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ABSTRACT
Autonomous vehicles could improve mobility, safety, and inclusion
in traffic. While this technology seems within reach, its successful
introduction depends on the intended user’s acceptance. A substan-
tial factor for this acceptance is trust in the autonomous vehicle’s
capabilities. Visualizing internal information processed by an au-
tonomous vehicle could calibrate this trust by enabling the percep-
tion of the vehicle’s detection capabilities (and its failures) while
only inducing a low cognitive load. Additionally, the simultane-
ously raised situation awareness could benefit potential take-overs.
We report the results of two comparative online studies on visu-
alizing semantic segmentation information for the human user of
autonomous vehicles. Effects on trust, cognitive load, and situation
awareness were measured using a simulation (N=32) and state-of-
the-art panoptic segmentation on a pre-recorded real-world video
(N=41). Results show that the visualization using Augmented Re-
ality increases situation awareness while remaining low cognitive
load.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
Interaction techniques.
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1 INTRODUCTION
With autonomous vehicles (AVs), mobility is expected to change
fundamentally [14]. The passenger can engage in a wide variety of
non-driving related tasks [11], such as sleeping, reading, or playing
games [42]. Additionally, AVs enable higher mobility for the elderly,
people with impairments, or people too young to drive. However,
with the introduction of AVs, issues of novel technology affecting
personal safety such as under- or overtrust emerge. Schöttle and
Sivak found that 75% were at least slightly concerned about sys-
tem failure in unexpected situations [45]. The reliability of AVs
is also a worry of potential users [32]. With undertrust, usage of
this potent technology could be scarce. Previous work investigated
the effect of highlighting, for example, other vehicles under bad
weather conditions [50] or pedestrian intention [9] to address these
worries. In contrast, overtrust leads to over-usage and could result
in abusive usage of such systems. The first prerequisite for safe
driving is the detection and recognition of relevant objects. Seman-
tic segmentation is used to gain information on objects in a scene
by attributing every pixel of an image to a class (e.g., vehicle or
pedestrian) and is, therefore, “an enabling factor for a wide range
of applications” [10, p. 1] such as AVs. While the networks used
for semantic segmentation are evaluated statistically on test sets,
colorized pictures or videos are shown as qualitative examples [10].
Providing the information on detection and recognition to the vehi-
cle’s user could increase and calibrate the trust, improve situation
awareness, and enhance the technical maturity assessment of the
vehicle. As the user can directly perceive miscategorizations or
highly frequent changes, this visualization directly shows when
the AV is uncertain about other objects and ,therefore, calibrates
trust and maturity assessment instead of trying to increase it.

The work’s contributions are: (1) Results of a literature analysis
on the used colorization in semantic segmentation visualization.
(2) An Augmented Reality (AR) and a tablet-based semantic seg-
mentation visualization technique, and (3) findings of two online
studies based on a simulation (N=32) and a video of a real-world
ride visualized using a state-of-the-art model [8]. Results show that
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the AR visualization reduced cognitive load in the simulation-based
study and increased situation awareness (SA).

2 IN-VEHICLE VISUALIZATIONS
In the research field of in-vehicle visualizations, Head-Up Displays
(HUDs) are viewed as an approach to avoiding driver diversion.
Gabbard et al. [15] highlight their advantages: no need to look
down, spatial proximity, and novel sources of available information.
Challenges are mainly technical. However, visual clutter and driver
distraction could also negatively impact driving performance [15].
Compared to traditional Head-Down Displays (HDDs), HUDs were
shown to increase performance measures (lateral and longitudinal
control) [46]. Current HUDs are relatively small (e.g., Volkswagen’s
HUD has a virtual screen size of 217 x 88 mm [1]). Windshield
Displays (WSDs) are the next step in the development of HUDs by
covering the entire windshield. Finally, the goal is to show content
at continuous depth [17].

While this work mainly focuses on aiding the driver of a vehicle,
this technology could also be employed in AVs to calibrate user
trust and improve SA. This could increase the willingness to use
this novel technology. High usage of AV technology is necessary
to take advantage of the potential benefits of it [21]. Previous work
investigated various communication means to communicate deci-
sions, detections, destination, regulation, and navigation. Löcken
et al. inform the user of the decisions of their AV with ambient
light [34]. Wilbrink et al. [49] also proposed to use light strips to
indicate intention or perception. Lindemann et al. [33] used an AR
WSD to highlight threats such as pedestrians and provided a cube
over moving vehicles indicating their behavior (e.g., dangerous
or unusual). This resulted in higher SA in low and high visibility
scenarios than only having the basic elements speed and navigation
info.

Calibrated trust [37] refers to a state where the user’s trust is
appropriate to the capabilities of the automated system. This avoids
issues associated with over- and undertrust. Koo et al. [26] inves-
tigated the effect of providing different types of information (how
and why information) for the actions of semi-autonomous vehicles.
Explanatory information (i.e., why information) led to highest trust.
Additionally, providing on how the vehicle behaves could lead to
cognitive overload [26]. Still, combining both messages resulted
in the safest driving behavior. Häuslschmid et al. [19] showed the
vehicle’s current situation interpretation. This was realized via
a world in miniature or a simulated chauffeur avatar. Trust was
increased most by the world in miniature. Participants’ opinions
varied strongly about whether such a visualization is needed. Col-
ley et al. [9] compared the visualization of pedestrian intention
in a VR study between a tablet-based and an AR version. The AR
version was implemented as if a WSD was already available. The
AR version was significantly better rated by participants in terms
of cognitive load.

The visualization of automation uncertainty was less investi-
gated. Beller et al. [2] investigated how conveying automation
uncertainty could improve driver-automation interaction. For this,
they displayed a simple anthropomorphic symbol when system
limits occurred. Results showed that, for takeovers, a longer time-
to-collision was available. Additionally, SA and trust were higher

when uncertainty information was displayed. Helldin et al. [20]
also used an abstract representation of uncertainty. They support
the findings that the users took over control quicker, but their
participants trusted the automation less when shown uncertainty
information. Kunze et al. [30] used AR to present uncertainties of
longitudinal and lateral control, i.e., the ability to steer and acceler-
ate/decelerate. This resembles the definition of Kaß et al. [24] who
divide AV maneuvers into lateral (driving straight ahead, turning
(left, right), and changing the lane, (left, right)) and longitudinal ma-
neuvers (keeping a constant speed, decelerating, and accelerating).
At a standstill, these maneuvers are remaining to stand (0 km/h),
driving forward, and reversing [24]. Several visual variables were
evaluated in a sorting study. Results showed that especially hue
conveys urgency. In another study, Kunze et al. [31] argued that
having to use the instrument cluster for visualization of uncertainty
information can increase workload. Therefore, a light strip as a pe-
ripheral cue and a vibrotactile seat were added. Results showed that
this enabled users to put more attention on the road. These studies
have in common that an abstract representation of uncertainty is
used. Several factors could be relevant to this uncertainty and are,
therefore, invisible to the user.

3 SEMANTIC SEGMENTATION
Semantic segmentation of pictures describes the process of clas-
sifying every pixel of an image. In semantic segmentation, every
pixel is attributed a class, for example, “vehicle” or “pedestrian”. In
instance segmentation, every pixel is attributed to the instance of
a class. In panoptic segmentation, these two approaches are com-
bined [8]. Bowen et al. open sourced their implementation of a
panoptic segmentation on GitHub [7]. This model is trained on the
Cityscapes dataset [10], a large-scale dataset providing annotations
to train models for segmentation. This implementation achieves
over 80% mean Intersection over Union (mIoU), therefore, “setting
the new state-of-art” [8, p. 12475] in June 2020.

To evaluate how semantic segmentation is visualized, in April
2020, we queried the IEEXplore Library, the ACM Digital Library,
and Google Scholar (search query: (Semantic Segmentation) AND
(Autonomous Cars)). We limited the search to the years 01/2012-
04/2020. The inclusion criteria were that the paper (1) had to be
about semantic segmentation in the AV context and (2) that an
example image showing the colorization had to be included. In
summary, a total of 157 papers were analysed. 50 contained an
example image. The PRISMA statement [36] is shown in Figure 1.

This categorization was done by the first and second author.
Disagreements were resolved via discussions. We did not categorize
paper for the exact RGB value of the object colorization but instead
used a fixed set of colors which are shown here. The results show
that there is no common visualization (see Figure 2). However, most
work seems to lean towards the visualization as proposed by Cordts
et al. for the Cityscapes dataset [10]. The lack of standardization can
be explained by the goal of research on semantic segmentation: not
the colorization but the accuracy of classified pixels is the relevant
metric. Visualization is used for demonstration purposes and to
make data human-readable and easily accessible.
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Records identified through
database searching

(n = 157)

Records after duplicates removed
(n = 157)

Records screened
(n = 157)

Additional records identified
through other sources

(n = 0)

Records excluded
(n = 0)

Full-text articles assessed
for eligibility
(n = 157)

No qualitative synthesis

Full-text articles excluded,
with reasons

(n = 107)

Studies included in
quantitative synthesis

(meta-analysis)
(n = 50)

Figure 1: PRISMA [36] statement of paper selection process.

4 CONCEPT

Figure 3: Schematic representation of the visualization: only
dynamic (1) and dynamic+static objects (2).

We propose to visualize the results of the segmentation task to the
users. Following Chen et al. [6], pedestrians, vehicles, and cyclists
are the most important traffic objects for semantic segmentation.
Amongst others, signposts are the second most important traffic
objects. These can be grouped into dynamic and static (signposts)
objects. These objects have a great impact on the trajectory and
in the case of dynamic objects, a misinterpretation could be fatal.
Therefore, visualizing these could calibrate trust. The visualiza-
tion technique could be altered depending on the maturity of the
technology: Tablet-based in the center stack, which is inspired
by current vehicles such as Tesla or Mercedes and represents the

current state-of-the-art, andAR-based where the semantic segmen-
tation information is directly visualized as an overlay to the object.
AR represents the ultimate goal of spatial information distribution.
We propose to visualize objects in all views (i.e., windshield and pe-
ripheral or side windows), as a user might not be familiar with the
multitude of sensors built in an AV (front, rear, sides), thus, show-
ing these detections is expected to calibrate trust. Less distracting
methods of visualizing such as lightbands (see [49]) could be used
when few objects have to be highlighted, however, our concept
proposes a more granular possibility of highlighting all driving task
relevant traffic objects. We assume not visualizing objects could
lead to the assumption that they were not detected. Using a light-
band is thus not feasible as multiple objects (e.g., pedestrians) might
overlap when having the same angle in relation to the AV. Figure 3
shows this concept technology-independently. Displaying semantic
segmentation information only allows for the assessment of object
detection; however, it directly encodes the uncertainty information
for this task as only detected objects are visualized. The relevant
object class information (e.g., pedestrian, vehicle, cyclist) is encoded
via hue. Thus, hue is not used to display uncertainty of the detec-
tion but to distinguish classes. Urgency information as proposed
by Kunze et al. [30] in turn was not included as the passenger was
not required or intended to interact with the shown AV. While it
would be possible to colorize every detected object using the same
color which varies regarding detection uncertainty, we argue that
knowing the actual detected class is relevant as these lead to dif-
ferent assumptions and behaviors for the AV. Therefore, we used
a different method to visualize uncertainty compared to Kunze et
al. [30] but also use hue as it is easily distinguishable.

5 ONLINE SIMULATION PRE-STUDY
To evaluate the concepts, we designed and conducted a video-based
online within-subject study. We recruited N=32 participants (9
female, 23 male) via participant recruitment mailing lists of our
university and online media (Facebook, WhatsApp; ad-hoc sam-
ple). Participation was voluntary. On average, they were M=27.06
(SD=9.66) years old. All participants hold a valid driver’s license
on average M=3.94 (SD=1.37) years. On 5-point Likert scales (1 =
Strongly Disagree — 5 = Strongly Agree), participants showed high
interest in AVs (M=4.03, SD=1.00), believed AVs to ease their lives
(M=3.78, SD=.94), but were skeptical about whether they become
reality by 2030 (M=3.53, SD=.80). Immersion of participants was
moderate (M=14.25, SD=4.64) using the Immersion subscale of the
Technology Usage Inventory (TUI) [28].

The following research question guided this exploratory study:

What impact do the variables “visualization technology” and “vi-
sualized objects” have on passengers in an AV in terms of (1) affective
state, (2) cognitive load, (3) trust, (4) SA, (5) preference, and (6) capa-
bility assessment?

5.1 Procedure
Every participant encountered five conditions, a baseline with no
visualization of the semantic segmentation and a 2 x 2 design (visu-
alization technology with two levels: tablet vs. AR and visualized



CHI ’21, May 8–13, 2021, Yokohama, Japan Colley et al.

Figure 2: Color distribution of the object visualization for the evaluated publications.

Figure 4: Interior of the simulated Tesla X with the semantic segmentation visualizations: tablet dynamic system (1), tablet
dynamic+static system (2), AR dynamic system (3), AR dynamic+static system (4)

objects with two levels: dynamic vs. dynamic+static objects; the
independent variables).

Each session started with a brief introduction, agreeing to the
consent form, and a demographic questionnaire. The five conditions
were then presented in counterbalanced order. The introduction to
the capabilities was given as follows:

You will see various videos of a highly automated ride through a
simulated environment. The vehicle takes over the lateral and longi-
tudinal guidance. The vehicle tries to detect the objects in the scenery.
This detection is presented to you in different ways. You are supposed

to follow them closely and then assess them. Each video will last
approximately 50 seconds.

For this, we recorded 5 videos of the simulation in Unity [48]
showing the same scene but varying in semantic segmentation vi-
sualization (dynamic vs. dynamic + static; see Figure 4). The videos
show a ride in a lively city with pedestrians crossing twice over
crosswalks, and one pedestrian and one bicyclist crossing the street
without a crosswalk. According to Kaß et al. [24], the vehicle per-
forms lateral (i.e., driving straight ahead and turning multiple times)
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as well as longitudinal (i.e., accelerate and decelerate/break) maneu-
vers. After each condition, participants answered the questionnaires
described below. Lastly, participants were asked for general feed-
back. On average, a session lasted 30 min. A script running in the
background ensured window maximization, that participants could
not skip or rerun the video (to ensure equal exposure time), and
that at least a (required) FullHD monitor was used.

5.2 Measurements
After each condition, affective state using the self-assessmentmanikin
(SAM) [3], cognitive load using the raw NASA-TLX [18], usability
with the system usability scale (SUS) [5], trust in automation using
the German version [29] of the Trust in Automation scale [23], and
SA using the situation awareness rating technique (SART) [47].
The SART was used to assess the perceived quality of situation
awareness [13] which may be a predictor of “how a person will
choose to act on that SA” [13, p. 86]. With high qualitative SA, users
of AVs are expected to be less inclined to take over control with its
post-automation effects [4, 35] and, therefore, the automation with
its benefits can perform the driving task. Participants also rated the
AV’s capabilities (detection of passers-by and vehicles, recognition
of signposts, longitudinal, and lateral guidance) of the system on
6-point Likert scales.

After all conditions, participants could provide open feedback,
rated their preferences of the systems from highest (ranking = 1) to
lowest (ranking = 5), and assessed the reasonability and necessity
(“I think the visualization of the recognition of objects is reason-
able/necessary)” of the semantic segmentation using single-item
ratings on 7-point Likert scales.

6 RESULTS
Dependent on the data’s nature, we employed a repeated measures
(parametric) or a Friedman’s ANOVA to find differences between
the conditions. For the factor analysis in case of non-parametric
data, we used nparLD [39]. ANOVA-type statistics are reported.
For post-hoc tests, Bonferroni correction was used. Effect sizes
were calculated using the formula proposed by Rosenthal [43]. For
Figure 5 and Figure 6, we used the package ggstatsplot [41] in
version 0.6.6. These figures include a boxplot as well as a violin plot
showing the distribution of data points.

6.1 Cognitive Load
Cognitive load was significantly different for the concepts, F (2,
76) = 6.72, p<.001, r=.06. Post-hoc analyses showed that the tablet
dynamic system (M=7.36, SD=3.57) received, compared to the AR dy-
namic+static system (M=5.70, SD=3.02; t(31)=3.11, adj. p=.04), signif-
icantly worse scores. The tablet dynamic+static system was also sig-
nificantly worse rated compared to the AR dynamic system (M=5.91,
SD=3.07; t(31)=3.35, adj. p=.02) and the AR dynamic+static system (
t(31)=3.72, adj. p<.01). The NPVA showed a significant main effect
of visualization technology (F=11.28, df=1, p<.001). Pairwise com-
parisons using Dunn’s test revealed the difference to be significant
(p=0.003, Z = -2.77, r=-0.35). Cognitive load was higher in the tablet
version.

6.2 Usability
Usability was significantly different for the concepts, F (3, 93) = 9.73,
p<.001, r=.11. Both, tablet dynamic system (M=64.14, SD=19.27) and
tablet dynamic+static system (M=62.66, SD=18.11) were rated signif-
icantly worse than AR dynamic system (M=73.75, SD=12.84; tablet
dynamic system: t(31)=-3.14, adj. p=.04; tablet dynamic+static system:
; t(31)=-4.52, adj. p<.001) and AR dynamic+static system (M=77.66,
SD=15.71; tablet dynamic system: ; t(31)=-3.75, adj. p<.01; tablet dy-
namic+static system: ; t(31)=-4.77, adj. p<.001). The non-parametric
variance analysis (NPVA) nparLD [39] showed a significant main
effect of visualization technology (F=18.04, df=1, p<.001). Pairwise
comparisons using Dunn’s test revealed the difference to be signifi-
cant (p<0.001, Z = 3.71, r=0.46). System usability was higher in the
AR version.

The NPVA also showed a significant interaction effect of visu-
alization technology with visualized objects (F=5.75, df=1, p=.02).
The SUS score dropped in the Dynamic + Static condition for the
tablet-based visualization while it rose for the AR visualization. We
attribute this to the increased necessary mental mapping between
the tablet and the (simulated) real world needed for the additional
objects in the tablet-based system (see [9]).

6.3 Trust in Automation & Situation Awareness
Trust was significantly different for the concepts, F (1, 58) = 5.60,
p<.01, r=.06. The tablet dynamic system (M=4.59, SD=1.18; t(31)=-
3.85, adj. p<.01) and the tablet dynamic+static system (M=4.65,
SD=1.23; t(31)=-3.60, adj. p=.01) received significantly lower trust
ratings than the AR dynamic+static system (M=5.17, SD=1.13). The
baseline received ratings of M=4.29 (SD=1.55) and almost reached
significance (adj. p=0.051) compared to the AR dynamic+static sys-
tem.

The NPVA showed a significant main effect of visualization tech-
nology (F=13.10, df=1, p<.001) on trust. Dunn’s test showed this to
be significant (p=0.015, Z = 2.18, r=0.27). Trust was significantly
higher when using AR.

A Friedman’s ANOVA showed a significant difference in the
subjective SA score (𝜒2 (4)=13.95, p<.01). Post-hoc tests revealed
that the baseline (M=16.25, SD=6.41) and the tablet dynamic+static
system (M=16.94, SD=5.59) received significantly lower score than
the AR dynamic+static system (M=19.56, SD=6.26).

The NPVA showed a significant main effect of visualization tech-
nology on SA (F=4.70, df=1, p=.03). Dunn’s test showed that this
almost reached significance (p=0.0501, Z = 1.64, r=0.21). Regard-
ing the subscale Demand, the NPVA showed a significant main
effect of visualization technology (F=4.03, df=1, p=.04, AR: M=12.64,
SD=4.21, Tablet:M=13.69, SD=4.02).Dunn’s test showed that this did
not reach significance (p=0.10, Z = -1.26, r=-0.16). The NPVA also
showed a significant main effect of visualization technology on the
subscale Supply (F=4.57, df=1, p=.03, AR: M=17.27, SD=3.55, Tablet:
M=18.28, SD=4.12). Dunn’s test showed significance (p=0.04, Z =
-1.80, r=-0.23). Regarding the subscale Understanding, the NPVA
showed significant main effects of visualization technology (F=19.81,
df=1, p<.001, AR: M=14.41, SD=2.83, Tablet: M=12.56, SD=3.34) and
visualized objects (F=10.79, df=1, p=.001, dynamic+static: M=14.00,
SD=3.22, dynamic: M=12.97, SD=3.16). Dunn’s tests showed both
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(b) Perceived ability to detect static objects.

Figure 5: Perceived ability to detect dynamic and static objects.

differences to be significant (visualization technology: p<.001, Z =
3.15, r=0.39; visualized objects: p=.03, Z = -1.93, r=-0.24).

6.4 Capability Assessment, Preference, and
Reasonability & Necessity

A Friedman’s ANOVA showed a significant difference in the per-
ceived ability to detect dynamic objects (𝜒2 (4)=18.55, p=.001, see Fig-
ure 5a) and static objects (𝜒2 (4)=33.87, p<.001, see Figure 5b). Post-
hoc tests showed that for dynamic objects, the baseline was con-
sidered to detect dynamic objects significantly worse than the AR
dynamic+static system. For static objects, post-hoc tests showed
that the AV with no visualization (i.e., baseline), the AV with the
tablet dynamic system, and the AV with the AR dynamic system
were perceived to recognize static objects significantly worse than
the AV with the AR dynamic+static system.

However, for the assessment of how far away both dynamic and
static objects are detected, no significant differences were found.
Participants believed dynamic to be recognized approximately 30
m and static objects approximately 35 m away. The correct answer
for both was 35 m. We found no significant differences in the as-
sessment of longitudinal or lateral control of the vehicle. This is in
line with findings of Colley et al. [9] who also found no significant
differences.

There was a clear ranking: both AR systems (AR dynamic+static
system: M=2.06, SD=1.22; AR dynamic system: M=2.31, SD=1.23)
received the best ratings, followed by both tablet systems (tablet
dynamic+static system: M=3.34, SD=1.21; tablet dynamic system:
M=3.38, SD=1.21). The baselinewas rated as the least favorite (M=3.91,
SD=1.38).

A Friedman’s ANOVA showed a significant difference in the
mean rankings (𝜒2 (4)=31.12, p<.001). Post-hoc tests showed that,
compared to the AR dynamic+static system, both tablet systems
and the baseline were rated significantly worse (see Figure 6). The
baseline was also rated significantly worse than the AR dynamic
system.
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Figure 6: Ranking of the systems.

Participants rated the semantic segmentation as very reasonable
(M=6.06, SD=1.19) and necessary (M=5.03, SD=1.38).

6.5 Open Feedback
Feedback about the visualization was mainly positive (20 partici-
pants). One participant highlighted “I was able to understand what
the car is seeing and what not, [...]. I felt more safe and in con-
trol when visualisation was present. Without I was alert at every
encounter and was hoping that the car did not crash into the ap-
proaching subject” [P32]. Participants also stated that the tablet
was too distracting. Some improvement proposals were given, these
included using fish-eye lenses for a higher field of view in the tablet,
acoustic support for people with vision impairments, and adjustable
color settings.
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7 ONLINE STUDYWITH REALISTIC
FOOTAGE

The first study showed that the AR system with the visualization of
dynamic and static objects was rated best in most measurements.
These results confirm the findings of Colley et al. [9] who report
AR systems to increase trust and reduce cognitive load. However,
this study was conducted using a Unity simulation in which all
objects were perfectly colored in. Therefore, we increased external
validity in a second study via videos taken in the real-world and
applying the state-of-the-art model Panoptic-DeepLab [8].

For this, we used the same procedure and measurements. Again,
participant recruitment mailing lists and online media (Facebook,
WhatsApp; ad-hoc sample) were used for participant recruitment.
There was no overlap between samples. Participation was voluntary.
A baseline with no semantic segmentation was compared to the
AR dynamic+static system version (see Figure 7). The video was
taken in Ulm, Germany with an iPhone 11 Pro Max with 30 fps
in wide-angle and FullHD resolution. We anonymized the videos
(faces and license plates). The video shows a ride through the busy
inner city with multiple people of varying ages crossing the street.
Additionally, a parked vehicle at the roadside merges into the traffic.
According to Kaß et al. [24], the vehicle performs lateral (i.e., driving
straight ahead and once ) as well as longitudinal (i.e., accelerate and
decelerate/break) maneuvers. The scene is more complex than in
the pre-study as more pedestrians are present and a vehicle merges.

Another difference is the participants’ point of view: in this
study, the video is taken from the passenger seat due to technical
limitations.

Participants encountered two videos, one video without seman-
tic segmentation information (the baseline; see Figure 7 (1)) and one
with the beforehand applied semantic segmentation. These were
presented in randomized order. Both videos had a duration of 3 min
and 37 s. A session lasted approximately 20 min.

N=41 participants (21 female, 20 male) took part in the study.
These were, on average, M=27.63 (SD=8.07) years old and reported
low (M=2.57, SD=.68) propensity to trust [27]. 35 participants came
from Germany, 2 from the USA, 1 from Colombia, 1 from Indonesia,
1 from Romania and one did not reveal the country. On 5-point Lik-
ert scales (1 = Strongly Disagree — 5 = Strongly Agree), participants
showed high interest in AVs (M=4.51, SD=.64), believed AVs to ease
their lives (M=4.24, SD=.66), but were skeptical about whether they
become reality by 2030 (M=3.41, SD=1.07). The average score for
Immersion was again moderate (M=14.85, SD=4.70). This Immersion
score was used to assess results’ reliability, which was medium in
both studies.

8 RESULTS
In the following, we report the results of the statistical analysis.
Descriptive and inferential statistics are reported. Depending on
whether the data were normally distributed or not, we employed t-
tests (Cohen’s for effect size) or Wilcoxon Signed Rank tests (Rosen-
thal’s [43] formula for effect size).

8.1 Situation Awareness
Values for the subjective assessment of SA were baseline: M=16.61,
SD=5.99 vs. AR dynamic+static system: M=21.02, SD=5.70. A t-test

revealed a highly significant difference regarding the subjective
reports on SA (t(40) = 3.4, p=0.002, r=0.53; see Figure 8(a)). No sig-
nificant differences were found for the Demand subscale (p=0.98).
However, significant differences were found for the Understand-
ing (t(40) = 3.72, p<0.001, r=0.58; see Figure 8(a)) and the Supply
subscale (t(40) = 2.19, p=0.03; see Figure 8(c)). Both values were
significantly higher in the AR dynamic+static system.

8.2 Mental Load, Trust, Usability, Reasonability
& Necessity

We found no significant differences formental load, trust, and usabil-
ity assessments. The baseline received ratings of M=8.05 (SD=4.77),
the AR dynamic+static system M=8.85 (SD=4.56) for mental effort.
Trust was measured using the Trust in Automation scale [23].
The overall score was medium and almost equal (baseline: M=3.31,
SD=.76 vs.AR dynamic+static system:M=3.32, SD=.75). Usability was
also rated as medium [44] (baseline: M=68.11, SD=16.81 vs. AR dy-
namic+static system:M=66.89, SD=16.34). Participants believed such
a visualization to be reasonable (M=5.00, SD=1.58) and necessary
(M=4.56, SD=1.60).

8.3 Attribution of Capabilities
Participants rated all recognition-related attributes significantly
better in the AR dynamic+static system condition compared to the
baseline (see Figure 9). All effects were of moderate size. For longitu-
dinal (baseline:M=5.44, SD=1.21; AR dynamic+static system:M=5.80,
SD=.95) and lateral (baseline: M=5.61, SD=1.22; AR dynamic+static
system: M=5.83, SD=1.07) control, no significant differences were
found.

8.4 Open Feedback
Formulated opinions in the open feedback varied. One participant
highlighted the capability of the visualization to calibrate trust:

“The visualizationmademe realize, how bad the recog-
nition still works. Without any visualization I defi-
nitely trusted the system more (over-trust).” [P16]

Others proposed some visual adjustments. Three participants
did not want signposts to be visualized, one would “have preferred
to only see outlines for example and try to keep the flickering to
a minimum or best to none at all” [P25]. However, the flickering
was intentional to convey the uncertainty of the segmentation
task. Another suggestion was to leave out turning signals from the
visualization.

9 DISCUSSION
Overall, the AR dynamic+static system received higher ratings in
the subjective assessment of SA and was rated as reasonable and
necessary in both studies. The usage of the system did not result in
any significantly lower rating regarding trust or cognitive load.

9.1 Calibration of User Expectations
In the realistic study, the model determined objects in real-time.
This was not flawless and some participants mentioned the accom-
panying “flickering” as disturbing. However, this is seen as a tool
to convey the actual recognition capabilities of an AV. While trust
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Figure 7: Screenshot from the video presented to participants in the baseline condition (1) and the AR dynamic+static system
semantic segmentation (2) condition.
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Figure 8: Results of the SART.

was about equal, the AV with the AR system was rated better in
all perception-related questions. The Halo Effect [38], a cognitive
bias that augments the perception of a system attribute based on
another positive system attribute, seems to be not at work as the
assessment of lateral and longitudinal control was not significantly
different. As perception was rated significantly better (see Figure 9)
with an AR visualization, we assume that a user of an AV will,
at first, be very skeptical about the possibilities of such vehicles
without a communication/visualization of capabilities. Therefore,
the proposed visualization seems to be appropriate to calibrate user
expectations about the vehicle’s capabilities while still maintaining
a moderate level of trust.

9.2 Abstract vs. Concrete Visualizations
There exist numerous works on the effect of transparent systems.
These systems use abstract representations (anthropomorphic [2],
abstract levels [20], or circles [9]). In the proposed concept, a con-
crete visualization of detected objects is used. Abstract informa-
tion visualization is especially helpful if the underlying data set is
large [25]. However, this abstraction inherently is accompanied by a
loss in information. This is especially true for the abstract visualiza-
tion of uncertainty. Uncertainty is difficult for people to understand
and they, therefore, avoid it [40]. Thus, an abstraction might lead
to even more difficulties. Especially in the context of automated

driving, uncertainty is important at least for the introductory phase.
Questions such as “Do I have to overtake?” will arise in uncertain
situations. With a more concrete visualization, such questions could
be more easily answered. The user can assess the capabilities of
the vehicle and make an informed decision. With regards to the
second study, subjective SA (see Section Situation Awareness) and
capabilities (see Section Attribution of Capabilities) were rated sig-
nificantly higher with the concrete visualization compared to the
baseline. No significant differences were found for mental load (see
Section Mental Load, Trust, Usability, Reasonability & Necessity).
Thus, we conclude that a more abstract visualization is unnecessary
as the loss in information prevents the user to gain a more pro-
found understanding of the AV. The effects of this visualization as
a potential distraction from relevant information, however, have to
be taken into account. One possibility is to include a distance-based
visualization. Depth prediction is already possible and could be
used to enhance our proposed visualization [16].

9.3 Visual Clutter & Practical Implications
The system evaluated in the realistic study introduced a lot of visual
clutter in the scene. This did not, however, significantly increase
cognitive load or decrease trust. Still, some participants mentioned
the need to not highlight lights or pillars. We agree that this is not
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Figure 9: Results for the estimation (est.) of vehicle capabilities.
as relevant for the calibration of trust and SA. Additionally, partic-
ipants argued that stopping and traffic lights should be excluded
from the visualization as the meaning is hidden by the colorization.
Again, the authors agree with these statements. The visualization
could distract AV users. However, the distracting nature of our ap-
proach actually is beneficial as its salient nature nudges the driver
to engage with the functionality. Based on this initial calibration,
the user only then can decide to engage in non-driving task related
activities and, if wanted, turn off the visualization.

These studies further solidify the benefits of using some sort of
visualization of vehicle capabilities at least during the introduction
of AVs. The studies further show the advantages of AR/WSD visual-
ization. This technology is not yet available for entire windshields
due to its challenges (e.g., parallax). We believe, however, that this
is only a matter of time. For the second study, we used a state-of-
the-art semantic segmentation model Panoptic-Deeplab [8]. While
we needed approximately 0.7 s per frame on an RTX 2060, more
specified hardware and future developments are likely to make this
real-time capable. Therefore, our approach only requires WSD to
become available. Still, the visualization should be customizable,
that is, users should be able to define which object types should be
visualized.

9.4 Discrepancy Between Studies
The simulation study confirmed some of the results of related work
that transparent systems [12, 26] and AR systems [9, 19, 50] lead to
higher trust, acceptance, and perceived safety. While in the online
study the trust was not significantly different, it was still lower
and almost reached significance. Also, both studies showed that

an AR visualization of object recognition increased SA. For trust
measurement, Hock et al. advise to “Refrain from introducing the
system as flawless, if trust is of interest in the study” [22, p. 112],
which we did. Still, for trust, the ratings in the study with realistic
footage were almost the same. A potential explanation is that trust
measurement in a simulation is not transferable to a real-world
scenario. Potentially, the apparent nature of the simulation leads
to a more “game-like” assessment of the situation. This is, how-
ever, not supported by the TUI scores, which were also almost the
same. Another explanation is that the situations assessed were just
too different and, therefore, the trust difference is higher in calm
situations as seen in the simulation. The third factor could be the
position of the camera. In the realistic footage, the video, due to
technical requirements, had to be taken from the passenger’s seat.
This study cannot answer this question, however, this should be
studied in the future to assess the external validity of simulator
studies.

10 LIMITATIONS & FUTUREWORK
In both studies, a reasonable number of participants took part (N=32
and N=41). However, the demographic information shows that this
was mostly a younger target group. It is not clear whether our
findings are transferable to other age groups. Additionally, we only
focused on subjective dependent measures. We targeted the simu-
lation’s results’ transferability by conducting a second study with
real-world footage and a state-of-the-art segmentation model. How-
ever, this transfer came with some drawbacks: the different setting
of the ride and the different position of the camera. Therefore, there
are several potential confounding factors and the results cannot
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be directly compared. Additionally, one participant in the second
study came from Indonesia with left-handed traffic. While an anal-
ysis with excluded data from the Indonesian participant found no
alterations in the significance of any of the findings, this aspect
could still have an impact on the perception of the visualization
and should be targeted in future work. Additionally, future work
should evaluate potential intention recognition [9] and connected
driving information uncertainty visualization.

11 CONCLUSION
Overall, we showed the potential of presenting semantic segmenta-
tion visualization to users of AVs. First, we investigated technology-
dependent visualization in a simulation study (N=32). This work
further solidified that AR-based solutions are the most promis-
ing [9]. Afterward, in a second study, we increased external validity
by using real-world footage and a state-of-the-art semantic seg-
mentation model to further evaluate the AR dynamic+static system
with N=41 participants. While not all results of the first study are
supported, participants still reported subjective higher SA and as-
sessed the perception capabilities as higher. Improvement proposals
include the avoidance of coloring in the stopping and traffic lights.
This work further enhances the body of knowledge on factors for a
successful introduction of AVs.
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