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ABSTRACT
Automated vehicles are about to enter the mass market. However,
such systems regularly meet limitations of varying criticality. Even
basic tasks such as Object Identification can be challenging, for
example, under bad weather or lighting conditions or for (par-
tially) occluded objects. One common approach is to shift control to
manual driving in such circumstances, however, post-automation
effects can occur in these control transitions. Therefore, we present
ORIAS, a system capable of asking the driver to (1) identify/label
unrecognized objects or to (2) select an appropriate action to be
automatically executed. ORIAS extends the automation capabilities,
prevents unnecessary takeovers, and thus reduces post-automation
effects. This work defines the capabilities and limitations of ORIAS
and presents the results of a study in a driving simulator (N=20).
Results indicate high usability and input correctness.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
Interaction techniques.
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1 INTRODUCTION
Operating under all circumstances is still not possible for AVs
(AVs) [55]. A prerequisite for AVs to perform the driving task is the
perception and recognition of one’s surroundings. This includes
static objects such as infrastructure and vegetation, but also dy-
namic items such as other road users. Especially dynamically chang-
ing objects such as signalized intersections, or electronic announce-
ments, which are not part of the vehicle‘s a priori high-resolution
environment map, are challenging. Also, to be independent of such
data, manufacturers strive to develop vehicles that do not rely on
high fidelity a priori maps [63]. Therefore, real-time Object Identifi-
cation (Obj. Ident.) is vital but still challenging, for example, under
bad weather conditions [63]. Factors such as occlusion, bent signs,
or graffiti complicate this recognition. In cases where the AV fails
to recognize objects, a human would have to take over this task.
Such a preliminary cooperative approach called “CooperationCaptcha”
to solve this issue has been proposed by Walch et al. [65]. They pro-
pose to incorporate the human user to classify unrecognized objects
via speech or touch input. This should avoid handovers and, there-
fore, post-automation effects such as unstable lateral control [45] or
reduced distance between vehicles after platooning [5]. The ability
of humans to classify objects was used in different contexts, such
as distinguishing bots from human website visitors [12], to recog-
nize street names on signs [22] or to identify audio sources [77].
Walch et al. [65] name several benefits of such a system: labeling
data for machine learning (ML), consensus on ambiguously labeled
objects, updated map material, transparency of system capabilities,
and avoiding handovers [65]. However, in their preliminary work,
the authors do not present a concise description of this disruptive
idea: (1) In which situations is the system useful? (2) What are the
limitations of it? (3) How exactly should an AV equipped with the
system behave? (4) What is an appropriate design? (5) Are there
other possibilities besides Obj. Ident. to use the system? (6) How is
such a system used and (7) how do people rate such a system?
Therefore, a thorough description and extension of CooperationCaptcha
called ORIAS (Cooperative Object Recognition and Identification
and Action Selection) addressing the aforementioned aspects is
presented. Two different possible concepts are described: (1) ORIAS
as Obj. Ident. (as proposed by Walch et al. [65]) and (2) ORIAS as
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Action Selection (Act. Sel.) where the human user directly decides
what is to be done. Results of a study (N=20) comparing these two
implementations show high usability and high input correctness.

2 RELATEDWORK
This work presents a novel cooperative approach to overcome
difficulties in traffic sign and, more generally, Obj. Ident.. Therefore,
we present related work on the driving task and how this can be
subdivided, cooperation in highly AVs with special focus on Obj.
Ident. ands on work in the domain of automatic traffic sign detection
and recognition (TSDR).

2.1 Driving Task Actions
ORIAS is described as an Obj. Ident. or an Act. Sel. system. To de-
fine relevant actions the automation has to perform, the driving
task has to be broken down into its atomic operations. However,
research has mostly described the driving task high-level. In his
work, Donges describes three actions to fulfill the stabilization of
the vehicle: Steering, accelerating, and braking [13]. Hollnagel et
al. [30] distinguish four levels of tasks: Targeting, monitoring, reg-
ulating, and tracking. On every level, the driver has to constantly
assess the situation and decide on measures to take. Fastenmaier
and Gstalter [21] define the “basic driving task” for the navigational
level (“find and reach a defined destination” [21, p. 963]) and the
control level (“steering and speed control” [21, p. 963]). The authors
divide these tasks into “tasks in longitudinal direction”, “tasks in
intersections”, and “other driving tasks” [21] which are situation
dependent.
For AVs, Kaß et al. [35] collected “all possible driving maneuvers”.
They divide these into lateral and longitudinal maneuvers. With
partially or highly AVs, the driving task changes [20, 23]. While
some work proposes to shift control entirely between human and
AV (i.e., handovers and takeovers [44]), shared control was pro-
posed as a novel input paradigm [48, 50]. Walch et al. [66] see three
disjoint interaction paradigms for driving task-related interaction
with AVs: control shifts, shared control, and cooperation without
tasks on the control level.

For the Act. Sel. system of ORIAS, actions for the human user to
select, therefore, are steering (i.e., select a lane or route), accelerat-
ing, and braking. Additionally, the human user can aid the AV to
determine the relevance of an object (also see [65]).

2.2 Traffic Sign Detection and Recognition
Stallkamp et al. [58] report superhuman vision performance for
the detection of road signs. However, they note that the “images in
the dataset vary strongly in terms of quality and readability” [58,
p. 7], i.e., resolution, contrast, motion blur, or reflection. 18 teams
took part in the International Joint Conference on Neural Networks
and evaluated their networks on the German Traffic Sign Detection
Benchmark [31]. One team achieved 99.97%. Still, there is ongoing
work on the detection and recognition of road signs with challenges
to overcome [78]. Multiple challenges are named [2, 61, 63, 74]:
lighting conditions, motion artifacts, damaged or obscured signs as
well as real-time capability and unavailability of public databases.
Recent approaches achieve a precision of 91.1% [2] even under

challenging weather conditions. These algorithms likely become
near perfect in the not so distant future.

2.3 Cooperation in (Highly) Automated
Driving and On-The-Fly Object Labeling

While switching to manual driving is a common approach to deal
with shortcomings of AVs [3, 46], concerns regarding this approach
have also been mentioned: situational circumstances that cannot be
handled by an automated system are likely also very challenging
for a driver. Therefore, switching off the automated system entirely,
even when some supporting functionality would be available, is
questionable [69]. Moreover, switching from automated driving
to manual driving can have negative effects on the driving perfor-
mance of the human user [5, 45, 56].
Consequently, driver-vehicle cooperation has been suggested as
a driving-task related interaction concept for AVs with the as-
sumption that the system and driver act as team players and help
each other to overcome weaknesses [69]. Humans can help AVs
to recognize unforeseen situations and decide how to deal with
them [71], predict how pedestrians will behave (i.e., will they cross
the road) [68], and to approve the execution of maneuvers [72].

Today, in situations when an AV can not recognize objects with
sufficient confidence, handing over control to the human driver
would be the default protocol. However, the human passenger of
an AV could take responsibility and classify the objects. Walch et
al. [65] implemented two interaction techniques. In the free text
system, the driver can define the unrecognized object via voice.
In the choice system, a more sophisticated system was assumed.
The AV would be able to suggest touch-selectable potential correct
objects without being able to definitively choose the right one. This
could happen for very similar-looking or slightly changed objects
(e.g., [75]). Walch et al. [65] report low mental workload, high us-
ability, and high system aptitude for both systems. Input duration
was significantly longer in the free text system and varied strongly
from one word to long sentences. Participants were also asked for
their strategies when labeling the objects. 25 of 28 participants
stated that they never looked at the scene in both systems, only at
the screen. This seems to be the reason for poor classification in sit-
uations when high SA is needed (e.g., for traffic lights). The authors
themselves partly address several concerns: due to the statically
displayed image of the unrecognized object, context information is
missing. Irrelevant and Other represent two distinct input choices,
as these have to be treated differently: While an irrelevant object
can be ignored, an other object potentially has to be accounted
for [65, guideline (2)]. Additionally, we argue that the display of
a recognition (un-)certainty (in the form of a percentage) carries
the potential to confuse the user as humans have difficulties un-
derstanding probabilities [34]. The procedure in the case of wrong
or no selection is not described. As they used video in their exper-
iment, the system would slow down to increase the time budget
and, without input, “the system would eventually simulate to have
recognized the object and continue the automated journey” [65, p.
4]. It seems reasonable to argue that this will, in reality, not always
be possible. We argue that a more realistic AV response would be
to drive to the curb of the road and come to a halt.
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3 ORIAS DESIGN
We present ORIAS, a system based on the preliminary findings
addressing the expressed lessons learned [65]. As Walch et. al
show [65, 72], human users can be included temporarily in the
driving task by acting as an additional sensor. In the case of prob-
lematic Obj. Ident. due to limited sensor capability or unaccounted
object variation (bent signposts with graffiti, reflecting surfaces,
weather conditions [63]), an AV equipped with ORIAS can ask the
human user for aid. The user can interact with the AV in two ways:
On the one hand, the user can define the unrecognized object (e.g.,
“This is a 30km/h sign”). The AV then has to use this information to
decide on appropriate measures on the navigation, guidance, and
stabilization level, thus, reducing the user to a sensor. This concept
is called Obj. Ident.. On the other hand, the user can already derive
the required measure by defining the missing information and con-
text. For example, if the vehicle is travelling faster than 30km/h,
the driver can respond with a command such as “slow down”. In
this case, the user takes more responsibility and has more control.
Thus, the user defines an instruction at guidance level that the AV
has to follow. In this case, the user has a higher influence on the
driving task and can, if wanted, define parts of the driving style, for
example, whether the unrecognized sign indicates the need to slow
down or not. This concept is called Act. Sel.. The two concepts vary
in the level of control the user holds and in the situation awareness
needed to input the proper information: The user has a higher level
of control in the Act. Sel. concept but also needs higher situation
awareness as the context is relevant to determine the appropriate
action.

ORIAS is intended for conditionally, highly, and fully AVs (SAE
Level 3, 4, and 5 [53], e.g., to enhance the operational driving do-
main). These (partly) AVs can operate in situations of varying dif-
ficulty. While recognition algorithms already work well (see Sec-
tion 2.2), we doubt that all kinds of objects under all conditions
imaginable can be classified. Humans, however, are very profi-
cient in classifying objects and could even classify objects such as
hand-drawn signposts. While it is not mandatory to follow these
messages (e.g., “Please slow down - children playing”), it is highly
expected by the residents. Also, for assessing signposts only apply-
ing if other criteria are met (e.g., when raining) could be difficult
for AVs. In the following, we describe the process that led to and
the final design of ORIAS. Additionally, behavior with incorrect or
insufficient input and system limitations are discussed.

3.1 Process
We developed prototypes in an iterative design process involving
people with various backgrounds such as Design, Computer Science,
and Human-Computer Interaction (see Figure 1). The Live-Preview
and option selection via click or speech remained unchanged. A
key difference was to differentiate between a system that asks the
driver for an action to execute (Figure 1c) or for help identifying the
object to be able to execute proper actions on its own (Figure 1b).
This is based on the difficulties some participants had in naming
the relevant objects and, thus, named the required action [65].

3.2 User Interface Concept
The user interface (UI) contains an always-on Live-Preview [65]
(Figure 1b A) enabling a constant mapping between the real world
and the Live-Preview to prevent cognitive overload when the main
functionality of ORIAS is triggered.
When the AV could not identify an object, the ORIAS feature will
be triggered (Figure 2 step (2)). The causing object will be roughly
visually highlighted (Figure 1b A), an information message and cor-
responding selection fields will be displayed. As no other relevant
textual information is presented above the Live-Preview, the order
of processed information follows the order of priority: Directive
text box first (i.e., the instruction “Please select the correct object
(action) or apply the brakes to take control over the vehicle”; Fig-
ure 1b B). Then Input options (Figure 1b C), followed by an indicator
for the activated microphone (Figure 1b D).

As numerous traffic signs in Germany contain blue (183 of 715),
Yellow (100 of 715), and Red (208 of 715), we chose different shades
of gray (e.g., HEX #4b4b53 and HEX #646469) and orange (HEX
#f06831) as the color scheme (see Figure 1). For other countries,
ORIAS should adapt these colors to the traffic system and the local
cultural color interpretation [11, 47, 59]. As a label for the UI in the
Obj. Ident. system, the official wording of the according Ministry
of Traffic could be used, however, these are mostly legal terms
or numbers which we assume are barely known (see [65]). In the
instrument cluster, we show the upcoming maneuver of the AV as
guidance for the human user.

3.3 Automation Behavior
When the AV encounters an un-identifiable object, it shows the
ORIAS UI in the center touchscreen. A sound alerts the operator
(as this decreases reaction time [41]). The AV initially continues
to drive at a constant pace to avoid interrupting traffic flow when
the user can identify the object quickly or when the AV itself can
identify it based on novel information (e.g., better angle, better
lighting conditions). After a specified time driving with the same
velocity, the vehicle will slow down and finally stop at the unknown
object if the user fails to interact with ORIAS (see Figure 2 (4)) and
ask the driver to take over. This approach does pose risks in a real
scenario as other road users could be surprised by an unforeseen
standstill. However, this is a proposed exit strategy and will, for
example, be implemented in the new Mercedes S-Class in 2021 [27].
The vehicle should, therefore, try to minimize this risk by coming to
a halt at the curb. With a take over or a standstill, a handover screen
(see Figure 2 (3)) to continue the automated journey is shown. To
hand over control to the automation again, ORIAS will again ask
the user for the unknown objects (see Figure 2 (5)). This provides
data for ML [65] and prevents the user to ignore an unknown object.
Asking for the object can be avoided if all relevant information is
available, for example, via a priori maps.
Waymo claims to “identify [...] stop signs greater than 500 meters
away” [32]. However, we assume a sensor range of ≈ 100m as in
non-linear settings such as historical inner cities, this range will
not be usable. For a deceleration from 50km/h (≈ 30 mph, a typical
allowed velocity in European and US cities [1, 10]) to 0km/h with
a continuous deceleration of -2.5𝑚/𝑠2 (for petrol cars; full brake
with -8.9𝑚/𝑠2 [4]), ≈ 39m and ≈ 5.6s are needed. Therefore, for the
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(a) First paper prototype. (b) Final prototype for Obj. Ident. (c) Final prototype for Act. Sel.
Figure 1: The user interface of ORIAS at different stages of the design process.

remaining 61m of the 100m drive to the unrecognized object with
a constant velocity of 50km/h, ≈ 4.4s are needed. This time budget
could be enhanced via earlier deceleration. This would also provide
a physical notification to the user. Consequently, after ≈ 4.4s of
continuing driving at a constant speed, the AV decelerates linearly.
This combined time budget of 4.4s + 5.6s = 10.0s could allow even
for a safe take over [26].

3.4 Selection, Approval, and Cancellation
Multimodal (touch and speech) input [49] is possible simultane-
ously. For the selection of an option, the appropriate button has
to be held. When holding a suggestion, the button fills up with
green color, indicating a status bar. For touch input, we propose to
employ the HOLD technique as it was shown to be faster for cancel-
lations compared to clicking [73]. The user would, therefore, click
the option until the vehicle drove past the object. While clicking
was rated as more usable in Walch et al.’s use case of overtaking
slower vehicles [73], we prioritize the cancellation aspect to in-
crease safety. This interaction is not possible for speech input. For
speech, switching the chosen option is possible until the object is
reached as ORIAS will continue to show and highlight the object
until the vehicle drove by.
Depending on the concept, “Irrelevant” or “Ignore” can be chosen.
In both concepts, it is possible to choose “Other”. In this case, the
user has to use speech to define the object. This would be communi-
cated to the user via text displayed (e.g.,“Please define the object”).
The microphone is automatically activated as suggested by Walch
et al. [65]. This is visualized via a highlighted microphone symbol
(see Figure 1b D). The user can choose a suggestion by (1) naming
the displayed option, (2) the name of the object or sign (e.g., “Tempo
50”) (3) or by saying “Irrelevant” or “Ignore”.

3.5 Incorrect or Insufficient Input Behavior
To act appropriately, ORIAS requires the specific object, signpost, or
action. Naming the object class (see [65]), while being semantically
correct, does not help the AV in planning appropriate measures.
Thus,ORIAS would tell the user “Please be more accurate”. In cases
when the user would classify an object wrongly, the AV would
act possibly wrong while keeping distances to other road users
and doing sanity checks of the input (e.g., in a city, entering that

a signpost says that 100km/h are allowed is inconclusive), thus,
preventing abusive usage of ORIAS. This does pose some legal (e.g.,
driving too fast) as well as safety risk (e.g., for ignoring the right of
way) to the human operator of the vehicle. Still, the overriding of
user’s input poses other questions [42, 43], including legal ones.

3.6 ORIAS Limitations
ORIAS is only usable with a sophisticated version of an AV capable
of realizing that it is not able to classify an object. (Un-)Certainty of
object classification algorithms, however, is already common [64].
Challenges of the ORIAS are evident in scenarios when multiple
objects have to be classified. Here, the Act. Sel. system could pro-
vide benefits as the decision can be condensed into one appropriate
action. Another problematic application is in critical situations with
small time budget. While the AV decelerates to enhance the avail-
able time budget, this could be too small in high-velocity scenarios
(e.g., on highways). A small time budget could also be a problem in
winding roads or when objects are blocked, for example, through
houses or trees. In Germany, the “[the road authorities] [...] have
to take particular care to ensure that road signs and traffic installa-
tions are clearly visible and in good condition, even in the dark” [7,
number IV 1 to § 45 (3)], however, it is not clearly defined what
“clearly visible” means. ORIAS is currently not intended to input
information the automation can not perceive but only for objects it
can not classify.

4 EXPERIMENT
To evaluate ORIAS, we conducted an experiment in a driving simu-
lator guided by the research question: What effect does the type of
interaction request for ORIAS have on (1) number of takeovers, (2)
input accuracy, (3) input duration, (4) cognitive load, (5) usability,
(6) intuitiveness, (7) trust, (8) control, and (9) perceived safety?

Participants were recruited by e-mail and via social media. They
receivede 12 for participation. All subjects needed to hold a driver’s
license and speak German and English fluently. The final sample
(5 female, 15 male) consisted of N=20 participants with an average
age of M=25.20 (SD=2.46; range: 21 to 29 years).

4.1 Materials
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Figure 2: Flow chart of the automation behavior including ORIAS.

Figure 3: Driving simulator as used in the study. Situation 1
is currently displayed.

4.1.1 Driving Simulator. The study was conducted in a driving sim-
ulator (see Figure 3). The driving simulator mockup contains three
driving simulation related screens (FullHD, 42 inches), a steering
wheel, pedals and simulates a vehicle with an automatic gearbox.
The touchscreen (1280 x 1024,17 inches) was used in portrait mode
for ORIAS. A fifth screen (10 inches, FullHD) behind the steering
wheel simulated an instrument cluster. The hygiene concept re-
garding COVID-19 for studies (ventilation, disinfection, wearing
masks) involving human subjects of our university was applied.

The track simulated an existing small city in Germany. During
the course, participants passed a school, a construction site, and
an avenue. We simulated eight roughly equidistantly distributed
engagement situations (see Figure 4). The track was simulated with
the SILAB [24] simulation software.

4.1.2 Measurements. The system recorded the number of takeovers,
the input, and the input duration as objective dependent variables.
After each condition, participants were asked to rate the subjec-
tively needed cognitive load with the raw NASA-TLX [29] on 20-
point scales, usability using Brooke et al.’s System Usability Score
(SUS) [6], intuitiveness using the INTUI [62] questionnaire, SA
using the situation awareness rating technique (SART) [60], trust
using the German version of the Trust in Automation scale [33] by
Kraus et al. [39], perceived safety using four 7-point semantic dif-
ferentials [19], and control with the subscales power and mutual de-
pendence using the Human-Machine-Interaction-Interdependence-
Questionnaire (HMIIQ) [76]. Finally, participants were asked open
questions regarding feedback and improvement proposals as well
as their spontaneous command for all eight situations.

4.2 Study Design
The experiment was conducted as a two conditional (Obj. Ident. and
Act. Sel.) within-subject design with the same eight measurement
points (unidentified signposts) in each condition. In the condition
Obj. Ident., the participants need to recognize the object asked by
the system and select a sign within the UI (see Figure 4 “a” sub-
figures). In the condition Act. Sel., the participants select a proper
command (see Figure 4 “b” subfigures).
The participants were also able to select the requested traffic sign
or command by voice instead of using the touch screen. Voice in-
put was resolved via the experimenter as a Wizard-of-Oz. This
method allows the experimenter to manipulate the system with
the participant believing the system to be autonomous. The pro-
posed cancellation options as described in Section 3.4 were not
implemented as we were interested in the raw input duration and
correctness. To avoid confounding factors, we also did not simu-
late traffic or pedestrians. As subjective dependent variables, the
questionnaires described in Section 4.1.2 were used. Additionally,
the system recorded the number of takeovers, the selected sign or
command, and the input duration as objective dependent variables.

4.3 Procedure
After giving informed consent and a brief overview of the study,
participants filled out a demographic questionnaire. Afterward,
participants were introduced to the setup and were able to adjust
the seat to their needs. Next, the brief overview of the study’s
content was repeated by the experimenter and it was highlighted
that if the AV were not able to recognize an object, it would ask
the participant for help. The various options were explained. Then,
the participants were randomly assigned to one of the conditions
as the start condition. After completing the eight situations in the
starting condition, the participants filled in the questionnaires (see
Section 4.1.2), and begin with the other condition. At the end of
the second run, participants filled in the questionnaires again and
were asked open questions regarding feedback and improvement
proposals, their spontaneous command for all 8 situations, and
they were asked to rate which alternative (Obj. Ident., Act. Sel. or
manually driving) they like the most. Subsequently, the test persons
were informed about the study objectives and compensated with
e 12. This marked the end of the experiment. Each session lasted
approximately 70 min. The study was conducted in German. Quotes
were translated.



AutomotiveUI ’21, September 9–14, 2021, Leeds, United Kingdom Colley et al.

Figure 4: The eight interaction scenarios with the first two options for Obj. Ident. (a) and Act. Sel. (b). Ticks show the correct
option(s). In all situations, the first or second option was regarded correct, this was inverse for the other condition. For some
signs, multiple options were appropriate, for example, the correct classification or choosing “irrelevant”. Also, some signs do
not enforce to drive slower but it is a common reaction, see the “Attention children” sign.

5 RESULTS
Dependent on the nature of the data, we employed t-tests (Cohen’s d
for effect size) orWilcoxon Signed Rank tests (effect sizes calculated
using the formula proposed by Rosenthal [52]). We used Version
4.0.5 of R with all packages up-to-date as of May 2021. RStudio
Version 1.4.1103 was used.

5.1 Cognitive Load & Situation Awareness
The overall score of the NASA TLX was M=5.73 (SD=2.97) for the
Obj. Ident. andM=7.45 (SD=3.13) for theAct. Sel. system. Significance
between these systems was almost reached with a t-test (t(19) =
-2.06, p=0.055, r=-0.46). We found no significant differences on any
of the subscales except the mental workload subscale (Obj. Ident.:
M=7.25, SD=4.45; Act. Sel.: M=10.35, SD=5.00; t(19) = -2.12, p=0.048,
r=-0.47).For SA, no significant differences were found (Obj. Ident.:
M=21.15, SD=4.28; Act. Sel.: M=21.15, SD=6.08). Additionally, no
significant differences were found for the subscales Supply, Demand,
and Understanding.

5.2 System Usability & Intuitiveness
System usability was rated excellent (above 80.3 [54]) for the Obj.
Ident. (M=82.50, SD=12.93) and very good for the Act. Sel. system
(M=72.88, SD=16.61). A t-test revealed a significant difference (t(19)
= 2.51, p=0.02, r=0.56).

No significant differences in any of the subscales effortlessness,
gut feeling, magical experience, or verbalizability of the INTUI were
found. In the single itemmeasuring overall intuitiveness, however, a

Wilcoxon Signed Rank test revealed an almost significant difference
between the Obj. Ident. (M=5.95, SD=1.28) and the Act. Sel. system
(M=5.25, SD=1.29; Z = -1.78, p=0.075, r=-0.28).

5.3 Trust, Perceived Safety, Power, and Mutual
Dependence

A t-test revealed that trust was significantly (t(19) = 2.55, p=0.02,
r=0.57) higher in the Obj. Ident. (M=4.36, SD=0.81) than in the Act.
Sel. system (M=3.75, SD=1.02).The Obj. Ident. system caused a little
higher feeling of perceived safety (M=1.54, SD=1.25) compared to
the Act. Sel. system (M=1.29, SD=1.17. No significance was reached
and one participant in the Obj. Ident. system did not feel safe at all
(value = -2.25 compared to 2.00 in the Act. Sel. system).

A t-test revealed that subjective power was significantly (t(19)
= -3.09, p=0.006, r=-0.69) higher in the Act. Sel. system (M=3.04,
SD=0.96) than in the Obj. Ident. system (M=2.41, SD=0.87).For the
mutual dependence subscale of the HMIIQ [76], no significant dif-
ference was detected (Obj. Ident.:M=3.53, SD=0.78; Act. Sel.:M=3.42,
SD=0.80).

5.4 Input and Cancellations
We found no significant effect on the input duration (Obj. Ident.:
M=5857 ms, SD=2063; Act. Sel.: M=6447 ms, SD=1807).

A Wilcoxon Signed Rank test revealed that the Obj. Ident. system
performed significantly (Z = -3.31, p<0.001) better in the correct-
ness of classification.In the Obj. Ident. system, M=6.75 (SD=1.45)
signposts were classified correctly, in the Act. Sel. system M=4.5
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(SD=1.57). This changed, however, if taking “irrelevant”/“ignore”
into account.While, at least in the Obj. Ident. system, a correct op-
tion was always selectable, “irrelevant”, for example, in the second
situation was also a valid input as the sign is not intended for cars.
A Wilcoxon Signed Rank test still revealed a significant difference
(Z = -2.02, p=0.04, r=-0.32), the difference, however, became smaller
(Obj. Ident.: M=7.30, SD=0.66; Act. Sel.: M=6.80, SD=0.83). The usage
of these buttons did not significantly differ between the systems.

33 / 320 (10.31%) of the interactions with ORIAS were via speech
input. No significant differences in the usage of voice input were
found between the systems. Only three participants took over when
ORIAS was active and two of them only aborted once, the other
twice (4 / 320 = 1.25%). One takeover occurred during the first
encounter with the Act. Sel. system and was explained by the par-
ticipant with the unfamiliarity.

We also evaluated differences for input duration and correctness
for each situation. (for situations, see Figure 4). In the situation 1
(Z = -3.60, p<0.001, r=-0.57), situation 2 (Z = -2.38, p=0.02, r=-0.38),
situation 3 (Z = -4.35, p<0.001, r=-0.69), and situation 6 (Z = -2.52,
p=0.01, r=-0.40) a significant difference in input duration was found.
Input duration was only lower for Act. Sel. in situation 2. For the
analysis of the correctness of the input, we used the values including
“irrelevant”/“ignore” as correct input. Comparisons were done using
the Chi Square test as categorical data (correct vs. incorrect) was
used. We found no significant differences in correctness scores for
any of the eight situations.

5.5 Preference, Open Feedback, and Command
Suggestions

Participants ranked the two systems and driving yourself after both
conditions. The Obj. Ident. system received rankings indicating the
highest preference, i.e., the lowest mean (M=1.70, SD=0.73). Both,
the Act. Sel. system (M=2.25, SD=0.91) and driving yourself (M=2.05,
SD=0.76) received almost the same rankings. Therefore, no signifi-
cant differences between the ratings were found by a Friedman’s
ANOVA. Participants could provide a rationale for their ratings.
Opinions were rather strong and diverse and no clear consensus
was found.

Several participants highlighted the ease of the Obj. Ident. ([P16]:
“A great thing here was that you only had to support the car during
recognition and not additionally during the decision making [...]
This made driving much more pleasant”). The Act. Sel. and the de-
celeration of the vehicle seemed to induce more stress ([P11]: “I felt
like the system decreased speed until the decision. Pressure was
built up to make a decision to continue the journey normally”). Two
participants argued to include the Live-Preview into the instrument
cluster and to use zoom functionality.
After the conditions, we asked participants to provide a command
for each of the eight situations (see Table 1). Of the 160 provided
commands, 51 were a description of the signpost. 4 of them were
wrong. The other commands were distributed between “Ignore” (44
times) and speed adjustments (31). Especially interesting is the “Ig-
nore” command for the “Attention children” sign, as the participant
explicitly mentioned that ignore is only valid “as no children are
visible”, showing that the participant took the surroundings into

account. In some cases participants actually gave two commands,
therefore, some columns sum up to have more than 20 commands.

6 DISCUSSION
Two implementations of ORIAS were described and evaluated: Obj.
Ident. and Act. Sel.. The study revealed high to excellent usability,
high input correctness, higher trust in the Obj. Ident. system, and
revealed how participants would spontaneously command such a
system. Additionally, the automation behavior was described. In
the following, we want to discuss the advantages and disadvantages
of the concept, the implementations, and its applications.

6.1 Object Identification vs. Action
Determination

Participants reported significantly higher ratings in the perceived
power for the Act. Sel. system (M=3.04, SD=0.96). This confirms
our expectations as the person clearly defines the next action of
the AV compared to only classifying data. Trust in the Obj. Ident.
system (M=4.36, SD=0.81) was rated significantly higher (Act. Sel.:
M=3.75, SD=1.02). System transparency was shown to increase trust
in AVs [8, 14, 38]. The Obj. Ident. system is more transparent as the
internal classification results are clearly shown as input options one
and two (see Figure 4 “a”). In the Act. Sel. system, the more abstract
resulting action is displayed. The process resulting in these options
is, however, unclear as these could also originate from various other
signposts (e.g., “Drive 20” can originate from an attention sign or a
sign enforcing this velocity), therefore, transparency and trust are
lower in the Act. Sel. system. We also believe this to be one reason
for a significantly higher mental workload in theAct. Sel. system.An
additional reason can be be derived by the concept of SA. As stated
by Endsley [16], SA consists of three levels: Perception (Level 1),
Comprehension (Level 2), and Projection (Level 3). Level 3 allows
for “timely and effective decision making” [16]. Level 1 is achieved
much quicker, and with less cognitive load. Therefore, Obj. Ident.
should result in lower cognitive load and faster input duration. Our
experiment validated this (Obj. Ident.: M=7.25, SD=4.45; Act. Sel.:
M=10.35, SD=5.00).However, Obj. Ident. can be difficult if numerous
objects that only differ in details are presented as alternatives. Ob-
jects (e.g., signposts) can vary in detail, for example, in number or
position of arrows. Therefore, there is a risk of confusion for the
human user. While a human user could quickly identify, for exam-
ple, that this object can be ignored, identifying the correct version
of such an object could be cumbersome.Here Act. Sel. seems to be
more appropriate. Despite feeling more in power in the Act. Sel. sys-
tem and trusting the Obj. Ident. system more, perceived safety was
almost equal. The dependency between these variables are unclear.
Both systems were rated highly usable, the Obj. Ident. system even
significantly more usable. This is attributed to the higher system
transparency and the lower mental workload.

Walch et al. summarized four requirements for cooperation be-
tween an AV and a human: mutual predictability, directability,
shared situation representation, and calibrated trust [69]. In the two
implementations, shared situation representation is not equal: for
the Obj. Ident., the AV and the human user both know the position
and the actual signpost. In the Act. Sel. system, the AV does not
know about all relevant objects. For example, when the user orders
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Command class Children Bicycle Right of
way

30 km/h Tank rules Cab spot Trucks prohib-
ited

Construction
site

Ignore 1 ([P3]: “as no
children are
visible”)

9 (one:
“continue
ride”)

14 10 10

Speed adjustment 8 0 1 14 8 (incl. “attention”
and “caution”)

Give right of way 20
Identification 12 11 5 4 10 9 12
Misjudgment 1 ([P2]:

“oncoming
traffic”)

2 ([P2]: “watch [...] on-
coming traffic”, [P12]: no
answer)

1 ([P9]: “do it
yourself”)

Table 1: Proposed commands for the eight situations including 3 wrong commands and 51 Obj. Ident. proposals.

the AV to slow down to 20 km/h, this could be because a signpost
enforces this speed limit or due to a children warning sign. While
this decreases shared situation representation, the relevant infor-
mation (driving speed) is still distributed, should not negatively
impact driving performance, and could make use of the specific
strengths of the actors.
In the presented study, the focus was on a variety of driving-task rel-
evant signpost recognition. While the Obj. Ident. system performed
better in terms of input duration in most situations, participants
were able to provide input more quickly in situation 2 with the Act.
Sel. system (see Figure 4). No significant differences in correctness
were found for any of the situations. Therefore, we argue that there
will be situations in which the Act. Sel. system is more appropri-
ate. We believe the better performance of the Act. Sel. system in
situation 2 to be dependent on the signpost. As it is yellow, it is
quickly clear that it is not relevant for one’s own driving. However,
determining the exact version of it is difficult as there are several
similar-looking signposts. While Obj. Ident. with a single signpost
was under investigation, ORIAS in the variant Act. Sel. could also
be employed for more complex tasks such as pedestrian intention
recognition (e.g., [8, 25]). The variant Obj. Ident. seems unfeasible
for such scenarios as the input for this is difficult: the user would
have to provide a direction of movement or whether the person will
stop. In scenarios in which context information is relevant, even
a Live-Preview could fail in providing sufficient information. For
example, when a traffic sign is dependent on another sign defining
prerequisites such as “only relevant when raining” or Variable Mes-
sage Signs [15], a stationary sign might be irrelevant. In such cases,
Obj. Ident. could be beneficial as the AV will have recognized the
other traffic sign.Act. Sel.might fail or would have to provide the rel-
evant prior information. Therefore, we conclude that the proposed
implementations are highly situation-dependent. Additionally, the
preference of the study participants was not clear. Looking into
technical advantages, only the Obj. Ident. has the advantage that hu-
man users would aid future ML systems by providing classifications
(i.e., labels) for objects.

6.2 Appropriate Use Cases
Numerous fields of application seem feasible. Instead of simple
signpost recognition, which is likely to become better over time,
other objects can be also classified by the human user. This includes
a broad range of objects such as variable traffic signs, handwritten
signs, but also advertisement, or traffic-relevant shaped objects.
There are no limitations regarding this object classification, there-
fore, ORIAS enables the collection and labeling of massive data for

ML. Another use case without a link to signposts and Obj. Ident.
was already shown by Walch et al. [67, 70]. A broken down car
is standing at the side of the road. The vehicle or the driver has
to assess whether it is possible to drive past or stop, for example,
because there is a traffic jam or the vehicle is standing there to form
a rescue alley. ORIAS in the Act. Sel. variant could be used to pro-
vide relevant input. Additionally, more complex use cases in which
the surroundings have to be taken into account can be addressed.
This can include legal, weather, or other aspects. One example are
“residents only” signs. Here, the human user can take responsibility
and allow the vehicle to enter this street. In some cases, the sign-
posts’ relevance is also dependent on the circumstances (e.g., “slow
down in case of snow”). While the vehicle will have to be able to
detect snow (accuracy today around 90% [36]) or fog (also around
90% [37]), a threshold for when applying this limited velocity has
to be defined. As perceived safety is an essential factor for the ac-
ceptance of AVs and people are likely to perceive the objectively
same scenario differently, being able to define a personal threshold
will likely function as a positive factor regarding acceptance of AVs.
We also argue that because of this, it should always be possible to
enter the desired velocity without having to take over control. This
would then enable a personalization of driving styles for the AV
which, we believe, would increase acceptance.

6.3 Takeover vs. ORIAS
Taking over an AV in poses numerous challenges such as post-
automation effects [5, 17, 18, 45, 51]. Walch et al. [67, 70], therefore,
investigated cooperation between human users and the automation.
The benefit is that only a small part of the actual driving task has to
be performed by the human user potentially limiting the negative
post-automation effects. The same holds for our implementation:
instead of having to take over full control (including steering, brak-
ing or accelerating, setting turning lights, look for other vehicles,
...), the human user can focus on the relatively simple task of identi-
fying an object or determining an appropriate action which can be
performed by the automation safely. Therefore, a takeover can be
prevented and less negative effects of post-automation seem likely.
Also, ORIAS can be used for the handover process (see Figure 2). In
case of unclear or missing information, the AV can ask the human
user. This can, for example, include the definition of an occluded
signpost the vehicle drove past earlier. While the AV does not need
this information during manual mode, it is necessary for activating
the automation. Providing this retrospective information again can
help to push the current boundaries of AVs.
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6.4 Design Implications
One participant highlighted that showing the Live-Preview in the
instrument cluster or a head-up display during ORIAS would im-
prove usability as glancing would be minimized. This could even be
enhanced by providing zoom functionality. Going even further in
the future, Augmented Reality systems have already shown to im-
prove situation awareness and trust in automated systems [8, 9, 57].
With windshield displays [28], ORIAS could be even more usable.
Still, the Obj. Ident. system already received excellent SUS ratings of
M=82.50. Thus, we argue that our current implementation is ready
to use. No participant mentioned concerns about the automatic
microphone activation, still, privacy concerns remain. We propose
to use an opt-in policy if such a system were to be implemented.

7 LIMITATIONS
Participants were relatively young (M=25.20 years old). As driving
experience is expected to have a significant impact on the approval
and adoption of ORIAS, future studies should account for the differ-
ences between age and especially driving experience groups. Based
on the experiment setup, learning effects could not be avoided as
the same route with the same signposts was used in both conditions.
We targeted this by alternating the correct answer differently per
condition: if the first answer was correct in condition 1, then the
second answer was correct in condition 2. Additionally, we did not
simulate other road users such as vehicles, pedestrians, or cyclists
to avoid confounding factors. As one participant stated, having a
vehicle approaching you from the rear when one is trying to deter-
mine the correct sign will lead to higher stress. Therefore, ORIAS
has to be evaluated under more realistic settings. Additionally, the
effect of other irrelevant objects such as advertisement has to be
investigated. This may also include varying the time of day or in-
ducing cognitive load, for example, via a secondary task. We are
also aware that this study presents only cases in which ORIAS is
able to present the correct information or action. It is important
to study the effects of erroneous options, however, we focused on
general usability in this first study.

8 CONCLUSION & FUTUREWORK
Overall, this work provides detailed considerations of ORIAS high-
lighting the usefulness but also limitations [40]. ORIAS pushes the
boundaries of current automation technology by involving the hu-
man user in the Obj. Ident. and Act. Sel. process. Additionally, the
Obj. Ident. results can be used for training of ML algorithms. We
implemented the two interaction possibilities Obj. Ident. and Act.
Sel. and conducted an experiment assessing usability, cognitive
load, intuitiveness, situation awareness, perceived safety, human-
machine-interaction-interdependence, input duration, and correct-
ness.Participants (N=20) rated the implementations as highly usable,
intuitive, and were able to correctly assess most of the signposts.
In line with previous work [72], ORIAS shows that cooperation
between an AV and the human user is feasible and often preferred
to taking over in case of reaching automation limits.
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