coverage if further instances are generated since already all
of their instances are solved by the standard PANDAπ .

However, looking at the number of identified dead-ends
could be misleading since the concrete number does not say
much because once a search node is pruned, no pruning in its
subsearch space can occur. Instead, it is more meaningful to
know how much search space is being saved. This is explic-
itly shown in Figure 3, which reveals that for most problems
the search space becomes clearly smaller, and in many cases
a considerable number of search nodes can be saved by us-
ing our proposed look-ahead technique (please be aware of
the log scale). The search space can sometimes increase due
to the planners’ search strategy, which is greedy best-first
search with a non-admissible heuristic.

Optimal Planning Lastly, we evaluated our technique for
optimal planning. For that, we ran PANDAπ as A∗ search
combined with the RC(LM-cut) (Helmert and Domshlak
2009) heuristic, which is currently the best admissible one

Domain PANDAπ PANDAπ PANDAπ

-reach -BDD

1) Assembly 30 4 4 5
2) Barman-BDI 20 10 10 7
3) Blocksw.-GTOHP 30 26 23 5
4) Blocksw.-HPDDL 30 5 5 3
5) Childsnack 30 0 0 2
6) Depots 30 18 18 15
7) Elevator-Learned 147 92 112 97
8) Entertainment 12 5 5 7
9) Factories 20 6 5 2
10) Freecell-Learned 60 0 0 0
11) Hiking 30 6 6 7
12) Logistics-Learned 80 27 27 22
13) Minecraft Pl. 20 2 1 1
14) Minecraft Reg. 59 33 33 38
15) Monroe FO 20 19 12 1
16) Monroe PO 20 10 7 0
17) Multiarm-Blocksw. 74 12 12 10
18) Robot 20 11 11 11
19) Rover 30 8 8 6
20) Satellite 20 6 6 0
21) Snake 20 20 20 19
22) Towers 20 13 12 9
23) Transport 40 10 9 24
24) Woodworking 30 17 16 14

Coverage 892 360 362 305
Normalized Coverage 10.00 9.33 7.30

IPC Score 6.93 6.51 5.16

Table 3: Coverage and IPC score for optimal planning.

implemented for PANDAπ as inner heuristic for RC. The re-
sults are given in Table 3. We can see that overall the planner
benefits from our technique since normalized coverage and
the IPC score are higher than before. In total, we solve two
instances less, which is due to a single domain, Elevator. An
analysis revealed that while PANDAπ-reach explores always
fewer search nodes than the standard planner in this domain,
the time for considering one search node is higher. The over-
head in time is only implicitly caused by our technique: the
heuristic became slower. In the Elevator domain many early
refinements in the middle or back of the search nodes are
performed (see also Table 2) such that the task networks get
very large. The heuristic then needs more time to evaluate
them. The estimates become more accurate because of this
as predicted, however, in the end, this does not pay off here.

Conclusion
We have proposed and implemented a look-ahead technique
based on inferred preconditions and effects of compound
tasks that can identify dead-ends and unique refinement
choices in search nodes for t.o. HTN planning. It can be in-
cluded in different kinds of search-based HTN planners and
complements existing heuristics. Empirical results show that
exploited in a progression-based planning algorithm it out-
performs the currently strongest HTN planners in the default
measures of performance coverage and IPC score.
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