Partial Plan Development for Hierarchical POMDPs

Philipp Heeg

19. November 2013

Contents

- Motivation and Introduction
- Background Information
 - POMDPs and FSCs
 - HPOMDPs and PAFSCs
 - The UCT-Algorithm
- Approach
 - Partial Plan Development for HPOMDPs
 - Partial Plan Development with UCT
- 4 Evaluation
- Summary

1. Motivation and Introduction

Planning with Uncertainty and Partial Observability

- POMDPs can be used to model partially observable, uncertain domains, but solving them is PSPACE-complete
- in Hierarchical POMDPs, expert knowledge is introduced to optimize planning

Partial Plan Development

- usually, the whole plan is developed before execution is started
 all eventualities have to be accounted for
- Idea: alternating between partial execution and planning, so the information gained in execution can be used to guide further planning

2.1 POMDPs and FSCs

POMDP: Partially Observable Markov Decision Process A POMDP has 7 components: *S*, *A*, *O*, *T*, *Z*, *R*, *H*

- a finite set of states S
- a finite set of actions A
- a finite set of observations O
- ullet a transition function T with $T(s,a,s')\in [0,1]$
- an observation function Z with $Z(s,a,o) \in [0,1]$
- ullet a reward function R with $R(s,a)\in\mathbb{R}$
- a horizon $H \in \mathbb{N}$

Solution: A policy that maximizes the total expected reward

2.1 POMDPs and FSCs

FSC: Finite State Controller

Policy-representation that uses internal states instead of belief states An FSC has 3 components: N, α, δ

- a set of controller-nodes N
- an action association function α with $\alpha(n) \in A$
- a transition function δ with $\delta(n, n') \in 2^{\hat{O}}$

HPOMDP: Hierarchical POMDP

Extension to POMDPs that allows for exploitation of expert knowledge:

- a new set of abstract actions A^a
- a new set of abstract observations O^a

HPOMDP: Hierarchical POMDP

Extension to POMDPs that allows for exploitation of expert knowledge:

- a new set of abstract actions A^a
- a new set of abstract observations O^a

PAFSC: Partially abstract FSC

- controller-nodes can be associated with either primitive or abstract actions.
- abstract nodes can be decomposed using Method-FSCs (MFSCs)

Initial PAFSC

UCT: Upper Confidence Bound for Trees

- UCT is an instance of Monte Carlo Tree Search (MCTS)
- MCTS builds a partial search tree by interacting with a domain simulator

UCT: Upper Confidence Bound for Trees

- UCT is an instance of Monte Carlo Tree Search (MCTS)
- MCTS builds a partial search tree by interacting with a domain simulator

A domain simulator consists of 4 components:

- ullet a set of states S with initial state s_0
- a set of actions A
- a transitionsimulator T
- a rewardsimulator R

Iteration 1

Iteration 2

Applying UCT to HPOMDP problems

- states are reachable PAFSCs
- actions are decompositions
- state transitions are deterministic
- rewards are generated by simulating an execution of the final primitive FSC

Applying UCT to HPOMDP problems

- states are reachable PAFSCs
- actions are decompositions
- state transitions are deterministic
- rewards are generated by simulating an execution of the final primitive FSC
- since order of decompositions is irrelevant, generation of decompositions at each node in the search tree can be limited to 1 controller-node

Partial executability of PAFSCs

 PAFSCs can be partially executed until the current controller-node is associated with an abstract action

Partial Plan Development: Alternating between an execution phase and a planning phase. Total planning time is distributed over all planning phases.

- Execution phase: partially executing the current PAFSC until an abstract controller-node is reached
- Planning phase: refining the current PAFSC by applying a decomposition to the abstract controller-node that was reached in last execution phase

Start n_0 n_1 n_2 n_3 n_4 n_4 n_4 n_5 n_6 n_8 n_8

After two executed actions

MFSC that was selected in planning phase 1

MFSC that was selected in planning phase 1

Beginning of execution phase 2

End of execution phase 2

- Goal: higher total reward with same total planning time
- Disadvantage: less time to plan for earlier decompositions
- Advantage: planning specifically for the controller-node that was reached in the last execution phase

- Idea: reusing the same search tree over all planning phases
- in each planning phase, the latest PAFSC is used as root node
- only one decomposition applied at plan extraction
- as first decomposition in each planning phase, only decompositions for the abstract node that was reached in the latest execution phase are allowed

First Planning Phase

Second Planning Phase

 Problem: limiting decompositions to 1 abstract controller-node for each tree-node

 Problem: limiting decompositions to 1 abstract controller-node for each tree-node

 Problem: limiting decompositions to 1 abstract controller-node for each tree-node

 Therefore: allow decompositions for all abstract controller-nodes for which there's a primitive path from the initial controller-node

4 Evaluation

- comparing partial planner to non-partial planner (Christian Späth Master Thesis), using the same total planning time
- for the partial planner, the total time Z is distributed over the planning phases by a geometric series:

$$t(n) = (1 - q)q^{n-1}Z$$

• 3 different evaluation domains with several instances each

4 Evaluation

Results for the Reconnaissance domain, 100s planning time

	non-partial	q = 0.1	q = 0.3	q = 0.5	q = 0.7	q = 0.9	Ø
Instance 1	0.58	0.52	0.52	0.64	0.52	0.64	0.57
Instance 2	1.81	1.16	1.64	1.27	1.66	1.49	1.45
Instance 3	0.92	0.67	1.23	0.69	0.56	1.09	0.85
Instance 4	0.77	0.54	0.95	0.5	0.65	0.73	0.67
Instance 5	0.92	0.8	0.93	1.01	0.43	1.17	0.87
Instance 6	1.66	1.13	0.52	0.52	0.32	1.76	0.85
Instance 7	0.88	0.47	0.41	0.81	0.68	0.49	0.57
Instance 8	0.39	0.24	0.16	0.24	0.4	0.26	0.26
Instance 9	0.61	0.7	0.58	0.4	0.5	0.26	0.49
Instance 10	0.66	0.79	0.69	0.48	0.83	0.54	0.66
Ø _w	1.28	0.99	1.02	0.92	0.96	1.11	1

5 Summary

- Partial Plan Development for Hierarchical POMDPs using the UCT-Algorithm
- alternating between execution phases and planning phases
- same UCT-Tree is used for all planning phases, with changing root node
- branching factor had to be increased to allow for directed plan development
- therefore slightly worse performance in the Reconnaissance domain compared to non-partial planner

- MCTS uses a Tree policy and a Rollout policy for selecting Actions during Simulations.
- UCT uses an adapted Upper Confidence Bound Algorithm as Tree policy. The selected Action a^* is determined by:

$$a^* = \underset{a \in A}{\operatorname{arg\,max}} \left[Q_{UCT}(s, a) + c \sqrt{\frac{\ln n(s)}{n(s, a)}} \right]$$

- $Q_{UCT}(s, a) = \text{average Simulation Reward when } a \text{ was selected in } s$
- n(s) = number of visits of s in previous Simulations
- n(s, a) = number of times a was executed in s in previous Simulations