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Figure 1: ShapeFindAR is a proof-of-concept implementation of in-situ spatial search. It enables users to search for future

physical artifacts through spatial (a) or textual (b) queries, while coupling the search and previewing process to the users’ physical

context. Spatial search queries (a) rely on in-situ sketches, which may be drawn mid-air (1), be tracings of objects/features in

the physical environment, or combine prior search results with sketched features (2). Textual search queries (b) rely on written

or spoken terms known by the user. Alternatively, a user may use a photo-based label extraction to frame objects of interest (3)

and receive labels to potentially use for searching (4).

ABSTRACT

Personal fabrication is made more accessible through repositories

like Thingiverse, as they replace modeling with retrieval. However,

they require users to translate spatial requirements to keywords,

which paints an incomplete picture of physical artifacts: propor-

tions or morphology are non-trivially encoded through text only.

We explore a vision of in-situ spatial search for (future) physical

artifacts, and present ShapeFindAR, a mixed-reality tool to search

for 3D models using in-situ sketches blended with textual queries.

With ShapeFindAR, users search for geometry, and not necessarily

precise labels, while coupling the search process to the physical en-

vironment (e.g., by sketching in-situ, extracting search terms from

objects present, or tracing them). We developed ShapeFindAR for

HoloLens 2, connected to a database of 3D-printable artifacts. We
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specify in-situ spatial search, describe its advantages, and present

walkthroughs using ShapeFindAR, which highlight novel ways for

users to articulate their wishes, without requiring complex model-

ing tools or profound domain knowledge.
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1 INTRODUCTION

Personal Fabrication is a powerful opportunity for technology en-

thusiasts and consumers alike: It empowers them to design and

fabricate artifacts that are unrivaled in their degree of personaliza-

tion and precision. While technology enthusiasts may be compelled

to invest time in the process of personal fabrication, consumers

may generally care more about the result [21] and expect a low-

friction workflow [52]. To be able to include the whole spectrum of

users to benefit from the progress of personal fabrication, future

creation tools are increasingly addressing the needs of non-experts

and laypeople [14, 46, 55], which are often not able or not willing to

express their needs with the precision an expert would. This likely

applies to the process of modeling artifacts, but also to the process

of searching and retrieving the correct ones [50]. Through more

affordable and robust hardware (e.g., 3D printers, laser cutters) and

improved software workflows (e.g., modeling tools, slicers), per-

sonal fabrication is now in reach for a wider user base than ever

before.

However, most established workflows used to define artifacts

to fabricate (e.g., 3D modeling⇒ slicing⇒ 3D printing), require

both learning and usage effort. Such challenges, in part, explain

the popularity and importance of open, crowd-based model repos-

itories, such as Thingiverse or MyMiniFactory [2, 13, 21]. Model

repositories provide users ready-to-print artifacts, making the in-

teraction with the repository more related to shopping and less like

established notions of modeling or designing artifacts [52]. Model

repositories are an appropriate alternative to modeling artifacts

from the ground up, and will become even more viable as they

grow in size and artifact diversity. However, model repositories

require feasible ways to be searched, to be a viable asset for users.

Text-based search was adopted from established domains (e.g., file

search), but largely misses the spatial nature and physical context

of searching for (future) physical artifacts. Similarly, query formu-

lation and artifact previewing are disconnected from the physical

context they are meant to be placed in later on. When facing a

requirement or challenge, users then are either required to invest

effort in modeling artifacts or are required to translate their require-

ments to search terms and subsequently refine them.

We propose ShapeFindAR, a mixed-reality tool to search model

repositories for 3D printing in-situ. It combines two types of search

queries: textual and spatial. Users may sketch coarse 3D shapes that

are then used for geometry-based (i.e., spatial) searches. They may

likewise enter known search terms for textual searches. To leverage

the user’s physical context, ShapeFindAR provides ways to support

users in the task of defining and combining these two query types

(Figure 1): users are able to trace features of the environment for

spatial searches, or may retrieve labels for objects in the environ-

ment for textual searches. This bridges the disconnect between the

users’ physical environment and the search process. ShapeFindAR

was developed as an application for the Microsoft HoloLens 21

and is connected to a custom database of 3D-printable artifacts.

By leveraging additional, spatial modalities (i.e., sketches), Shape-

FindAR allows users to omit the task of precisely defining search

1https://www.microsoft.com/en-us/hololens, retrieved on 12.12.2021

terms for artifact retrieval. While some objects have clear and es-

tablished terminology, more niche artifacts may require knowledge

of the terminology used to describe them (i.e., a certain degree of

domain knowledge). An example can be seen in Figure 1 a-1: a ring

meant to be worn on two fingers simultaneously. Users may not

necessarily know the term ždouble ringž, but likely have an intuitive

understanding of the geometry they desire. Hence, they would be

able to sketch the shape in a coarse fashion and use this sketch,

combined with imprecise search terms (e.g., žringž), to find the de-

sired artifact. Similarly, users may have an intuitive understanding

how an elongated vase with handles looks like, but may not know

the term žamphoraž used to precisely denominate it. By searching

for geometry, users may receive results that fulfill their intended

(functional) needs, without limiting themselves to objects originally

meant for their goal. By conducting the sketching procedure in-

situ (i.e., at the location of the future artifact), users benefit from

previewing and referencing real-world features (e.g., by tracing

them). ShapeFindAR also enables users to get machine-generated

labels and guesses after framing an object of interest (Figure 1 b).

This enables them to discover potentially unknown terms. In turn,

this helps finding similar objects, or objects meant to interact with

the existing object. By providing multiple ways (i.e., modalities) to

express and refine searches, ShapeFindAR aims to allow users to

choose the path to a desired artifact that fits the task and the user

best. Users are also encouraged to iteratively refine their queries. A

fitting 3D model could be used as a base for a new spatial search

query, by sketching new features onto it, as seen in Figure 1 a-2.

With ShapeFindAR, we take the perspective of 3D printing as a

domain for physical artifact acquisition. However, we believe that

in-situ spatial search, and, by extension, ShapeFindAR, are applica-

ble to the search for and acquisition of physical artifacts in general,

regardless of the actual method to fabricate or acquire it.

The contributions of this work are as follows:

• The concept of in-situ spatial search for (physical) arti-

fact retrieval. It actively embeds both spatial input, textual

input and the user’s physical context in the search procedure.

• Proof-of-concept implementation of ShapeFindAR, a

Mixed-Reality application enabling in-situ spatial search of

a model repository for 3D printing.

• Exploration of the concept of in-situ spatial search, using

walkthroughs enacted with the ShapeFindAR prototype. The

walkthroughs highlight novel ways for users to formulate

and refine queries for future physical artifacts.

2 CONCEPT: IN-SITU SPATIAL SEARCH

With this section, we want to elaborate on the concept behind

ShapeFindAR. In-situ spatial search supports users with the transfer

of features in their physical context to search queries. This currently

happens through users’ mental efforts, domain knowledge, and

through textual queries only. In-situ spatial search also embraces the

spatial nature of physical artifacts, not only for result-presentation,

but, where beneficial, also during the search process. We argue that

text-based search adds an unnecessary abstraction from a three-

dimensional, spatial problem to a one-dimensional search term.

Only in the final step, the retrieved artifact is transformed back to

https://www.microsoft.com/en-us/hololens
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Figure 2: Conceptual process of in-situ spatial search, as demonstrated with ShapeFindAR. The users reside in the same physical

context in which a future artifact may be fabricated for (a). They may search the repository with 3D sketches or known words,

composing a search query (b). As the search happens in-situ, users may also extract labels from the environment or trace

existing objects. While refining their queries, users may learn new terms from the search results for textual searches and

sketch new features onto the results. The query yields a result set (c) generated by the database server. Both query types (spatial,

textual) can be combined, enabling multimodal search, while allowing users to be ambiguous in one or both modalities.

3D by presenting a 3D object (either a digital, or a physical one) to

the user. This abstraction towards a 1D space (i.e., text) is helpful

and powerful for expert users that know the (domain-)specific lan-

guage and terminology. However, it creates an unnecessary burden

for laypeople and novices who may be able to coarsely describe

their 3D problem in-situ without necessarily knowing the appro-

priate and precise terms.

The in-situ aspect of in-situ spatial search supports the transfer

of features in the user’s physical context to search queries. Physical

objects may be tracedwith (spatial) sketches, scanned (if the headset

is capable of doing so), or be photographed to extract labels. These

approaches transfer and translate context features (e.g., geometry)

to search queries. With in-situ spatial search, more abstract aspects

of context could also be available to use and embed in queries. Con-

text may mean the room a user is in (e.g., the kitchen), the task the

user is attempting to solve (e.g., attach an object to another), the

general design of the room (e.g., žmodernž), or the color climate of

the interior (e.g., earth tones to be matched by the future artifact).

ShapeFindAR enables users to trace objects and apply photo-based

label extraction. Apart from the use of the context’s features for

search queries, it is likewise used for previewing artifacts in con-

text. This enables the user to estimate the form and function of the

future artifact, while also allowing interactions like positioning and

scaling to evaluate and improve the artifact prior to fabrication [53]

or acquisition [33] in general.

The spatial aspect of in-situ spatial search embraces the spatial

nature of physical artifacts during the search process. By embed-

ding geometry and sketches in the search procedure, geometry

receives an emphasis over terminology. If systems sidestep text

and labels, functions and functionality ascribed to objects by con-

tributors to an artifact database (e.g., users on Thingiverse) can

be ignored. The general topology of cups, pencil holders, vases,

pots, and other cylindrical containers is comparable. However, this

geometry of a bin is labeled differently by contributors, while all

can be used for žholdingž tasks (e.g., holding pencils). Not all arti-

facts suitable for holding pencils can be found through the original

label (e.g., žpencilž or žpenž holder). While geometry does not nec-

essarily strictly define function, it often is tightly coupled to it,

particularly for static objects. Furthermore, we argue that users

are likely to have at least a coarse understanding of their desired

geometry or shape. Approximating it through a spatial sketch to

find existing artifacts (to use or remix) may be a feasible proce-

dure to retrieve a fitting one. This avoids the enforced transfer of

spatial requirements (3D) to precise, written keywords (1D), which

is particularly relevant if a) fitting terminology is unknown or b)

if the actual geometry of a future artifact is the most relevant aspect.

We developed ShapeFindAR as a proof-of-concept prototype

embodying our vision of in-situ spatial search. With the means

of personal fabrication, the process of artifact acquisition can be

approached from distinct directions: 1) design (e.g., 3D modeling or

sculpting an artifact from the ground up) or 2) retrieval (e.g., search-

ing for an artifact on Thingiverse to fabricate). Both directions are

equally viable to users focusing on the goal of žattaining an artifactž.

Usually, the design or modeling approach exhibits the highest com-

plexity, but also enables sufficiently proficient users to achieve any

requirement they have [52]. However, designing artifacts requires

knowledge and training, and therefore has a higher entry barrier. In

contrast, retrieving an artifact generally requires knowledge of the

correct terminology to pass to a search system. Alternatively, users

have to rely on recommender systems, or invest time in elaborate

iterations and refinement. When dealing with high-level concepts

(e.g., žchairž, žvasež), terms are generally established and there is

little to no mismatch between the users’ intentions and the under-

standing of the term by the artifact repository. Themore specific and

personal the requirements become, the more detailed and precise

the search terms have to be to yield satisfying results. This makes

the combination of multiple searchmodalities an appealing outlook.
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ShapeFindAR provides two main ways for searching: spatial

queries (i.e., through sketching) and textual queries. A diagram of

the search process is depicted in figure 2. Users are supported in the

task of embedding their physical context in the queries: by tracing

existing features for a spatial query, or by using label extraction to

generate suggested search terms for a textual query. This is crucial,

as any artifact users retrieve is meant to be fabricated or acquired

otherwise ś ultimately interacting with the physical context [4].

In-situ search lowers the effort required to define searches and

preview results in-context, as it omits transfers between a location

of (future) use (e.g., the table a vase will rest on) and a location

of searching/design (e.g., a computer). Both query types may also

be created without involving the users’ physical context (e.g., by

relying on known terminology or known geometry). This allows

users to freely encode their existing wishes and knowledge, but

demands a certain level of domain knowledge (for search terms) or

at least a coarse understanding of the desired geometry. Through

the use of in-situ spatial search procedures, a set of more specific

advantages emerges for users: users may circumvent established

terminology, ignore objects’ intended function and use a sketch’s

scale as a filter or a target scale. In general, in-situ spatial search

is meant to enable users to formulate and refine ambiguous search

queries in multiple modalities to ideally retrieve finished, fitting

designs from a model repository.

3 RELATED WORK

The concept of in-situ spatial search draws inspiration from differ-

ent research directions. ShapeFindAR is meant to be a low-effort,

novice-friendly tool for personal fabrication, which skips estab-

lished steps such as 3D modeling. The development and usage of

in-situ tools for design and fabrication is likewise a crucial direction

related to ShapeFindAR. Similarly, novel methods for non-textual

search and fabrication that do not necessarily follow established

paradigms of (3D) modeling are fundamentally relevant to our work.

Conceptually, the embedding and use of model repositories like

MyMiniFactory or Thingiverse is a relevant direction, as it empha-

sizes the benefits of crowd-sourced artifacts (i.e., artifacts that have

already been designed and specified).

3.1 Novice-friendly Tools for Fabrication

Ongoing research efforts are being made to enable personal fab-

rication for a wider audience. This audience consists primarily of

novices to design and fabrication (i.e., žconsumersž). As modeling

artifacts is a complex task, attempts were made to simplify this

modeling process, by focusing on fewer primitives [6], 2D designs

for 3D models [38], or sketch-based modeling [45]. Ballagas et al.

explored voice input to generative models [5], Lee et al. applied

gestures to the task of furniture customization [32]. CraftML by

Yeh and Kim transferred 3D modeling to a declarative program-

ming approach [64]. Apart from purely digital approaches, ana-

log fabrication tools can be augmented and simplified, like Match-

Sticks [59] or Turn-by-Wire [58] by Tian et al. To support novices,

automation and generative designs were used [22, 35, 47], which

infer the users’ design intents based on often coarse input, such as

sketches [24, 25, 34, 45].

All aforementioned tools can be seen as approaches to reduce

effort, learning, and overcome challenges in personal fabrication.

With in-situ spatial search and ShapeFindAR, we similarly aim to

address novices to personal fabrication and design. However, we

focus on outsourced design artifacts (i.e., 3D-printable models from

experienced users uploaded to Thingiverse orMyMiniFactory). This

is a contrast to procedures inferring or generating geometry [35, 45]

or requiring users to model artifacts by aggregating primitives [6,

64].

3.2 In-situ Tools for Personal Fabrication

There is a disconnect between the location of artifact design and the

artifact’s future location [4, 37]. This requires either assessment and

transfer of requirements, or methods to compensate measurement

errors [27], which is a challenge that is not exclusive to novices. In-

situ methods for modeling and fabrication enable users to preview

designs within their future context. This was demonstrated by Peng

et al. [39], where design overlapped fabrication, or Yung et al. [66],

where the target audience was children. In-situ tools relying on

augmented or mixed reality also enable the augmentation and guid-

ance of previously manual and analog fabrication approaches, such

as 3D pen sculptures [65], carved models [17, 18], or linkages [23]

by providing feedback during the process itself. They may also

support remote collaboration and learning, as shown by Villanueva

et al. [60]. Mixed reality approaches, such as the works by Weichel

et al. [62] or Jeong et al. [23] enable situated design approaches,

while other tools focus on fabrication [39, 69], or remixing [53].

The usage and embedding of real-world artifacts as counterparts

to future fabricated artifacts is likewise an aspect of in-situ tools.

It enables the design of fitting mounts [69], mechanisms actuating

other objects [35], or previewing to-scale sketches in context [1].

Personal fabrication and any process that generates personal

physical artifacts require grounding in the users’ physical context.

This is achieved through situating design or retrieval processes in

this particular context. Mixed reality is an outstanding opportunity

to achieve this type of interaction. ShapeFindAR aims to provide a

similar benefit, and, for instance, enables users to trace real-world

artifacts to use these features for their searches. However, our focus

lies on search and retrieval, instead of modeling or design.

3.3 Alternative-modality Interfaces for
Fabrication or Search

The combination of different input modalities enables users to

bypass established metaphors for CAD (i.e., for the design of arti-

facts) or information retrieval (i.e., for the search for artifacts). This

includes uses of sketches as a coarse input [31, 34, 45], but also

gestures [10, 26, 32] or speech [5]. Alternatively, tangible manip-

ulation may be employed for input and provide appropriate feed-

back [48, 57] not found in most industrial CAD tools. Such ways to

express and define geometry may, depending on the user, reduce

the effort to design geometry [51]. In contrast to the interfaces that

focus on the design and generation of artifacts, retrieval interfaces

focus on the search for finished designs or parts [20]. Fraser et

al. presented ReMap, which embodies a prototype of multimodal

search [15], an aspect we aimed to embrace with ShapeFindAR. On

a more technical level, various approaches for the comparison of 3D
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models are present in the literature. These include approaches to

align point sets [3, 44], computation of object similarity [8, 28, 30],

and associated retrieval methods based on geometry [56]. In par-

ticular, gesture-based systems, such as DataMiming by Holz and

Wilson [20] or sketch-based systems, such as the ones introduced

by Pu et al. [41] Enenhofer [12] or Eitz et al. [11] inspired Shape-

FindAR. While DataMiming omitted visual feedback for the users

and focused on gestures as input, it is conceptually similar to Shape-

FindAR, as it uses a fairly natural way to describe artifacts, and

offloads the precise definition or matching to other parties [20].

ShapeFindAR does not omit visual feedback but considers it to be

a crucial part of the search process. It also benefits from context

features (tracing, label extraction) and embraces multiple modal-

ities to give users more freedom and ambiguity. With platforms

like Thangs [40] offering 3D-model based search for 3D models,

the notion of searching with shapes over labels is already in reach

for consumers, albeit in an ex-situ fashion. Giunchi et al presented

a combination of sketching and speech for the retrieval of chair

models in VR [16]. While conceptually similar, our focus lies on

users’ physical environments, instead of virtual ones. This requires

ways to transfer spatial requirements to searches.

Such novel user interfaces for search or design are an opportunity

to enable widespread access to personalized artifacts, by lowering

the skill floor while retaining high expressivity for more proficient

users. Novel modalities are applicable both to searching for existing

artifacts [20, 49] and generating new ones [5, 32, 63]. ShapeFindAR

can be considered to be a comparable approach to artifact retrieval,

with an emphasis on coarse inputs that are ś ideally ś transferred

to high-fidelity artifacts from a model repository. ShapeFindAR

similarly aims to enable and support iterative search procedures,

where users leverage their physical context and retrieved artifacts

to formulate and refine searches.

3.4 Usage of Model Repositories

Model repositories (e.g., Thingiverse) and their associated commu-

nities of makers are an important component of today’s personal

fabrication landscape. Repositories have been leveraged as a model

source for remixing tools, such as Grafter by Roumen et al. [43], or

Mix&Match by Stemasov et al. [53]. They have also been the sub-

ject of studies and investigations, generating novel frameworks like

PARTs by Hofmann et al. [19] that aim to increase re-use of design

effort. Likewise, systematic analyses of repositories like Thingi-

verse and their users unveiled challenges in terms of artifact use

and customization by novices [2, 21]. Works by Flath et al. [13] or

Kyriakou et al. [29] evaluated patterns and degrees of knowledge

and design reuse. Domain-specific usage, such as the exchange

of assistive technologies [7] is likewise a field benefiting from a

combination of design sharing, re-use, and customization.

We agree with and embrace the notion that crowdsourced mod-

els or artifacts are crucial for personal fabrication. Notably, any

storefront ś on- and offline ś provides users a similar experience,

with varying degrees of potential personalization. When consid-

ering stores to be an alternative to personal fabrication (currently

chosen by a majority of the population [52]), approaches relying on

searching and customizing existing designs can be considered to be

a viable path to take. We approach this aspect with an emphasis on

search and how it is applied to the task of finding future artifacts

for one’s own, personal, physical context.

4 PROOF OF CONCEPT IMPLEMENTATION

The following sections describe the development of ShapeFindAR

as proof-of-concept implementation. The system consists of 3 com-

ponents: the application for Microsoft’s HoloLens 2, a server com-

ponent connected to the database, and a data-gathering tool which

was used to fill the database with models gathered from Thingiverse

and MyMiniFactory. We report our approach and development pro-

cess openly for replicability.

4.1 HoloLens 2 Application

We implemented the user-facing part of ShapeFindAR with Mi-

crosoft’s HoloLens 2 using Unity2 2019.4.6f1. Version 2.4 of the

Mixed Reality Toolkit (MRTK3) was used to implement the user

interface and most of the interactions with it. Networking was

implemented with the RestClient4 library for Unity.

b)a)

Result list
(2D)

Search UI

Downloaded
results (3D)

Figure 3: The textual search interface, along with the key-

board for text input (a). After submitting the search query,

a user is presented with a 2D list of results and thumbnails

(b, right). Downloaded objects are rendered in 3D and are

attached to the user’s left hand (b, left).

The search interface is initially attached to the user’s right hand.

If needed, the user can grab and position the panel statically in space

(Fig. 3a). The search interface can be used to enter search terms

by text or speech. After submitting a query, the interface loads a

scrollable grid of results (Fig. 3b). The user can select results that

appear promising, which are then downloaded in the background.

As soon as the download and instantiation are completed, the model

appears attached to the user’s left hand, forming a palette where the

user may gather up to 5 models to compare and evaluate (Fig. 3b).

Each artifact loaded into the palette can be grabbed and positioned

in the space around the user. The objects can then be repositioned,

rotated, and scaled freely, which enables an in-situ preview of them.

The sketch search component can be activated by tapping on a

button below the search interface. After activating the sketch mode,

the users can draw in the space around them by pinching their

thumb and index finger (Fig. 4a). The sketch can then be submitted

as a query. To ensure appropriate results, sketch-based search cur-

rently requires the users to enter at least a coarse search term. This

is mainly used to refine the search to receive faster results and can

be removed in the future with either better (backend) hardware or

a more optimized implementation of the matching algorithm. The

2https://unity.com/products/unity-platform, retrieved on 16.12.2021
3https://microsoft.github.io/MixedRealityToolkit-Unity, retrieved on 26.8.2021
4https://github.com/proyecto26/RestClient, retrieved on 15.12.2021

https://unity.com/products/unity-platform
https://microsoft.github.io/MixedRealityToolkit-Unity
https://github.com/proyecto26/RestClient
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users may also sketch onto downloaded and positioned meshes, to

extend them and use them as a new query (Fig. 4b). This feature

also enables users to position multiple models they retrieved from

the repository and connect them through their sketch, which is

then treated as a single spatial query by the server. Thereby, users

do not necessarily have to sketch entire objects, but may start with

an object and add features they deem missing from it (e.g., adding

handles to a vase).

The image-based label retrieval extracts possible terms for tex-

tual queries based on an image captured by the headset. This compo-

nent of ShapeFindAR is fundamentally a mapping from a 2D image

to a search term (1D). It is enabled by connecting and holding the

index fingers and thumbs of both hands for one second (dwell time)

in the field of view of the device. This activates a žframing modež

(Fig. 5a). Afterwards, the users can drag their hands apart, to form

a frame around the object they want to use as a query (Fig. 5a). The

captured image is used as a query to the Google Cloud Vision API5,

which retrieves suggested labels based on the image’s contents.

4.2 Data Collection

While Thingiverse and MyMiniFactory provide crucial infrastruc-

ture for makers, they are ś by design ś focused on established

ways to be searched: textual queries along with sorting and fil-

tering options. Notably, most filters focus on tags and categories

(i.e., more abstract terminology). Sorting similarly focuses on non-

spatial dimensions, like popularity or (textual) relevance. We chose

Thingiverse and MyMiniFactory as data sources for ShapeFindAR.

Thingiverse can be considered the de-facto standard for model

repositories for 3D printing, while MyMiniFactory aims to curate

the models offered on the platform. However, neither of these plat-

forms offers ways for geometry-based searches6. Thangs7 allows

users to upload 3D models as queries, but offers no way to define

them (either coarse sketches or precise models), while also function-

ing ex-situ only [40]. To comply with the platforms’ API guidelines

and to enable our novel functionalities without straining public

infrastructure, we chose to duplicate a subset of their libraries. We

chose high waiting times between all requests, to avoid putting

unnecessary strain on the servers of Thingiverse and MyMiniFac-

tory. This led to timespans of multiple days to gather batches of 500

5https://cloud.google.com/vision/, retrieved on 11.12.2021
6Implicitly, users may search for specific measurements or labels and hope to find
results through textual search
7https://thangs.com/, retrieved on 16.12.2021

b)a) Spatial
sketch

Spatial
sketch

Downloaded
search result

Pinch gesture
for drawing

Figure 4: The sketching mode of ShapeFindAR. The users are

free to sketch queries in the space around them with a pinch

gesture (a). To iteratively refine spatial search queries, users

may also sketch additions onto an object retrieved from the

repository (b) and submit this combination as a new query.

Suggested
labels / terms

b)a)

Frame
for object
labeling

Object of
interest

Figure 5: The image-based label extraction of ShapeFindAR:

The user activates a framing mode through a gesture, en-

closes the artifact to be classified in the frame, and confirms

the selection via dwell-time (a). The žbest guessž is pre-filled

into the search field and additional suggested keywords are

listed below (b).

models. The keywords used were basic mechanical artifacts popular

in 3D printing communities like hooks, and decorative artifacts

like vases or figures. Furthermore, the most popular artifacts on

each of the repositories were gathered. Data like the original source,

the designer, the licenses used were all transferred to our database

subset.

The entire dataset we gathered consists of 4118 objects in total.

2717 objects consist of one part only, while the remaining ones

have 2 or more files (e.g., .stl) associated with them. 2356 objects

out of 4118 provide mesh metadata suitable for our implementation

of spatial search queries.

4.3 Postprocessing

Postprocessing of the metadata and the meshes themselves was

necessary after each iteration of data gathering. The tool used for

mesh handling was the trimesh library for Python by Dawsonś

Haggerty et al. [9]. Some meshes were corrupted, and were for

instance missing correctly calculated normals or did not describe

a volume. We did not apply any žopinionatedž automated mesh

repair methods8, due to the risk of corrupting the original geometry.

The data sources Thingiverse and MyMiniFactory both employ the

concepts of categories and tags. While tags are largely unmoderated

and can be freely chosen by the users, available categories are

specified by the repository administration. The categories used by

Thingiverse and MyMiniFactory are comparable, but not identical.

Categories were therefore grouped andmatched into new categories

used by our database.

To improve the text- and voice-based search, fields like the arti-

fact name, description, or tags were subject to postprocessing with

NLTK9 (stemming, lemmatization, and stopword removal). To en-

able geometry-based searches, spatial metadata of the meshes was

also established during this step. As detailed registrations and com-

parisons of meshes are computationally expensive, we implemented

methods to pre-filter the result. We calculated two ratios based on

the ordered dimensions of the bounding box to filter meshes based

on their proportions. The voxel representation used for aligning

and matching sketches to objects was computed at this step and

serialized to the database, to avoid re-computing it on each search

request.

8e.g., ones that fill holes larger than 1 triangle in size or remove self-intersecting or
degenerate triangles, which are present in repositories like Thingiverse [68]
9https://www.nltk.org/, retrieved on 1.12.2021

https://cloud.google.com/vision/
https://thangs.com/
https://www.nltk.org/
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4.4 Server Implementation

All server-side software was written in Python. The server com-

ponent was written using flask10. The flask application provides a

REST (representational state transfer) API for the HoloLens client:

searches by text, searches by sketch, download of metadata, files,

and thumbnails. For the database component, MongoDB11 4.4.0

was used, due to its flexible data model and its document-based

approach. To accelerate queries, our database instance employs

multiple indexes. Apart from indexing the ID fields, which accel-

erates retrieval of object details and files, a textual index and a 2D

spatial index are used. This ideally accelerates searches submitted

through their respective index. For queries ultimately converted to

text, the database uses a text index12, based on the title, description,

tag, and category fields. The fields are weighted based on their

specificity (with categories being the least and names being the

most specific). Searches passed to this index omit stopwords and

employ stemming and lemmatization for the English language13. A

second index configured for the database is a 2D spatial index14. We

leverage the accelerated query time for 2D-data we derive from the

meshes’ object-aligned bounding box (OABB). The ratios between

height/width and width/depth are used to pre-filter models based

on their proportions.

Each search request is initially treated as a textual search, but

gets by highly imprecise and general terms (e.g., žobjectž). This

enables pre-filtering the results to amounts manageable by the

server for computationally expensive operations and manageable

by the user to get an appropriate overview. After having reduced

the potential search result set, the server filters the results based

on the previously introduced metric of OABB ratios. This set of

results that match based on the OABB ratio is intersected with the

set retrieved by the textual search. With this selection, it is now

possible to calculate per-voxel overlap, which is the server’s rank-

ing/scoring function. The stored voxel representations are already

size-normalized (i.e., their largest extent is set to 100 and the other

extents are scaled proportionally to match). The incoming sketch

is similarly normalized in scale. However, the original extents are

retained, if the resulting model is meant to be scaled to match it.

The sketch is then voxelized. The resolution of the voxelization

is likewise defined by the model’s largest dimension, as the vox-

elization pitch was chosen to yield 20 voxels across the largest

dimension. The voxelized meshes are then used to run the ICP

algorithm (iterative closest point [67]). The ICP procedure aligns

the sketch to the repository model, as the latter usually has an

orientation that follows the principal axes of inertia. The starting

parameters for the ICP procedure are chosen based on the inertia

of the mesh. The voxelized sketch is then rotated and moved with

the calculated transformation. Due to the previously conducted

size-normalization, no scaling is involved in this step. With the

2 models aligned and with maximal overlap, the amount (i.e., the

number of voxels) of overlap is counted. Based on the resulting

10https://flask.palletsprojects.com/, retrieved on 26.8.2021
11https://www.mongodb.com/, retrieved on 22.8.2021
12https://docs.mongodb.com/manual/core/index-text/, retrieved on 1.8.2021
13Notably, not all gathered artifacts are named and described in English. This is an
additional argument in favor of non-textual queries.
14https://docs.mongodb.com/manual/core/2d/, retrieved on 1.8.2021

overlap, we calculate multiple similarity metrics: normalized by the

number of voxels in the sketch, normalized by the number of voxels

in the repository model, and an average of these two normalized

values. To accommodate for different volumes (e.g., sketches being

entirely wrapped by the repository model), the average of the two

normalized values is used as the core ranking for the search results.

5 APPLICATION WALKTHROUGHS

The following scenarios were enacted with the ShapeFindAR pro-

totype and present brief, self-contained examples of actual inter-

actions with the system. The search results seen in the examples

are based on our custom dataset and are therefore a subset of mod-

els available on Thingiverse or MyMiniFactory. However, due to a

sizeable number of different objects of different categories, the user

interacts with the dataset and the search results in a similar fash-

ion to the potential interaction happening with a more extensive

database. Furthermore, the sketch search is not ideally calculat-

ing similarities, but fails in specific edge cases (e.g., completely

flat sketches, or when the user’s sketch has entirely different pro-

portions than any fitting object in the database). It does, however,

generally retrieve a set of results where fitting or similar artifacts

can be found among the first ones and iterated with. With the

walkthroughs, we want to emphasize different ways in which in-

situ spatial search enables users to ambiguously and iteratively

approach physical artifact retrieval.

5.1 Scenario 1: Bypassing Terminology

ShapeFindAR supports users by affording them a degree of Termś

Abstraction: not having to know or choose the terminology of a

domain. This is enabled through the use of photo-based label ex-

traction (2D→ 1D) and sketch-based search (3D→ 3D).

The first example can be seen in Figure 6. A microcontroller

(Arduino Uno), is in a user’s vicinity. The name žArduinož does not

appear on the device, as it is made by an alternative manufacturer

ś however, this would be an ideal term to use in a search. Not

knowing what it exactly is (i.e., what to search for specifically),

the user may want to find a case to enclose or mount the exposed

In-situ
preview

4�3�

2�1�

Suggested
labels/terms

Unknown
object

List of
results

Selected
result

Frame
for object
labeling

Selected
suggestion

Figure 6: Term-Abstraction: Finding artifacts when terminol-

ogy is unknown. 1) Framing the object to be searched for; 2)

using one of the classified labels; 3) search results and scaling

of a selected one; 4) previewing the result in-situ.

https://flask.palletsprojects.com/
https://www.mongodb.com/
https://docs.mongodb.com/manual/core/index-text/
https://docs.mongodb.com/manual/core/2d/
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microcontroller. He is able to use the photo-based label extraction

component to frame the device (Fig. 6-1) and is suggested the term

žArduinož among others (Fig. 6-2). Executing this textual query

yields a set of related models for 3D printing (Fig. 6-3). This includes

cases, mounts, but also objects that require an Arduino to provide

interactivity. The models can be downloaded and previewed in situ

(Fig. 6-4), for the user to verify the appeal, and, to a degree, the fit

of the model.

Coarse sketch of
desired geometry

4�3�

2�1� Coarse
(additional)
search term

Selected
result

In-situ
preview

Figure 7: Term-Abstraction: bypassing domain terminology

of jewelry. 1) sketching the coarse geometry of a double ring;

2) entering a coarse textual search term; 3) analyzing the list

of (2D) results (input sketch and one fitting 3D result are

visible); 4) previewing the (3D) object on the body.

Another example is depicted in Figure 7, where the user is inter-

ested in finding a double-ring15 which is a piece of jewelry worn

on two fingers, instead of one. Most users interested in such a con-

struct likely have an intuitive idea of the geometry of the object:

two similarly sized rings, possibly connected through a plate or

other decorative element. However, they may not know the ideal

term to find such objects in a repository. A user can then sketch

this geometry (2 rings and, if needed, a connecting plate ś Fig. 7-1),

and use this in conjunction with a coarse search term (e.g., žringž,

which would not retrieve the desired double ring as a high ranking

result ś Fig. 7-2). While actual double rings do not rank first in the

ShapeFindAR search, they are among the first results presented to

the user (Fig. 7-3). Lastly, the user may preview the ring inśsitu,

which may not guarantee a perfect fit, but at the very least indicates

fit and aesthetics (Fig. 7-4).

5.2 Scenario 2: Iterative Refinement

We do not expect users to formulate židealž queries that lead to the

desired results in one single step. Refinement in textual searches

usually happens by browsing initial results and applying filters.

Alternatively, users may discover new terms to search for by brows-

ing through item titles or descriptions, thereby acquiring a degree

of domain knowledge. ShapeFindAR enables both a textual and a

spatial query refinement process.

An example can be seen in Figure 8. The user initially searches

for bowls to use for decoration (Fig. 8-1). As she notices that she

15An example is Double Ring JVCR (22 mm x 2) by cepera3000 on Thingiverse, retrieved
on 15.12.2021

Result
preview
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Combined
spatial

search input

4�3�

2�1�

Sketch added
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result

Combined
spatial
search
input

Selected
Result
Objects

Result
preview

Figure 8: Iteration (spatial): Sketching onto retrieved artifacts

to iterate on the (spatial) search query. 1) the initial bowl

retrieved from the repository; 2) Sketching onto it to elongate

its shape; 3) submitting the sketch search with a new term;

4) a set of results for the combination of sketch and model.

would prefer ones that are generally taller, she can either take

one of the pots retrieved from the repository and scale it in the

Y direction, or she can enable the sketching mode and add onto

the downloaded pot to enlarge it (Fig. 8-2). After having changed

the pot’s proportions this way, she may submit the combination of

previous result and sketch, along with a coarse search term (Fig.

8-3) as a new query. Lastly, she may preview the results in-situ and

apply other manipulations such as scaling to the (3D) results (Fig. 8-

4). While the initial query is formulated without leveraging in-situ

features, the query refinement may happen through referencing the

physical context (e.g., comparing proportions of the results with

existing decoration and altering it accordingly).

5.3 Scenario 3: Inspiration

Photo-based label extraction can be employed to provide inspiration

and related items to the user. By applying this label extraction,

users transfer aspects of their physical context to textual queries.

This is similar to features found on platforms like Pinterest [61] or

shopping interfaces like IKEA’s smartphone app [54], The items

retrieved do not necessarily have to be the same artifact, but be

similar to it, in terms of use-cases or domain. For a phone, the

search may retrieve phone mounts or cases, which do not exhibit

an identical geometry, but are meant to complement the geometry

of the artifact.

Figure 9 depicts such a process. A user frames a watch (Fig.

9-1) and the resulting best guess is filled into the search field of

ShapeFindAR (Fig. 9-2). Additional guesses are listed below and

can likewise be used for a textual query (Fig. 9-2). While this is

comparable to a coarse text search, it enables users to benefit from

the machine’s perception of the object or the scenery, ideally ex-

panding the users’ existing domain knowledge ad-hoc. This may

include more precise terms (e.g., wristwatch instead of watch) or

more general ones, in comparison to the user’s wording. We con-

sider this approach to be a feasible way to initiate a search with the

goal of browsing a model repository. The results range from objects

that are meant to complement the watch (e.g., a watch-stand ś Fig.

https://www.thingiverse.com/thing:2672476
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Figure 9: Inspiration: Using the photo-based label extrac-

tion to receive inspiration for related items. 1) Framing a

wristwatch as an object of interest; 2) choosing one of the

suggested terms; 3) search results related, but not identical

to the framed item; 4) in-situ previewing of the artifacts.

9-3) or replacement parts for the watch (e.g., a watch strap ś Fig.

9-4), all of which can be previewed in-situ.

5.4 Scenario 4: In-situ Features

With ShapeFindAR, users may also trace features available in the

vicinity. This enables users to transfer aspects of their physical

context to spatial queries. The features can be either traced coarsely

and serve as a basis for a sketch extending upon them, or be traced

completely to search for (geometrically) similar artifacts.

A user may trace an existing flowerpot he wishes to replace or

improve its design (e.g., by adding a decorative cachetop or planter

to it). The ratio of the existing pot is important for this task, so

the user tries to approximate the contours of the pot as closely

as possible (Fig. 10-1). This does not necessarily leave a complete

sketch of the pot. Afterwards, he fills some of the gaps of the outline

to provide ShapeFindAR with volumetric features to work with (Fig.

4�3�

2�1�

Existing
physical
features

Traced
sketch Result

list

Sketch (sparsely
traced features)

Traced
sketch Result

object

In-situ
preview

Coarse (additional)
search term

Figure 10: Tracing in-situ features for spatial searches. 1)

coarsely tracing the coarse silhouette of the pot to be re-

placed; 2) removing the pot and completing the sketch; 3)

submitting the query with a coarse search term, 2D result

list is visible; 4) previewing in-situ.

10-2). Along with the search term žplanterž, the sketch search is

submitted and yields decorative pots with comparable proportions

to the sketch (and therefore to the original pot ś Fig. 10-3). As the

sketch was not entirely gap-free, a paper bin with sparse lines is

among the first results (Fig. 10-3). Lastly, the user may move the 3D

preview of the future artifact to cover the physical pot and evaluate

aesthetics or apply modifications such as scaling (Fig. 10-4).

6 LIMITATIONS AND DISCUSSION

In this chapter, we want to discuss the conceptual and technical

limitations of ShapeFindAR and the presented concept of in-situ

spatial search.

6.1 Conceptual Limitations

Conceptually, it is important to consider the skill requirements

and gaps associated with spatial sketching. Transferring partial

requirements (e.g., tracing a physical object) to a satisfying sketch

may prove hard for some users.We emphasize coarse approximation

of shapes, but this may not suffice for complex queries, where for

instance precise measurements are required. This is, to a degree,

compensated by other modalities available to the users (i.e., text).

However, this could potentially be overcome in the future with even

bettermatching algorithms, whichmay considermore aspects of the

environment. Alternatively, this may require ways to compensate

for the lack of precision through automated corrections, or novel

fabrication workflows [42, 55].

6.2 Technical Limitations

ShapeFindAR is, as a proof-of-concept, not without technical lim-

itations. The ranking computed by the server is not impeccable,

but under the candidates the system retrieves, fitting results can

usually be found. The spatial search component is arguably slow,

with one sketch-to-model comparison taking up to 2 seconds. This

leads to request times of approximately up to 60 seconds. The more

artifacts are considered to be feasible candidates, the longer the

search may take. Accelerating the server would for instance require

approaches such as shape histograms [28]. To scale ShapeFindAR

to database sizes comparable to Thingiverse, far more optimiza-

tions and more aggressive filtering approaches are required. Unlike

textual queries, sketch queries are far more individual and harder to

cache or precompute. The ICP algorithm we use to align sketches

and repository meshes, was originally meant to align point clouds

originating from the same scene [67]. This is not the case with our

combination, as a sketch merely approximates the target object.

The approach of pre-filtering based on the OABB proved to be

not ideal in some cases. If žflatž sketches are submitted (i.e., when

the user merely traces an outline), similarly flat repository models

are treated preferably. Automated extrusion would likely improve

search performance and reduce the effort required from the users

to fill volumes in their sketches. We argue that while there is room

for improvement, coarse and ambiguous input, along with similarly

coarse (but appropriate) results, may lead to more productive, cre-

ative explorations of the potential solutions to users’ requirements.
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6.3 Opportunities of In-Situ Spatial Search

Regardless of the aforementioned limitations, we strongly believe

that ShapeFindAR is a proof-of-concept that demonstrates the op-

portunities of in-situ spatial search for future physical artifacts. By

abstracting away from terminology, users may express their desired

artifacts in a modality that is arguably more natural and fitting: in

3 dimensions and in-situ, instead of ex-situ and converted to text

and labels. In-situ spatial search enables Term- and Function-

Abstraction. By ascribing terminology to the artifacts, they are

prevented from appearing in searches not following this particular

terminology (i.e., if novices to a domain are meant to express search

terms). In-situ spatial search may also enable scale-invariance

in a search process. With ShapeFindAR, we embrace the aspect

that scale can be freely chosen by the user. This freedom enables

scale-invariant searches. By normalizing all spatial input and out-

put (while also focusing on proportions), ShapeFindAR sidesteps

established conventions of size. Future implementations may also

automatically scale objects to match the user’s sketch, or use the

sketch as a way to filter objects by size.

We argue that the žideal searchž for a physical artifact should

happen in the most fitting (for the task) and easy (for the user)

modality, and allow the combination of modalities to express par-

tial requirements. There is no žone size fits allž approach to the

search for physical artifacts, especially for personal use. A standard-

ized artifact (e.g., an M3 screw) is easy to find, if the user knows

the appropriate denomination (i.e., possesses the necessary domain

knowledge). Likewise, precise measurements are easier to express

through text (e.g., 4cm), compared to (spatial) sketches. As promis-

ing as a spatial-only search system may appear, it covers and excels

at a subset of possible tasks. It also implicitly assumes that all users

lack domain knowledge to express fitting search terms. If a user hap-

pens to possess the ability to express a precise search term in text,

they may still achieve fitting results quickly. This requires systems

to still offer textual means, which is what we did with ShapeFindAR,

while also adding a transfer function from the physical context to

textual queries (label extraction). However, proportions or geome-

try that are not standardized require other means to be encoded in

a search, such as spatial sketches or 3D scans.

7 FUTUREWORK

We do not assume that 3D printing is the only domain ShapeFindAR

may be applied to. Ideally, it may be a search and preview frontend

to any database of physical artifacts. Databases that are domain-

specific (e.g., furniture [36]) or general artifact databases (e.g., gen-

eral shopping interfaces) could be addressed by ShapeFindAR and

the concept of in-situ spatial search. With the capabilities of per-

sonal fabrication devices increasing, it may apply to any physical

artifact in the (distant) future. Additionally, it is intriguing to ex-

plore users’ strategies for in-situ spatial search in a task-oriented

user study. Technical improvements to ShapeFindAR are possible in

terms of processing speed and the addition of further input modali-

ties. With devices like the HoloLens being outfitted with a depth

sensor, more detailed interaction with the environment is a promis-

ing direction. For instance, one may scan existing artifacts and

use them as search input (3D → 3D). This is fairly similar to the

label extraction approach (2D → 1D) present in ShapeFindAR, but

abstracts even further from labels (Term-Abstraction) and empha-

sizes geometry instead (3D→ 3D). This scan could also be altered

with added sketch features or deformation. Silhouettes of artifacts

are an intriguing aspect not fully considered in the ShapeFindAR

prototype. Sketching outlines and applying basic operations like

in revolving (for volumes with rotational symmetry), extrusion, or

inflation (c.f., [22]) may be easier to execute than sketching the

entire geometry (2D→ 3D→ 3D).

8 CONCLUSION

We presented the concept of in-situ spatial search and ShapeFindAR,

a mixed reality search interface to a repository of 3D-printable

models. The prototype system embeds multiple modalities for users

to search for the physical artifact they desire: sketching shapes,

photo-based search (i.e., label extraction), or textual search. The

search itself, along with the object preview, happens in-situ, at the

location of the future artifact, and happens iteratively, based on

input gained from the search results and the physical environment.

We specified this concept as in-situ spatial search, and described

conceptual advantages, along with walkthroughs possible with

ShapeFindAR. We consider this work to be a step towards lower-

effort interfaces for personal fabrication, which may emerge more

as sophisticated shopping interfaces [52], and less as simplified

interfaces for (3D) modeling.

With this work, we argue for better ways for novices and even

consumers (who are not involved in personal fabrication) to search

and preview future physical artifacts. While users with intrinsic mo-

tivation for fabrication are willing to invest time in learning and de-

signing, the majority of people can be considered žconsumersž [52].

They are willing to benefit from unique, personal artifacts, but not

willing to invest time in the process. For them, novel, low-effort,

means for artifact retrieval, over artifactmodeling, are required. The

process of retrieval, in turn, should not enforce the use of a specific

language to formulate queries and demand as few transfers between

(future) artifact context and the search interface as possible.
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