
MultiKit: A User Interface Toolkit for Multi-tag Applications
Robert Hardy

School of Computing and
Communications, Lancaster

University, UK

hardyr@comp.lancs.ac.uk

Enrico Rukzio
paluno, University of Duisburg-Essen,
Germany & Lancaster University, UK

enrico.rukzio@uni-due.de

Matthias Wagner, Paul Holleis
DOCOMO Euro-Labs,

Germany

{holleis, wagner}@docomolab-
euro.com

ABSTRACT

This paper documents MultiKit: a toolkit that supports the

development of sophisticated user-interfaces for applications

using Near Field Communication (NFC). The usage of the toolkit

is exemplified using three implemented prototypes, each with

significant differences. These differences highlight the

complexities involved in producing such NFC applications, and

the benefits of a toolkit that can adapt to varying interface types.

As the toolkit is tailored to NFC technology, NFC-specific

features are explored. These include switching between dynamic

(e.g. projection) and static interfaces (e.g. posters), and interface

generation from NFC tag descriptions.

Categories and Subject Descriptors

H5.2 [Information interfaces and presentation]: User Interfaces -

Graphical user interfaces.

General Terms

Algorithms, Design, Human Factors.

Keywords

Mobile, NFC, Multi-tag, toolkit.

1. INTRODUCTION
Public, situated displays are prolific in human-computer

interaction research and a ubiquitous part of our environment. We

see increasing numbers of digital displays in public places due to

technology advances driving down costs and their ability to show

up-to-date information. Yet, non-digital displays (e.g. posters and

flyers) still remain prevalent due to their simple deployment and

low cost. Public, situated displays play a vital role in

communicating information about our environment, supporting

activities in our environment, and providing resources for which

activities and communication can be centered. In recent years, we

have seen these displays begin to support user interaction, such as

interactive kiosks, and ultimately provide multi-user interaction

for shared, collaborative interaction – inherently apt to large

screens in social settings.

Ballagas et al. [3] survey various interactions that allow smart

phones to play the role of input devices applicable to such

displays. The survey covers various smart phone features (e.g.

cameras, buttons, touch displays, accelerometers, and

microphones). However, these features only typically support

indirect interaction with the displays. The focus in this paper is on

direct touch-based interaction with a variety of display types

(digital displays, posters, flyers, etc.). We will now describe a

tourist scenario where a user can interact with a range of travel

services by touching their phone on desired options on the various

displays around the city. Say you have flown to an unfamiliar city;

you may wish to find the next train from the airport to your hotel.

You see various digital, situated displays around the airport

providing the latest transport and navigation information and

ticket services. By touching the options on one of these displays

with your phone, you are able to find the platform for the next

train and purchase a ticket, which is saved to the phone. Also

saved to the phone are walking directions from the train station to

the hotel. Once settled at the hotel, you may wish to visit a

restaurant recommended by a friend. You find an interactive map

outside the hotel with options that can also be touched with your

phone for querying the next bus travelling to the restaurant. You

fold the map up and carry it with you for future reference. When

you arrive at the restaurant, you see interactive menus located on

every table. The menu provides food and drink items that can be

touched with the phone to show additional information on you

phone’s display about the items and suggestions of other items

that compliment your selection. In this scenario, we see a high

level of ubiquity pertaining to such touch-based displays. We also

see that they can be represented many different physical forms.

The underlying technology we use to support touch-based mobile

interaction with both dynamic (digital) and static (non-digital)

displays is Near Field Communication (NFC). NFC is a short-

range radio frequency communication technology suitable for

touch-based interaction between these devices due to limited

range. We have begun to see its integration into mobile phones

allowing them to read/write a few kilobytes of data from/to

powerless NFC tags (with a size of 42mm in diameter).

In recent years, we have seen the trend of augmenting physical

objects, such as maps, posters, information boards, menus or

interactive displays, with one or more NFC tags. Tagging these

displays enables the user interface on the phone to be extended to

the physical object; thus, making mobile services more visible.

The physical interface can fall into two categories: single-tag

interfaces and multi-tag interfaces. Single tag interfaces have only

one tag attached and multi-tag interfaces have multiple tags

attached. Therefore, such a multi-tag interface may support

sequences of tag reads in order to achieve a common goal. Multi-

tag interfaces will be the focus of this paper.

The development of multi-tag applications is currently a costly

and time-consuming process as they are usually developed from

scratch. The most problematic aspect is that the user interface is

distributed over the mobile phone and the tagged physical

interface. Additional issues are the fact that the geometry of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

MUM’11, Dec 7–9, 2011, Beijing, China.
Copyright © 2011 ACM 978-1-4503-1096-3/11/12…$10.00.

physical interface must match the tags used and support different

display types. Currently available user interface widget libraries

typically support a single particular device (e.g. Java/SWING for

Laptops or Java/LCUID for mobile phones), but none are able to

span two different devices (e.g. mobile phone screen and LCD).

In addition, there is a granularity mismatch between the desktop

GUI elements and the physical dimensions of the tags.

The MultiKit was developed to address this problem by

accelerating and simplifying the development of user-friendly

multi-tag applications. Firstly, and most importantly, a multi-tag

widget library supports the development of multi-tag user

interfaces that span the mobile device and the multi-tag physical

interface. Secondly, MultiKit provides an overall infrastructure

for the communication between physical interface, mobile phone,

and server components. Three sophisticated prototypes exemplify

the generality of this user interface toolkit.

2. RELATED WORK
In recent years, we have seen an increasing use of mobile phones

for interactions with people, places and things in the real world

[10]. One of the most popular interaction techniques in this field is

touching, which allows a mobile phone to interact with other

objects by touching them. The technology behind this is NFC

(Near Field Communication): a short-range RF communication

technology with a read range of up to 10 cm. The potential of this

technology is suggested by ABI Research who forecast that by

2012, more than 400 million NFC chipsets will be shipped that

will be used not only for payments at points of sale, but also to

access information from smart objects [1]. More and more mobile

phone makers are integrating NFC in their handsets (e.g. Samsung

Nexus S / Galaxy S II, Blackberry Curve, HTC Amaze 4g) and

and several such as Nokia are making strong commitments [2].

The applications, which are based on NFC or passive RFID tags

read by mobile phones, are usually single-tag as just one tag is

attached to an object. Want et al. were among the first who

augmented objects such as books, documents or business cards

with a single RFID tag [24]. An RFID reader was connected to a

mobile device and used to read the links to corresponding

services, such as ordering the book, getting the electronic version

of the document or picking up the email address from a business

card. Such single-tag interactions are now widely used in Japan

via i-mode FeliCa service offered by NTT DOCOMO [14]. Here,

i-mode Felica enabled handsets can be used for electronic

payments, access control, and as a commuter pass simply by

touching corresponding readers.

Currently, we see the trend towards multi-tag interfaces in which

physical objects are augmented with many NFC tags that

represent different actions or parameters related to the object.

Reilly et al. augmented a paper map with a number of RFID tags

beneath points of interest [16]. A mobile device was connected to

a RFID reader in order to read these tags and provide information

about the touched sights. Further examples are posters augmented

with RFID/NFC tags that provide several services, such as getting

additional information, downloading media content, and ordering

movie tickets [2, 4]. Augmenting menus with RFID technology

for ordering food has been trialed by McDonalds in Korea [12],

by Häikiö et al. for a touch-based user interface for elderly people

[6], and by VTT for a restaurant in Oulu, Finland [17]. In those

examples, a menu was used in which each item (e.g. burger, salad

or drink) was touchable through a corresponding NFC tag on the

back. Further examples are “infotags” which provide different

hyperlinks of which 1500 were deployed also in Oulu [22] and

local traffic news poster trialed by Vodafone [14].

The multi-tag interfaces discussed so far focus on static physical

interfaces such as maps, posters or menus. The Touch & Interact

[7] and the Touch & Select [21] systems show dynamic physical

interfaces through the usage of projections or LCD displays

augmented with NFC tags. Here, the dynamic physical interface

turns into an interactive screen that reacts to the interactions of the

user. The Touch & Interact system supports the interaction with

an interactive display in a tourist office supporting interactions

with maps, points of interests and routes [7]. The Touch & Select

system supports interactions with the NFC-equipped display of a

laptop by touching it with the mobile device in order to upload

and download pictures between the two devices [21].

Many of the previously mentioned examples for multi-tag

applications have been evaluated in user studies or have been

trialed. Although this previous research shows the usefulness and

the advantages of multi-tag interfaces, all have been developed

from scratch leading to time consuming and expensive prototypes,

or systems often with serious user interface problems.

An early framework that supported different kinds of mobile

interactions with smart objects is the Physical Mobile Interaction

(PMIF) Framework [18]. This framework also addressed

RFID/NFC-based interactions and is focused primarily on

technical aspects needed to establish a connection between mobile

phone and augmented object. It did not focus on multi-tag

applications at all. This framework was extended to the Pervasive

Service Interaction (Perci) framework, which focused primarily

on the automatic generation of mobile user interfaces for physical

mobile interactions based on semantically enriched service

descriptions [4]. Again, no support for multi-tag user interfaces

was provided. Further frameworks that focus rather on the

technical aspects of single-tag NFC applications than on user

interface aspects, were developed by Koskela et al. [11], Guinard

et al. [5] and Sanchez et al. [20].

Almost all graphical user interfaces are built using existing user

interface widgets such a buttons, sliders or menus (provided by

user interface toolkits). Those are usually focused on device

classes, such as desktop systems (Java Swing, Macintosh Cocoa

and Windows MFC) or mobile devices (Symbian UIQ, Android

View System und iPhone UIKit). Developing a system with a

distributed user interfaces – as it is the case for multi-tag

applications – requires currently the development of two different

user interfaces and of a corresponding application logic which

combines them.

Systems in which the user interface spans several devices are, for

example, the Pebbles system focusing on indirect interactions of

mobile devices with remote screens [13], the Stitching interaction

technique that supports pen gestures that span multiple displays

[8] or Pick & Drop supporting data transfer between different

devices [17]. None focus on touch-based mobile interactions with

physical objects, and most were focused rather on application and

interaction rather than on the provision of a user interface toolkit.

The related work shows, on the one hand, the trend towards multi-

tag applications, and on the other hand, the lack of a

corresponding toolkit which addresses the special requirements

regarding the support of user interfaces that span mobile device

and physical interface.

3. MULTI-TAG APPLICATION

EXAMPLES
Three prototypes that exemplify particular usages of the toolkit

are described in this section. The fundamental configuration

remains the same for all three prototypes (Figure 1). A set of NFC

tags is attached to the rear of a display layer. This layer hides the

tags from the user and may come in the form of a paper sheet (e.g.

for posters, labels or a sheet used to project onto) or a direct-view

screen (e.g. an LCD or TFT screen). With this configuration, the

phone reads through the display layer, which, in turn, provides a

representation of the role of the tag. In Figure 1, we see only a

single tag, whereas a multi-tag interface will have multiple tags

attached to the display layer. When contrasting single-tag and

multi-tag interaction, the need for a multi-tag toolkit does not

arise from the fact that there is a different development process

for either. Essentially, multi-tag interaction comprises of multiple,

single tag interactions and the toolkit could be used to cater for

both types of interaction. However, with multi-tag interaction,

there is capacity for higher complexity with respect to the NFC

interface. It is this potentially greater complexity that drives the

need for a toolkit that can accelerate the development process.

Figure 1. The basic configuration shared between prototypes

3.1 The Tags-to-context Prototype
The tags-to-context prototype provides a physical interface that

allows users to make their latest experiences viewable for their

friends via a web site or application on supported phones [8]. The

experiences are categorized into groups such as activity, status,

and mood. The prototype has three components: a user interface

for configuration, an NFC phone, and a set of tags.

The configuration user interface allows the user to specify a

number of user experiences (e.g. drinking coffee). These

experiences are specified by touching the experience options with

the phone (Figure 2-1). Each option has a corresponding NFC tag

behind it that stores the meta-data for the option (Figure 1). Once

one or more experiences have been specified (read to the phone),

they can be written to a context tag. As soon as the experiences

have been written, the context tags are used to update the user’s

experience with subsequent reads (Figure 2-2).

Figure 2. The tags-to-context interaction sequence

The tags can then be labeled using a pen or by attaching a sticker

and the tag is ready to be attached to a meaningful physical object.

Once deployed, whenever the user drinks coffee, they can touch

the context tag in order to make their friends aware of their action.

On notification, their friends may then join the user for a coffee.

While the options are read from the configuration user interface,

the phone screen is used to display currently read options.

3.2 The Static Tourist Guide Poster
The second example is a static (non-digital display) tourist guide

poster (Figure 3). The printed poster is augmented with NFC tags

that are used to provide extra functionality, yet take nothing away

from the traditional use of the map. One deployment scenario is

that many posters can be created and installed at various bus

shelters around the city. The poster can then be used to provide

users with information regarding nearby points of interest (POI)

(e.g. hotels and restaurants). This is achieved by using a matrix of

tags that provides complete coverage of the map.

Figure 3. The tourist poster static physical interface

The map grid is used to indicate the position of the tags behind the

map. In order to read a POI, the user simply touches the

corresponding grid area with the phone. When there are multiple

POIs in a grid area, the POI identifier can be selected using the

phone keypad. POIs are identified locally within the bounds of the

tag (e.g. if there are three POIs in one map grid, their identifiers

will be 1, 2, and 3). Global identification is achieved by

combining the local identifier with the grid reference represented

by the tag (e.g. A7-1).

Figure 4. (left) an itinerary on POIs (middle) directions

between POIs (right) a map for rendering the directions

The map also allows routes to be constructed by selecting multiple

POIs. Dependence on the phone display is used in order to support

route planning. Figure 4 illustrates this use. The itinerary (left)

shows the POIs that have been selected from the map. Directions

(middle) between two POIs can then be requested from the

itinerary and can be visualized graphically (right).

3.3 The Dynamic Tourist Prototype
The third example is a dynamic (digital display) prototype, which

looks similar to the previous, static example. With the dynamic

prototype, a projector displays the feedback from the poster. The

goal of the dynamic prototype is to extend the features of the

static poster prototype by taking advantage of a large dynamic

multi-tag interface. Further utilizations of the dynamic display

are: map panning, zooming functionalities, navigational route

overlays, information overlays, a new dynamic rollout menu

widget (Figure 5, left), POI filtering, and enlarged areas for POI

selection (see Figure 5, right).

Figure 5. (left) The rollout menu (right) tag enlargement for

the dynamic map-based prototype

When considering both the static and dynamic tourist guides, one

can imagine utilizing the advantages of both. The dynamic guide

has the advantage that it can abstract data (e.g. in the rollout

menu), and thus, provide a great deal of functionality to its users.

The static poster is cheap to produce and replace, in addition to it

being potentially portable. It therefore could be produced as a

snapshot of the current state of the dynamic guide. For example,

tailored to hotel POIs for a user, or tailored to relevant POI search

results from the dynamic version. The posters could be placed

outside the POIs themselves with a snapshot of their information

options made visible.

3.4 Summary of the Prototypes

A theme connecting all three prototypes is the sharing of user

interfaces between the phone and a physical display. With the

(static display) prototypes 1 and 2, the phone interface is

dependent on the physical interface, whereas with (dynamic

display) prototype 3, the phone user interface takes more of a

complementary role.

However, there is also much dissimilarity between the prototypes.

There are two main causes for this; firstly, the display types are

different, and secondly, the networking support is different.

Pertaining to the display type, prototypes 1 and 2 use static paper

displays. As it is not necessary to use a server to drive the

interface we cannot assume that a short-range wireless

technology, such as Bluetooth, is required. It is more likely that

the phone will make requests over the Internet (incurring

significant round-trip times and monetary cost to the user). As an

alternative implementation for prototype 3, a Bluetooth

connection can be used if the server is directly connected to the

display.

When considering a toolkit that is capable of supporting these

three types of multi-tag applications (plus further varieties), we

first need to be certain of its requirements. From our experiences

with the development of the three aforementioned prototypes, we

conclude that the list shown in Table 1 provides a minimum set of

requirements for the toolkit. These target the ability to develop a

broad-range of prototypes and also deal with the idiosyncrasies of

multi-tag interfaces, such as differing NFC display types.

Table 1. Toolkit Requirements

1 Support user interface sharing between the phone and

physical displays.
2 Provide networking support via Bluetooth and Internet

connectivity.
3 Provide support for physical interfaces of varying

display feedback types (both static and dynamic)
4 Provide a multi-tag NFC record type.

5 Provide GUI creation that suits the tag geometry rather

than an adaptation of existing desktop GUI toolkit.
6 Provide a mobile client that can work with each type of

prototype.
7 Support the prototyping of static interfaces using

dynamic interfaces.

4. OVERVIEW OF THE CORE TOOLKIT

The toolkit provides support for the developments of NFC

solutions with particular focus on multi-tag interaction. At the

hardware level, there are three main components: the NFC tags,

the phone, and the server (Figure 6). The NFC tags are attached to

a display in order to convert this into a physical user interface.

The phone is the “smart stylus” used to interact with the physical

interface by touching them together. The server takes the role of

the back-end for the physical interface (providing services and

application logic) and is also used in order to generate the

physical interface.

Figure 6. The hardware components of multi-tag applications

4.1 Data Flow Between the Hardware
Components

Typically, when a physical interface is read (Figure 7), the

communication flow travels from the tags to the phone and

onwards to the server (1). Subsequent flow may take place

between the phone and server using the various input modalities

of the phone (2). This process is true for every dynamic physical

interface (Figure 8a) tag as there is no strict mapping between the

tags and the corresponding data. But when a static physical

interface is used, in many cases, the data will be static on the

representative tags. In these situations, the application needs not

communicate with the server (3) as the tags can store the absolute

data rather than a link to the data on a server (Figure 8c). Storing

the actual data on the tags offers various advantages over sending

OTA (Over-The-Air) requests from every tag read and the option

on downloading the entire application on the first tag read. Firstly,

OTA requests over the Internet can incur significant round-trip

times that are often impractical considering user interaction

responsiveness. Secondly, downloading the whole application

forces a greater barrier to entry regarding first-time use, not to

mention forcing the user to have many applications on their phone

rather than one generic one.

Tag Phone Server1: NFC 2: OTA

Tag

Tag

P
h

y
s
ic

a
l
In

te
rf

a
c
e

When absolute data on the tag is not possible due to its rigidity, an

ID-based widget link can be established to the server widget

representation (Figure 8b).

Figure 7. Reading from the tags

Figure 8. Various tag combinations

To summarize, the toolkit reliance on each hardware component

depends on the type of interface and presence of networking

infrastructure. For example, with a static poster, it is likely that the

poster must be supported by Internet connectivity (rather than

Bluetooth, as there is no nearby server driving a display, cf.

dynamic displays). By reducing server connectivity as much as

possible, one can alleviate round-trip-time delays and,

consequently, the undesirable effect on interaction feedback

timeliness.

4.2 Multi-tag Widgets

The core software components are focused around a reusable

collection of multi-tag user interface widgets. The majority of

multi-tag widgets are synonymous with those used in desktop

widget libraries (e.g. radio buttons, drop-down boxes, etc.).

However, the distinctions with multi-tag widgets are that:

 They transform to suit both dynamic and static display types
(in accordance with req. 3).

 The widgets are represented on the tags via XML
descriptions, the phone interface via Lightweight User
Interface Toolkit (LWUIT) widgets [22], and the server via a
multi-tag scalable vector graphics (SVG) widget set.

To support the transformation of the widgets to a different display

type, the model-view-controller pattern is applied within each

widget. By separating the model from the views and controllers,

multiple views and controllers can look onto a single model; thus,

the phone and physical interfaces could run in parallel. Moreover,

the views and controllers can be replaced with without affecting

each other or the model. The dynamic views and controllers act

very much like any of those for traditional desktop graphical user

interfaces. Controllers receive events (from the phone), update the

model, and instruct the view/s to render the changes (Figure 9,

top). However, the static views and controllers typically operate

by controlling the phone through XML-based messages. The same

messaging format can also be used by the local tags to control the

phone, e.g. to display a radio button of the phone UI (Figure 9,

bottom).

The server user interface is supported by a powerful

implementation that marries Piccolo (for efficient interface

management), SVG Salamander (for per widget graphics), and

bespoke look-and-feel, animation, and event-handling

mechanisms. By using SVG for the server widgets, the interface

supports lossless rescaling capabilities to suit different NFC tag

sizes (in accordance with req. 5). In addition, the developer has a

great deal of freedom when creating graphics using a visual

graphics editor. The phone client uses LWUIT widgets as a

mobile version of the multi-tag widgets. This toolkit provides

much greater flexibility than the standard Java ME user interface

toolkit, whilst additionally retaining a small memory footprint.

Figure 9. (top) initial tag graphic on static display (bottom) the

phone screen used to show the new state

 A look-and-feel is used to dictate the mappings between the

models, views and controllers. The look-and-feel is used in the

same way as in many traditional desktop look-and-feels (e.g.

Microsoft Vista). However, with traditional examples, there is a

greater weighting towards the look (cf. skinning), whereas with

the multi-tag look-and-feel, the feel is radically changed.

5. COMPONENT-LEVEL DETAIL
The various software modules that contribute to the toolkit can be

allocated into four groups. These groups are: (a) the NFC tag,

(b) the phone client, (c) the common communication library, and

(d) the server.

5.1 The NFC Tag

There are currently two types of NDEF records for the toolkit: a

multi-tag record (MIME format) and a multi-tag command record

(Text RTD). The multi-tag record is mandatory for all tags as it

maps each tag to its virtual counterpart. The optional multi-tag

command record contains a WAP-based XML file. This can be

used to control the phone client through the various generic

methods provided.

5.2 The Phone Client

The phone client’s responsibilities include the detection of NFC

tags and parsing of the corresponding records (in accordance to

the NFC multi-tag record type). The phone also contains a

collection of generic methods that can be used to: display, store,

and retrieve command descriptions, navigate to the previous

interface, and store undo states.

The phone client uses LWUIT widgets as a mobile version of the

multi-tag widgets. This toolkit provides much greater flexibility

than the standard LCDUI API, whilst additionally retaining a

small memory footprint. Persistent storage can be used for storing

command descriptions and corresponding results for archival. The

phone’s storage is primarily targeted at passing data between

services and offline retrieval by the user through the phone

interface.

Tags Phone ServerNFC OTA

1: Trigger every tag read

2: Subsequent dialogue

3: Trigger on every tag read

Dynamic NFC Tag

(Pixel coordinate

reference)

Static NFC

Tag

(ID reference)

Static NFC Tag

(widget

represented on

tag)

Server

Widget referenced

 a b c

 relative data relative data absolute data

NFC read à

NFC read à

5.3 The Common Communication Library

This common library is shared between the server and phone

client. It contains an RPC client and server implementation and

allows communication between them. The RPC calls contain a

Multi-tag Event Header that enables the phone client to provide

the server with a range of event details. These details specify

whether the event is from a tag read or not, whether the tag is

configured for a static or dynamic display, tag-to-widget

mappings, tag read options, gesture types, and specific phone keys

that have been pressed (normally in conjunction with a tag read).

5.4 The Server

The server’s main responsibilities are to orchestrate the

deployment of the multi-tag applications and connect the user

interface to the application logic. A widget module manages the

multi-tag widgets. Figure 10 shows the multi-tag widget hierarchy

(the patterned widgets are those that can be directly mapped to

LWUIT widgets).

Figure 10. The widget hierarchy (patterned widgets are

directly mapped to LWUIT)

Alternate widgets can be substituted for widgets that are not

directly mapped (e.g. a ChoiceItem for a ToggleButton). The

hierarchy is designed for a high level of reuse as this core set of

widgets is designed to be extended for widgets that are greater

tailored to the needs of a specific application.

Regarding the widgets, the server’s role involves widget creation

(using the assigned look-and-feel), managing the state of the

widgets, and pushing events to the widgets. It centralizes the

widgets into a single storage container and is, therefore, the ideal

place to perform user interface transformations (via look-and-feel

switches).

Widget

Components

Widgets

View

Layout

SVG

Controller

Model

Figure 11. The major components of the widgets

The widgets can also be broken down into Widget Components.

Examples of these components include icons and text that can be

reused and painted separately on rendering updates. The layout

component is responsible for the layout of widgets themselves and

any widget components associated to it. It can also be seen that

each widget contains the MVC structure; the widget component

views and models can also be decoupled for greater reuse.

6. USER INTERFACE

TRANSFORMATIONS
A look-and-feel switch allows a new collection of widgets to

replace the existing widgets. For example, these widgets maybe

tailored towards static posters rather than dynamic displays. This

enables the whole interface type to automatically switch at

runtime. The components that are affected by a switch in the look-

and-feel are the views and controllers; the models are unaffected.

Consequently, to facilitate a switch at runtime, the controllers and

views must have no state that would otherwise be shared with

alternate views and controllers. This shared state must be

centralized in the models.

During an interface switch from a dynamic display to a static

display, we find that we cannot select options that are not

currently visible (e.g. options hidden in a combo box) as we have

no dynamic feedback. Therefore each widget that is currently

visible to the user is iterated by the toolkit to check whether there

are other widgets hidden behind the current, parent widget. For

example, in Figure 12, left, the options behind the rollout menu

are not visible if a poster is used. Therefore, a static look-and-feel

will use widgets that command the phone to show these hidden

options using its display. However, if the rollout menu is

expanded (Figure 12, right) to make all the options visible, the

phone UI does not have to be used at the cost of greater display

space usage on the NFC display.

Figure 12. The rollout menu from the dynamic tourist guide

application (left) the menu tabs (right) a selected tab

The interface switch feature allows a dynamic version of a user

interface to prototype a static version. With the dynamic version,

the designer has the power to configure the interface in a

particular way (by opening certain screens, menus, etc.) before it

is switched to a static version.

Exemplifying the possible options for a designer, the Hotels tab

(Figure 12, left) could remain deselected, which would force the

phone interface to display the combo boxes (e.g. price) as tabs

(each displaying their corresponding options). Alternately, the

user could select the Hotels tab, but not expand the combo boxes.

This would allow a particular tab (e.g. price) to be directly

accessed on the phone. The final approach is to occlude the map

and allow all the options to be directly accessed via the tags.

ToggleListItem

ChoiceItem

TabItem

RadioItem

ToggleButton

Date Field

ListItem

Button

Label

PasswordFieldTextArea

Widget

Panel

Spinner

GridMenu

Combobox

Table

Calendar

Rollout Menu

MenuPanel TabbedPanel

Dialog

List

target

In order to push the user interface to the phone, hybrid widgets

can be used. Hybrid widgets are widgets on the NFC interface that

link to widgets on the phone interface. The theory behind hybrid

widgets is twofold: they save space (and tags) and they enable

static interfaces to provide dynamic feedback. An example use is

the replacement of a static, physical calendar widget for a

calendar hybrid widget. The physical calendar widget can occupy

up to 31 tags. By trading off interaction consistency with interface

space, a hybrid widget could be used that occupies a single tag

that prompts a phone-only calendar widget on the phone interface.

Moreover, this widget may also have dynamic feedback such as

an indication of the current date. In the case of the design seen in

Figure 12, left, that is applied to a poster, three hybrid widgets

would push the content behind the roll-out menu tabs to the

phone.

7. PROTOTYPE ADAPTATIONS
The placement of the MVC components changes in accordance to

providing support for physical interfaces of varying feedback

types (Table 1, req. 3). This is also true for the deployment

procedure for varying types of multi-tag application.

7.1 Creating a Dynamic Multi-tag Interface
(Deployment & MVC Migration)

When developing the application (Figure 13-1), the look-and-feel

is set to a dynamic version. The GUI can then be created and is

purposefully similar to many traditional desktop GUIs (e.g.

SWING). The physical dimensions of the NFC tags can be input

to set default sizes for the graphics. The business logic is then

connected to the GUI widgets through the use of event listeners.

Figure 13. Deployment scenario (Dynamic)

The developer can also configure the toolkit to begin in

deployment mode (Figure 13-2). In this mode, once the client

connects (Figure 13-3), the server orchestrates tag writing in order

the write the corresponding x/y coordinates to every tag (Figure

13-4). The tags are arranged in a matrix prior to writing.

When focusing on the migration of the MVC components, the

models, views, and controllers for each widget are all located on

the server during the development of the given application

(Figure 14-1).

This is necessary as the server orchestrates the migration process.

Once the client is connected (Figure 14-2), a view role is pushed

to the phone V1/2 (where V1 represents a mirroring of the server

view and V2 represents a complementary view (via a hybrid

widget)). Once the phone begins writing relative data to the tags

(also part of Figure 14-2), a new model on the server is placed on

each tag (M2). M2 provides a link to the corresponding controller

(C1) on the server. The server retains its representation of the

widget; therefore, the model is updated on the server and rendered

on a dynamic display.

Figure 14. Dynamic MVC migration

7.2 Creating a Static Multi-tag Interface

The development process (Figure 15-1) is the same as that of the

dynamic display (Figure 13-1). However the look-and-feel must

be set to a static version. The appropriate static widget set can

then be used.

Once the GUI has been created, the application can be run so the

GUI can be rendered for printing (Figure 15-2/3). The tags can

then be attached to the back of the printout (Figure 15-4).

Deployment mode is then entered once the client connects and the

data is written to each tag (Figure 15-5/6). The level of data

depends on whether the widgets are represented completely by the

tags or simply a link to a server representation. In the former case,

a XML file is built that represents a description of the widget to

which it is associated. Once deployment is complete, the system

continues running and is ready to be used by users.

There are two MVC migration perspectives, which are based on

whether the server is required or not. An example when a server is

not required would be when a tag represents, for example, a radio

button. Here, the tag stores an XML file with details about the

radio button. The phone is able to parse this option and display its

status on its display. Only when a query needs to be sent does the

server become involved. Therefore, various tags may represent

local parameters for a query that can be selected without requests

from a server. Once the desired parameters have been selected,

final tag can be used to push the parameters to a remote server.

Figure 15. Deployment scenario (Static)

We will begin with the example where a server is not required, for

example, reading experiences from the configuration interface to

the phone in Prototype 1. The process can be seen in Figure 16.

Here, the components are centralized on the server (Figure 16-1) –

again to orchestrate the migration process. When the application is

run, we move to stage (Figure 16-2). The display is printed and a

view on the tag (V1) signifies that the printout represents the

model, though from a processing perspective, this is produced by

the server. When the tags are written to, a description of the

widget fully represents the model of the widget (M1).

The controller (C1) is moved to the phone as this is now

responsible for updating the model. Although there is initially no

representation of the model on the phone, once the tag is read, the

model (M2) is transferred from the tag to the phone (Figure 16-3).

The controller then updates the model in accordance to the tag

1: Develop applicaton

2: Run application

3: Connect Client

4: Attach tags

to reverse and

write

Phone

V1/2

Server

M1 V1 C1

Tag

M2

Server

M1 V1 C1
1

2

1. Develop

application

2: Run application

and configure UI

3: Produce UI

image

4: Attach tags to reverse

5: Connect client 6: Write data to

each tag

read (e.g. a selection) and takes the role of the view (V1). V1 is

required on the phone because the V1 on the tag may not represent

the model now as it is static (e.g. show that a radio button is

selected).

Figure 16. MVC Migration (absolute data on tag)

M1 on the tag can be assumed to be out-of-date (as the new state is

not re-written to the tags) when M2 is created on the phone.

However, M1 is still retained as it links to M2. Therefore, for

future reads to a tag that has already been read (i.e. has a

corresponding M2 on the phone), M1 is used to access (and

trigger) an update on M2.

Figure 17. MVC Migration (relative link on tag)

If a server is required, as in Figure 17 (i.e. the widget must link a

counterpart on the application), the migration of the MVC

components differs. In Figure 17-2 (on application initialization,),

the server must retain the model (M1) and controller (C1) as they

are used to link to the application. However, as the display type is

static, the dynamic view is no longer required on the server. As

with the previous case, the view is initially represented by the

printout. However, only a link represents the M2 on the tags so the

full representation on the server (M1) can be accessed by the

phone. After a tag read (Figure 17-3), the representation between

the V1 on the printout and the M1 on the server may be erroneous;

therefore, the phone takes the role of the view (V1).

7.3 Switching from a Dynamic Interface to
Static Interface

When switching from a dynamic to a static interface, the switch

takes place at runtime. In order to achieve this, the views and

controllers must have no dependencies. In addition, any partial

dialog between the server and phone will be lost.

1. The GUI is developed and initialized using a dynamic display
look-and-feel.

2. The GUI is then set in a particular state (e.g. opening a tab to
make various options visible).

3. The switch is then made to a static look-and-feel. This triggers
the widget controllers and views to be changed accordingly.
The current GUI is then exported for printing. Finally, the
deployment stage is entered once more to write the new tag
data that provides the tags to directly specify the widget they
represent.

4. The MVC migration involves replacing the views and
controllers for each widget in correlation to the new look-and-
feel. They can then be migrated to the phone and tags in
accordance to Section 7.2.

8. PHONE AND PHYSICAL INTERFACE

MIRRORING
Mirroring is a technique in which the phone interface mirrors the

focused section the physical interface. The partitioning of the

physical interface into sections allows effective mirroring on the

phone. Each section represents a logical grouping of widgets by

the developer. Each group (e.g. a radio button group) is

represented by a container widget or subclass thereof. A

mandatory requirement for the groups is a label, as each group is

mapped to a tab on the phone interfaces (Figure 18). Nested

groups can be accommodated on the phone through the use of

nested tabs.

A set of rules dictates the mapping process, which can be seen

below.
1. A logical grouping of interface options (e.g. a radio button

group) maps to a tab on the phone screen.

2. Developers must be conscious of the physical interface option

grouping and its effect of the phone interface (with regards to

the number of options to display via the phone).

3. Ungrouped physical interface options are automatically

grouped into the first tab. Subsequent tabs are mapped to the

top groups if present. Groups within groups are displayed on

the phone as nested tabs (Figure 18, right).

4. Grid layouts are retained (e.g. calendars, timetables, grid-based

games, maps) by default. There are various zoom levels for the

phone that are useful for large grids such as a map. Non-grid

layouts are represented as single column lists by default.

Figure 18. Mapping from groups (from the static tourist guide

poster) to phone interface tabs

If mirroring is not required, rules must govern when tags require

relative data or absolute data. The choice can be made when

considering what dependencies the widget has to: (1) the

developer’s business logic (e.g. retrieve a precipitation forecast),

and (2) other widgets that are observing the widget (e.g. a textbox

may change its value when the widget is selected). From an

implementation level, these dependencies are easy to infer as the

listener and observer lists can be searched.

The phone also supports partial-mirroring in order to support

greater consistency between the phone interface and the physical

interface. With this approach, the phone displays all the options in

a particular group, the difference with full mirroring being that the

user cannot access other groups through the tabs. Partial mirroring

can be used without full server dependency, providing there is not

a plethora of options that cannot all be stored on tags, and is used

primarily in the tags-to-context prototype.

9. SUMMARY OF TOOLKIT FEATURES
One of the very core features of the toolkit is the support of multi-

tag interfaces that can be represented on a variety of display

mediums (posters, dynamic displays, etc.). In addition to

providing support, the same interface can be transformed to one

that is tailored for another display medium. For example, a

dynamic display interface could switch to a poster interface. A

scenario to demonstrate this feature may be a tourist information

Phone

C1

Tag

M1 V1

Phone

M2 V1 C1

Tag

M1

Server

M1 V1 C1
1

2

3

Server

M1 V1 C1

Phone Server

M1 C1

Tag

M2 V1

Phone

V1

Server

M1 C1

Tag

M2

1

2

3

office that provides multi-tag tourist services using the dynamic

display prototype (see Section 3.3. As the display is dynamic, it

may show a dynamic map that can be panned and zoomed in order

to view POIs in greater detail. It may also show information

options for a particular POI. To complement, augmented posters

could be installed at each POI and provide the same information

options as the dynamic display for the POI the poster represents.

These can be automatically generated as a snapshot of the fully

functional dynamic multi-tag interface, simply requiring printing

and NFC-tag augmentation, see for example, the prototype in

Section 3.2.

A by-product of supporting the concept of interface type

switching is that dynamic multi-tag interfaces can be used to

prototype static designs. Once the developer is happy with a

particular design, the switch to a poster interface can be easily

made by printing the poster and writing to the tags. This process is

much more forgiving regarding mistakes as they are easy to

rectify during the dynamic prototyping stage. What’s more, it is

not necessary to print potentially many posters when evaluating

poster design usability.

A key advantage of using a mobile phone as an interaction device

is that a mobile phone contains all the required input/output

components to continue interaction away from the physical

interface. Phone-only interaction is by no means considered an

alternative method of interaction when a physical interface is

present; rather it is considered a complement. However, it can be

used as a suitable alternative when no physical interface is

present. For example, a user may be browsing POIs (nearby their

chosen destination) whilst waiting at a train station. When the

train arrives, they are forced to leave the physical display and can

continue browsing POIs on the train using only the phone

interface. In order to achieve this offline continuation, the phone

interface and physical interface must be mirrored.

A generic client serves the purpose of lowering the barriers to

entry for accessing the new multi-tag applications. This is owing

to a number of reasons; the most obvious is the fact that the client

does not have to be downloaded and installed more than once.

This encourages new users to try a particular application. Another

advantage of a generic client is that the user does not build a large

collection of separate applications in the mobile device and

consequently saves on memory usage and searching time for the

application. A further advantage is that the multi-tag services can

use the single application to pass information between one

another. For example, a user may begin to build a user profile that

can be used globally across multiple services, rather that

demanding re-entry of details for each service.

10. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a toolkit that is targeted at

providing developers with the resources to support the

development of multi-tag NFC applications. As well as providing

developer support, the toolkit can support a diverse range of NFC

applications whilst retaining interaction consistency. The

development of the toolkit is driven by the complexities of sharing

the user interface between the phone and physical interface, and

the difficulty of adapting a GUI that is intended for desktop use to

an interface that suits the geometry of the tags. The toolkit

provides a tailored model for the widgets that allows a very high

level of reuse for extending the widget hierarchy. Moreover, the

developers have complete freedom over the appearance of the

widgets with the advantage that they have lossless scaling

properties.

Three prototypes exemplify the versatility of the toolkit; these

vary in sophistication, display of feedback, NFC demands, and

networking demands. One of the main features of the toolkit is not

only to support dynamic and static interface types, but also to

switch between them, as both have their own advantages and

disadvantages depending on the context they are used in.

Future work will be focused around preventing malicious rewrites

to the tags through a security mechanism on the tags. Also,

eliciting further usability aspects with multi-tag interfaces for

integration into the toolkit. The Keystroke-Level Model (KLM)

could be adapted for multi-tag interaction and used to gain an

insight into the efficiency of different interface designs.

11. ACKNOWLEDGEMENT
The presented research was conducted in the Multitag project

which is funded by DOCOMO Euro-Labs and supported by the

Emmy Noether research group “Mobile Interaction with Pervasive

User Interfaces” funded by the DFG.

12. REFERENCES
[1] ABI Research: NFC Chipsets to Grow Steadily into 2012.

http://parts.ihs.com/news/2008/abi-nfc-chipsets.htm

[2] All new Nokia smartphones to come with NFC from 2011,
http://www.nearfieldcommunicationsworld.com/2010/06/17/33966/a
ll-new-nokia-smartphones-to-come-with-nfc-from-2011/

[3] Ballagas, R., Rohs, M., Sheridan, J., and Borchers, J. The Design
Space of Mobile Phone Input Techniques for Ubiquitous Computing.
In Handbook of Research on User Interface Design and Evaluation
for Mobile Technologies. IGI Global, Hershey, PA, USA, 2008.

[4] Broll, G., Siorpaes, S., Rukzio, E., Paolucci, M., Hamard, J.,
Wagner, M., and Schmidt, A. Supporting Mobile Service Usage
through Physical Mobile Interaction. In Proceedings of the Fifth
Annual IEEE International Conference on Pervasive Computing and
Communications (Percom 2007). IEEE, pp. 262-271. 2007.

[5] Guinard, D., von Reischach, F., Michahelles, F., and Fleisch, E.:
MobileIoT Toolkit: Connecting the EPC Network to MobilePhones.
In Proceedings of Mobile Interaction with the Real World (MIRW
2008). 2008.

[6] Häikiö, J., Wallin, A., Isomursu, M., Ailisto, H., Matinmikko, T.,
and Huomo, T. 2007. Touch-based User Interface for Elderly Users.
In Proceedings of the 9th international Conference on Human
Computer interaction with Mobile Devices and Services (Mobile
HCI 2007). ACM, pp. 289-296. 2007

[7] Hardy, R. and Rukzio, E. Touch & Interact: Touch-based Interaction
of Mobile Phones with Displays. In Proceedings 10th International
Conference on Human-Computer Interaction with Mobile Devices
and Services (Mobile HCI 2008). ACM. 2008.

[8] Hardy, R., Rukzio, E., Holleis,P. and Wagner, M. MyState: Sharing
Social and Contextual Information through Touch Interactions with
Tagged Objects. In Proceedings 13th International Conference on
Human-Computer Interaction with Mobile Devices and Services
(Mobile HCI 2011). ACM, pp. 475-484. 2011.

[9] Hinckley, K., Ramos, G., Guimbretiere, F., Baudisch, P., and Smith,
M. Stitching: Pen Gestures that Span Multiple Displays. In
Proceedings of the Working Conference on Advanced Visual
interfaces (AVI 2004). ACM, pp. 23-31. 2004

[10] Kindberg, T., Barton, J., Morgan, J., Becker, G,. Caswell, D.,
Debaty, P., Gopal, G., Frid, M., Krishnan, V., Morris, H., Schettino,
J,. Serra, B., Spasojevic, M.: People, Places, Things: Web Presence
for the Real World. In: Mobile Networks and Applications, 2002.

[11] Koskela, M., Ylinen, J., and Loula, P. A Framework for Integration
of Radio Frequency Identification and Rich Internet Applications.
ITI 2007.

[12] McDonald's Pilots RFID Self-Ordering System in Korea,
http://www.rfidupdate.com/articles/index.php?id=1444

[13] Myers, B.A. Using Hand-Held Devices and PCs Together.
Communications of the ACM 44 (11). pp. 34 - 41. 2001

[14] NTT DoCoMo i-mode Felica, http://www.nttdocomo.co.jp/
english/service/imode/make/content/felica/index.html

[15] O'Neill, E., Thompson, P., Garzonis, S. and Warr, A. Reach Out and
Touch: using NFC and 2D Barcodes for Service Discovery and
Interaction with Mobile Devices, In Proceedings of Fifth
International Conference on Pervasive Computing (Pervasive 2007).
Spring, pp. 19-36. 2007

[16] Reilly, D., Rodgers, M., Argue, R., Nunes, M., Inkpen, K.: Marked-
up Maps: Combining Paper Maps and Electronic Information
Resources. In: Personal Ubiquitous Comput., 10 (4), pp 215-226.

[17] Rekimoto, J. Pick-and-drop: a Direct Manipulation Technique for
Multiple Computer Environments. In Proceedings of the 10th
Annual ACM Symposium on User interface Software and
Technology (UIST 1997). ACM, 31-39. 1997

[18] Rouru-Kuivala, O., Project Manager, Interaction, as simple as touch.
http://www.nfc-forum.org/resources/multimedia/gsm08_press_
luncheon_presentations/City_of_Oulu_-_Barcelona.pdf

[19] Rukzio, E. Physical Mobile Interactions: Mobile Devices as
Pervasive Mediators for Interactions with the Real World. PhD

Dissertation. Faculty for Mathematics, Computer Science and
Statistics. University of Munich. 2007.

[20] Sánchez, I., Riekki, J., and Pyykkönen M. Touch & Compose:
Physical User Interface for Application Composition in Smart
Environments. Proc. 1st International Workshop on Near Field
Communication (NFC’09). 2009

[21] Seewoonauth, K., Rukzio, E., Hardy, R., and Holleis, P. Touch &
Connect and Touch & Select: Interacting with a Computer by
Touching it with a Mobile Phone. In Proceedings 11th International
Conference on Human-Computer Interaction with Mobile Devices
and Services (Mobile HCI 2009). ACM, 2009.

[22] The Lightweight User Interface Toolkit (LWUIT): An Introduction,
http://java.sun.com/developer/technicalArticles/javame/lwuit_intro/

[23] VVT, SMARTTOUCH newsletter, Dec. 2007. www.vtt.fi/
liitetiedostot/muut/2007Newsletter_WEB.pdf.

[24] Want, R., Fishkin, K.P., Gujar, A., and Harrison, B.L. Bridging
Physical and Virtual Worlds with Electronic Tags. Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems
(CHI 1999). ACM. 1999.

