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Automated vehicles should improve both traffic safety and user experience. While novel behavior patterns such as platooning become
feasible to reduce fuel usage, such time- and fuel-reducing behavior at intersections can be perceived as unsafe and possibly disconcert
users. Therefore, we designed and implemented nine feedback strategies for a simulated intersection and compared these in an
online video-based between-subjects study (N=226). We found that visual feedback strategies limiting the view on the actual scene by
providing calming views (a Landscape or the scene with hidden vehicles) were rated significantly higher in terms of perceived safety
and trust. We discuss implications regarding future traffic and whether automated vehicles will necessitate altering reality for the user.
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1 INTRODUCTION

Automated vehicles (AVs) are envisioned to reduce the number of accidents, fuel consumption, and travel time sig-
nificantly [1]. These advancements are partially possible due to novel driving behavior such as platooning [19] or
intersections that do not rely on traffic lights but can be handled through communication between the AVs [14]. However,
despite these advantages, especially the automated intersections could be stressful for an AV user [28]. With the focus
shift towards user experience in AVs [40], that is going away from driving-related to infotainment and working-related
aspects [39], and the necessity to let the automation remain in control for these advantages to be possible, such stressful
and potentially trust-diminishing events have to be considered for the introduction of AVs. Therefore, Krome et al.
[28] performed a user study in which the participants encountered such an automated intersection from a first-person
perspective. Results of this study showed that the trust in AVs within such traffic situations varies significantly [28].
This might be due to the lack of feedback from the AV to the user [28]. Therefore, we evaluated numerous feedback
strategies for the automated intersection in a between-subjects online video-based study with N=226 participants. Our
strategies are based on previous work targeted towards trust in AVs (e.g., [9, 31, 48]) and were activated approximately
100 m before the intersection. Participants encountered one concept from three different scenarios: on the middle lane
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taking a left turn, on the outer lane driving straight across, and on the outer lane taking a left turn. Results indicated
that the participants felt most comfortable when the reality was obfuscated. We discuss these results with respect to
overtrust and reality loss aspects.

Contribution Statement: This work provides nine feedback strategies for the scenario of an automated intersection. In
an online video-based between-subjects study with N=226 participants, we found that participants preferred to block
out the potentially safety critical traffic instead of having full transparency. Our work opens a range of novel questions
regarding the broader impact of AVs on future traffic and the role of feedback strategies.

2 RELATEDWORK

This work builds on prior work in the domain of information visualization in AVs and trust calibration.
In the state of calibrated trust [32], the user’s trust is appropriate to the automated system’s capabilities. Calibrated

trust is essential as it prevents issues with over- and undertrust. While Ekman et al. [16] emphasize that trust calibration
happens before using an AV and is also formed after the journey, they also acknowledge the necessity for feedback
during the ride. In this work, we focus on feedback communication.

Recent work poses the question of which information is necessary during an automated journey [9, 26, 30, 45, 49].
Wintersberger et al. interviewed 56 people, concluding "an inverse correlation between situational trust and participants’
desire for feedback” [49, p.1 ]. They grouped their findings into six relevant themes for information communication:
Predictability, impact, object characteristics, spatial properties, regulations, and visibility.

Wiegand et al. [45] identified 17 relevant situations for information presentation. Wiegand et al. conducted a think-
aloud study based on these situations with 26 participants. The six main concerns were emotion and evaluation,
interpretation and reason, vehicle capability, interaction, future driving prediction, and explanation request times [45].
Their scenarios mostly include other manual vehicles, misbehavior by the AV, or other vulnerable road users. They did
not evaluate the use case of an automated intersection.

To support and calibrate trust, several approaches were investigated. These used various technical approaches and
different levels of included uncertainty information. In their comparative work, Colley et al. [12] employed simulated
Head-Up Displays (HUDs), Augmented Reality Windshield Display (WSD AR), and LED strips to investigate how AVs
should communicate in critical situations. These critical situations included passing animals, children, and people
with disabilities. These represent one-on-one (AV-on-person/animal) situations and are, therefore, fundamentally
different from an automated intersection. The authors found that "no technologically advanced visualization (e.g., AR)
is necessary for this visualization” [12, p. 17].

Other work used LED strips to inform the user of the AV’s decisions via ambient light [31] or proposed to use light
strips to show the intention or perception of other road users [46]. Lindemann et al. [29] employed an AR WSD to
highlight potential threats (e.g., pedestrians or other vehicles). This resulted in higher situation awareness in low and
high visibility scenarios than only displaying essential elements such as speed and navigation info.

In semi-automated vehicles explanatory information (i.e., why information) led to highest trust (compared to how

information). Häuslschmid et al. [23] showed the vehicle’s current situation interpretation via a world in miniature or
via a simulated avatar of a chauffeur. The world in miniature increased trust most, however, no consensus among the
participants could be found on whether such visualizations are necessary.

Currano et al. [13] tested an AR HUD and compared no HUD with a minimal and a complex one. Results were diverse
and dependent on the dynamicity of the scene as well as the participants’ reported driving style. Therefore, the authors
concluded the necessity for an adaptive HUD. Regarding the future trajectory of the ego-vehicle, Schneider et al. [40]
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evaluated explanations given via an AR WSD and a LED strip. They found that user experience for first-time users
increased with the explanations which support the transferability of the results of Koo et al. [26]. The combination
with an explanation after the journey via a smartphone app did not increase user experience.

The driving task is dependent on the encountered objects in the situation. For this, semantic segmentation is
used [8]. Therefore, Colley et al. [10] investigated the effects of visualizations of the semantic segmentation task. This
identification carries uncertainty. Thus, the authors argue that previous studies use abstract representations which do not
enable the user to identify the cause for this uncertainty. Displaying the semantic segmentation inherently incorporates
the uncertainty visualization. They found that their simulated AR WSD did not increase trust or mental workload.
However, the subjective situation awareness was higher, and users rated recognition-related attributes significantly
better. As the actions of an AV depend on other road users such as manual drivers or pedestrians, Colley et al. [9]
compared pedestrian intention visualization in a VR study with 15 participants. They compared the visualizations on a
tablet-based with an AR version simulating a WSD. The AR version reduced cognitive load significantly.

3 FEEDBACK STRATEGIES

This paper compares visualizations and auditory feedback. Therefore, we briefly introduce the design and rationale of
each of the feedback strategies. All visualizations are dependent on an AR WSD as this was shown to be superior to
tablet-based versions [9, 10] and represents the natural evolvement of HUDs. To better communicate that the shown
visualizations on the AR WSD are not to be confused with the simulated reality, there is a blur at the edges of the AR
WSD. The subtle blur was employed in all conditions and can best be seen in Figure 1e on the left side of the windshield.

The employed feedback strategies are based on previous work in the field of visualizations to support trust in AVs
(e.g., [9, 10, 13, 40, 47]) and can be seen in Figure 1.

3.1 Arrows

We propose to use arrows (see Figure 1 b) to indicate the detection of other road users (also see [48]). We chose the
color green to reflect that the vehicle has correctly detected them. The arrows move up and down slightly to better
reflect the ongoing status of detection. We propose to visualize the detected objects in all views (i.e., windshield and
peripheral or side windows).

3.2 Tinted Windshield

In this feedback strategy, the colour of the windshield and the windows on both sides of the vehicle are tinted to block
the view to the outside (see Figure 1 c). For this to work in reality, smart switchable windows Oltean [33] could be used.

3.3 Landscape

With this feedback strategy, the existing environment is replaced by a forest (see Figure 1 d). The vehicle is still
driving on a road that matches the real road. The idea was to create the illusion of the car driving through a calm
environment to hide the intense situation while still keeping the road so the movement of the car in the "virtual" part
of the scene matches the movement of the "real" part. The AV could use the road map data to generate this kind of
virtual environment when necessary.

3



AutomotiveUI ’22, September 17–20, 2022, Seoul, Republic of Korea Colley et al.

(a) baseline. (b) Arrows. (c) Tinted Windows.

(d) Landscape. (e) Hide Vehicles. (f) Visualized Trajectories.

(g) LED stripe. (h) Outer Space. (i) Turning Seat .

Fig. 1. The employed feedback strategies used in the experiment.

3.4 Hide Vehicles

For this feedback strategy, all other AVs around the user’s car will be filtered out so that they are completely invisible
while keeping the original environment (see Figure 1 e). Already, there is the possibility to remove vehicles from a
video by using neural networks as shown by Zhang et al. [50].

3.5 Trajectory

Colley et al. [9] proposed to visualize pedestrian intention to calibrate user trust. Accordingly, the intention of the other
AVs (i.e., their future trajectory) could be displayed for the user to indicate that the AV understands its environment.
This is an extension to the Arrows concept as the displayed trajectories show both the recognition and the known
intention. The trajectories are displayed in cyan because it has high conspicuity to other colors used in road traffic and
is not associated with meanings such as red for warning or danger [44] (see Figure 1 f). We propose visualizing the
trajectories in all views (i.e., windshield and peripheral or side windows).

3.6 LED Strips

Caberletti et al. [5] showed that lighting improved perceived safety significantly. While orange (compared to blue) was
more comfortable and luxurious [5], orange is associated with danger and, thus, we opted for blue (see Figure 1 g).
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3.7 Outer Space

Comparable to the Tinted Windows, Hide Vehicles, and Landscape visualizations, we designed a visualization altering
the perceived reality by representing outer space (see Figure 1 h). This represents a futuristic and non-realistic display
designed to provide novel user experiences. The designs Tinted Windows, Hide Vehicles, Landscape, and Outer Space

can be viewed as visualizations on a spectrum for altering reality by simply blocking reality out by removing certain
aspects (i.e., vehicles) and providing novel environments (from realistic: landscape to unrealistic: outer space).

3.8 Turning Seat

In future AVs, it is envisioned that the user can be seated in various directions and with several configurations [7].
While such new seating positions may raise some concerns in terms of safety, the study by Jin et al. [25] proposed a
way of using a rotating seat to change the impact direction and improve crash safety. The Mercedes F015 [3] concept car
already features turning front seats to allow for holding meetings during a car ride. A rotating driver’s seat could also
play a significant role in terms of safety. Similar to the PRE-SAFE® Impulse Side technology of the new Mercedes-Benz
S-Class [4], in which the seat can move to the right in an accident from the left, the seat could turn away from the
direction of the accident. In our concept, the user seat of the vehicle is rotated prior to the intersection, thereby,
preventing the user from seeing the automated intersection (see Figure 1 i).

3.9 Voice Feedback

This concept builds upon the aspect of anthropomorphism by adding human-like features to the AV [38]. Especially the
usage of voice was shown to significantly increase trust in AVs [20]. With this feedback strategy, an audio clip is played
which contains a female voice produced with the text-to-speech feature by Google WaveNet E with the text "There is
no need to be scared, the car has everything under control". This is done once before the intersection. The intention was
to communicate to the user that the car has recognized the situation and is going to safely maneuver them through it.

4 EXPERIMENT

To evaluate the effects of different feedback strategies, we designed and conducted a between-subject study online
video-based study with N=226. This study was guided by the research question (RQ): What impact do the feedback

strategies have on AV users in terms of (1) mental workload, (2) trust, (3) perceived safety, and (4) acceptance?

4.1 Materials

To answer our research question, we designed three scenarios. We modeled the scenarios in Unity version 2020.2.1f1 [41].
The scene includes an intersection of two 3-lane roads in a large city. In the paper by Krome et al. [28], the scenarios
included two-lane & four-lane roads with 400 & 800 vehicles crossing the intersection per lane per hour. For our
implementation, we first opted for three lanes and 600 vehicles per lane per hour. However, as our goal was to induce
the feeling of a crowded automated intersection with scenes resembling near misses, we decided to further increase
the traffic density to 900 vehicles per lane per hour. 100 meters before arriving at the intersection, different types of
feedback strategies are activated (see section 3). The intersection can be seen from the top in Figure 2. We used the
model of a Tesla X and retracted the steering wheel to visually indicate that the vehicle is driving automatedly (see
Figure 3). The overview of the course for each scenario is shown in Figure 4.
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Fig. 2. The intersection was built in Unity with several vehicles crossing the intersection.

(a) Middle lane scenario. (b) Outer lane straight across scenario. (c) Outer lane driving left scenario.

Fig. 3. The three scenarios used in the experiment.

Fig. 4. The three different scenarios from above. 1 = Middle, 2 = Outer lane straight across , and 3 = Outer lane driving left scenario.
The starting points of each route are located after the corresponding curve and the endpoints are set right after the intersection.

We used the same intersection but modeled three scenarios: on the middle lane taking a left turn, on the outer lane
driving straight across, and on the outer lane taking a left turn. We opted to avoid including a right turn as taking a
right turn does not involve risky behavior when only focusing on traffic without vulnerable road users such as bicyclists
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or pedestrians [24], which we focused on. The three scenarios can be seen in Figure 3. Including three scenarios allowed
us to increase exposure time while varying the visual stimuli.

4.2 Measurements

We employed the mental workload subscale of the raw NASA-TLX [22] on a 20-point scale ("How much mental and
perceptual activity was required? Was the task easy or demanding, simple or complex?"; 1=Very Low to 20=Very High).
Additionally, we used the subscales Predictability/Understandability (Understandability from here) and Trust of the Trust
in Automation questionnaire by Körber [27]. Understandability is measured using agreement on four statements ("The
system state was always clear to me.", "I was able to understand why things happened."; two inverse: "The system reacts
unpredictably.", "It’s difficult to identify what the system will do next.") using 5-point Likert scales (1=Strongly disagree

to 5=Strongly agree). Trust is measured via agreement on equal 5-point Likert scales on two statements ("I trust the
system." and "I can rely on the system."). We also employed the van der Laan acceptance scale [42] with the subscales
"usefulness" and "satisfying". Also, participants rated their perceived safety using four 7-point semantic differentials
from -3 (anxious/agitated/unsafe/timid) to +3 (relaxed/calm/safe/confident) [17].
Finally, after experiencing all three scenarios, participants were able to provide open feedback.

4.3 Procedure

Every session started with an introduction, agreeing to the consent form, and a demographic questionnaire. Participants
were instructed to use a laptop or a computer. We introduced participants as follows:
You are going to see videos of a highly automated ride through a city with highly dense traffic. You are approaching an

intersection. All vehicles drive automatedly and communicate with each other in order to ensure that every car can safely

cross the intersection. The AV is in control of the steering and accelerating/braking (lateral and longitudinal guidance). You

are supposed to imagine sitting in such an AV, following the entire journey attentively, and then assessing it.

Participants were randomly assigned to one of the nine conditions or the baseline without their knowledge. Then
they watched the videos of the feedback strategy they were assigned in all three scenarios in randomized order. After
the video, participants answered the questionnaires detailed in subsection 4.2.

A script was running in the background that ensured window maximization and that participants could not skip or
rerun the video (to ensure equal exposure time). A Full HD (1920 × 1080) monitor and loudspeakers were required. On
average, a session lasted 12 min. Participants were compensated with 1.60€.

5 RESULTS

5.1 Data Analysis

Before every statistical test, we checked the required assumptions (normal distribution and homogeneity of variance
assumption). In the case of non-normal data, a Kruskal-Wallis test was used for the concept comparison (between-
subjects) and a Friedman’s ANOVA was used to compare the scenarios (within-subject). The alpha level was 0.05.

For post-hoc tests, we used Bonferroni correction. For the figures, we used the R package ggstatsplot [35]. These
include the mean or median (depending on the test), the density plots, the boxplots, the data points, and the post-hoc
results. They also include statistical details (test used, number of observations, effect size, confidence interval). Therefore,
we do not rewrite these in text. We used R 4.1.3 and RStudio 2022.02.0. All packages were up to date in April 2022.
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5.2 Participants

We determined the required sample size via an a-priori power analysis using G*Power in version 3.1.9.7 [18]. To achieve
a power of .8 with an alpha level of .05, 180 participants should result in an anticipated medium to high effect size
(0.25 [21]) in a between-subjects design with ten groups and three measurements.

We recruited participants from the USA via https://www.prolific.co/. We restricted the participant pool was restricted
to US citizens to avoid confounding effects of traffic handedness (right-hand vs. left-hand traffic) or culture [37]. Using
an online participant database allowed us to circumvent biases found when recruiting mostly from a student population
(e.g., see almost three-quarters of CHI publications in 2014 [6]).

N=226 participants (94 female, 129 male, and two non-binary) took part in the study. They were, on average, M=31.04
(SD=9.71) years old and 224 out of the 226 participants held a driving license on average of M=12.45 years. A driver’s
license was not required as AVs will, at least in certain operational domains, not need any intervention. A breakdown
per condition is shown in Table 1.

Table 1. Demographics per condition. Kruskal-Wallis tests neither found a significant difference for age (p=0.15) nor for years of
having a driver’s license (p=0.71).

Condition Number participants Mean age SD age Mean license SD license
Baseline 22 34.32 11.97 13.00 14.02
Arrows 25 30.92 10.12 12.12 10.44
Tinted 22 34.18 11.58 15.82 12.50

Landscape 22 30.73 11.16 11.41 11.40
Hide Vehicles 22 31.32 8.61 16.00 18.77

Trajectory 23 29.91 9.05 11.07 9.64
LED 22 27.73 7.60 10.14 8.07

Outer Space 25 31.28 7.20 11.24 8.57
Seat 23 27.48 7.43 9.65 7.71

Voice 20 34.50 10.33 15.20 11.22

70 of the 226 surveyed people use their car every day, 41 on working days, 60 participants drive three to four times a
week, 14 participants once a week, 13 one to three times a month, and 27 out of 226 drive less than once in a month.
158 of the 226 participants have a university degree, 56 participants do not have a university degree but have a higher
education entrance qualification, and nine have completed vocational training. 110 participants are employees, 33 are
self-employed, 18 are unemployed, and 17 stated something else as a profession. We also had two pupils and 45 college
students participating in our study. 70 respondents drive less than 7,000 km a year. 68 out of 226 drive between 7,000
and 14,999 km, 57 drive between 15,000 and 24,999 km, 24 between 25,000 and 32,999 km, and 14 even more than 33,000
km per year. On a 5-point Likert Scale (1=Not at all, 5=Definitely), participants reported a slightly high interest in AVs
(M=4.15, SD=1.14). On average, the participants believe that automated driving can make their lives easier (M=4.10,
SD=1.05) and that automated driving will become reality in the next 10 years until 2031 (M=4.26, SD=0.99).

5.3 Results of Feedback Strategies

5.3.1 Mental Workload and Trust. A Kruskal-Wallis test found no significant differences between the conditions for
mental workload (𝜒2(9)=10.09, p=0.344). The lowest values were found for Landscape (M=7.70, SD=5.46) and the highest
for Tinted Windows (M=9.95, SD=6.54).

A Kruskal-Wallis test found a significant difference between the conditions for Understandability (see Figure 5).
Post-hoc tests found that subjective Understandability was significantly higher for the Hide Vehicles compared to Tinted

Windows and Outer Space. Additionally, Understandability was significantly higher for Landscape compared to Tinted

Windows and Outer Space.
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Fig. 5. Results of the Kruskal-Wallis test for Understandability.
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Fig. 6. Results of the Kruskal-Wallis test for trust.

A Kruskal-Wallis test also found a significant difference between the conditions for trust (see Figure 6). Post-hoc
tests found that trust was significantly higher for Landscape than Tinted Windows and LED stripe, and that Hide Vehicles
was rated significantly higher than Tinted Windows.

5.3.2 Usefulness, Satisfying, and Perceived Safety. A Kruskal-Wallis test found a significant difference between the
conditions for usefulness (see Figure 7). Post-hoc tests found that usefulness was significantly higher in the Landscape
condition compared to Tinted Windows, Arrows, and Outer Space. Also, Hide Vehicles was rated significantly higher than
Arrows, Tinted Windows, Outer Space, and LED stripe. Finally, Voice was rated significantly higher than Tinted Windows.

A Kruskal-Wallis test found a significant difference between the conditions for satisfying (see Figure 8). Post-hoc tests
found that the satisfying score was significantly higher in the baseline than the Tinted Windows. Additionally, the scores
were significantly higher in the Landscape than Arrows, Tinted Windows, LED stripe, and Outer Space. Furthermore, Hide
Vehicles was rated significantly higher than Arrows, Tinted Windows, Visualized Trajectories, LED stripe, Outer Space,
and Turning Seat.

9



AutomotiveUI ’22, September 17–20, 2022, Seoul, Republic of Korea Colley et al.

 mmean = 1.02

 mmean = 0.76

 mmean = 0.59

 mmean = 1.12

 mmean = 1.28

 mmean = 1.00

 mmean = 0.85

 mmean = 0.72

 mmean = 0.87

 mmean = 1.05

 pBonferroni-corrected = 0.035
 pBonferroni-corrected = 0.0000644

 pBonferroni-corrected = 0.013
 pBonferroni-corrected = 0.003

 pBonferroni-corrected = 0.00000318
 pBonferroni-corrected = 0.041
 pBonferroni-corrected = 0.003

 pBonferroni-corrected = 0.0000908

-1

0

1

2

3

Baseline Arrows Tinted Landscape Hide 
vehicles

Trajectory LED Outer 
Space

Seat Voice
U

se
fu

ln
es

s

cKruskal-Wallis
2 (9) = 52.51, p = 3.63e-08, e ordinal

2  = 0.08, CI95% [0.07, 1.00], nobs = 633

Pairwise test: Dunn test; Comparisons shown: only significant

Fig. 7. Results of the Kruskal-Wallis test for usefulness.
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Fig. 8. Results of the Kruskal-Wallis test for satisfying.

A Kruskal-Wallis test found a significant difference between the conditions for perceived safety (see Figure 9).
Post-hoc tests found that perceived safety was significantly higher in the baseline compared to the Tinted Windows. It
was also significantly higher in the Landscape condition compared to Arrows, Tinted Windows, LED stripe, Outer Space,
and Voice. Furthermore, Hide Vehicles was significantly safer than Arrows, Tinted Windows, LED stripe, Outer Space, and
Turning Seat.

5.4 Results of Scenarios

For evaluating the scenarios, we eliminated data of eleven participants due to missing data points. Friedman’s ANOVAs
were employed as all scenarios were seen by every participant (thus, being within-subjects).

5.4.1 Mental Workload and Trust. A Friedman’s ANOVA found no significant differences for mental workload
(𝜒2(2)=2.94, p=0.230). Mental workload ranged from M=8.38 (SD=5.23; driving straight) to M=8.74 (SD=5.14; driving left
in middle lane).
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Fig. 9. Results of the Kruskal-Wallis test for Perceived Safety.

A Friedman’s ANOVA found no significant differences for Understandability (𝜒2(2)=1.87, p=0.393). Understandability
ranged from M=3.57 (SD=0.82; drive left outer lane) to M=3.63 (SD=0.76; drive left middle lane).

A Friedman’s ANOVA found no significant differences for Trust (𝜒2(2)=0.81, p=0.667). Trust ranged from M=3.46
(SD=0.97; drive left outer lane) to M=3.53 (SD=0.97; drive straight).

5.4.2 Usefulness, Satisfying, and Perceived Safety. A Friedman’s ANOVA found no significant differences for usefulness
(𝜒2(2)=0.03, p=0.985). The mean value for usefulness was M=0.92 in all three videos.

A Friedman’s ANOVA found no significant differences for satisfying (𝜒2(2)=5.60, p=0.061). Satisfying ranged from
M=0.78 (SD=0.94; drive left outer lane) to M=0.87 (SD=0.93; drive straight).
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Fig. 10. Results of the Friedman’s ANOVA for perceived safety for the videos.

A Friedman’s ANOVA found significant differences for perceived safety. Post-hoc tests found that perceived safety
was significantly higher in the video driving straight across than both videos driving to the left (see Figure 10).

5.5 Open Feedback

In general, the participants are interested in the topic but do not yet have complete confidence in AVs. One participant
noted that the study videos were good but that the situation in the AVs continues to make him nervous. Another
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participant added that he could only imagine crossing an intersection if all cars were automated. If not, the participant
would feel nervous as well. In addition, feedback was sent to us by mentioning errors that had previously occurred in
AVs, which led to accidents. The participant noted that, despite everything, he was interested in the study but still liked
being in control of the wheel. The only request made by a participant was for more transparency on what the AV is
planning to do next. With our feedback strategy Hide Vehicles, for example, six out of seven feedback responses were
positive. The participants added that there is a "big improvement in safe feeling", that the "self-driving car is a great
idea" and that "it will prevent a lot of accidents". With the feedback strategy Tinted Windows, on the other hand, most
of the feedback (11 out of 14) was negative. The complaint here was that "having the windows blacked out through the
intersection made me feel very anxious. I think otherwise I would have enjoyed it much more." or that the participants
"still worry about the reaction of these cars to unexpected events.".

6 DISCUSSION

Overall, all concepts and the baseline (except the Tinted Windows and Outer Space) had medium to high trust, usefulness,
satisfying, and perceived safety ratings. Most of the significant differences could be determined between the Hide
Vehicles and Landscape compared to the other concepts. However, we were not able to replicate findings regarding the
positive effect of transparency [15, 26]. We discuss our findings in relation to the study design, the feedback concepts,
and also with respect to the implications on traffic in general.

6.1 Relevance of Perspective

We found almost no differences and only one significant difference for the scenarios. Perceived safety was higher when
driving straight through the intersection (see Figure 10). We attribute this to the fewer vehicles approaching the ego
AV head-on. By repeated exposure to the intersection, we were able to reduce the bias of experiencing the automated
intersection for the first time. Our results show that while most dependent variables were unaffected, perceived safety
is likely easily altered by different behaviors, suggesting that studies on AV behavior should include multiple scenarios.

6.2 Necessity of Feedback in Automated Intersections

Krome et al. [28] stated that the in-car interface could drastically improve the users’ experience. While we did not
measure user experience directly, some feedback improved the perceived safety, usefulness, satisfying, and trust, the
improvement was never significant compared to the baseline. It is unclear whether this is due to a too low participant
number/too high number of conditions or more fundamental reasons. The data also does not align with previous
work showing that transparency [15, 26] and AR systems [9, 23, 48] lead to increased trust, usefulness, satisfying, and
perceived safety.

6.3 Transparency vs. Overlaying Reality

Previous work showed that transparent systems [15, 26] and AR systems [9, 23, 48] lead to increased trust, acceptance,
and perceived safety. With our data, we were not able to show this effect. Especially the concepts Arrows, Visualized
Trajectories, LED stripe, and Voice could be viewed as information presentation increasing transparency. However, these
partially showed significantly lower ratings, for example, for trust (see Figure 6), usefulness (see Figure 7), and perceived
safety (see Figure 9). The highest ratings were consistently reached for Landscape and Hide Vehicles, concepts that hide
complexity rather than promote transparency. In the paper by Krome et al. [28], the authors claim the focus should
be on finding ways to structure the overwhelming chaos of an automated intersection. Our data points toward not
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structuring but actually hiding the complexity. Regarding the technical feasibility, we argue that while this is not yet
possible, the announcement of Panasonic [34], as well as the already available neural networks for removing other
vehicles Zhang et al. [50], will allow such visualizations in the near future.

6.4 Driving in the Matrix: A Desirable Future?

Our results indicate that the participants trusted the AV more, felt safer, and had a more satisfying experience with
the concepts Landscape and Hide Vehicles. This raises a fascinating and disturbing question: "Will automated vehicles
and their novel possible behavior lead to the necessity to hide the reality to their users?" Currently, AVs are viewed
from a lens of sheer endless possibilities: platooning [2] to reduce fuel usage, automated intersections as described by
Krome et al. [28] and in this work, driverless taxis as already partially available by Waymo [43], the AV as the new
living room [36], to name but a few. Mostly, the arguments for these novel behaviors are increased fuel efficiency
and improved traffic flow [28]. As researchers and developers with a focus on the user experience in AVs, we must,
therefore, look beyond these scenarios and critically reflect on which behavior is necessary and desirable. Also, if perfect
throughput and fuel efficiency are desired, other options such as improved public transport should be focused on.

6.5 Limitations

By using simulated videos, we were able to address a wide participant group. However, as a consequence, external
validity and transferability to the real world are limited. While we provided an immersive scenario and designed the
scenarios realistically, the AV’s vection could not be simulated with the chosen setup. Also, participants potentially did
not perceive risks in critical situations due to the video setup. In future studies, this could be enhanced by using virtual
reality (for a higher immersion) and simulators with higher degrees of freedom (e.g., [11]). Additionally, we solely
focused on subjective dependent measures. Furthermore, our participant group was relatively young. Nonetheless, it
was almost balanced based on gender. Finally, our concepts varied in some factors, for example, the employed modalities
(only one using voice, the others using visual stimuli) or the required technical maturity (an LED stripe is easier to build
than a Tinted Windows than the Landscape concept). While these designs are based on findings from the literature, an
evaluation with distinct factors allowing a fully balanced study design could provide further insights.

7 CONCLUSION

In conclusion, we defined and compared nine feedback strategies designed to improve trust, mental workload, perceived
usefulness, perceived satisfying, and perceived safety in an automated intersection. N=226 participants experienced one
feedback strategy in the automated intersection from three scenarios: on the middle lane taking a left turn, on the outer
lane driving straight across, and on the outer lane taking a left turn. Results indicate that the participants preferred to
block out the potentially safety-critical traffic instead of having full transparency. Finally, we discuss these results in
the broader light of future traffic.
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