
Calculating Optimal Corrections
for Unsolvable Planning Problems

Michael Welta, Alexander Lodemanna, Conny Olza, Pascal Bercherb and Birte Glimma

aUlm University
bAustralian National University

Abstract. Detecting and resolving unsolvable planning problems is
an active research area that has recently received increased attention.
Nevertheless, unsolvability remains a significant challenge, partic-
ularly when it comes to efficiently identifying potential causes for
a problem’s unsolvability. To address this challenge, we propose a
method that computes modifications to the planning task. Specifi-
cally, given an unsolvable planning problem, our approach identifies
a cardinality-minimal set of state variables whose removal renders
the problem solvable. Existing literature typically relies on subset
enumeration to identify such sets. While effective for small vari-
able sets, we find that this approach becomes impractical for larger
sets due to its high computational cost. To overcome this limitation,
we introduce a novel method based on hitting set duality, a well-
established technique for solving various combinatorial problems.
Our results show that this new approach consistently outperforms
subset enumeration for medium-sized and large result sets. We vali-
date the effectiveness of our method through experiments on modi-
fied problems from the 2016 International Planning Competition on
Unsolvability.

1 Introduction

Automated planning is a powerful approach for a range of different
applications which require the computation of a sequence of actions
that transform a given initial state into a goal state [8]. The formal de-
scription of a planning problem is often split into a general domain
model (e.g., in the famous blocks world domain, we have the notion
of blocks and actions for moving them) and a concrete problem in-
stance (e.g., a concrete initial setup of blocks and a goal description
that specifies desired block arrangements).

The creation and maintenance of an error-free model is a well-
recognized bottleneck in the use of automated planning [9, 14, 16].
For example, errors might be introduced by failing to specify an es-
sential effect necessary for progressing towards the goal state. Alter-
natively, the modeler may inadvertently constrain an action exces-
sively, thereby hindering the application of an action that is neces-
sary for fulfilling the goal description. Such errors may manifest in
an unsolvable planning problem, i.e., no solution can be found for
the given problem instance [2, 7, 10]. While unsolvability can be de-
tected by some planning systems, typically not much insight is given
as to what are possible causes, let alone the proposal of fixes for re-
gaining solvability.

To that end, this paper is concerned with model repair under the
constraint of restoring solvability [4]. Repairing a faulty planning

problem, while preserving as much as possible from the original def-
initions, is computationally challenging since (i) planners are typi-
cally optimized towards finding plans rather than towards showing
unsolvability and (ii) the number of potential fixes can be huge [10].

The essence of this paper lies in its novel approach, which tackles
unsolvable planning problems by computing a cardinality-minimal
correction. This correction comprises a set of state variables whose
removal renders the problem solvable. Consequently, our method
aims to preserve the integrity of the model by making minimal ad-
justments to the underlying set of variables.

Our method differs significantly from existing literature, which
primarily focuses naively on enumerating subsets [2, 23]. In contrast,
we propose a novel approach based on the so-called hitting set dual-
ity [18, 22]. We provide a formal proof of the complexity associated
with our method and illustrate its superior performance compared to
subset enumeration, particularly evident on medium-sized correction
sets, while demonstrating comparable efficiency on small solutions.
These comparisons are conducted using a modification of the dataset
from the 2016 Unsolvability International Planning Competition.

The remainder of the paper is organized as follows: Section 2
presents related works, the following Section 3 provides a succinct
overview of the technical background and formalizations utilized
throughout this paper along with the introduction of our illustrative
example. In Section 4, we present our method, discuss its complexity,
and the associated algorithms. In Section 5, we then present the out-
comes of our empirical evaluation. Finally, Section 6 concludes with
some remarks and considerations for future research directions.

2 Related works

Various approaches have been documented in the existing litera-
ture aiming to transform unsolvable planning problems into solv-
able ones through (optimal) problem transformation. Yang [25] in-
troduced a conflict resolution theory to identify inconsistencies early
in the search process using a constraint satisfaction framework.

Another approach, presented by Göbelbecker et al. [9], addresses
unsolvable planning problems by proposing optimal modifications to
the initial state, thereby rendering the problem solvable. This method
involves compiling the optimization problem into a planning instance
to derive a solution, without altering the underlying model. In con-
trast, our work addresses the challenge of fixing unsolvable planning
instances by optimally altering the entire task.

Modifying the domain of an unsolvable lifted planning problem
has only recently been addressed by Gragera et al. [10]. Their ap-

V1= {x, y, z, p, q}
a1
1= ({(x, 1), (y,1)}, {(z, 1), (p, 1)})

a2
1= ({(z, 1)}, {(p, 0), (q, 1)})
I1= {(x, 1), (y,0), (z, 0), (p, 0), (q, 0)}
G1= {(p, 1), (q, 1)}

a1
1

x = 1
y = 1

z := 1
p := 1

a2
1z = 1

p := 0

q := 1

V2= {x, z, p, q}
a1
2= ({(x, 1)}, {(z, 1), (p, 1)})

a2
2= ({(z, 1)}, {(p, 0), (q, 1)})
I2= {(x, 1), (z, 0), (p, 0), (q, 0)}
G2= {(p, 1), (q, 1)}

a1
2x = 1

z := 1
p := 1

a2
2z = 1

p := 0

q := 1

Figure 1: Variables and actions with sketches for Π1 (left, problematic parts highlighted) and Π2 (right) for Example 1

proach involves fixing the domain by compiling the problem, akin to
Göbelbecker et al. [9], into a planning problem itself. This translation
introduces repair actions and utilizes an empirically established cost
model to guide the search for a cost-optimal plan, i.e., a fix. Gragera
et al. [10] focus, however, solely on missing action effects, identi-
fied as a primary cause of errors in planning problems. The resulting
plan from the compiled planning problem simultaneously serves as
an explanation and a fix to the original domain. Optimality in terms
of minimizing repairs is not guaranteed by the approach.

In the realm of Explainable Planning, Sreedharan et al. [23] elu-
cidate to a human why a problem instance, generated by a robot, is
unsolvable. They pinpoint the state variables that potentially cause
misunderstanding between the robot and the human by employing
subset enumeration and problem reduction techniques, which involve
removing variables from the unsolvable instance. Bäckström et al. [2]
utilize a comparable technique of variable enumeration followed by
variable removal from the problem. Their goal is to efficiently iden-
tify an unsolvable problem instance in the first place.

Our work builds upon enumeration and strategic variable removal
techniques, by incorporating hitting sets, a well-known method in
various fields dealing with combinatorial problems. Lin et al. [14, 15]
and Bavandpour et al. [3] utilize hitting sets within the context of
optimal planning domain repair, albeit with a different overarching
premise. In their approach, the authors start with a given planning
problem and plan that is not a valid solution for the instance yet.
They then ‘repair’ the problem by executing atomic changes to ac-
tions such as removing a precondition or changing an effect to en-
sure that the plan becomes a valid solution. By compiling their op-
timization problem into a diagnosis problem akin to Reiter [18] and
Slaney [22], an optimal number of repairs can be determined. While
this method can be employed to convert an unsolvable planning in-
stance into a solvable one, compared to our proposed solution, it
necessitates additional input – the plan intended to become a solu-
tion. Finally, it is worth noting that the additional input required by
Lin et al. [14] impacts the computational complexity of the prob-
lem we tackle. Their repair problem, contingent on additional plan
inputs, is NP-complete [13], whereas our presented approach implic-
itly relies on solving the plan existence problem, which is PSPACE-
complete [1, 5].

3 Background

In this paper, we adopt a convention where lowercase letters denote
variable names and constants, while capitalized letters signify sets,
except when referring to states, maintaining consistency with exist-
ing literature. Lowercase Greek letters are employed to represent col-
lections of sets. Furthermore, we will use the SAS+ formalism as
specified by Bäckström and Nebel [1]. A SAS+ (planning) problem
is a tuple Π = (V,A, I,G) with V denoting a finite set of variables.
Each variable v ∈ V is associated with a finite domain Dv . A partial
state s is a set of pairs, s ⊆

⋃
v∈V {(v, d) | d ∈ Dv}, where each

variable in v ∈ V occurs in at most one pair. A total state or just

state for short is a partial state in which all variables of V are cov-
ered. States can also be seen as (partial or total) functions highlighted
by the corresponding notation s[v] = d if (v, d) ∈ s. We will use the
notation vars(s) = {v | (v, d) ∈ s} to refer to all variables that have
a corresponding assignment in s. We define the composition of two
states s, t as s⊕ t = t∪{(v, s[v]) | v ∈ vars(s)\ vars(t)}. The spe-
cial total state I is called the initial state of Π and the partial state G
is referred to as the goal description. The set A specifies the actions,
where each action a ∈ A consists of a pair of states (pre(a), eff(a)),
which are called the precondition and effect of a, respectively. We
say that a has a prevail condition on a variable v if v ∈ vars(pre(a))
but v 6∈ vars(eff(a)). An action a ∈ A is applicable in a state s
if pre(a) ⊆ s and the result of applying such an a in s is the state
s⊕ eff(a).

Let s0 and sn be two states and ω = 〈a1, . . . , an〉 a possibly
empty sequence of actions. We say that ω is a plan from s0 to sn if
either ω is empty and s0 = sn or there exists a sequence of interme-
diate states 〈s1, . . . , sn−1〉 such that ai is applicable in si−1 and si
is the result of applying ai in si−1 for 1 ≤ i ≤ n. A plan from s0 to
sn is a solution for Π if I = s0 and sn ⊇ G. A SAS+ problem Π is
said to be solvable if a solution exists and unsolvable otherwise. Note
that in the special case where G ⊆ I , the empty sequence serves as
a valid solution for Π.

Given a SAS+ problem Π = (V,A, I,G) and a set P ⊆ V ,
we define the (variable) abstraction [6] of a state s onto P as
s|P = {(v, d) | (v, d) ∈ s, v ∈ P}. In other words, an abstrac-
tion of a state only retains pairs containing variables in P . An ab-
straction is also denoted as projection abstraction or projection for
short. The abstraction of the problem Π is defined accordingly as
Π|P = (P,A|P , I|P , G|P) such that A|P = {(pre(a)|P , eff(a)|P) |
a ∈ A, eff(a)|P 6= ∅}. This definition suggests that the abstraction
process could result in fewer actions compared to the original con-
crete problem.

The complement of a set P ⊆ V is defined relative to V as P =
V \ P . If sufficiently clear from the context, we omit the explicit
reference to V . Furthermore, by abuse of notation, we also use G
(G) as shorthand for vars(G) (vars(G)). In this context, we write
Π|G and Π|G as a shorthand for Π|vars(G) and Π|vars(G), respectively.

It is crucial to highlight that in the case of an unsolvable problem
Π = (V,A, I,G), the abstraction Π|G is always solvable. This is
because the abstracted goal G|G becomes the empty set, which is in-
herently a subset of the initial state. Consequently, the problem Π|G
becomes trivially solvable by employing the empty plan and any ex-
ecutable one.

Example 1. The subsequent examples showcase the formalisms and
serve as an illustration of a prevalent modeling error arising from
overly restrictive preconditions. Consider the following two planning
problems: Π1 = (V1, A1 = {a1

1, a
2
1}, I1, G1) and Π2 = (V2, A2 =

{a1
2, a

2
2}, I2, G2) where V1, A1, V2 and A2 are specified in Figure 1,

which additionally illustrates the actions. Both planning problems
differ only in the variable y, which is used as a precondition for a1

1

in Π1, but which does not occur in Π2.

The planning problem Π1 is unsolvable: For the initial state I1 in
Π1, no action is applicable as neither the preconditions of a1

1 nor the
preconditions of a2

1 are satisfied and G1 6⊆ I1.
The planning problem Π2, on the other hand, is solvable: For

the initial state I2 in Π2, the action a1
2 is applicable, that is s1 =

I1 ⊕ eff(a1
2) = {(x, 1), (z, 1), (p, 1), (q, 0)}. One can now ap-

ply a2
2 to get s2 = s1 ⊕ eff(a2

2) = {(x, 1), (z, 1), (p, 0), (q, 1)}.
While this removes one of the goals, action a1

2 is still applicable
and applying it again yields the goal state s3 = s2 ⊕ eff(a1

2) =
{(x, 1), (z, 1), (p, 1), (q, 1)}. Hence, the sequence 〈a1

2, a
2
2, a

1
2〉 is a

solution for Π2.

4 Method
We start by formally describing the optimization problem and dis-
cussing its complexity. Then, we introduce two algorithms to tackle
the problem. The first algorithm describes a state-of-the-art method
based on simply enumerating subsets [23], which we use as a base-
line for our experiments. The second algorithm is more complex and
is based on hitting sets, a technique we adapt from the work of Slaney
[22] to the context of automated planning.

Given an unsolvable SAS+ planning problem Π = (V,A, I,G),
our objective is to identify a set P ⊆ G such that the abstraction of
Π induced by the complement Π|P becomes solvable. Additionally,
we aim for P to be of minimum cardinality, meaning that for any
P ′ ⊆ G where the induced abstraction Π|P ′ is solvable, it must hold
that |P ′| ≥ |P |. We call such a set P a minimal correction for Π.

Example 2. We illustrate our formalization of the problem using
Example 1. It is evident that the difference between Π1 and Π2 lies in
the over-restriction of action a1

1 caused by the variable y. Removing
y from Π1 yields Π2. Consequently, we observe that Π2 = Π1|{y},
indicating that Π2 represents the abstraction of Π1 induced by the
complement of {y}. The solution 〈a1

2, a
2
2, a

1
2〉 for Π2 from above

demonstrates the solvability of the corresponding abstraction of Π1.
Furthermore, only the empty set has a smaller cardinality than {y}.
For the empty set, it holds that Π1|∅ = Π1, which, by assumption, is
unsolvable. Additionally, {y} ⊆ G satisfies our formal requirements.
Therefore, we can conclusively affirm that {y} indeed serves as a
solution for our formalized optimization problem and consequently
acts as a cardinality-minimal correction for Π1.

Before proceeding with an analysis of the complexity of the op-
timization problem at hand, we address the necessity of our formal
requirement that a correction needs to be goal-avoidant, i.e., to be
a subset of G. As outlined in Section 3, removing the goal descrip-
tion from an unsolvable planning problem renders it trivially solv-
able. In addition to the formal rationale, it is customary to preserve
the original intent of the modelers as much as possible, which typi-
cally precludes modifications to the goal description. Consequently,
the existence of any correction is not necessarily given, as it might
happen that a correction needs to abstract away all or at least some
part of the goal. Therefore, our method has no trivial solutions.

A straightforward test, however, enables us to determine the ex-
istence of a solution within 2G. Intuitively, if the problem, reduced
solely to its goals, has no solution, then a solution containing more
variables than the goal variables cannot exist. This is because a finer
abstraction never contradicts unsolvability. A more formal proof is
provided below.

Lemma 1. Let Π = (V,A, I,G) be an unsolvable SAS+ plan-
ning problem. If Π|G is unsolvable, then there exists no cardinality-
minimal goal-avoidant correction P ⊆ G.

Proof. If Π|G is unsolvable, then, for any P ⊆ G, P ⊇ G. Thus,
Π|P must also be unsolvable, since it represents a finer abstraction
than the one induced by G alone (cf. Bäckström et al. [2]).

4.1 Complexity

We establish that the optimization problem we address (or, to be
more precise, the related decision problem) is PSPACE-complete. In
describing the complexity of optimization problems, it is often cus-
tomary to introduce a parameter k ∈ N to create a corresponding
bounded decision problem. In our scenario, systematically reducing
the value of k to pinpoint the threshold at which the decision switches
from true to false would determine the solution to the original mini-
mization problem.

Theorem 1. Let Π = (V,A, I,G) be an unsolvable SAS+ problem
and k ∈ N. Deciding whether there exists a set P ⊆ G with |P | ≤ k
s.t. Π|P is solvable, is PSPACE-complete.

Proof. Membership: Our problem falls within NPSPACE because
(i) we can guess a set P ⊆ G with |P | ≤ k and (ii) verify whether
Π|P is solvable, where (ii) essentially addresses the plan existence
problem which is PSPACE-complete [1]. PSPACE membership fol-
lows from NPSPACE = PSPACE [19].

Hardness: We reduce from the general plan existence problem. Let
Π = (V,A, I,G) be a SAS+ problem. We transform Π to an instance
of our problem: Let Π′ = (V ′, A′, I ′, G′) be the SAS+ problem,
where V ′ = V ∪{x, y}, x, y 6∈ V,Dx = Dy = {0, 1}with I ′ = I∪
{(x, 0), (y, 0)} and G′ = G ∪ {(y, 1)}, respectively. Additionally,
let A′ = A ∪ {a′}, with a′ 6∈ A, a′ = ({(x, 1)}, {(y, 1)}). Clearly,
Π′ is unsolvable since (y, 1) can never be established without adding
(x, 1) first and then apply a′ in a potential plan. However, (x, 1)
can never be established in the first place, since there is no action
to accomplish that. Choosing the set P = {x} (|P | = 1 ≤ k) is
the only way to render Π′|{x} solvable if Π is solvable. Thus, Π is
solvable if and only if there exists a set P ⊆ V ′ \ G′ with |P | ≤ 1
such that Π′|P is solvable, which shows hardness.

4.2 Enumeration

To find a set with minimal cardinality, one can undertake a straight-
forward process of exhaustively enumerating all possible elements
within the powerset 2G of G in ascending order of their respective
cardinalities. This approach resembles a similar process outlined by
Sreedharan et al. [23]. This listing process starts with individual sin-
gleton subsets, progresses to pairs of variables, then expands to sub-
sets with three elements, and so on. For each enumerated set P , the
abstracted problem induced by its complement needs to be tested for
solvability. Upon encountering an abstraction that leads to a solv-
able problem, the procedure halts, and the solution is returned. This
solution must be of minimal cardinality, as all potentially smaller so-
lutions have been explored in the prior enumeration.

This procedural approach is sound and complete as it finds a mini-
mal goal-avoidant correction if and only if one exists within 2G. Im-
portantly, the two trivial solutions, namely Π|V (which is the empty
problem, containing no variables) and Π|G (which has an empty goal
description), remain undetected, as they are excluded initially by se-
lecting P ⊆ G. The procedure terminates either upon discovering a
correction or after exhaustively enumerating all elements within 2G.
In the worst case, the procedure enumerates 2|G| subsets and tests
them for solvability.

4.3 Hitting set duality

Another method commonly found in the literature to address com-
binatorial optimization problems is the utilization of the so-called
hitting set duality [14, 18, 22]. Given a collection of sets δ with its
associated domain of elements Dδ =

⋃
M∈δ M , a subset H ⊆ Dδ

qualifies as a hitting set for δ if for every set M ∈ δ the intersection
of M and H contains at least one element, i.e., M ∩H 6= ∅.

In specific discrete optimization scenarios, a notable phenomenon
arises where two sets mutually act as hitting sets for each other.
This property, initially recognized by Reiter [18], was first leveraged
within the context of optimal diagnosis. Subsequently, this property
has been recurrently employed in discrete optimization, including
tasks such as identifying an optimal set of constraints in constraint
satisfaction or determining a minimal set of axioms entailing a spec-
ified formula. Eventually, Slaney [22] introduced a generalized rep-
resentation of this optimization problem using set-theoretic notation,
along with a corresponding generalized algorithm.

To employ the duality-based approach to our problem, we estab-
lish two distinct collections of sets. Firstly, θ encompasses all subsets
for which the abstraction induced by its complement is solvable:

θ = {P ⊆ G | Π|P is solvable }

This set, θ, constitutes our target set, comprising all potential cor-
rections, which may not necessarily be minimal. Note that in our
constrained scenario where P ⊆ G, θ could possibly be empty.

The second set we define, is called the dual set θ∗ containing sub-
sets whose complements relative to G are not part of θ:

θ∗ = {P ⊆ G | G \ P 6∈ θ}

With this formalization, we can now redefine our optimization prob-
lem as the search for a minimal-cardinality element within θ.

We proceed by establishing two crucial properties: Firstly, we
demonstrate the superset monotonicity of θ. Secondly, we establish
the relationship between hitting sets for θ∗ and elements of θ. Subse-
quently, we utilize these properties to suggest an algorithm for iden-
tifying minimal elements of θ by seeking minimal hitting sets for
θ∗ without necessarily fully computing θ∗. We begin by proving the
superset monotonicity of θ:

Theorem 2. Let Π = (V,A, I,G) be an unsolvable planning prob-
lem. Then, for the set θ it holds that

∀P ⊆ P ′ ⊆ G : P ∈ θ =⇒ P ′ ∈ θ

Proof. Let P ⊆ P ′ ⊆ G. To the contrary of what is to be shown,
assume P ∈ θ and P ′ 6∈ θ. This implies that Π|P is solvable, but
Π|P ′ is unsolvable. By definition of complements and since P ⊆ P ′,
P ′ ⊆ P . Hence, a plan for Π|P exists, but for the coarser abstraction
Π|P ′ , the established plan no longer holds. The contradiction arises
because coarser abstractions can never be more restrictive as shown
by Bäckström et al. [2].

Next, we establish the hitting set connection between elements of
θ∗ and θ:

Lemma 2. Let Π = (V,A, I,G) be an unsolvable planning problem
and let H ⊆ G be such that, for every P ∈ θ∗, H ∩ P 6= ∅. Then,
H ∈ θ.

Proof. As all potential elements from H are subtracted from G be-
fore intersecting, we have H ∩ (G\H) = ∅. Furthermore, H is such
that H∩P 6= ∅ for all P ∈ θ∗ by assumption. Hence, (G\H) 6∈ θ∗.
By definition of θ∗, we infer G \ (G \H) = H ∈ θ.

Theorem 2 and Lemma 2 allow us to reformulate our optimiza-
tion problem once more as the search for a minimal hitting set for
θ∗. Algorithm 1 outlines a method for identifying a minimal hitting
set for θ∗ given an unsolvable problem Π. Before invoking the algo-
rithm, Lemma 1 can be used to check whether a solution exists. On
the initial call, κ = ∅ is passed to the function. The set κ represents
the subset of θ∗ computed so far. The algorithm operates recursively
(cf. Line 9). Each recursive step first computes a minimal-cardinality
hitting set H for the current set κ. For the initial call, with κ = ∅, the
function MINHS returns an empty set by convention. The solvability
of the abstraction induced by the complement of H is then assessed.
If solvable, a correction is found and returned. Otherwise, if H is not
a member of θ, its complement relative to G must belong to θ∗. How-
ever, the complement of H with respect to G is not directly added to
κ. Instead, κ is expanded with the complement of a maximized su-
perset of H relative to G. The intuition behind this is, to produce
minimal elements in κ in order to potentially speed up the search. To
this end, H can be expanded with elements from G\H as long as the
planning problem induced by the complement of the expanded set H
remains unsolvable. The exact procedure is described in Algorithm 2.
In a loop, H is iteratively expanded until the abstraction induced by
its complement becomes solvable. Without this maximization step,
Algorithm 1 would be equivalent to subset enumeration. Thus, in the
worst-case scenario, this approach necessitates 2|G| tests [22].

The underlying concept of the approach lies in avoiding a full
computation of θ∗. Instead, the method focuses on finding a sub-
set κ ⊆ θ∗ for which a minimal hitting set also serves as a minimal
correction. Consequently, if a hitting set is minimal for a subset of
θ∗, it is inferred to be minimal for the entire set θ∗ [22].

Example 3. We utilize the unsolvable problem Π1 of Example 1
to demonstrate the functionality of Algorithm 1. The process begins
with evaluating the problem reduced to its objectives Π1|G for solv-
ability: Π1|G = (V1|G, A1|G = {a1

1|G, a2
1|G}, I1|G, G|G) with

V1|G = {p, q} a1
1|G = (∅, {(p, 1)})

I1|G = ∅ a2
1|G = (∅, {(p, 0), (q, 1))})

G1|G = {p, q}

A plan for Π1|G is 〈a1
1|G, a2

1|G, a1
1|G〉. Consequently, we can run

Algorithm 1. Figure 2 shows a trace for the algorithm including its
calls to Algorithm 2. Next to the line numbers, the left-hand side
shows the expressions that are evaluated during the run, while the
right-hand side shows relevant current values for the expressions.

In Line 1 of Figure 2, the computation of a cardinality-minimal
correction for Π1 starts by calling Algorithm 1 for Π1 and an ini-
tially empty set κ. As per convention, MINHS(∅) = ∅, which causes
H to be initialized with the empty set (Line 2). Since Π1|∅ = Π1 is
(obviously still) unsolvable (Line 3), Algorithm 2 is called to maxi-
mize H (Line 4). We assume that the variable x is considered in the
first loop iteration (Line 5). Since the abstraction Π1|{x} remains un-
solvable (Line 6), H is extended with x (Line 7) and the maximiza-
tion process continues. In the next loop iteration, we assume that y
taken (Line 8), yielding a solvable abstraction (Line 9). Hence, the
last unsolvable H = {x} is returned (Line 10).

Back in Algorithm 1, κ is extended to {{y, z}} (the complement
of H relative to G) in Line 11. Then, MINCORR is called recur-
sively for Π1 and the extended κ (Line 12). The next steps depend
on the employed hitting set algorithm; for the sake of our exam-
ple, we assume that the algorithm returns {z} (Line 13), which is
used as new hitting set H . Note that the algorithm could also have
equally returned the cardinality-minimal hitting set {y}, terminating

Algorithm 1 Find a cardinality-minimal correction

1: function MINCORR(Π = (V,A, I,G), κ)
2: H ← MINHS(κ)
3: if Π|H is solvable then
4: return H
5: else
6: M ← MAXIMIZE(Π, H)
7: κ← κ ∪ {G \M}
8: end if
9: return MINCORR(Π, κ)

10: end function

Algorithm 2 Maximize Hitting Set

1: function MAXIMIZE(Π = (V,A, I,G), H)
2: for v ∈ G \H do
3: if Π|H∪{v} is unsolvable then
4: H ← H ∪ {v}
5: else
6: return H
7: end if
8: end for
9: return H

10: end function

1 MINCORR(Π, κ) Π = Π1, κ = ∅
2 H ← MINHS(κ) MINHS(∅) = ∅ H = ∅
3 Π|H is unsolvable H = ∅ = V1

4 M = MAXIMIZE(Π, H) Π = Π1, H = ∅
5 take v ∈ G \H G \H = {x, y, z}, take v = x

6 Π|H∪{v} is unsolvable H ∪ {v} = {y, z, p, q}
7 H ← H ∪ {v} H = {x}
8 take v ∈ G \H G \H = {y, z}, take v = y

9 Π|H∪{v} is solvable H ∪ {v} = {z, p, q}
10 return H H = {x} M = {x}
11 κ← κ ∪ {G \M} G \M = {y, z}

 κ = {{y, z}}
12 MINCORR(Π, κ) Π = Π1, κ = {{y, z}}
13 H ← MINHS(κ) MINHS({{y, z}}) = {z}

 H = {z}
14 Π|H is unsolvable H = {x, y, p, q}
15 M = MAXIMIZE(Π, H) Π = Π1, H = {z}
16 take v ∈ G \H G \H = {x, y}, take v = x

17 Π|H∪{v} is unsolvable H ∪ {v} = {y, p, q}
18 H ← H ∪ {v} H = {x, z}
19 take v ∈ G \H G \H = {y}, take v = y

20 Π|H∪{v} is solvable H ∪ {v} = {p, q}
21 return H H = {x, z} M = {x, z}
22 κ← κ ∪ {G \M} G \M = {y}

 κ = {{y, z}, {y}}
23 MINCORR(Π, κ) Π = Π1, κ = {{y, z}, {y}}
24 H ← MINHS(κ) MINHS({{y, z}, {y}}) = {y}

 H = {y}
25 Π|H is solvable H = {x, z, p, q}
26 recursive ascent: H = {y}

Figure 2: A full trace of Algorithm 1 on Π1 from Example 1

the search.
The set H = {z} does again not belong to θ due to the con-

tinued inapplicability of a1
1, rendering the goal (p, 1) unachievable

(Line 14). Hence, H = {z} is again maximized by calling Algo-
rithm 2 (Line 15) yielding the extension {x, z} (Lines 16–21). The
complement of this set with respect to G is again added to κ upon
the return to Algorithm 1, resulting in κ = {{y, z}, {y}} (Line 22).
The next recursive call of MINCORR (Line 23) finds that the set κ
admits only one cardinality-minimal hitting set (Line 24), namely
{y}. Since Π1|y = Π1|{x,z,p,q} is solvable (Line 25), H = {y} is
returned as cardinality-minimal correction.

In summary, the process showcases the gradual expansion of κ by
utilizing the identified hitting sets until a set H belonging to θ is
discovered, indicating the solvability of Π1|H .

5 Evaluation

We conducted an extensive comparison between our hitting set-based
approach and the baseline enumeration strategy. Both methods were
implemented in C, including our own implementation of the hitting
set solver. For all experiments, we used the Fast-Downward planner
in version 23.96+ [11]. Although we set a timeout of 1800 seconds
for individual planner calls, our overall runtime budget per instance
was extended to 2000 seconds. Since the majority of the inputs we
hand over to the planner are expected to be unsolvable planning tasks,
we chose Eager Greedy Search in combination with the hmax heuris-
tic, which offers acceptable pruning properties at relatively low com-
putational cost. To the best of our knowledge, these parameters strike
a good balance, when compared to the often more elaborate setups
used in the IPC 2016 planners [17]. The complete source code1 as
well as the used dataset is available as executable Docker file for
easy reproducibility [24].

For our experiments, we used the dataset from the IPC 2016
Unsolvability Contest [17] as a starting point and introduced ad-
ditional modifications. Specifically, we generated multiple new in-
stances from each original problem to control the size of the required
corrections. We included those domains and problem instances for
which the Fast-Downward planner was able to confirm unsolvabil-
ity within one minute, allowing for the generation of harder variants
that can potentially be shown unsolvable within the overall time lim-
its. Domains for which problem instances are particularly difficult to
classify as unsolvable, such as the tetris domain, are, therefore, not
included in our dataset. In total, this resulted in a dataset of 475 prob-
lem instances across nine different domains. All experiments were
conducted on an Intel(R) Xeon(R) CPU E5-2440 at 2.40GHz, using
one core per instance and a total memory capacity of 144GB.

Our main findings are summarized in Figures 3 and 4. The left
plot of Figure 3 compares the runtimes2 of both approaches, with
the baseline on the x-axis and the hitting set-based method on the
y-axis. The values are grouped by correction size, meaning that each
point represents the average value for a specific correction size. The
baseline approach is shown on the x-axis and the hitting set approach
on the y-axis. Since all points lie below the diagonal, it is evident
that our approach consistently outperforms the baseline. The right

1 https://gitlab.uni-ulm.de/ptc22/mincorr.git
2 In Figure 3, runtimes are averaged by correction size. Only those sizes are

shown, for which both methods succeeded, which limits the upper bound.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800

H
itt

in
g

Se
ts

Enumeration

(a) Comparison of total runtimes in seconds

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000

H
itt

in
g

Se
ts

Enumeration

(b) Comparison of total number of planner calls

Figure 3: Direct comparisons baseline versus hitting set approach on the modified IPC 2016 data set

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

Enumeration
Hitting Sets

Ti
m

e
(s

ec
on

ds
, l

og
ar

ith
m

ic
)

Correction Size

(a) Total runtimes

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

Enumeration
Hitting Sets

Pl
an

ne
r C

al
ls

(lo
ga

rit
hm

ic
)

Correction Size

(b) Total number of planner calls

Figure 4: Baseline versus hitting set approach on the modified IPC 2016 data set

plot of Figure 3 compares the number of planner calls required by
each method. Again, the points lie significantly below the diagonal,
indicating the superiority of our approach in terms of efficiency.

In contrast, Figure 4 shows how the correction sizes affect the run-
time and the number of planner calls, where we observe that the base-
line (shown using blue circles) fails to deliver results beyond a cor-
rection size of roughly 12 within the given time constraints, whereas
our method (shown in red squares) continues to succeed. While the
logarithmic scale of the y-axes in both sub-figures clearly highlights
the substantial improvement in runtime and number of planner calls,
it is worth noting that for very small correction sizes, the baseline
sometimes yields faster results than the hitting-set approach.

A more detailed breakdown of our findings is provided in Table 1.
The table lists the number of solved instances per domain for each
approach. For each entry, the average number of variables and the av-
erage correction size, respectively, are shown in parentheses. In ad-

dition, the table reports the average number of planner calls and the
average runtime per domain for both approaches. The overview once
again demonstrates the superiority of the hitting set-based approach
over the baseline, regardless of the domain. An additional point of
interest is the average accumulated runtime spent in the minimal
hitting set solver, which is shown in parentheses alongside the to-
tal runtimes. While in most domains this overhead is almost negligi-
ble, there are cases, such as chessboard-pebbling and over-tpp, where
the share of hitting set computation in the total average runtime be-
comes significant. However, since these are mean values, which can
be heavily influenced by outliers, the observed proportions should
not be overgeneralized even within individual domains. Please also
note that in cases where the enumeration approach appears to per-
form better on average (e.g., bag-gripper), this is based on a single
solved instance, whereas the hitting set-based method was able to
solve 16 instances in the same domain.

Table 1: Evaluated domains with number of instances, number of solved instances with average number of variables (avg. |V |) and average
correction size (avg. |correction|) in braces, average numbers of planner calls and average runtime per domain with average accumulated
runtime for the hitting set solver in braces; best value highlighted in bold

Instances Solved (avg. |V |, avg. |correction|) Average Planner Calls Average Runtimes in Seconds

Domain In-
stances

Enumeration Hitting Sets Enumeration Hitting Sets Enumeration Hitting Sets (Solver)

document-transfer 24 4 (16.75, 3.75) 19 (24.00, 11.00) 1880.50 173.00 236.42 138.30 (10.43)
bag-gripper 18 1 (12.00, 2.00) 16 (20.25, 10.25) 50.00 161.88 375.81 640.83 (11.00)
chessboard-pebbling 14 2 (26.50, 2.50) 11 (31.00, 7.00) 1150.00 279.00 391.35 179.67 (112.5)
over-rovers 58 8 (25.25, 2.88) 49 (32.27, 9.94) 1219.25 196.98 762.15 267.92 (65.18)
over-nomystery 29 10 (16.50, 6.50) 18 (20.56, 10.56) 815.40 96.06 182.98 271.35 (0.11)
pegsol-row5 56 7 (13.57, 5.14) 48 (18.23, 6.31) 1295.43 128.54 403.90 63.55 (31.00)
over-tpp 66 11 (18.45, 3.45) 54 (26.07, 10.52) 1646.27 199.78 398.41 138.28 (69.86)
sliding-tiles 58 0 (–, –) 57 (20.00, 11.00) – 93.00 – 45.42 (0.05)
bottleneck 65 7 (16.57, 7.00) 57 (25.00, 15.00) 2137.86 236.33 522.81 159.04 (27.34)

6 Discussion
The area in which our procedure currently has the most potential
for improvement, lies in the maximization step for new elements of
κ. One could use an over-approximating algorithm for this step, as
long as false positives are only generated for solvable cases [22]. An-
other aspect worth exploring is the structural analysis of the problem
to assess the impact of specific variables on the abstractions. Some
abstractions take significantly more time to solve than others, even
when the size of the problem is smaller, i.e., the abstraction is coarser.
This observation raises interesting questions and warrants additional
investigation. It may imply the idea of finding heuristics for variable
selection.

The problem instances in the Unsolvability IPC 2016 dataset,
which we used in the evaluation, do not necessarily mimic modeling
errors made by human designers and, to the best of our knowledge,
no such real-world problem set has been collected so far. Hence,
establishing a more realistic problem set for evaluating model as-
sistance approaches would be a desirable effort. The IPC problem
set rather consists of computationally demanding instances. Conse-
quently, the planning systems often exhibit long runtimes to solve the
abstracted subproblems.

To further minimize the impact of our approach to the model, it
may prove beneficial to leverage existing research to achieve greater
precision in identifying the root causes of unsolvability. For instance,
Sreedharan et al. [23] demonstrate the incorporation of landmarks to
more accurately pinpoint the causes of unsolvability. While Lin et al.
[14] require a desired plan to guide the repair of a flawed planning
problem, their method achieves more precise results due to their no-
tion of atomic repairs.

Introducing variable weights and implementing a cost function to
enable the search for a minimal cost solution is another interesting
idea. By introducing variable weights and a cost function in our ap-
proach, we would be able to integrate the structural analysis dis-
cussed earlier. Moreover, this method would enable us to explore
solutions that contain goal variables when alternative corrections
cannot be found. Corrections involving goal variables would, con-
sequently, carry higher costs. However, this would necessitate mod-
ifications to the hitting set algorithm and would require a structural
analysis of the problem description in advance.

Lastly, exploring alternative notions of abstractions and associ-
ated methodologies, such as domain abstractions, CEGAR [20], and

Merge-and-Shrink [12, 21], could offer valuable insights. It could
further be valuable to explore similar approaches in lifted planning
to achieve a closer alignment with the perspective of modelers.

7 Conclusion
This paper presented a method for identifying cardinality-minimal
corrections in unsolvable SAS+ planning problems by removing a
minimal set of variables to restore solvability. We introduced two
algorithmic approaches: a baseline using subset enumeration and a
novel method based on hitting set duality.

Our formal analysis established the computational complexity of
the problem and justified the use of hitting sets through theoretical
insights. We showed that while enumeration is feasible for small cor-
rections, it scales poorly. In contrast, our hitting set-based approach
consistently outperforms enumeration in both runtime and planner
calls, especially for medium and large correction sizes, across all
tested domains. The underlying technique leverages recursive con-
struction of partial conflict sets to avoid full enumeration, providing
significant performance advantages.

An evaluation on a modified IPC 2016 Unsolvability dataset con-
firms its practical effectiveness, solving more instances and scaling
beyond the limits of enumeration.

Future directions include structural analysis, integration with
weight models, and extending to other abstraction formalisms. Our
method offers a solid foundation for diagnosing and repairing un-
solvable planning models with minimal changes.

Acknowledgements
Birte Glimm and Michael Welt acknowledge the funding of the
project 2LIKE (16DHBKI001) funded by the Federal Ministry of
Research, Technology and Space (BMFTR) and the Ministry for
Science, Research and Arts Baden-Württemberg within the fund-
ing line Artificial Intelligence in Higher Education. Pascal Bercher
is the recipient of an Australian Research Council (ARC) Dis-
covery Early Career Researcher Award (DECRA), project number
DE240101245, funded by the Australian Government. Alexander
Lodemann acknowledges funding from the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) – GRK 3012 –
520750254 (kemai.uni-ulm.de).

References

[1] C. Bäckström and B. Nebel. Complexity results for SAS+ planning.
Computational Intelligence, 11(4):625–655, 1995.

[2] C. Bäckström, P. Jonsson, and S. Ståhlberg. Fast detection of unsolv-
able planning instances using local consistency. In Proceedings of the
6th International Symposium on Combinatorial Search (SoCS), pages
29–37. AAAI Press, 2013.

[3] N. K. Bavandpour, P. Lauer, S. Lin, and P. Bercher. Repairing planning
domains based on lifted test plans. In Proceedings of the 28th European
Conference on Artificial Intelligence (ECAI 2025). IOS Press, 2025.

[4] P. Bercher, S. Sreedharan, and M. Vallati. A survey on model repair in
AI planning. In Proceedings of the 34th International Joint Conference
on Artificial Intelligence (IJCAI 2025). ijcai.org, 2025.

[5] T. Bylander. The computational complexity of propositional STRIPS
planning. Artificial Intelligence, 69(1-2):165–204, 1994.

[6] J. C. Culberson and J. Schaeffer. Searching with pattern databases.
Computational Intelligence, 14(3):318–334, 1998.

[7] S. Eriksson, G. Röger, and M. Helmert. Unsolvability certificates for
classical planning. In Proceedings of the 27th International Conference
on Automated Planning and Scheduling (ICAPS 2017), pages 88–79.
AAAI Press, 2017.

[8] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and
Practice. Elsevier, 2004.

[9] M. Göbelbecker, T. Keller, P. Eyerich, M. Brenner, and B. Nebel. Com-
ing up with good excuses: What to do when no plan can be found. In
Proceedings of the 20th International Conference on Automated Plan-
ning and Scheduling (ICAPS 2010), pages 81–88. AAAI, 2010.

[10] A. Gragera, R. Fuentetaja, A. García-Olaya, and F. Fernández. A plan-
ning approach to repair domains with incomplete action effects. In Pro-
ceedings of the 33rd International Conference on Automated Planning
and Scheduling (ICAPS 2023), pages 153–161. AAAI Press, 2023.

[11] M. Helmert. The fast downward planning system. Journal of Artificial
Intelligence Research, 26:191–246, 2006.

[12] R. Kreft, C. Büchner, S. Sievers, and M. Helmert. Computing domain
abstractions for optimal classical planning with counterexample-guided
abstraction refinement. In Proceedings of the 33rd International Con-
ference on Automated Planning and Scheduling (ICAPS 2023), pages
221–226. AAAI Press, 2023.

[13] S. Lin and P. Bercher. Change the world – how hard can that be? on the
computational complexity of fixing planning models. In Proceedings of
the 30th International Joint Conference on Artificial Intelligence (IJCAI
2021), pages 4152–4159. ijcai.org, 2021.

[14] S. Lin, A. Grastien, and P. Bercher. Towards automated modeling as-
sistence: An efficient approach for repairing flawed planning domains.
In Proceedings of the 37th AAAI Conference on Artificial Intelligence
(AAAI 2023), pages 12022–12031. AAAI Press, 2023.

[15] S. Lin, A. Grastien, R. Shome, and P. Bercher. Told you that will not
work: Optimal corrections to planning domains using counter-example
plans. In Proceedings of the 39th AAAI Conference on Artificial Intelli-
gence (AAAI 2025), pages 26596–26604. AAAI, 2025.

[16] A. Lindsay, S. Franco, R. Reba, and T. L. McCluskey. Refining process
descriptions from execution data in hybrid planning domain models. In
Proceedings of the 30th International Conference on Automated Plan-
ning and Scheduling (ICAPS 2020), pages 469–477. AAAI Press, 2020.

[17] C. Muise and N. Lipovetzky. Unsolvability IPC track. In Proceedings
of the 2015 Workshop on the International Planning Competition, 2015.

[18] R. Reiter. A theory of diagnosis from first principles. Artificial Intelli-
gence, 32(1):57–95, 1987.

[19] W. J. Savitch. Relationships between nondeterministic and determinis-
tic tape complexities. Journal of Computer and System Sciences, 4(2):
177–192, 1970.

[20] J. Seipp and M. Helmert. Counterexample-guided cartesian abstraction
refinement for classical planning. Journal of Artificial Intelligence Re-
search, 62:535–577, 2018.

[21] S. Sievers and M. Helmert. Merge-and-shrink: A compositional theory
of transformations of factored transition systems. Journal of Artificial
Intelligence Research, 71:781–883, 2021.

[22] J. Slaney. Set-theoretic duality: A fundamental feature of combinato-
rial optimisation. In Proceedings of the 21st European Conference on
Artificial Intelligence (ECAI 2014), pages 843–848. IOS Press, 2014.

[23] S. Sreedharan, S. Srivastava, D. Smith, and S. Kambhampati. Why can’t
you do that HAL? explaining unsolvability of planning tasks. In Pro-
ceedings of the 28th International Joint Conference on Artificial Intel-
ligence (IJCAI 2019), pages 1422–1430. ijcai.org, 2019.

[24] M. Welt, A. Lodemann, C. Olz, P. Bercher, and B. Glimm. Experimental
setup for the ECAI 2025 paper: "Calculating Optimal Corrections for

Unsolvable Planning Problems", 2025. URL https://doi.org/10.5281/
zenodo.16761001.

[25] Q. Yang. A theory of conflict resolution in planning. Artificial Intelli-
gence, 58(1-3):361–392, 1992.

