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1 INTRODUCTION

Climate change is expected to drastically alter the world and make various places inhabitable, if not stopped [30]. One
contributing factor to climate change is greenhouse gas [38]. The individual and household sectors are large emitters
of greenhouse gas [62]. A large part of the individual pollution can be attributed to personal transport, especially
automobile mobility [63]. By estimation, on-road transportation could have a contribution of 10 to 20% to worldwide
climate change by the year 2050 [50]. While the choice of the vehicle plays a major role in energy consumption, the
driving style also has an immediate influence on the on-road fuel economy [49].

Eco-driving, the term describing beneficial adjustments in driving style to reduce greenhouse emissions, has been
shown to significantly reduce fuel consumption by at least 9% [1, 5, 17, 33, 35, 54]. Previous research showed that
ecological driving could be achieved in two ways. Firstly, by undergoing eco-driving training [1, 6, 17] or by receiving
feedback on current driving [4, 8, 36, 54, 56, 59, 60]. It was shown that training had a high initial impact but vanished
over time [1, 17], with participants falling back into their old driving behaviors. Regular (direct) feedback, in turn, has
shown to be more promising in having an impact over a more extended period of time [36]. Drivers, however, need to
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set goals to have a metric by which they can judge the otherwise non-normative feedback information [54]. This means
that drivers need to be willing to be more proactive in dealing with their driving behaviour.

Prior work added elements of gamification [45] and comparison [44]. While only comparing completed journeys
to other similar vehicles (in terms of size and other characteristics) in a potentially distant location, Magana and
Munoz-Organero [44] showed that these elements helped drivers to drive more ecologically and not lose interest over a
more extended time. In turn, direct comparison to others on the same task [46] and in the same context has shown to
have a substantial effect on general energy consumption when compared to colleagues [48] and neighbors [2].

Windshield Head-Up Displays are currently evaluated in numerous scenarios, including manual [40, 41, 53] and
automated driving [11, 12, 14, 39, 65, 69]. These allow to display information in the respective location, for example,
attached to other objects such as pedestrians [11, 12, 14] or vehicles [12, 14].With the advancement of this technology, the
possibility arises to display not only the own current eco-driving evaluation and feedback but also organically integrate
those of direct peers visible in the current driving situation. These scores can be obtained either via communication
standards but also with already integrated sensors such as cameras and radars.

While most work on ecological driving focuses on a manual driver, also, in automated driving, the current research
examines the potential to adjust the vehicle’s driving style to reflect personal preferences better [31]. Therefore, even in
automated vehicles (AVs), being able to adapt, for example, maximum speed, is possible and seems appropriate to be a
factor for more ecological behavior.

Based on this previous work, we propose to combine the comparison and gamification approaches using Wind-
shield Head-Up Displays both in manual and automated driving. This allows the evolution of Magana and Munoz-
Organero’s [44] concept to enable permanent imminent comparison with peers. However, it is possible that only vehicles
with different characteristics are present (e.g., bigger, heavier, older). Therefore, we are interested in whether the findings
of Magana and Munoz-Organero [44] also hold in this imminent and potentially considered “unfair”comparison.

Contribution Statement: This work provides insights into the effects of peer comparison of ecological driving both in
manual and automated driving. The results of a Virtual Reality (VR) within-subjects study (N=19) show that automated
driving was perceived significantly less demanding, that having visualized one’s ecological score improved ecological
driving best and that, while not improving the driving style, visualizing the ecological score of other’s did not result in
significantly worse performance or subjective assessments.

2 RELATEDWORK

This work builds on work on the general usefulness of feedback and in a more specific ecological context as well as the
benefits of general and ecological comparison.

2.1 Feedback Effects

Previous work has shown that while a person might have the intention to drive eco-friendly, it can be difficult to
overcome behavior patterns. Lauper et al. [37] conducted a longitudinal study over the cause of four months and only
found a weak link between behavioral intention and actual behavior. They conclude that a person no matter their
intention needs repeated reminders in the form of behavioral feedback. This is supported by multiple authors stating
that ecological training, while successful on the short term, did not lead to lasting changes in their behavior [1]. While
research by Beusen et al. [7] first showed that a majority of participants showed lower levels of fuel consumption
even ten months after a training session, Degraeuwe and Beusen [17] showed that the longitudinal ecological benefits
vanished when controlling for the season’s influence on fuel consumption.
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In a one-year lasting longitudinal study on household gas consumption, Van Houwelingen and Van Raaij [61] showed
that the most intermediate feedback condition (daily) produced the greatest outcome in gas saving. They also stated that
many participants in subsequent interviews wished for even more instantaneous feedback. In the context of eco-driving,
Kurani et al. [36] report results from a study with 118 drivers. The drivers were provided with a fuel recording system for
their cars. Receiving direct feedback for ecological driving led to a significantly decreased fuel consumption compared
to the control group. Tulusan et al. [56] showed that ecological feedback also had an impact when neither driver nor
passenger had monetary stakes in their journey but were driving a corporate car. Like those, multiple studies utilized
instantaneous feedback to foster eco-logical driving.

One factor that makes this feedback effective is the newly raised ability to compare one’s eco-driving against a
baseline. Stillwater and Kurani [54] report that participants in their study used instantaneous feedback as a tool for
"experimentation and learning" [54] of new eco-driving behaviors as they had no possibility to directly compare the
rather abstract feedback values. Comparison and concomitant evaluation of their ecological driving happened by setting
personal goals and comparing after finishing their journey. Three-fourths of the participants used this goal-setting as
motivation to participate in ecological driving. In a gamification approach, Massoud et al. [45] proposed expanding
the idea of goal setting by being able to reach different fuel-saving levels (‘Careless’,‘Typical’ and ‘Saver’) simplifying
the goal-setting process. Magana and Munoz-Organero [44] in turn proposed the possibility of altering a self-focused
goal-setting process to not compare against one-self in a self-chosen baseline but to others driving similar cars and
contexts by having their journeys ranked on a scoreboard in hindsight. This approach led to better eco-driving results
which held up over time.

We take a similar approach to simplify goal setting and motivate by allowing comparison to others and using this
comparison as a baseline. Notwithstanding we propose an ad-hoc comparison to cars that are not only in a similar but
the same context. Additionally to sharing the same context, allowing an instantaneous comparison with peer cars, the
driver can compare to visible others and not abstract names on a scoreboard.

2.2 Effect of (Direct) Comparison

Comparison between individuals, groups, or even the past self can be a motivating factor to improve one’s performance,
especially when combined with feedback. However, the results of social comparisons can be described as mixed. Siero
et al. [48] compared two groups of workers in a metallurgical company and found that the group with comparative
feedback performed better in terms of energy-saving. Therefore, the authors conclude that "comparative feedback
appears to promote competitive feelings, increased attention to feedback information, and a striving to perform better
than the other group" [48, p. 236]. In line with this, Mitchell et al. [46] found that presenting the performance of others
on a wall chart raised one’s own task performance. Regarding the household, Allcott [2], by comparing 80000 treatment
and control households in Minnesota, estimated that the comparative feedback reduced energy consumption by 1.9 to
2.0%. Ayres et al. [3] also argued in this line. However, Egan [20] and Haakana et al. [25] showed that comparisons do
not necessarily lead to a behavior change. One aspect that has to be considered is that there is a performance plateau.
When this is reached, additional feedback may not be effective.

3 COMPARATIVE ECO-DRIVING

In the following, we describe our concept which consists of the capabilities to deduce the eco-score based on a given
equation, current technology capabilities, and the proposed visual design.
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3.1 Concept

Fig. 1. Schematic representation of the visualization concept with peer comparison. The visualization is based on a snapshot. Four
vehicles surrounding the ego vehicle (blue) are in a range of the radius of 250m, thus, their eco-score can be determined.

To allow instantaneous ad-hoc comparison to surrounding cars, two prerequisites have to be fulfilled. First, the
driver’s current driving status and those of the surrounding cars has to be observable. Second, both have to display the
same data in a way that allows comparison. We, therefore, propose a concept that displays their current eco-driving score
to the driver/user of an (automated) vehicle as well as the eco-driving score of nearby vehicles. To allow comparison to
the whole surrounding while avoiding visual clutter, only vehicles up to up to a distance of 250m (see Figure 1; Waymo
even claims to “identify [...] stop signs greater than 500 meters away” [29]), should be augmented.

To allow comparison in this context, we identified relevant metrics of eco-friendly driving. Wang et al. [67] already
discussed five eco-driving related behaviors: Driving Maneuver, Travel Planning and Trip Chaining, Trade-off between
Travel Time and Energy Saving, Route Choice Preference when using a Navigation System, and In-Vehicle-Display
(IVD)/On-Board-System (OBS) Technologies.

For the peer comparison during the journey, only the driving maneuvers are relevant. Regarding the driving maneuver,
Wang et al. [67] name velocity, acceleration, and deceleration as relevant factors for eco-driving. Tulusan et al. [56] also
included these three factors into their calculation. As we were only interested in the concept of ad-hoc comparison
could influence driving behavior in an eco-friendly way, we excluded vehicle characteristics. These factors defined by
the vehicle type (e.g., air resistance, weight, motorization) are not influenceable by the driver/user once in a driving
situation and, therefore, not influenceable through comparison. Utilizing velocity, acceleration, as well as deceleration
relevant factors, an eco-score can be calculated (see below) for each vehicle. This eco-score, combined with the velocity
and acceleration/deceleration values and the combined score were shown both for the own vehicle in a Head-Up Display
located directly behind the steering wheel and above the other vehicles in the field of view (see Figure 3).

This visualization is independent of the automation of the vehicle (manually driven or automated). For an AV, the
passenger was able to set the desired speed value (called “target speed) via a SpaceMouse Wireless (see Figure 4 on the
table). We opted not to enable an acceleration value. While this would be possible, we assumed an AV that enables an
adequate acceleration.

In the following, we will describe how we calculated the singular values for the study presented in this paper. We
begin with the velocity score which was calculated with the square increase of air resistance in mind. As the scenario
of our study is based on a highway, the score of 100 is given up to the velocity of 100km/h:

𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =


100, if 𝑣 ≤ 100

(−(𝑣 − 100)2/2500 + 1) ∗ 100, if 100 < 𝑣 ≤ 150

0, otherwise

(1)
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With acceleration and deceleration being opposites of the same dichotomous factor velocity change, we combined
both into one score. The acceleration and deceleration score is based on the assumption that a velocity change of
100 km/h in 10s should result in a value of 0 as is calculated as follows:

𝑎𝐶𝑢𝑟𝑟𝑒𝑛𝑡 =



100, if − 0.01 < 𝑎 < 0.01

100 − ( |𝑎 | − 0.01) ∗ 333, otherwise

0, if |𝑎 | > 0.3

100, if − 0.01 < 𝑎 < 0.01

100 − ( |𝑎 | − 0.01) ∗ 33.9, otherwise, if calculating with𝑚/𝑠2

0, if |𝑎 | > 2.95

(2)

We opted for a linear model of acceleration as Galvin [23] showed that, with an electric NissanSV, the relationship
between positive acceleration and the total energy consumption with an equal distance was almost linear. This is a
simplification and should be adjusted if more accurate information for the various vehicles is available.

The total eco-driving score was calculated as follows:

𝐸𝑐𝑜𝑆𝑐𝑜𝑟𝑒 =
𝛼 ∗ 𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝛽 ∗ 𝑎𝐶𝑢𝑟𝑟𝑒𝑛𝑡

𝛼 + 𝛽
(3)

where: 𝛼 = weighting factor of velocity; here 1; 𝛽 = weighting factor of acceleration, here 1 ; 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = current
velocity value (0-100); 𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = current acceleration value (0-100)

We only present an abstract eco-score and not the savings of ecologically improved driving behavior, as “envi-
ronmental savings are considered more worthwhile than commensurate financial savings” [19, p. 1] and “ecodriving
behaviours were mainly sensitive to the presence of feedback per se, rather than the content of feedback” [19, p. 1]. It
was also shown that abstract feedback “is more effective in reducing fuel consumption than concrete feedback” [16, p. 7].
While “presenting the information in strategically advantageous locations that are not demanding for the driver” [32,
p. 27] was discussed to be beneficial, we opted for a continuous display of the eco-score as determining advantageous
locations is not trivial and the use case of a highway is mentally less demanding.

3.2 Interface Design

Fig. 2. Interface concept with the total eco-score on the left. The red symbol represents speed, the green symbol acceleration.

Regarding the interface design, the concept relies mostly on three dimensions: color, size (change), and icons
(see Figure 2). We suggest to use the color green if the driving style is eco-friendly. In the Western context, green is
perceived as positive [51]. Depending on the eco-friendliness, the color should transition towards red, indicating the
negative aspect of the driving style. It was shown that negative stimuli evoke high attention allocation, thus, directing
the attention to the eco-score [28, 52].
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Color perceptions is different across the visual field [26]. Color perception is best in the fovea and deteriorates toward
the periphery [26]. This is also true for red-green color variations [26]. Therefore, we additionally added a size change
for the alteration of the eco-score from small (good eco-score) to large (bad eco-score). This size change is attention
grabbing even in the periphery.

The interface for the other vehicles contained the same mechanisms and icons as well as the score, however, they
were arranged in two rows to better utilize space and reduce visual clutter (see Figure 3 in the middle).

4 STUDY

The study was guided by the research question:What impact does the visualization of a competitive eco-driving score have

on (1) the own driving behavior, (2) usability, (3) acceptance, and (4) mental workload? Does the availability of comparative

feedback in an automotive context raise attention on own driving information?

4.1 Study Design

The studywas designed as 2× 3within-subjects, repeatedmeasures experiment. The independent variables were eco-score
visualization (no/only own eco-score/own eco-score and other vehicles close-by) and driving mode (manual/automated),
resulting in six conditions. We omitted the visualization of the eco-score only for the other vehicles (i.e., not displaying
our own eco-score in this condition) as prior work already showed the positive effects of displaying one’s own eco-score
and reducing the time required for the study. We included the automated driving conditions to study the effects
adjustable speed limits have on performance. This approach is in line with work on ethically-customizable AVs [15].

As AVs and full-screen windshield displays are not yet commercially available, we implemented our scenario in VR.
This is a common approach both in research relating to manual [66] as well as automated driving [11, 13, 14].

4.2 Materials

Fig. 3. Overview of two manual and one automated driving implementation.

To answer the research question, we designed a highway scenario using Unity version 2021.2.5f1 [58]. The highway
represents the A7 from Illertissen, Germany to Senden, Germany, and was created using the OSM data and the Unity
asset CityGen3D [10]. The suggested speed on highways in Germany is 130 km/h. To analyze if participants took
notice, used the augmented scores, and whether they would be distracting, eye-tracking was implemented. For this, we
used the Tobii eye tracker of the HTC Vive Pro Eye with the Tobii Eye Tracking SDK version 1.3.3.0 [55]. To allow a
more realistic feeling while being in the virtual environment, we tracked the participants’ hands and displayed virtual
versions of them. For this purpose, hand recognition with a Leap Motion Controller utilizing Leap Motion Unity SDK
version 5.0.0 was used. The surrounding cars were generated using the Simple Traffic System [57] in version 1.0.56 and
adapted to our needs.
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4.3 Procedure

Fig. 4. Setup of the study.

After giving informed consent, participants were introduced to the setting and could adjust the seat. Participants
drove on a highway to get used to the setting (see Figure 4). Then, they were introduced to the setting as follows:

“You are driving on a highway. The vehicle detects how ecologically you and the other vehicles in your immediate vicinity

are driving. Depending on the passage, you will drive manually or automated.

Your goal should be to drive in a reasonable time and be as environmentally friendly as possible. At the end of the trial, if

the total time is reasonable, the reward will be increased by 2€.

Depending on the run, the vehicle will show you its own eco-score and that of the other vehicles via a head-up display. The

total eco-score will be displayed on a scale from 1 (very bad) to 100 (perfect). The eco-score is calculated using acceleration

and speed. Therefore, these two values are also displayed graphically.”

Participants were then randomly assigned to conditions based on a balanced Latin Square. Each ride took approxi-
mately 6 min. After each condition, participants filled out the questionnaires described in Section 4.4.

Participants were told that their compensation was dependent on their performance. This reflects on the real-world
aspect of having to constantly weigh arriving more quickly or saving fuel. However, all participants were compensated
with 15 Euro. A session lasted approximately 75 min. Quotes were given in German and were then translated. The
hygiene concept for studies regarding COVID-19 (ventilation, disinfection, wearing masks) involving human subjects
of the university was applied.

4.4 Measurements

4.4.1 Objective Measurements. We logged velocity, acceleration, and eco-driving scores with 20 Hz. For the conditions
with an AV, the target speed value for eco-driving was also logged. Additionally, we logged eye-tracking data with 20
Hz. We logged the eye gaze for 10 areas: the speed indicator, the setting for the target speed in the automated mode, the
eco-score, and the three symbols for the eco-score. We also logged the eco-score and the symbols for the other vehicles
as an eye-tracking area.

4.4.2 Subjective Measurements. After each drive, participants rated task load using the raw NASA-TLX [27] on 20-point
scales. Additionally, we employed the System Usability Score (SUS) [9]. Finally, we measured the constructs of perceived
ease of use, perceived usefulness, subjective norm, and behavioral intention to use that were adopted from TAM2 [64].
We employed the German translation by Olbrecht (see page 101; [47]).
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Participants were also asked to indicate their perceived performance in terms of eco-friendliness (1=not at all -
7=totally eco-friendly) and their assessments of the driving style in terms of safety, fun, and distracted by the visualization.
For the automated mode, we also asked participants how well the AV drove.

After all conditions, participants filled out questions regarding the necessity and reasonability of the visualizations,
how far they estimated the vehicle could perceive others’ eco-scores their ranking of the visualization conditions (no,
only own eco-score, own and other’s), and their demographic data and their immersion in the simulation by using the
Immersion subscale of the Technology Usage Inventory (TUI) [34].

5 RESULTS

5.1 Data Analysis

Prior to statistical tests, we checked the required assumptions (normality distribution and homogeneity of variance
assumption). For non-parametric data, we used the non-parametric ANOVA (NPAV) [43]. For post-hoc tests, we used
Dunn’s test with Bonferroni correction. We employed R in version 4.1.3 and RStudio in version 2022.02.0. All packages
were up to date in April 2022.

5.2 Participants

We determined the required sample size via an a-priori power analysis using G*Power in version 3.1.9.7 [21]. To achieve
a power of .8 with an alpha level of .05, 15 participants should result in an anticipated medium effect size (0.28 [22]) in a
within-factors repeated-measures ANOVA with one group and six measurements.

We recruited N=19 participants (13 male, 6 female, 0 non-binary) with an average age of M=24.16 (SD=3.29). Eleven
participants are students, seven are employees, and one is in training. Nine participants finished a college degree,
seven high school, two finished secondary school, and one finished their training. Regarding their driving license, nine
obtained their license between 5-10 years ago, three 10-20 years ago, three 3-5 years ago, three less than a year ago, and
one 1-3 years ago. Seven participants drive between 7000-15000km in the last year, five between 15000-25000, five less
than 7000km, and two more than 33000km.

5.3 NASA TLX and Usability

5.3.1 Usability. The NPAV found no significant effects on the SUS score. Usability was rated between M=78.03,
SD=19.94 (manual with both visualizations) overM=82.11, SD=17.76 (Manual without visualization) toM=86.71, SD=11.09
(automated with own visualization).

5.3.2 NASA TLX. The NPAV found a significant main effect of Driving Mode on TLX score (𝐹 (1, 18) = 28.44, p<0.001).
Manual driving was rated significantly more difficult (M=7.31, SD=4.32) than automated driving (M=4.39, SD=2.82).

Mental Workload: The NPAV found a significant main effect of Driving Mode on mental workload (𝐹 (1, 18) = 66.84,
p<0.001). Manual driving was significantly more mentally demanding (M=9.00, SD=5.53) than automated driving
(M=3.63, SD=2.86).

The NPAV found a significant main effect of Visualization on mental workload (𝐹 (2, 36) = 7.38, p=0.002). A post-hoc
test, however, found no significant differences. Mental workload was lowest without a visualization (M=5.42, SD=4.71)
and highest with the own and the visualization for the other vehicles (M=7.29, SD=5.88).
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Physical Demand: The NPAV found a significant main effect of Driving Mode on physical demand (𝐹 (1, 18) = 65.99,
p<0.001). Manual driving was significantly more physically demanding (M=7.11, SD=4.96) than automated driving
(M=3.00, SD=3.12).

Temporal Demand: The NPAV found a significant main effect of Driving Mode on temporal demand (𝐹 (1, 18) = 9.67,
p=0.006). Manual driving was significantly more temporally demanding (M=6.54, SD=4.80) than automated driving
(M=4.35, SD=3.69).

Performance: The NPAV found no significant effects on performance. The values for performance ranged from
𝑀 = 5.21 (automated driving with own visualization) to𝑀 = 7.47 (automated driving with both visualizations).

Effort: The NPAV found a significant main effect of Driving Mode on effort (𝐹 (1, 18) = 25.81, p<0.001). Manual driving
required significantly more effort (M=7.96, SD=5.32) than automated driving (M=3.63, SD=3.36).

Frustration: The NPAV found no significant effects on frustration. The values for frustration ranged from𝑀 = 5.05
(automated driving with both visualizations) to𝑀 = 8.32 (manual driving without visualizations).

5.4 Technology Acceptance Model 2

Perceived Ease of Use: The NPAV found a significant main effect of Visualization on Perceived Ease of Use (𝐹 (2, 36) = 3.56,
p=0.039). However, post-hoc tests did not show significant differences.

Perceived Usefulness: The NPAV found a significant main effect of Visualization on Perceived Usefulness (𝐹 (2, 36) =
11.05, p<0.001). A post-hoc test found that no visualization (M=4.43, SD=1.45) was rated significantly worse (p=0.005)
than visualizing only the own eco-score (M=5.36, SD=1.16).

Subjective Norm: The NPAV found no significant effects on subjective norm. The values for subjective norm ranged
from𝑀 = 3.97 (manual without visualizations) to𝑀 = 4.55 (automated with own visualization).

Behavioral Intention to Use: The NPAV found no significant effects on intention to use. The values for intention to
use ranged from𝑀 = 5.50 (manual with both visualizations) to𝑀 = 6.00 (manual with own visualization).

5.5 Perceived Driving Style

Fun: The NPAV found a significant main effect of Driving Mode on Driving Style - Fun (𝐹 (1, 18) = 8.28, p=0.010). Manual
driving was perceived as significantly more fun (M=5.75, SD=1.33) than automated driving (M=4.77, SD=1.65).

The NPAV found a significant main effect of Visualization on Driving Style - Fun (𝐹 (2, 36) = 4.24, p=0.022). A post-hoc
test found no significant differences.

Ecological: The NPAV found a significant main effect of Driving Mode on Driving Style - Ecological (𝐹 (1, 18) = 8.28,
p=0.010). Automated driving was perceived as being significantly more ecological (M=5.56, SD=1.34) than manual
driving (M=5.47, SD=1.42).

The NPAV found a significant main effect of Visualization on Driving Style - Ecological (𝐹 (2, 36) = 4.24, p=0.022).
The driving style was subjectively more found to be ecological with the own visualization (M=6.00, SD=0.99) compared
to no visualization (M=4.79, SD=1.71; p=0.001).

Safe: The NPAV found a significant main effect of Driving Mode on Driving Style - Safe (𝐹 (1, 18) = 8.28, p=0.010).
Automated driving was perceived as being significantly safer (M=5.91, SD=1.37) than manual driving (M=5.53, SD=1.60).

The NPAV found a significant main effect of Visualization on Driving Style - Safe (𝐹 (2, 36) = 4.24, p=0.022). A
post-hoc test found no significant differences.
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Fig. 8. Time needed.

Distracting: The NPAV found a significant main effect of Driving Mode on Driving Style - Distracting (𝐹 (1, 18) = 8.28,
p=0.010). Manual driving was perceived as significantly more distracting (M=2.70, SD=1.94) than automated driving
(M=2.04, SD=1.44).

The NPAV found a significant main effect of Visualization on Driving Style - Distracting (𝐹 (2, 36) = 4.24, p=0.022).
Visualizing only the own eco-score was perceived as significantly less distracting (M=1.97, SD=1.52) than visualizing
the own and the eco-score of the others (M=2.97, SD=1.95).

Driving Style Automated Vehicle: For the evaluation of the driving style as performed by the automation, a Friedman’s
test found no significant difference (p=0.42). It was rated medium between automated with both visualizations (M=4.74,
SD=1.73) and automated with only visualizing the own eco-score (M=5.21, SD=1.84).

5.6 Driving Data

5.6.1 Mean Eco-Score. TheNPAV found a significantmain effect ofVisualization on themean eco-score (𝐹 (2, 36) = 12.54,
p<0.001; see Figure 5). A post-hoc test showed that the score for no visualization (M=80.27, SD=11.89) was significantly
worse than with only displaying the own eco-score (M=86.58, SD=5.79).

5.6.2 Mean Speed-Score. The NPAV found a significant main effect of Visualization onmean speed score (𝐹 (2, 36) = 5.66,
p=0.007; see Figure 6). A post-hoc test found no significant differences. The NPAV found a significant main effect of
Driving Mode on mean speed-score (𝐹 (1, 18) = 8.00, p=0.011). The speed-score was significantly lower when driving
automated (M=109.01 km/h, SD=6.74) compared to manual (M=112.16 km/h, SD=11.14).

5.6.3 Mean Acceleration-Score. The NPAV found a significant main effect of Visualization on mean acceleration-
score (𝐹 (2, 36) = 5.38, p=0.009; see Figure 7). A post-hoc test found that in the no visualization conditions, the mean
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acceleration-score (M=79.74, SD=10.28) was significantly lower than when visualizing the own eco-score (M=83.70,
SD=7.25).

5.6.4 Duration. The NPAV found a significant main effect of Visualization on duration (𝐹 (2, 36) = 5.66, p=0.007; see
Figure 8). A post-hoc test found no significant differences. The NPAV found a significant main effect of Driving Mode on
duration (𝐹 (1, 18) = 7.67, p=0.013). The automated driving (M=353.43s, SD=22.32) took significantly longer than the
manual driving (M=345.63s, SD=35.82).

5.6.5 Collisions. We found that there were in total 27 crashes. Of these, 13 occurred in automated driving and were,
therefore, discarded. The reason for the crashes in automated driving can be traced back to our implementation. The
automation was implemented to determine whether it should drive left or right based on the target speed and not on
the basis of the actual speed. Therefore, at the beginning of the start, when the participant set the target speed to, for
example, 120 km/h, the car changed directly to the left while still only driving 30-40 Km/h. This means that the other
vehicles, which are already driving fast, have not always managed to brake in time. We explained this to the respective
participants afterward.

In the manual driving conditions, two crashes occurred in the conditions with both visualizations, two in the
conditions with only visualizing the own eco-score, and ten occurred without any visualizations. Two participants
stepped on the gas and brakes at the same time. Most of the time, however, because the participants did not keep a safe
distance and could no longer brake in a sudden traffic jam, leading to the accident. This happened less often with a
visualization because the participants usually drove a little slower.

5.7 Eye Tracking Data
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Fig. 9. Fixations of relevant areas of interest in percent.

We logged the eye-tracking data with 20 Hz. We calculated the percentage of tracked fixations on the ten different
areas of interest (see Figure 9). Several observations can be made. The fixation of the the total own eco-score logo
(“Totallogo_Player”) was always highest, if present.

With direct comparison, the fixation of the total eco-score of the others was second most fixated, followed by the
own speed logo and the own total eco-score and the total eco-score logo of the others.
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Overall, all other ego vehicle-related visualizations were always more fixated when the visualizations of the other
vehicles were not present. Interestingly, the speedometer (“Kmh”) was equally fixated with no visualization and when
only the own eco-score was displayed.

5.8 Open Feedback

Twelve participants provided open feedback. The eco-scores of the other vehicles were described as invasive (P2) and
distracting (P19). However, participants argued that this could be reduced by not displaying all the scores and symbols
but by providing only the aggregated score via color. In general, participants highlighted that visualizing the own
eco-score was very useful.

6 DISCUSSION

We compared visualizing one’s own eco score consisting of scores for speed and acceleration with additional peer
comparison and a baseline. Additionally, we varied the Driving Mode: Manual or Automated. Our results are in line
with prior work showing that constantly visualizing the own eco score leads to improved ecological driving [36, 54, 56].
However, our concept neither significantly improved nor impaired driving or any subjective assessment. We discuss
these findings regarding the general validity of peer comparison and the actual implementation. Additionally, we discuss
the implications of our results for AVs.

6.1 Peer Comparison for Ecological Driving

Previous work indicated that peer comparison could lead to improved performance [46, 48]. However, with our concept,
we could not significantly improve the driving style with regards to ecological driving (e.g., see Figure 5). However,
driving data shows that the driving style, while already being good without visualization (mean score of around 80 of
100), was increased (mean score around 85) and is approximately equal to only visualizing one’s own score. Potentially,
this already high value indicates that a plateau was reached, from which further improvements are difficult to achieve.
Based on this, we are not able to definitely support or reject our proposed concept. With our limited duration per ride
(≈ 6 min), the long-term effects could not be studied. Potentially, the effect of comparison is larger when motivation
starts to fall off after a longer duration of driving.

6.2 Visual Design

As described in Section 5.8, participants mentioned that the design for the visualization of the other vehicles’ scores
could be improved. While we opted for a very close visualization for the own and the visualization of the other’s eco
score to avoid confounding factors, for other vehicles, we would support only displaying the eco score and not the
speed and acceleration scores to avoid visual clutter. While this reduces information content, the gaze analysis supports
that participants looked primarily at the total score or the logo for the total score (see Figure 9). While not highlighted
by participants, we argue that our attention-grabbing mechanisms and color design were helpful to direct gaze toward
the relevant scores as indicated by the eye-tracking data.

6.3 Ecological Driving in AVs

We showed that automated driving results in lower workload, which we interpret as an indication of a valid study
design. Currently, the driving style of AVs is not yet clear. While there is much hype about the potential for reduced fuel
consumption, for example, via optimized driving behavior or novel maneuvers such as platooning [68], the demands of
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the user are less investigated. Most work goes in a direction of either investigating driving styles [18] or looking into
the necessity to adjust the driving style to one’s own style [24]. We found that, in the automated mode, participants
drove significantly slower than in the manual mode and, therefore, the journey took longer. In general, we found less
variance between the conditions when driving automated (e.g., see Figure 5 or Figure 6). This is a first indication that in
automated driving, the effect of eco score visualization, even when the user has the ability to adjust the driving style,
is less relevant. Nonetheless, visualizing one’s own eco score is easily implementable and, we argue, should remain
incorporated if the driving style is adjustable.

6.4 Practical Implications

With our data, we can state that, in line with previous work, the visualization of the own eco score is useful and
reasonable. Our data does not support the necessity for a full windshield display to enable peer comparison. While
this could become feasible in the near future [42], visualizing the own eco score in the HUD or the console seems
appropriate. Therefore, no advanced visualization capabilities are required and manufacturers can leverage these effects
already in current models.

6.5 Limitations

While we implemented an immersive scenario, the vehicle’s vection could not be realistically simulated. This could be
enhanced by using a simulator with higher degrees of freedom (e.g., [13]). Nonetheless, the Immersion subscale of the
TUI showed that participants felt immersed (M=20.32, SD=3.79 on a scale from 4 (lowest) to 28 (highest immersion).

Additionally, our journey per condition was relatively short: five to six minutes. Future work could include this
concept in longitudinal studies.

Our concept of direct peer comparison with other driving styles in the vicinity also heavily depends on other drivers’
behavior. However, as displaying the own eco score was shown to be beneficial to the driving style, we believe that this
would offset the potential negative effects of having others drive environmentally negative.

7 CONCLUSION

Overall, we present a concept to leverage the effects of direct (peer) comparison to improve ecological driving by
visualizing one’s own and others’ eco scores. In a VR study (N=19), we compared the concept to no visualization and
only visualizing one’s own eco score. In the study, we compared these visualizations both for manual and automated
driving. In automated driving, the participant was able to manipulate the driving style by setting the desired speed. We
found that visualizing the eco score improves ecological driving both for manual and automated driving. However,
peer comparison, while also improving ecological driving compared to no visualization, actually lead to a little worse
mean eco score. We propose updated designs of the visualizations and discuss practical implications. This work helps to
further unveil relevant factors in persuading manual drivers and users of AVs to drive ecologically.
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